JP2021050454A - Core-sheath type composite fibers - Google Patents

Core-sheath type composite fibers Download PDF

Info

Publication number
JP2021050454A
JP2021050454A JP2019175463A JP2019175463A JP2021050454A JP 2021050454 A JP2021050454 A JP 2021050454A JP 2019175463 A JP2019175463 A JP 2019175463A JP 2019175463 A JP2019175463 A JP 2019175463A JP 2021050454 A JP2021050454 A JP 2021050454A
Authority
JP
Japan
Prior art keywords
core
component
composite fiber
acid
core component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019175463A
Other languages
Japanese (ja)
Other versions
JP7400297B2 (en
Inventor
一平 渡
Ippei Watari
一平 渡
田中 陽一郎
Yoichiro Tanaka
陽一郎 田中
優志 長尾
Masashi Nagao
優志 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2019175463A priority Critical patent/JP7400297B2/en
Publication of JP2021050454A publication Critical patent/JP2021050454A/en
Application granted granted Critical
Publication of JP7400297B2 publication Critical patent/JP7400297B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polyesters Or Polycarbonates (AREA)
  • Multicomponent Fibers (AREA)

Abstract

To provide core-sheath type composite fibers that can be obtained by melt spinning, and that show excellent water absorption capacity inside a polymer constituting the fibers at room temperature.SOLUTION: There are provided core-sheath type composite fibers that comprise: a core component A composed of a thermoplastic polymer; and a sheath component B composed of a thermoplastic polymer having crystallinity, the core-sheath type composite fibers are configured to: form 1 to 8 parts where the core component is exposed on a surface in a cross section of the fibers; and have a ratio (r/R) between a length R of an outer circumference of the fiber cross section and a length r of a largest exposed part among the exposed parts 1 to 8 of the core component of 0.005 to 0.100, in which a volume of the composite fibers increases from 50 to 1350% when the fibers are left to stand at 50°C for 1 week and then are immersed in ion-exchanged water at 30°C for 1 hour.SELECTED DRAWING: Figure 1

Description

本発明は、熱可塑性ポリマーからなり、吸水能力に優れた芯鞘型複合繊維に関するものである。 The present invention relates to a core-sheath type composite fiber made of a thermoplastic polymer and having excellent water absorption capacity.

複数のポリマーを組み合わせることで多機能化が可能な複合繊維は、衣料用途のみならずおむつ用途やフェイスマスク用途等幅広く利用されており、産業上の価値は極めて高い。これら用途に求められる要求特性は高度化しており、その特性の1つとして繊維を構成するポリマー内部への優れた吸水能力が挙げられる。 Composite fibers, which can be made multifunctional by combining a plurality of polymers, are widely used not only for clothing but also for diapers and face masks, and have extremely high industrial value. The required properties required for these applications are becoming more sophisticated, and one of the properties is the excellent water absorption capacity inside the polymer constituting the fiber.

ポリマー内部への優れた吸水能力を有する素材として、ポリアクリル酸ナトリウムがよく知られているが、繊維として用いるには溶液紡糸や後架橋処理が必要であるため成形コストが非常に高く、繊維製品としての展開は難しい。また、溶融紡糸が不可能であることから、ナイロンやポリエステル樹脂等との複合繊維を得ることもできない(特許文献1)。そこで、溶融紡糸によって得られ、かつ、ポリマー内部への吸水が可能な複合繊維として、多量のポリアルキレングリコール化合物を共重合したポリブチレンテレフタレートを部分的に使用した複合繊維が提案されている(特許文献2、3)。 Sodium polyacrylate is well known as a material having excellent water absorption capacity inside the polymer, but its molding cost is very high because it requires solution spinning and post-crosslinking to be used as a fiber, and it is a textile product. It is difficult to develop as. Further, since melt spinning is not possible, composite fibers with nylon, polyester resin, or the like cannot be obtained (Patent Document 1). Therefore, as a composite fiber obtained by melt spinning and capable of absorbing water inside the polymer, a composite fiber partially using polybutylene terephthalate obtained by copolymerizing a large amount of a polyalkylene glycol compound has been proposed (Patented). Documents 2 and 3).

しかし、特許文献2、3に記載の複合繊維は、おむつやフェイスマスクなどの用途に用いるには繊維を構成するポリマー内部への吸水能力が不十分であるという問題が判明した。すなわち、これら複合繊維を構成するポリマー内部への、30℃の水中における1時間の吸水量は複合繊維1gあたり0.4g未満であり、その際の容積増加率は50%未満であった。 However, it has been found that the composite fibers described in Patent Documents 2 and 3 have insufficient water absorption capacity inside the polymer constituting the fibers for use in applications such as diapers and face masks. That is, the amount of water absorbed into the polymer constituting these composite fibers per hour in water at 30 ° C. was less than 0.4 g per 1 g of the composite fibers, and the volume increase rate at that time was less than 50%.

特開平4−80234号公報Japanese Unexamined Patent Publication No. 4-80234 特開2003−253100号公報Japanese Unexamined Patent Publication No. 2003-253100 特開2004−137418号公報Japanese Unexamined Patent Publication No. 2004-137418

本発明の目的は、熱可塑性ポリマーからなり、かつ、複合繊維を構成するポリマー内部への優れた吸水能力、具体的には30℃の水中における1時間の吸水量が複合繊維1gあたり0.4g以上を示す複合繊維を提供することにある。 An object of the present invention is that the polymer is made of a thermoplastic polymer and has an excellent water absorption capacity inside the polymer constituting the composite fiber, specifically, the amount of water absorption per hour in water at 30 ° C. is 0.4 g per 1 g of the composite fiber. An object of the present invention is to provide a composite fiber showing the above.

上記課題は、熱可塑性ポリマーである芯成分Aと熱可塑性ポリマーで結晶性を有する鞘成分Bからなる芯鞘型複合繊維であり、繊維横断面において芯成分Aが表面に露出している部分を1〜8箇所有しており、繊維横断面の外周の長さRと、芯成分Aの表面露出部分1〜8箇所のうち最も大きい露出部の長さrの比(r/R)が0.005〜0.100である芯鞘型複合繊維であり、かつ50℃で1週間静置したのちに30℃のイオン交換水中に1時間浸漬した際に容積が50〜1350%増加する芯鞘型複合繊維により解決される。 The above-mentioned problem is a core-sheath type composite fiber composed of a core component A which is a thermoplastic polymer and a sheath component B which is crystalline in a thermoplastic polymer, and a portion where the core component A is exposed on the surface in the cross section of the fiber is formed. It has 1 to 8 points, and the ratio (r / R) of the length R of the outer periphery of the fiber cross section to the length r of the largest exposed part among the surface exposed parts 1 to 8 of the core component A is 0. A core-sheath type composite fiber of .005 to 0.100, and a core-sheath whose volume increases by 50 to 1350% when immersed in ion-exchanged water at 30 ° C. for 1 hour after being allowed to stand at 50 ° C. for 1 week. It is solved by the type composite fiber.

本発明によれば、製造工程が簡便で低コストである溶融紡糸によって、室温下で極めて優れたポリマー内部への吸水能力を示す複合繊維が得られる。このような複合繊維は、おむつやフェイスマスク、保冷剤、冷却シートなどの保水、冷却を目的とした製品に好適に用いることができる。 According to the present invention, a composite fiber exhibiting extremely excellent water absorption ability inside a polymer at room temperature can be obtained by melt spinning, which has a simple manufacturing process and low cost. Such composite fibers can be suitably used for products for the purpose of water retention and cooling such as diapers, face masks, ice packs, and cooling sheets.

(a)〜(g)は、本発明の芯鞘型複合繊維における繊維横断面形状を模式的に例示する繊維横断面図であり、(a)〜(g)はそれぞれ好適な例を示す。(A) to (g) are fiber cross-sectional views schematically illustrating the fiber cross-sectional shape in the core-sheath type composite fiber of the present invention, and (a) to (g) show suitable examples, respectively.

本発明の芯鞘型複合繊維は、熱可塑性ポリマーである芯成分Aと熱可塑性ポリマーで結晶性を有する鞘成分Bからなる芯鞘型複合繊維である。溶融紡糸によって複合繊維を得るため、芯鞘両成分が熱可塑性ポリマーであることは必須である。 The core-sheath type composite fiber of the present invention is a core-sheath type composite fiber composed of a core component A which is a thermoplastic polymer and a sheath component B which is a thermoplastic polymer and has crystallinity. In order to obtain composite fibers by melt spinning, it is essential that both core and sheath components are thermoplastic polymers.

