JP2021048776A - Culture method and culture device - Google Patents

Culture method and culture device Download PDF

Info

Publication number
JP2021048776A
JP2021048776A JP2019172228A JP2019172228A JP2021048776A JP 2021048776 A JP2021048776 A JP 2021048776A JP 2019172228 A JP2019172228 A JP 2019172228A JP 2019172228 A JP2019172228 A JP 2019172228A JP 2021048776 A JP2021048776 A JP 2021048776A
Authority
JP
Japan
Prior art keywords
culture
cell
separation
cells
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019172228A
Other languages
Japanese (ja)
Other versions
JP7330834B2 (en
Inventor
近藤 健之
Takeyuki Kondo
健之 近藤
啓介 渋谷
Keisuke Shibuya
啓介 渋谷
聖 村上
Sei Murakami
聖 村上
松尾 俊明
Toshiaki Matsuo
俊明 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2019172228A priority Critical patent/JP7330834B2/en
Publication of JP2021048776A publication Critical patent/JP2021048776A/en
Application granted granted Critical
Publication of JP7330834B2 publication Critical patent/JP7330834B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a culture method and a culture device capable of suppressing a discharge amount of a bleeding liquid discharged to outside of a culture system, and capable of efficiently performing stable perfusion culture.SOLUTION: A culture method is configured to extract a culture fluid including cells from a culture tank in which cells are cultured, for performing cell separation processing, then return a cell concentrated solution generated in the cell separation processing to the culture tank for performing perfusion culture, and during the perfusion culture, discharge the cell concentrated solution to outside of a culture system for adjusting cell concentration of the culture fluid. A culture device 100 comprises: a culture tank 1 in which cells are cultured; a cell separation device 13 for performing cell separation processing of the culture fluid including cells and being extracted from the culture tank 1 for generating the cell concentrated solution; a circulation pipeline 11 for extracting the culture fluid from the culture tank 1 and sending the same to the cell separation device 13, and returning the cell concentrated solution from the cell separation device 13 to the culture tank 1 for circulating cells; and a discharge pipeline 17 for discharging the cell concentrated solution to outside of a circulation system.SELECTED DRAWING: Figure 1

Description

本発明は、灌流培養に用いられる培養方法および培養装置に関する。 The present invention relates to a culture method and a culture device used for perfusion culture.

抗体医薬品をはじめとするバイオ医薬品は、培養液中で細胞を培養した後、細胞が産生した物質を精製することによって製造されている。物質の生産には、抗体遺伝子をはじめ、目的の物質を産生させる遺伝子を導入した細胞株が用いられている。物質の生産に用いる細胞株としては、遺伝子導入された形質転換体の中から、目的の物質を高効率で分泌するものが選抜されている。 Biopharmaceuticals such as antibody drugs are produced by culturing cells in a culture medium and then purifying the substances produced by the cells. For the production of a substance, a cell line into which a gene for producing a target substance, including an antibody gene, has been introduced is used. As the cell line used for the production of the substance, a cell line that secretes the target substance with high efficiency is selected from the transgenic transformants into which the gene has been introduced.

細胞を培養する方法としては、回分培養、流加培養(半回分培養)、連続培養(灌流培養)がある。回分培養は、培養中に培地を供給しない培養法である。流加培養は、培養中に培地を供給するが培養が終わるまで排出しない培養法である。連続培養は、培養中に連続的に培地を供給し、且つ、同量の培地を連続的に排出する培養法である。 As a method for culturing cells, there are batch culture, fed-batch culture (half batch culture), and continuous culture (perfusion culture). Batch culture is a culture method in which no medium is supplied during the culture. Fed-batch culture is a culture method in which a medium is supplied during culture but is not discharged until the culture is completed. Continuous culturing is a culturing method in which a medium is continuously supplied during culturing and the same amount of medium is continuously discharged.