本発明の芯鞘型複合繊維に含まれる芯成分Aに好適な、熱可塑性と室温での吸水能力を両立したポリマーとしては、ジカルボン酸および/またはそのエステル形成性誘導体とアルキレングリコールの重縮合反応により得られるポリエステル組成物であって、窒素下または真空下50℃で1週間静置したのちに示差走査熱量測定によって求められるガラス転移点が0〜30℃、かつ結晶融解熱量が0〜12J/gの範囲にあるポリエステル組成物を挙げることができる。以下、本発明の芯鞘型複合繊維の芯成分Aに好適な共重合ポリエステル組成物について詳述する。 A polymer suitable for the core component A contained in the core-sheath composite fiber of the present invention, which has both thermoplasticity and water absorption capacity at room temperature, is a polycondensation reaction of a dicarboxylic acid and / or an ester-forming derivative thereof and an alkylene glycol. The polyester composition obtained by the above method, after allowing to stand at 50 ° C. under nitrogen or vacuum for 1 week, has a glass transition point of 0 to 30 ° C. and a crystal melting heat quantity of 0 to 12 J / obtained by differential scanning calorimetry. Polyester compositions in the range of g can be mentioned. Hereinafter, a copolymerized polyester composition suitable for the core component A of the core-sheath type composite fiber of the present invention will be described in detail.

芯成分Aの原料として用いることのできるジカルボン酸としては、テレフタル酸やイソフタル酸に代表される芳香族ジカルボン酸化合物、アジピン酸やセバシン酸に代表される脂肪族ジカルボン酸化合物、シクロヘキサンジカルボン酸に代表される脂環式ジカルボン酸化合物が挙げられるが、これらに限定されない。例えば、重縮合反応性に優れる点から、芳香族ジカルボン酸を用いることが好ましく、テレフタル酸やイソフタル酸を主として用いることがより好ましい。エステル形成性誘導体としては、上記ジカルボン酸のメチルエステル、エチルエステルなどのアルキルエステル、それらの酸塩化物や酸臭化物などの酸ハロゲン化物、さらには酸無水物などが挙げられる。例えば、重縮合反応性に優れる点から、メチルエステルやエチルエステルなどのアルキルエステルが好ましく、メチルエステルが特に好ましい。ジカルボン酸成分としては、これらのうち1種類の化合物種を使用しても良く、2種類以上を組み合わせても良い。 Examples of the dicarboxylic acid that can be used as a raw material for the core component A include aromatic dicarboxylic acid compounds typified by terephthalic acid and isophthalic acid, aliphatic dicarboxylic acid compounds typified by adipic acid and sebacic acid, and cyclohexanedicarboxylic acid. Examples thereof include, but are not limited to, alicyclic dicarboxylic acid compounds. For example, it is preferable to use an aromatic dicarboxylic acid from the viewpoint of excellent polycondensation reactivity, and it is more preferable to mainly use terephthalic acid or isophthalic acid. Examples of the ester-forming derivative include alkyl esters such as the methyl ester of the dicarboxylic acid and ethyl ester, acid halides such as acid halides and acid halides thereof, and acid anhydrides. For example, an alkyl ester such as a methyl ester or an ethyl ester is preferable, and a methyl ester is particularly preferable, from the viewpoint of excellent polycondensation reactivity. As the dicarboxylic acid component, one of these compound types may be used, or two or more types may be combined.

芯成分Aの原料として用いることのできるアルキレングリコールの種類は特に限定されないが、重縮合反応性に優れる点から、1,4−ブタンジオール、1,3−プロパンジオール、エチレングリコールのいずれか、またはそれらの組み合わせから選択されることが好ましい。 The type of alkylene glycol that can be used as a raw material for the core component A is not particularly limited, but any one of 1,4-butanediol, 1,3-propanediol, and ethylene glycol, or ethylene glycol, from the viewpoint of excellent polycondensation reactivity. It is preferable to select from a combination thereof.

芯成分Aが、本発明の芯鞘型複合繊維中で吸水能力を発揮するためには、窒素下または真空下50℃で1週間静置したのちに示差走査熱量測定することで求められるガラス転移点が30℃以下、かつ結晶融解熱量が12J/g以下であることが好ましい。ガラス転移点が一般的な室温近傍であることで、分子運動性が高くなり吸水能力が向上する。なお、芯鞘型複合繊維の保管時の変形を防ぐ点からガラス転移点は0℃以上30℃以下が好ましく、10℃以上30℃以下がより好ましい。また、水を吸収するのはポリマーの非晶部であるため、非晶部が多く、すなわち結晶部が少ないほど吸水能力に優れ芯成分Aとして好ましい。そのため、結晶融解熱量は9J/g以下であることが好ましく、6J/g以下であることがより好ましく、3J/g以下であることさらに好ましく、0J/gであることが最も好ましい。 In order for the core component A to exhibit water absorption capacity in the core-sheath type composite fiber of the present invention, the glass transition required by measuring the differential scanning calorimetry after allowing the core component A to stand at 50 ° C. under nitrogen or vacuum for 1 week. It is preferable that the point is 30 ° C. or lower and the amount of heat of crystal melting is 12 J / g or less. When the glass transition point is near room temperature, which is common, the molecular motility is increased and the water absorption capacity is improved. The glass transition point is preferably 0 ° C. or higher and 30 ° C. or lower, and more preferably 10 ° C. or higher and 30 ° C. or lower, from the viewpoint of preventing deformation of the core-sheath type composite fiber during storage. Further, since it is the amorphous portion of the polymer that absorbs water, the more amorphous portions, that is, the smaller the crystalline portions, the better the water absorption capacity and the more preferable as the core component A. Therefore, the amount of heat of crystal melting is preferably 9 J / g or less, more preferably 6 J / g or less, further preferably 3 J / g or less, and most preferably 0 J / g.

上記の物性をコントロールするため、芯成分Aは重縮合反応させるに際して、以下の共重合がされていてもよい。すなわち、芯成分Aは、金属スルホネート基含有イソフタル酸および/またはそのエステル形成性誘導体が共重合されていてもよい。金属スルホネート基含有イソフタル酸成分が共重合されることでポリマーの親水性が向上し、吸水能力に優れたポリエステル組成物となる。共重合量は吸水能力を向上させる観点から、全酸成分に対して7.0モル%以上であることがより好ましい。一方、金属スルホネート基含有イソフタル酸成分が過剰となると溶融紡糸性が悪化し複合繊維を得る際に糸切れが発生するため、共重合量は15.0モル%以下であることが好ましく、10.0モル%以下であることがより好ましい。 In order to control the above physical properties, the core component A may be copolymerized as follows when undergoing a polycondensation reaction. That is, the core component A may be copolymerized with a metal sulfonate group-containing isophthalic acid and / or an ester-forming derivative thereof. By copolymerizing the isophthalic acid component containing a metal sulfonate group, the hydrophilicity of the polymer is improved, and a polyester composition having excellent water absorption ability is obtained. From the viewpoint of improving the water absorption capacity, the copolymerization amount is more preferably 7.0 mol% or more with respect to the total acid component. On the other hand, if the amount of the isophthalic acid component containing the metal sulfonate group is excessive, the melt-spinnability deteriorates and yarn breakage occurs when the composite fiber is obtained. Therefore, the copolymerization amount is preferably 15.0 mol% or less. More preferably, it is 0 mol% or less.

また、芯成分Aはポリエチレングリコールを含んでいてもよい。ポリエチレングリコールを含有したポリエステルは分子運動性および親水性に優れ、吸水能力が向上する。含有されたポリエチレングリコールはポリエステル中に共重合されていてもよく、未反応の状態でポリエステル組成物中に存在してもよい。 Further, the core component A may contain polyethylene glycol. Polyester containing polyethylene glycol has excellent molecular motility and hydrophilicity, and has improved water absorption capacity. The contained polyethylene glycol may be copolymerized in the polyester or may be present in the polyester composition in an unreacted state.

芯成分Aが含有するポリエチレングリコールは、効率的な親水性の向上と溶融紡糸性を両立させる観点から、ゲルパーミエーションクロマトグラフィーを用いて測定される数平均分子量が1000以上であることが好ましく、20000以下であることが好ましい。数平均分子量が1000未満、あるいは20000よりも大きいと溶融紡糸性が悪化し複合繊維を得る際に糸切れが発生する。 The polyethylene glycol contained in the core component A preferably has a number average molecular weight of 1000 or more measured by gel permeation chromatography from the viewpoint of achieving both efficient hydrophilicity improvement and melt spinnability. It is preferably 20000 or less. If the number average molecular weight is less than 1000 or larger than 20000, the melt spinnability deteriorates and yarn breakage occurs when a composite fiber is obtained.

芯成分Aが含有するポリエチレングリコールが過剰となると、芯鞘型複合繊維の保管時に単繊維間融着が生じるため、含有量は12.5重量%以下であることが好ましい。当然、ポリエチレングリコールを含有していなくてもよい。ここで記載している含有量はNMR測定によって求めることができる。 If the polyethylene glycol contained in the core component A is excessive, fusion between single fibers occurs during storage of the core-sheath type composite fiber, so the content is preferably 12.5% by weight or less. Of course, it does not have to contain polyethylene glycol. The content described here can be determined by NMR measurement.