回分培養によると、培養装置の構造や運転が簡略化されるため、コンタミネーションのリスクを低減することができる。その一方で、培養初期の栄養過剰、培養後期の栄養不足、老廃物の蓄積等が起こるため、細胞の増殖が制限されるデメリットがある。流加培養によると、回分培養と比較して、栄養過剰や栄養不足がある程度解消されるため、長期間の培養が可能であるが、老廃物の蓄積の問題は残る。 Batch culture simplifies the structure and operation of the culture apparatus, thus reducing the risk of contamination. On the other hand, there is a demerit that cell proliferation is restricted because overnutrition in the early stage of culture, undernourishment in the late stage of culture, accumulation of waste products and the like occur. According to fed-batch culture, overnutrition and undernutrition are eliminated to some extent as compared with batch culture, so that long-term culture is possible, but the problem of accumulation of waste products remains.

これに対し、灌流培養によると、培養環境が一定に保たれ易くなり、物質の生産を安定的に行うことができる。また、灌流培養によると、細胞を高い細胞密度まで増殖させることが可能である。物質の生産に必要な細胞密度を確保しつつ、培養スケールの縮小や拡大培養の簡略化を図ることが可能であるため、培養設備の小規模化が可能になる利点もある。未変性で純度が高い高品質な生産物を、設備コストや製造コストを削減しつつ、効率的に生産できる培養法として期待されている。 On the other hand, according to the perfusion culture, the culture environment can be easily kept constant, and the production of the substance can be stably performed. In addition, perfusion culture allows cells to grow to high cell densities. Since it is possible to reduce the culture scale and simplify the expanded culture while ensuring the cell density required for the production of the substance, there is an advantage that the culture equipment can be downsized. It is expected as a culture method that can efficiently produce unmodified, high-purity, high-quality products while reducing equipment costs and manufacturing costs.

一般に、灌流培養は、培養槽内の細胞を培養液と共に細胞分離装置に排出し、細胞分離装置によって細胞と老廃物等の低分子とを互いに分離し、細胞を培養槽に返送しながら行われる。培養槽には、排出される培養液と等量の新鮮培地が連続的に供給される。細胞分離装置としては、分離膜を用いた濾過を行う装置が一般的である。 In general, perfusion culture is performed while discharging the cells in the culture tank together with the culture medium to a cell separation device, separating the cells from small molecules such as waste products by the cell separation device, and returning the cells to the culture tank. .. The culture tank is continuously supplied with an equal amount of fresh medium as the discharged culture medium. As the cell separation device, a device that performs filtration using a separation membrane is common.

灌流培養中の培養槽は、培養液の細胞密度が一定の範囲になるように制御される。培養槽内の培養液の細胞密度が高くなりすぎると、酸素・栄養が不足したり、細胞死によって不純物が増加したりする。そのため、灌流培養中、培養槽内で増殖した細胞の一部は、培養液と共に培養系外に排出される。このような生細胞の一部を培養液と共に排出する操作は、ブリーディング(Bleeding)と呼ばれている。 The culture tank during perfusion culture is controlled so that the cell density of the culture solution is within a certain range. If the cell density of the culture solution in the culture tank becomes too high, oxygen and nutrients will be insufficient, and impurities will increase due to cell death. Therefore, during perfusion culture, some of the cells proliferated in the culture tank are discharged out of the culture system together with the culture solution. Such an operation of discharging a part of living cells together with a culture medium is called bleeding.

特許文献1には、灌流培養に使用可能な技術として、細胞培養物を分離システムに循環させる技術が記載されている(段落0028等参照)。分離システムのフィルタに対する循環の流れとしては、フィルタ表面に対して実質的に垂直の流れであるデッドエンドフローや、フィルタ表面に対して実質的に平行な流れであるクロスフロー(タンジェンシャルフロー)が挙げられている。 Patent Document 1 describes a technique for circulating a cell culture in a separation system as a technique that can be used for perfusion culture (see paragraph 0028 and the like). The circulation flow for the filter in the separation system includes dead-end flow, which is a flow that is substantially perpendicular to the filter surface, and cross flow (tangential flow), which is a flow that is substantially parallel to the filter surface. It is listed.