芯成分Aは、テレフタル酸および/またはそのエステル形成性誘導体が共重合されていてもよい。テレフタル酸のエステル形成性誘導体としては、それらのメチルエステル、エチルエステルなどのアルキルエステルが挙げられる。例えば、重縮合反応性に優れる点からメチルエステルを用いることが好ましい。 The core component A may be copolymerized with terephthalic acid and / or an ester-forming derivative thereof. Examples of the ester-forming derivative of terephthalic acid include alkyl esters such as their methyl esters and ethyl esters. For example, it is preferable to use a methyl ester from the viewpoint of excellent polycondensation reactivity.

テレフタル酸成分が共重合されることでポリマーの溶融紡糸性が向上する。溶融紡糸性に優れる点から、共重合量は全酸成分に対して5.0モル%以上であることが好ましく、10.0モル%であることがより好ましい。一方、テレフタル酸成分が過剰となると分子鎖同士に強固な分子間力が生じて水中での容積増加が抑制され吸水能力が低下する点から、共重合量は30.0モル%以下であることが好ましく、20.0モル%以下であることがより好ましい。 Copolymerization of the terephthalic acid component improves the melt-spinnability of the polymer. From the viewpoint of excellent melt-spinnability, the copolymerization amount is preferably 5.0 mol% or more, more preferably 10.0 mol%, based on the total acid component. On the other hand, when the terephthalic acid component is excessive, a strong intermolecular force is generated between the molecular chains, the volume increase in water is suppressed, and the water absorption capacity is lowered. Therefore, the copolymerization amount should be 30.0 mol% or less. Is preferable, and it is more preferably 20.0 mol% or less.

さらに、芯成分Aは、イソフタル酸、シクロヘキサンジカルボン酸、ナフタレンジカルボン酸、アジピン酸、セバシン酸および/またはそのエステル形成性誘導体が共重合されていてもよい。エステル形成性誘導体としては、これらのメチルエステル、エチルエステルなどのアルキルエステルが挙げられ、例えば、重縮合反応性に優れる点からメチルエステルを用いることが好ましい。これらのジカルボン酸成分は、1種類の化合物種を使用しても良く、2種類以上を組み合わせても良い。 Further, the core component A may be copolymerized with isophthalic acid, cyclohexanedicarboxylic acid, naphthalene dicarboxylic acid, adipic acid, sebacic acid and / or an ester-forming derivative thereof. Examples of the ester-forming derivative include alkyl esters such as these methyl esters and ethyl esters. For example, it is preferable to use methyl esters from the viewpoint of excellent polycondensation reactivity. As these dicarboxylic acid components, one kind of compound kind may be used, or two or more kinds may be combined.

これらのジカルボン酸成分が一定の範囲で共重合されると、分子鎖同士の分子間力および結晶性が大きく低下し、水中での容積増加が促進され吸水能力が向上する。吸水能力を向上させる点から、これらのジカルボン酸成分の合計は全酸成分に対して60.0〜85.0モル%であることが好ましく、65.0〜85.0モル%であることがより好ましく、溶融紡糸性に優れる点から65.0〜80.0モル%であることがさらに好ましい。 When these dicarboxylic acid components are copolymerized in a certain range, the intermolecular force and crystallinity between the molecular chains are greatly reduced, the volume increase in water is promoted, and the water absorption capacity is improved. From the viewpoint of improving the water absorption capacity, the total of these dicarboxylic acid components is preferably 60.0 to 85.0 mol%, preferably 65.0 to 85.0 mol%, based on the total acid components. More preferably, it is 65.0 to 80.0 mol% from the viewpoint of excellent melt spinnability.

本発明のポリエステル組成物の物性をコントロールするため、例えば金属スルホネート基含有イソフタル酸成分、テレフタル酸成分、イソフタル酸成分、シクロヘキサンジカルボン酸成分、ナフタレンジカルボン酸成分、アジピン酸成分、セバシン酸成分のうちいずれかの共重合成分、および含有成分であるポリエチレングリコールの組み合わせから2種以上を上記記載の範囲で用いることが好ましい。これら2種以上を組み合わせることによって相乗効果が得られ、芯成分Aひいては芯鞘型複合繊維全体の吸水能力をより向上させることができる。組み合わせとしては、金属スルホネート基含有イソフタル酸成分とポリエチレングリコールを同時に用いることが好ましく例示され、加えてテレフタル酸成分、イソフタル酸成分を用いることがさらに好ましい。 In order to control the physical properties of the polyester composition of the present invention, for example, any of a metal sulfonate group-containing isophthalic acid component, a terephthalic acid component, an isophthalic acid component, a cyclohexanedicarboxylic acid component, a naphthalenedicarboxylic acid component, an adipic acid component, and a sebacic acid component. It is preferable to use two or more kinds in the above-mentioned range from the combination of the copolymerization component and polyethylene glycol which is a contained component. By combining these two or more types, a synergistic effect can be obtained, and the water absorption capacity of the core component A and thus the core-sheath type composite fiber as a whole can be further improved. As a combination, it is preferable to use the metal sulfonate group-containing isophthalic acid component and polyethylene glycol at the same time, and it is more preferable to use the terephthalic acid component and the isophthalic acid component in addition.

本発明の芯鞘型複合繊維の鞘成分Bに好適なポリマーとしては、220〜300℃の範囲で溶融紡糸可能な結晶性を有する熱可塑性ポリマーであることが好ましく、例えば、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ナイロン6、ナイロン66、ナイロン610、ポリプロピレン、ポリ乳酸、およびこれらを主成分として50%以上含むブレンドポリマーや共重合ポリマーが挙げられるが、これらに限定されない。 The polymer suitable for the sheath component B of the core-sheath type composite fiber of the present invention is preferably a thermoplastic polymer having crystallinity that can be melt-spun in the range of 220 to 300 ° C., for example, polyethylene terephthalate and polytri. Examples thereof include, but are not limited to, methylene terephthalate, polybutylene terephthalate, nylon 6, nylon 66, nylon 610, polypropylene, polylactic acid, and blend polymers and copolymer polymers containing 50% or more of these as main components.

本発明の芯鞘型複合繊維の鞘成分Bは、繊維表面の大部分または全てを占めるため、熱延伸工程、または仮撚工程において鞘成分Bを起点とした熱変形や単繊維間融着が発生しないよう高い結晶融解熱量を有することが好ましい。具体的には、示差走査熱量測定により求められる結晶融解熱量が20J/g以上であることが好ましく、40J/g以上であることがより好ましい。 Since the sheath component B of the core-sheath type composite fiber of the present invention occupies most or all of the fiber surface, thermal deformation or fusion between single fibers starting from the sheath component B occurs in the heat drawing step or the false twisting step. It is preferable to have a high amount of heat for melting crystals so that it does not occur. Specifically, the amount of heat of crystal melting obtained by differential scanning calorimetry is preferably 20 J / g or more, and more preferably 40 J / g or more.

本発明の芯鞘型複合繊維は、繊維横断面において芯成分が表面に露出している部分を1〜8箇所有していることが必須である。芯成分が繊維表層に全く露出していないと、吸水能力を発揮することができない。また、芯成分が表面に露出している部分が8箇所よりも多くなると、露出した芯成分を起点とした熱変形や単繊維間融着が発生する。また、繊維の強度が向上する点、および繊維同士の摩擦が低減して複合繊維を巻き取った後の解舒性が良好となる点で、露出箇所は1〜6箇所であることが好ましく、1〜3箇所であることがより好ましく、1箇所であることが最も好ましい。 It is essential that the core-sheath type composite fiber of the present invention has 1 to 8 portions where the core component is exposed on the surface in the cross section of the fiber. If the core component is not exposed at all on the fiber surface layer, the water absorption capacity cannot be exhibited. Further, when the number of portions where the core component is exposed on the surface is more than eight, thermal deformation and fusion between single fibers occur starting from the exposed core component. Further, it is preferable that the number of exposed points is 1 to 6 in terms of improving the strength of the fibers and reducing the friction between the fibers to improve the unwinding property after winding the composite fiber. It is more preferably 1 to 3 locations, and most preferably 1 location.

本発明の芯鞘型複合繊維は、繊維横断面の外周の長さRと、芯成分の表面露出部分1〜8箇所のうち最も大きい露出部の長さrの比(r/R)が0.005〜0.100であることが必須である。露出部の比(r/R)が0.005未満では、水中に浸漬した際に芯成分と水の接触面積が複合繊維全体に対して小さくなるため吸水能力を発揮することができない。一方、露出部の比(r/R)が0.100より大きくなると、露出した芯成分を起点とした熱変形や単繊維間融着が発生する。より優れた吸水能力を発揮するため、露出部の比(r/R)は0.030以上であることが好ましく、繊維の強度が向上する点から0.050以下であることが好ましい。繊維横断面の外周の長さR及び芯成分の表面露出部分のうち最も大きい露出部の長さrは、透過型電子顕微鏡によって芯鞘型繊維の横断面を観察して得られた値である。 In the core-sheath type composite fiber of the present invention, the ratio (r / R) of the outer peripheral length R of the fiber cross section to the length r of the largest exposed portion among the surface exposed portions 1 to 8 of the core component is 0. It is essential that it is .005 to 0.100. If the ratio (r / R) of the exposed portion is less than 0.005, the contact area between the core component and water becomes smaller than that of the entire composite fiber when immersed in water, so that the water absorption capacity cannot be exhibited. On the other hand, when the ratio (r / R) of the exposed portion is larger than 0.100, thermal deformation and fusion between single fibers occur starting from the exposed core component. The ratio (r / R) of the exposed portion is preferably 0.030 or more, and preferably 0.050 or less from the viewpoint of improving the strength of the fiber, in order to exhibit more excellent water absorption capacity. The length R of the outer circumference of the fiber cross section and the length r of the largest exposed portion of the surface exposed portion of the core component are values obtained by observing the cross section of the core-sheath fiber with a transmission electron microscope. ..

本発明の芯鞘型複合繊維の繊維横断面の断面形状としては、図1の(a)〜(g)のようなものが例示されるが、これらに限定されるものではない。 Examples of the cross-sectional shape of the fiber cross section of the core-sheath type composite fiber of the present invention include those shown in FIGS. 1A to 1G, but the present invention is not limited thereto.

本発明の芯鞘型複合繊維は、50℃で1週間静置したのちに30℃のイオン交換水中に1時間浸漬した際に容積が50%以上増加することが必須である。ここで、増加の度合いは容積増加率で示すことができ、容積増加率が50%とは、例えば、100mだった容積が150mに増加することを意味する。容積増加率が50%以上であることで、複合繊維1gあたり0.4g以上の吸水量を達成できる。さらに優れた吸水能力が発現する点から、容積増加率は70%以上であることが好ましく、130%以上であることがより好ましく、160%以上であることがさらに好ましく、300%以上であることが最も好ましい。一方で、容積増加率が1400%よりも高くなると、水中で芯成分が崩壊および溶解してしまうため、本発明の複合繊維の容積増加率は1350%以下であることが必須であり、タフネスに優れた繊維が得られる点から335%以下が好ましい。 It is essential that the volume of the core-sheath type composite fiber of the present invention increases by 50% or more when it is allowed to stand at 50 ° C. for 1 week and then immersed in ion-exchanged water at 30 ° C. for 1 hour. Here, the degree of increase may be indicated by a volume increase rate, volume increase rate is 50%, for example, the volume was 100 m 3 is meant to increase the 150 meters 3. When the volume increase rate is 50% or more, a water absorption amount of 0.4 g or more per 1 g of the composite fiber can be achieved. From the viewpoint of exhibiting more excellent water absorption capacity, the volume increase rate is preferably 70% or more, more preferably 130% or more, further preferably 160% or more, and further preferably 300% or more. Is the most preferable. On the other hand, if the volume increase rate is higher than 1400%, the core component collapses and dissolves in water. Therefore, it is essential that the volume increase rate of the composite fiber of the present invention is 1350% or less, resulting in toughness. It is preferably 335% or less from the viewpoint of obtaining excellent fibers.

本発明の芯鞘型複合繊維は、目的の吸水能力を達成できる範囲において繊維横断面に対する芯成分の面積比率を自由に設定してもよい。優れた吸水能力を容易に発揮させるため、芯成分の面積比率は30%以上が好ましく、60%以上がより好ましい。また、繊維の強度が向上する点から80%以下が好ましく、70%以下がより好ましい。 In the core-sheath type composite fiber of the present invention, the area ratio of the core component to the cross section of the fiber may be freely set within a range in which the desired water absorption capacity can be achieved. In order to easily exert excellent water absorption capacity, the area ratio of the core component is preferably 30% or more, more preferably 60% or more. Further, 80% or less is preferable, and 70% or less is more preferable, from the viewpoint of improving the strength of the fiber.

本発明の芯鞘型複合繊維の単繊維繊度は、特に制限がなく用途や要求特性に応じて適宜選択することができるが、良好な織編物への加工性を示す点から1.0〜4.0dtexの範囲であることが好ましい。 The single fiber fineness of the core-sheath type composite fiber of the present invention is not particularly limited and can be appropriately selected according to the application and required characteristics, but is 1.0 to 4 from the viewpoint of showing good processability into a woven or knitted fabric. It is preferably in the range of 0.0 dtex.

本発明の芯鞘型複合繊維の伸度は、特に制限がなく用途や要求特性に応じて適宜選択することができるが、耐久性の観点から10〜60%であることが好ましい。芯鞘型複合繊維の伸度が10%以上であれば、複合繊維の耐久性が良好となるため好ましい。一方、芯鞘複合繊維の伸度が60%以下であれば、複合繊維の寸法安定性が良好となるため好ましい。 The elongation of the core-sheath type composite fiber of the present invention is not particularly limited and can be appropriately selected depending on the application and required characteristics, but is preferably 10 to 60% from the viewpoint of durability. When the elongation of the core-sheath type composite fiber is 10% or more, the durability of the composite fiber is good, which is preferable. On the other hand, when the elongation of the core-sheath composite fiber is 60% or less, the dimensional stability of the composite fiber is good, which is preferable.

本発明の芯鞘型複合繊維のタフネスは、織編物の加工性に優れる点から14以上であることが好ましい。また、作成した織編物が耐久性に優れる点からタフネスは23以上がより好ましい。 The toughness of the core-sheath type composite fiber of the present invention is preferably 14 or more from the viewpoint of excellent processability of the woven or knitted fabric. Further, the toughness is more preferably 23 or more from the viewpoint that the produced woven or knitted fabric is excellent in durability.

本発明の芯鞘型複合繊維からなる繊維構造体の形態は特に制限がなく、織物、編物、パイル布帛、不織布や紡績糸、詰め綿などにすることができる。また、本発明の芯鞘型複合繊維からなる繊維構造体は、いかなる織組織または編組織であってもよく、平織、綾織、朱子織あるいはこれらの変化織や、経編、緯編、丸編、レース編あるいはこれらの変化編などが好適に採用できる。 The form of the fiber structure made of the core-sheath type composite fiber of the present invention is not particularly limited, and may be woven fabric, knitted fabric, pile fabric, non-woven fabric, spun yarn, stuffed cotton or the like. Further, the fiber structure made of the core-sheath type composite fiber of the present invention may have any woven structure or knitted structure, and may be plain weave, twill weave, satin weave or a variation of these, warp knitting, weft knitting, or circular knitting. , A lace version or a variation version thereof can be preferably adopted.

本発明の芯鞘型複合繊維は、繊維構造体にする際に交織や交編などによって他の繊維と組み合わせてもよいし、他の繊維との混繊糸とした後に繊維構造体としてもよい。 The core-sheath type composite fiber of the present invention may be combined with other fibers by mixed weaving or knitting when forming a fiber structure, or may be used as a fiber structure after being made into a mixed yarn with other fibers. ..

以下、実施例により本発明をさらに詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。また、本発明の芯鞘型複合繊維の測定、評価方法は以下の通りである。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples as long as the gist of the present invention is not exceeded. The method for measuring and evaluating the core-sheath type composite fiber of the present invention is as follows.

A.透過型電子顕微鏡による複合繊維横断面の観察
実施例・比較例によって得られた延伸糸をエポキシ樹脂で包埋し、Reichert製FC・4E型クライオセクショニングシステムで凍結し、ダイヤモンドナイフを具備したReichert−Nissei ultracut N(ウルトラミクロトーム)で切削した。その後、切削面すなわち繊維横断面を、日立製作所製透過型電子顕微鏡(TEM)H−7100FA型を用いて1000倍で観察し、繊維横断面の顕微鏡写真を撮影した。得られた写真から、芯成分の露出箇所数を確認した。
A. Observation of the cross section of the composite fiber with a transmission electron microscope The drawn yarns obtained in Examples and Comparative Examples were embedded in epoxy resin, frozen in a Reichert FC / 4E cryosectioning system, and equipped with a diamond knife. It was cut with a Nissei ultracut N (ultramicrotome). Then, the cut surface, that is, the cross section of the fiber was observed at 1000 times using a transmission electron microscope (TEM) H-7100FA manufactured by Hitachi, Ltd., and a micrograph of the cross section of the fiber was taken. From the obtained photographs, the number of exposed parts of the core component was confirmed.

B.繊維横断面の外周の長さRと、芯成分の表面露出部分1〜8箇所のうち最も大きい露出部の長さrの比(r/R)
上記A.記載の方法で繊維横断面を撮影した後、得られた写真から無作為に単繊維10本を抽出した。画像処理ソフト(三谷商事製WINROOF)を用いて繊維横断面周長Rおよび芯成分Aの繊維表面露出部のうち最も大きい露出部の長さrを測定し、比(r/R)を算出した。
B. The ratio (r / R) of the length R of the outer circumference of the fiber cross section to the length r of the largest exposed portion among the surface exposed portions 1 to 8 of the core component.
A. above. After taking a cross section of the fiber by the method described, 10 single fibers were randomly extracted from the obtained photographs. Using image processing software (WINROOF manufactured by Mitani Corporation), the circumference R of the fiber cross section and the length r of the largest exposed portion of the fiber surface exposed portion of the core component A were measured, and the ratio (r / R) was calculated. ..

C.繊維横断面中において芯成分ポリマーが占める面積比率
上記A.記載の方法で繊維横断面を撮影した後、得られた写真から無作為に単繊維10本を抽出した。画像処理ソフト(三谷商事製WINROOF)を用いて抽出した全ての単繊維の繊維横断面積、および芯成分Aの面積をそれぞれ算出した。繊維横断面積の平均値と芯成分Aの面積の平均値から、芯成分Aが占める面積比率を下式
面積比率(%)={(芯成分Aの面積の平均値)/(繊維横断面積の平均値)}×100
のとおり算出した。
C. Area ratio occupied by the core component polymer in the cross section of the fiber A. After taking a cross section of the fiber by the method described, 10 single fibers were randomly extracted from the obtained photographs. The fiber cross-sectional area of all the single fibers extracted using image processing software (WINROOF manufactured by Mitani Corporation) and the area of the core component A were calculated. From the average value of the fiber cross-sectional area and the average value of the core component A area, the area ratio occupied by the core component A is calculated by the following formula: Area ratio (%) = {(Average value of the core component A area) / (Fiber cross-sectional area) Average value)} x 100
It was calculated as follows.

D.総繊度
実施例・比較例によって得られた延伸糸を、温度20℃、湿度65%RHの環境下において、INTEC製電動検尺機を用いて100mかせ取りした。得られたかせの重量を測定し、下記のとおり総繊度(dtex)を算出した。
D. Total Fineness The drawn yarns obtained in Examples and Comparative Examples were squeezed 100 m using an INTEC electric measuring machine in an environment of a temperature of 20 ° C. and a humidity of 65% RH. The weight of the obtained skein was measured, and the total fineness (dtex) was calculated as follows.

総繊度(dtex)=繊維100mの重量(g)×100
なお、測定は1試料につき5回行い、その平均値を総繊度とした。
Total fineness (dtex) = weight of 100 m of fiber (g) x 100
The measurement was performed 5 times per sample, and the average value was taken as the total fineness.

E.溶融紡糸性
実施例・比較例の条件にて延伸糸を得るに際して溶融紡糸性を次の基準に基づき3段階評価した。
評価A:ワインダーへの巻取30分間で糸切れは生じない。
評価B:ワインダーへの巻取10分間で糸切れが生じない。
評価C:ワインダーへの巻取10分間で糸切れが生じる。
E. Melt-spinning property When obtaining drawn yarn under the conditions of Examples and Comparative Examples, the melt-spinning property was evaluated on a three-point scale based on the following criteria.
Evaluation A: No thread breakage occurs in 30 minutes of winding on the winder.
Evaluation B: No thread breakage occurs in 10 minutes of winding on the winder.
Evaluation C: Thread breakage occurs in 10 minutes after winding on the winder.

F.強度、伸度
実施例・比較例によって得られた延伸糸を試料とし、JIS L1013:2010(化学繊維フィラメント糸試験方法)8.5.1に準じて算出した。温度20℃、湿度65%RHの環境下において、リエンテック製テンシロンUTM−III−100型を用いて、初期試料長20cm、引張速度20cm/分の条件で引張試験を行った。最大荷重を示す点の応力(cN)を総繊度(dtex)で除して強度(cN/dtex)を算出し、最大荷重を示す点の伸び(L1)と初期試料長(L0)を用いて下式のとおり伸度(%)を算出した。
F. Strength and Elongation Using the drawn yarns obtained in Examples and Comparative Examples as samples, calculations were made according to JIS L1013: 2010 (chemical fiber filament yarn test method) 8.5.1. In an environment of a temperature of 20 ° C. and a humidity of 65% RH, a tensile test was conducted using a Tencilon UTM-III-100 manufactured by Lientech under the conditions of an initial sample length of 20 cm and a tensile speed of 20 cm / min. The strength (cN / dtex) is calculated by dividing the stress (cN) at the point indicating the maximum load by the total fineness (dtex), and the elongation (L1) and the initial sample length (L0) at the point indicating the maximum load are used. The elongation (%) was calculated as shown in the formula below.

伸度(%)={(L1−L0)/L0}×100
なお、測定は1試料につき10回行い、その平均値を強度および伸度とした。
Elongation (%) = {(L1-L0) / L0} x 100
The measurement was performed 10 times per sample, and the average value was taken as the strength and elongation.

G.タフネス
上記E.記載の方法で算出した強度(cN/dtex)と伸度(%)を用いて下記
タフネス=(強度)×(伸度)1/2
のとおりにタフネスを算出した。
G. Toughness E. Using the strength (cN / dtex) and elongation (%) calculated by the method described below, the following toughness = (strength) x (elongation) 1/2
The toughness was calculated as shown in.

H.単繊維間融着および解舒性評価
実施例・比較例によって得られた延伸糸を巻き取ったボビンを温度20℃、湿度65%RHの環境下で1週間静置し、単繊維間融着および解舒性について次の基準に基づき3段階評価した。なお、評価:A、Bを合格とし、単繊維間融着の有無については実施例A.項記載の方法で繊維横断面を観察して確認した。
評価A:単繊維間融着が全くなく、糸間の摩擦抵抗が小さいため張力をかけずに解舒が可能
評価B:単繊維間融着が全くないが、糸間の摩擦抵抗が強く解舒に張力をかける必要がある
評価C:単繊維間融着があり、解舒も困難。
H. Evaluation of fusion between single fibers and unleashability The bobbin wound with the drawn yarn obtained in Examples and Comparative Examples was allowed to stand for one week in an environment of a temperature of 20 ° C. and a humidity of 65% RH for fusion between single fibers. And the solvability was evaluated on a three-point scale based on the following criteria. Evaluation: A and B were passed, and the presence or absence of fusion between single fibers was determined in Example A. The cross section of the fiber was observed and confirmed by the method described in the section.
Evaluation A: There is no fusion between single fibers and the frictional resistance between threads is small, so unwinding is possible without applying tension. Evaluation B: There is no fusion between single fibers, but the frictional resistance between threads is strong. It is necessary to apply tension to the 舒 C: There is fusion between single fibers, and it is difficult to unravel.

I.複合繊維の水中における容積増加率
実施例・比較例によって得られた延伸糸の水中における容積増加率は乾式自動密度計およびピクノメーターを用いて測定した。前処理として、延伸委を50℃、窒素下で1週間静置して結晶状態を安定化させた。前処理を行った延伸糸を0.8g量り取り、乾式密度計を用いて以下の条件で水へ浸漬前の延伸糸の容積:A[m^3]を求めた。
装置:マイクロメリティックス社製乾式自動密度計アキュピック1340T−10CC
充填ガス:He
測定温度:25℃
続いて、前処理した延伸糸2.0gを30℃のイオン交換水200mL中に浸漬し1時間静置した。静置1時間後速やかに延伸糸を取り出し、繊維表面に付着した水を拭き取り、ピクノメーターを用いて以下の条件で浸漬後の延伸糸の容積:B[m^3]を求めた。
装置:SANSYO製ハーバード型ピクノメーター
恒温槽:ヤマト科学製恒温槽BK33
測定温度:25℃
浸漬液:イオン交換水20mL
最後に、延伸糸の浸漬前後における容積増加率を以下のとおり求めた。
容積増加率[%]={(B−A)/A}×100 。
I. Volume increase rate of composite fibers in water The volume increase rate of drawn yarns obtained in Examples and Comparative Examples in water was measured using a dry automatic densitometer and a pycnometer. As a pretreatment, the stretching committee was allowed to stand at 50 ° C. under nitrogen for 1 week to stabilize the crystalline state. 0.8 g of the pretreated drawn yarn was weighed, and the volume of the drawn yarn before immersion in water was determined using a dry densitometer under the following conditions: A [m ^ 3].
Equipment: Micromeritix dry automatic densitometer Accupic 1340T-10CC
Filling gas: He
Measurement temperature: 25 ° C
Subsequently, 2.0 g of the pretreated drawn yarn was immersed in 200 mL of ion-exchanged water at 30 ° C. and allowed to stand for 1 hour. After 1 hour of standing, the drawn yarn was immediately taken out, the water adhering to the fiber surface was wiped off, and the volume of the drawn yarn after immersion: B [m ^ 3] was determined using a pycnometer under the following conditions.
Equipment: SANSYO Harvard type pycnometer constant temperature bath: Yamato Scientific constant temperature bath BK33
Measurement temperature: 25 ° C
Immersion solution: 20 mL of ion-exchanged water
Finally, the volume increase rate before and after immersion of the drawn yarn was determined as follows.
Volume increase rate [%] = {(BA) / A} × 100.

J.複合繊維の吸水量測定
前処理として、実施例・比較例によって得られた延伸糸を50℃、窒素下で1週間静置して結晶状態を安定化させた。続いて、前処理した延伸糸およそ2.0gを30℃のイオン交換水200mL中に浸漬し1時間静置した。静置1時間後速やかに延伸糸を取り出し、繊維表面に付着した水を拭き取り、重量:A[g]を測定した。さらに、重量測定後の繊維を105℃に設定した送風乾燥機中で6時間乾燥し、乾燥後重量:B[g]を測定し、以下のとおり延伸糸1g当たりの吸水量[g/g]を算出した。
吸水量[g/g]=(A−B)/B
ただし、水中で延伸糸中の芯成分が崩壊して回収困難となった場合は計測不可とした。
J. As a pretreatment for measuring the water absorption of the composite fiber, the drawn yarns obtained in Examples and Comparative Examples were allowed to stand at 50 ° C. under nitrogen for 1 week to stabilize the crystalline state. Subsequently, about 2.0 g of the pretreated drawn yarn was immersed in 200 mL of ion-exchanged water at 30 ° C. and allowed to stand for 1 hour. After 1 hour of standing, the drawn yarn was immediately taken out, the water adhering to the fiber surface was wiped off, and the weight: A [g] was measured. Further, the weight-measured fibers were dried in a blower dryer set at 105 ° C. for 6 hours, the weight after drying: B [g] was measured, and the water absorption per 1 g of the drawn yarn [g / g] was measured as follows. Was calculated.
Water absorption [g / g] = (AB) / B
However, if the core component in the drawn yarn collapsed in water and it became difficult to recover it, measurement was not possible.

K.芯成分ポリマーの組成分析
芯成分ポリマーの組成分析は、核磁気共鳴装置(NMR)を用いて実施した。
装置:日本電子株式会社製 AL−400
重溶媒:重水素化HFIP
積算回数:128回
サンプル濃度:測定サンプル50mg/重溶媒1mL 。
K. Composition analysis of the core component polymer The composition analysis of the core component polymer was performed using a nuclear magnetic resonance apparatus (NMR).
Equipment: AL-400 manufactured by JEOL Ltd.
Deuterated solvent: Deuterated HFIP
Number of integrations: 128 times Sample concentration: 50 mg of measurement sample / 1 mL of deuterated solvent.

L.芯成分ポリマーの熱特性分析
芯成分ポリマーのガラス転移点、結晶融解熱量の分析は、示唆走査熱量計を用いて実施した。なお、上記K.項および本L.項記載の方法で芯成分ポリマーを分析するに際して、複合繊維を直接分析してもよく、芯成分と鞘成分の溶解度の差を利用して芯成分のみをクロロホルム中に溶解させメタノール中に再沈殿させることによって単離してから測定してもよい。
装置:TA Instruments社製 Q−2000
昇温速度:16℃/分、−20℃から300℃まで。
L. Thermal property analysis of core component polymer The glass transition point and crystal melting calorimeter of the core component polymer were analyzed using a differential scanning calorimeter. In addition, the above K. Item and this L. When analyzing the core component polymer by the method described in the section, the composite fiber may be directly analyzed, and only the core component is dissolved in chloroform by utilizing the difference in solubility between the core component and the sheath component and reprecipitated in methanol. It may be isolated and then measured.
Equipment: Q-2000 manufactured by TA Instruments
Heating rate: 16 ° C / min, from -20 ° C to 300 ° C.

M.ポリエステルの固有粘度IV
鞘成分がポリエステル組成物である場合、試料をオルソクロロフェノールに溶解し、オストワルド粘度計を用いて25℃で測定することで固有粘度IVを求めた。
M. Intrinsic viscosity of polyester IV
When the sheath component was a polyester composition, the sample was dissolved in orthochlorophenol and measured at 25 ° C. using an Ostwald viscometer to determine the intrinsic viscosity IV.

M.ポリアミドの98%硫酸相対粘度(ηr)
鞘成分がポリアミド組成物である場合、オストワルド粘度計にて下記溶液の25℃での落下秒数を測定し、下式により98%硫酸相対粘度(ηr)を算出した。
(ηr)=T1/T2
T1はポリアミド組成物を1g/100mlとなるように溶解した98%濃硫酸、
T2は98%濃硫酸。
M. 98% Sulfuric Acid Relative Viscosity of Polyamide (ηr)
When the sheath component was a polyamide composition, the number of seconds that the following solution fell at 25 ° C. was measured with an Ostwald viscometer, and the 98% sulfuric acid relative viscosity (ηr) was calculated by the following formula.
(Ηr) = T1 / T2
T1 is 98% concentrated sulfuric acid in which the polyamide composition is dissolved so as to be 1 g / 100 ml.
T2 is 98% concentrated sulfuric acid.

[実施例1]
(芯成分Aの調製方法)
ジメチルテレフタル酸(DMT)1.5kg(全酸成分に対して20.0モル%)、ジメチル5−スルホイソフタル酸ナトリウム(SSIA)0.8kg(全酸成分に対して10.0モル%)、イソフタル酸ジメチル(DMI)5.2kg(全酸成分に対して70.0モル%)、1,4−ブタンジオール(BDO)6.2kg、テトラ−n−ブチルチラネートの20重量%BDO溶液(TBT)36.1g、酢酸リチウム2水和物(LAH)50.6gを加え、120〜200℃でメタノールを留出しつつエステル交換(EI)反応を行った。180分後、数平均分子量1000のポリエチレングリコール(PEG)を1.0kg(得られる組成物に対して10.0重量%)、[ペンタエリスリトール−テトラキス(3−(3,5−ジ−t−ブチル−4−ヒドロキシフェノール)プロピオネート)](BASF製“Irganox(登録商標。以下同じ。)1010”)25.0g、TBT36.1gをさらに追加し、245℃で徐々に0.1kPa以下まで減圧し、重合開始180分後、反応系を窒素パージして常圧に戻して重縮合反応を停止させ、口金からストランド状に押出して水槽冷却し、ペレット状にカッティングを実施して共重合ポリエステル組成物を得た。ポリマー特性を表1に示す。
[Example 1]
(Preparation method of core component A)
1.5 kg of dimethyl terephthalic acid (DMT) (20.0 mol% with respect to total acid component), 0.8 kg of sodium dimethyl 5-sulfoisophthalate (SSIA) (10.0 mol% with respect to total acid component), 5.2 kg of dimethyl isophthalate (DMI) (70.0 mol% with respect to total acid content), 6.2 kg of 1,4-butanediol (BDO), 20 wt% BDO solution of tetra-n-butyltyranate ( 36.1 g of TBT) and 50.6 g of lithium lithium acetate dihydrate (LAH) were added, and a transesterification (EI) reaction was carried out while distilling out methanol at 120 to 200 ° C. After 180 minutes, 1.0 kg of polyethylene glycol (PEG) having a number average molecular weight of 1000 (10.0% by weight based on the obtained composition), [pentaerythritol-tetrakis (3- (3,5-di-t-). Butyl-4-hydroxyphenol) propionate)] (BASF's "Irganox® (registered trademark; the same applies hereinafter) 1010"), 25.0 g, and 36.1 g of TBT are further added, and the pressure is gradually reduced to 0.1 kPa or less at 245 ° C. 180 minutes after the start of polymerization, the reaction system was purged with nitrogen and returned to normal pressure to stop the polycondensation reaction, extruded into strands from the base, cooled in a water tank, and cut into pellets to carry out a copolymerized polyester composition. Got The polymer properties are shown in Table 1.

(紡糸方法)
上記ポリエステル組成物を芯成分Aとし、ηr:2.6のナイロン6を鞘成分Bとして用いた。芯成分Aと鞘成分Bを各個別々のプレッシャーメルターで260℃にて溶融させ、紡糸パック、口金に合流、芯鞘型に複合形成させて紡糸口金より吐出させた。芯成分Aと鞘成分Bの吐出重量および使用する紡糸口金は、単繊維横断面中で芯成分Aが1箇所露出し(図1(a)の形状)、繊維横断面の外周の長さRと、芯成分の表面露出部分1〜8箇所のうち最も大きい露出部の長さrの比(r/R)がおよそ0.035、およびフィラメント数:36となるよう決定した。また、紡糸温度は260℃とした。紡糸口金より吐出後、紡出糸条を風温25℃、風速20m/分の冷却風で冷却し、給油装置で油剤を付与して収束させ、1000m/分で回転する第1ゴデットローラーで引き取り、第1ゴデットローラーと同じ速度で回転する第2ゴデットローラーを介して、ワインダーで巻き取った。得られた未延伸糸を、第一ホットローラー30℃、第二ホットローラー130℃とした横型延伸機にて3.0倍となるように延伸し、84dtex−36fの延伸糸を得た。
(Spinning method)
The polyester composition was used as the core component A, and nylon 6 having ηr: 2.6 was used as the sheath component B. The core component A and the sheath component B were individually melted at 260 ° C. with a pressure melter, merged with the spinning pack and the mouthpiece, formed into a core-sheath type, and discharged from the spinning mouthpiece. In the discharge weights of the core component A and the sheath component B and the spinneret used, the core component A is exposed at one position in the cross section of the single fiber (shape of FIG. 1A), and the outer peripheral length R of the cross section of the fiber is R. The ratio (r / R) of the length r of the largest exposed portion among the surface exposed portions 1 to 8 of the core component was determined to be about 0.035 and the number of filaments: 36. The spinning temperature was 260 ° C. After discharging from the spinneret, the spun yarn is cooled with a cooling air having a wind temperature of 25 ° C. and a wind speed of 20 m / min, and an oil agent is applied by a refueling device to converge the yarn. It was picked up and wound with a winder via a second godet roller that rotates at the same speed as the first godet roller. The obtained undrawn yarn was drawn by a horizontal drawing machine at 30 ° C. for the first hot roller and 130 ° C. for the second hot roller so as to be 3.0 times, to obtain a drawn yarn of 84 dtex-36f.

(評価)
得られた延伸糸を用いて各種繊維特性の評価を実施した。各種評価結果を表1に示す。
(Evaluation)
Various fiber properties were evaluated using the obtained drawn yarn. Table 1 shows the results of various evaluations.

繊維横断面中における芯成分Aの形状、および複合繊維の水中における容積増加率は本発明の範囲を満たすものであり、吸水量は0.4g/g以上を示した。また、糸物性および解舒性ともに優れるものであった。 The shape of the core component A in the cross section of the fiber and the volume increase rate of the composite fiber in water satisfy the scope of the present invention, and the water absorption amount was 0.4 g / g or more. In addition, both the physical characteristics of the yarn and the unraveling property were excellent.

[実施例2〜4]
実施例1における芯成分Aの露出箇所数を表1に記載の数値に変更した以外は実施例1と同様に実施し、芯鞘型複合繊維を得た。なお、実施例2は図1(d)、実施例3は図1(e)、実施例4は図1(g)の断面形状である。各種評価結果を表1に示す。
[Examples 2 to 4]
The same procedure as in Example 1 was carried out except that the number of exposed portions of the core component A in Example 1 was changed to the values shown in Table 1, to obtain a core-sheath type composite fiber. In addition, Example 2 is a cross-sectional shape of FIG. 1 (d), Example 3 is a cross-sectional shape of FIG. 1 (e), and Example 4 is a cross-sectional shape of FIG. 1 (g). Table 1 shows the results of various evaluations.

[実施例5〜7]
実施例1におけるr/Rを表1に記載の数値に変更した以外は実施例1と同様に実施し、芯鞘型複合繊維を得た。各種評価結果を表1に示す。
[Examples 5 to 7]
The same procedure as in Example 1 was carried out except that the r / R in Example 1 was changed to the numerical value shown in Table 1, to obtain a core-sheath type composite fiber. Table 1 shows the results of various evaluations.

[実施例8〜10]
実施例1における芯成分Aの面積比率を表1に記載の数値に変更した以外は実施例1と同様に実施し、芯鞘型複合繊維を得た。各種評価結果を表1に示す。
[Examples 8 to 10]
The same procedure as in Example 1 was carried out except that the area ratio of the core component A in Example 1 was changed to the numerical value shown in Table 1, to obtain a core-sheath type composite fiber. Table 1 shows the results of various evaluations.

[実施例11]
実施例1におけるフィラメント数を表1に記載の数に変更した以外は実施例1と同様に実施し、芯鞘型複合繊維を得た。各種評価結果を表1に示す。
[Example 11]
The same procedure as in Example 1 was carried out except that the number of filaments in Example 1 was changed to the number shown in Table 1, to obtain a core-sheath type composite fiber. Table 1 shows the results of various evaluations.

[実施例12、13]
実施例1における鞘成分BをIV:0.66のポリエチレンテレフタレート、あるいはSSIA成分を1.5モル%と重量平均分子量1000のポリエチレングリコール2.0重量%を共重合したカチオン染料可染型ポリエチレンテレフタレートに変更した以外は実施例1と同様に実施し、芯鞘型複合繊維を得た。各種評価結果を表1に示す。
[Examples 12 and 13]
The sheath component B in Example 1 is polyethylene terephthalate with IV: 0.66, or the cationic dye dyeable polyethylene terephthalate in which 1.5 mol% of the SSIA component and 2.0% by weight of polyethylene glycol having a weight average molecular weight of 1000 are copolymerized. The same procedure as in Example 1 was carried out except for the change to, to obtain a core-sheath type composite fiber. Table 1 shows the results of various evaluations.

Figure 2021050454
Figure 2021050454

[実施例14〜15]
実施例1における芯成分Aを表2に記載のとおり変更した以外は実施例1と同様に実施し、芯鞘型複合繊維を得た。各種評価結果を表2に示す。
[Examples 14 to 15]
The same procedure as in Example 1 was carried out except that the core component A in Example 1 was changed as shown in Table 2, to obtain a core-sheath type composite fiber. Table 2 shows the results of various evaluations.

[実施例16〜20]
実施例1における芯成分Aを表2に記載のとおり変更し、芯成分Aの露出箇所数を表1に記載の数値に変更した以外は実施例1と同様に実施し、芯鞘型複合繊維を得た。なお、全て図1(g)の断面形状である。各種評価結果を表2に示す。
[Examples 16 to 20]
The core component A in Example 1 was changed as shown in Table 2, and the number of exposed parts of the core component A was changed to the numerical value shown in Table 1. Got All of them have the cross-sectional shape of FIG. 1 (g). Table 2 shows the results of various evaluations.

[実施例21〜27]
実施例1における芯成分Aを表2に記載のとおり変更した以外は実施例1と同様に実施し、芯鞘型複合繊維を得た。各種評価結果を表2に示す。
[Examples 21 to 27]
The same procedure as in Example 1 was carried out except that the core component A in Example 1 was changed as shown in Table 2, to obtain a core-sheath type composite fiber. Table 2 shows the results of various evaluations.

Figure 2021050454
Figure 2021050454

[比較例1、2]
実施例1における芯成分Aの露出箇所数を表3に記載の数値に変更した以外は実施例1と同様に実施し、芯鞘型複合繊維を得た。なお、比較例1は開口部を有さず芯成分が円形な芯鞘繊維である。比較例2は、図1(a)に示した開口部形状を合計10箇所有する断面形状である。各種評価結果を表3に示す。
[Comparative Examples 1 and 2]
The same procedure as in Example 1 was carried out except that the number of exposed portions of the core component A in Example 1 was changed to the values shown in Table 3, to obtain core-sheath type composite fibers. Comparative Example 1 is a core-sheath fiber having no opening and having a circular core component. Comparative Example 2 is a cross-sectional shape having a total of 10 opening shapes shown in FIG. 1 (a). Table 3 shows the results of various evaluations.

比較例1は、芯成分Aの露出箇所数が0となったために水中における容積増加率が不足しており、吸水能力に劣るものとなった。 In Comparative Example 1, since the number of exposed parts of the core component A was 0, the volume increase rate in water was insufficient, and the water absorption capacity was inferior.

比較例2は、芯成分Aの露出箇所数が10となったために露出した芯成分を起点とした単繊維間融着が発生した。 In Comparative Example 2, since the number of exposed points of the core component A was 10, fusion between single fibers occurred starting from the exposed core component.

[比較例3、4]
実施例1におけるr/Rを表3に記載の数値に変更した以外は実施例1と同様に実施し、芯鞘型複合繊維を得た。各種評価結果を表3に示す。
[Comparative Examples 3 and 4]
The same procedure as in Example 1 was carried out except that the r / R in Example 1 was changed to the numerical value shown in Table 3, to obtain a core-sheath type composite fiber. Table 3 shows the results of various evaluations.

比較例3は、r/Rが0.005未満となったために水中における容積増加率が不足しており、吸水能力に劣るものとなった。 In Comparative Example 3, since the r / R was less than 0.005, the volume increase rate in water was insufficient, and the water absorption capacity was inferior.

比較例4は、r/Rが0.100より大きくなったために露出した芯成分を起点とした単繊維間融着が発生した。 In Comparative Example 4, since r / R was larger than 0.100, fusion between single fibers occurred starting from the exposed core component.

[比較例5〜10]
実施例1における芯成分Aを表3に記載のとおり変更し、芯成分Aの露出箇所数を表3に記載の数値に変更した以外は実施例1と同様に実施し、芯鞘型複合繊維を得た。なお、全て図1(g)の断面形状である。各種評価結果を表3に示す。
[Comparative Examples 5 to 10]
The core component A in Example 1 was changed as shown in Table 3, and the number of exposed parts of the core component A was changed to the numerical value shown in Table 3, but the same procedure as in Example 1 was carried out. Got All of them have the cross-sectional shape of FIG. 1 (g). Table 3 shows the results of various evaluations.

比較例5〜7、9〜10は、芯成分Aに適用するポリマーが不適切であったために水中における容積増加率が不足しており、吸水能力に劣るものとなった。 In Comparative Examples 5 to 7, 9 to 10, the polymer applied to the core component A was inappropriate, so that the volume increase rate in water was insufficient, and the water absorption capacity was inferior.

一方、比較例8は、芯成分Aに適用するポリマーが不適切であったために水中における容積増加率が過剰となり、吸水時に芯成分が崩壊して繊維形態を維持することができなかった。 On the other hand, in Comparative Example 8, since the polymer applied to the core component A was inappropriate, the volume increase rate in water became excessive, and the core component collapsed during water absorption, and the fiber morphology could not be maintained.

Figure 2021050454
Figure 2021050454

A:芯成分
B:鞘成分
r:芯成分Aの露出部の長さ(最長箇所)
A: Core component B: Sheath component r: Length of exposed part of core component A (longest part)

Claims (5)

熱可塑性ポリマーである芯成分Aと熱可塑性ポリマーで結晶性を有する鞘成分Bからなる芯鞘型複合繊維であり、繊維横断面において芯成分Aが表面に露出している部分を1〜8箇所有しており、繊維横断面の外周の長さRと、芯成分Aの表面露出部分1〜8箇所のうち最も大きい露出部の長さrの比(r/R)が0.005〜0.100である芯鞘型複合繊維であり、かつ50℃で1週間静置したのちに30℃のイオン交換水中に1時間浸漬した際に容積が50〜1350%増加する芯鞘型複合繊維。 It is a core-sheath type composite fiber composed of a core component A which is a thermoplastic polymer and a sheath component B which is crystalline of the thermoplastic polymer, and the core component A is exposed on the surface at 1 to 8 positions in the cross section of the fiber. The ratio (r / R) of the length R of the outer periphery of the cross section of the fiber to the length r of the largest exposed portion among the surface exposed portions 1 to 8 of the core component A is 0.005 to 0. A core-sheath composite fiber of .100, and the volume of the core-sheath composite fiber increases by 50 to 1350% when immersed in ion-exchanged water at 30 ° C. for 1 hour after being allowed to stand at 50 ° C. for 1 week. 繊維横断面において芯成分Aが表面に露出している部分が1箇所であることを特徴とする請求項1に記載の芯鞘型複合繊維。 The core-sheath type composite fiber according to claim 1, wherein the core component A is exposed on the surface at one portion in the fiber cross section. 芯成分Aが、ガラス転移点が0〜30℃、かつ結晶融解熱量が0〜12J/gの範囲にあるポリエステル組成物である請求項1または2に記載の芯鞘型複合繊維。 The core-sheath type composite fiber according to claim 1 or 2, wherein the core component A is a polyester composition having a glass transition point of 0 to 30 ° C. and a heat of crystal melting in the range of 0 to 12 J / g. 芯成分Aが、ジカルボン酸および/またはそのエステル形成性誘導体とアルキレングリコールの重縮合反応により得られるポリエステル組成物であり、金属スルホネート基含有イソフタル酸成分を全酸成分に対して7.0〜15.0モル%共重合され、かつ数平均分子量1000〜20000のポリエチレングリコールを組成物全体に対して0〜12.5重量%の範囲で含有するポリエステル組成物である請求項1〜3のいずれか一項に記載の芯鞘型複合繊維。 The core component A is a polyester composition obtained by a polycondensation reaction of a dicarboxylic acid and / or an ester-forming derivative thereof and an alkylene glycol, and the metal sulfonate group-containing isophthalic acid component is 7.0 to 15 with respect to the total acid component. Any of claims 1 to 3, which is a polyester composition that is copolymerized in 0.0 mol% and contains polyethylene glycol having a number average molecular weight of 1000 to 20000 in the range of 0 to 12.5% by weight based on the entire composition. The core-sheath type composite fiber according to item 1. 芯成分Aが、テレフタル酸成分を全酸成分に対して5.0〜30.0モル%、およびイソフタル酸、シクロヘキサンジカルボン酸、ナフタレンジカルボン酸、アジピン酸、セバシン酸の一種以上から選択されるジカルボン酸成分が全酸成分に対して合計で60.0〜85.0モル%共重合されたポリエステル組成物である請求項4に記載の芯鞘型複合繊維。
The core component A is a dicarboxylic acid selected from 5.0 to 30.0 mol% of the terephthalic acid component with respect to the total acid component, and one or more of isophthalic acid, cyclohexanedicarboxylic acid, naphthalenedicarboxylic acid, adipic acid, and sebacic acid. The core-sheath composite fiber according to claim 4, wherein the polyester composition is a polyester composition in which the acid component is copolymerized in a total amount of 60.0 to 85.0 mol% with respect to the total acid component.
JP2019175463A 2019-09-26 2019-09-26 Core-sheath composite fiber Active JP7400297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019175463A JP7400297B2 (en) 2019-09-26 2019-09-26 Core-sheath composite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019175463A JP7400297B2 (en) 2019-09-26 2019-09-26 Core-sheath composite fiber

Publications (2)

Publication Number Publication Date
JP2021050454A true JP2021050454A (en) 2021-04-01
JP7400297B2 JP7400297B2 (en) 2023-12-19

Family

ID=75157185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019175463A Active JP7400297B2 (en) 2019-09-26 2019-09-26 Core-sheath composite fiber

Country Status (1)

Country Link
JP (1) JP7400297B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190017A (en) * 1987-01-30 1988-08-05 Kanebo Ltd Antistatic conjugate fiber
JPH08260248A (en) * 1995-03-22 1996-10-08 Nippon Ester Co Ltd Polyester conjugate short fiber capable of being dyed with acidic dyestuff
JPH09188919A (en) * 1996-01-11 1997-07-22 Unitika Ltd Water absorbing conjugated fiber
JP2003082555A (en) * 2001-09-06 2003-03-19 Teijin Ltd Fabric regulating moisture-permeable and waterproof properties by itself
JP2004137418A (en) * 2002-10-21 2004-05-13 Teijin Ltd Copolyester composition
JP2018204157A (en) * 2017-06-08 2018-12-27 東レ株式会社 Core-sheath type composite fiber, false twist yarn and fibrous structure superior in hygroscopicity

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190017A (en) * 1987-01-30 1988-08-05 Kanebo Ltd Antistatic conjugate fiber
JPH08260248A (en) * 1995-03-22 1996-10-08 Nippon Ester Co Ltd Polyester conjugate short fiber capable of being dyed with acidic dyestuff
JPH09188919A (en) * 1996-01-11 1997-07-22 Unitika Ltd Water absorbing conjugated fiber
JP2003082555A (en) * 2001-09-06 2003-03-19 Teijin Ltd Fabric regulating moisture-permeable and waterproof properties by itself
JP2004137418A (en) * 2002-10-21 2004-05-13 Teijin Ltd Copolyester composition
JP2018204157A (en) * 2017-06-08 2018-12-27 東レ株式会社 Core-sheath type composite fiber, false twist yarn and fibrous structure superior in hygroscopicity

Also Published As

Publication number Publication date
JP7400297B2 (en) 2023-12-19

Similar Documents

Publication Publication Date Title
KR100901325B1 (en) Polylatic acid fiber
KR100540704B1 (en) Polylactic acid resin, textile products obtained therefrom, and processes for producing textile products
US6423407B1 (en) Polytrimethylene terephthalate fiber
EP1595987A1 (en) Blended woven or knitted fabrics containing polyurethane elastic fibers and process for the production thereof
CN110268109B (en) Heat-bondable core-sheath composite fiber and warp-knitted fabric
JP2014189933A (en) Normal pressure dispersion-dyeable polyester ultra-fine fiber
JP3893995B2 (en) Resin composition and molded body
WO2017114313A1 (en) Core-sheath type composite fibre, false-twist yarns and fibrous structure
JP3925176B2 (en) Polyester resin composition
JP2009299201A (en) Knitted fabric excellent in quick dryability and fiber product
KR20130130952A (en) Soluble conjugated hollow fiber and hollow yarn
JP7400297B2 (en) Core-sheath composite fiber
JP4487973B2 (en) Polyester resin composition
KR102575877B1 (en) Core-sheath composite cross-sectional fiber with excellent hygroscopicity and wrinkle resistance
JP2009185397A (en) Polylactic acid fiber, method for producing the same and fiber product
JP2009299207A (en) Multi-layered fabric and fiber product
JP2022040592A (en) Method for producing fibers
KR100519015B1 (en) Polylactic acid resin, textile products obtained therefrom, and processes for producing textile products
WO2020262511A1 (en) Sheath-core composite yarn and fabric
JP2003041433A (en) Polylactic acid fiber having excellent high-temperature mechanical characteristic
JP2020063536A (en) Splittable type core-sheath composite fiber
KR100909191B1 (en) Method for producing polytrimethylene terephthalate short fibers
JP2009263832A (en) Thin woven fabric excellent in tear strength, and textile product using the same
JP2019081864A (en) Copolyester composition and conjugate fiber including the same
JP2009293162A (en) Water-repellent high-density woven fabric and textile product thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231120

R151 Written notification of patent or utility model registration

Ref document number: 7400297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151