クロスフローによる濾過を行う接線流濾過(Tangential Flow Filtration:TFF)方式は、分離膜に付着したファウラントを洗い流す効果が高いことが知られている。一般に、細胞分離に用いる分離膜は、細胞に由来するファウラントが付着・堆積し易いため、灌流培養を続けると膜孔が閉塞して分離能が低下していく。細胞破砕、細胞死等が原因で発生する微粒子等は、分離膜の膜孔径よりも小さい場合であっても、ゲル状物等を形成してファウリングを引き起こすことが知られている。 The Tangent Flow Filtration (TFF) method, which performs cross-flow filtration, is known to have a high effect of washing away foulants adhering to the separation membrane. In general, the separation membrane used for cell separation is prone to adherence and accumulation of cell-derived foulants, and therefore, when perfusion culture is continued, the membrane pores are blocked and the separation ability is reduced. It is known that fine particles and the like generated due to cell crushing, cell death and the like form gel-like substances and cause fouling even when they are smaller than the membrane pore size of the separation membrane.

TFF方式によると、分離膜に付着したファウラントが洗い流され易く、デッドエンドフロー濾過と比較して、分離膜が閉塞し難くなる。また、ファウラントが付着・堆積して膜間差圧が上昇したとしても、分離膜の逆洗が容易であるため、分離膜の使用寿命が長くなる。また、デッドエンドフロー濾過と比較して、せん断力が加わり難く、細胞が損傷し難い傾向がある。そのため、細胞分離の方法としては、TFF方式による膜分離処理が広く用いられている。 According to the TFF method, the foulant adhering to the separation membrane is easily washed away, and the separation membrane is less likely to be clogged as compared with dead end flow filtration. Further, even if the foulant adheres and accumulates and the differential pressure between the membranes increases, the separation membrane can be easily backwashed, so that the service life of the separation membrane is extended. In addition, compared to dead-end flow filtration, shearing force is less likely to be applied, and cells tend to be less likely to be damaged. Therefore, as a cell separation method, a membrane separation treatment by the TFF method is widely used.

特許文献2には、灌流培養に使用可能な技術として、交互接線流濾過(Alternating Tangential Flow Filtration:ATF)方式による密閉濾過システムが記載されている(特許請求の範囲、段落0009〜0011等参照)。交互接線流濾過方式では、クロスフローの向きを交互に逆向きに反転させながら濾過が行われる。 Patent Document 2 describes a closed filtration system by the Alternating Tangential Flow Filtration (ATF) method as a technique that can be used for perfusion culture (see claims, paragraphs 0009 to 0011, etc.). .. In the alternating tangential flow filtration method, filtration is performed while alternately reversing the direction of the cross flow.

ATF方式によると、ポンプによる吸引と吐出が交互に繰り返されるため、膜面に沿う流れが反転を繰り返して、ファウラントを洗い流す高い効果が得られる。また、ポンプによる吸引と吐出が繰り返されると、分離膜を透過する流れも反転を繰り返すことになるため、分離膜に対して逆洗作用を加えることができる。そのため、ATF方式によると、通常のTFF方式と比較して、膜間差圧の上昇が進行し難くなり、分離膜の閉塞がより低減するため、分離膜の使用寿命が長くなる。 According to the ATF method, since suction and discharge by the pump are repeated alternately, the flow along the film surface is repeatedly reversed, and a high effect of washing away the foulant can be obtained. Further, when suction and discharge by the pump are repeated, the flow passing through the separation membrane also repeats inversion, so that a backwashing action can be applied to the separation membrane. Therefore, according to the ATF method, as compared with the normal TFF method, the increase in the differential pressure between the membranes is less likely to proceed, and the clogging of the separation membrane is further reduced, so that the service life of the separation membrane is extended.

特許文献3には、灌流培養に使用可能な技術として、培養槽に二つの抜出口を設ける技術が記載されている。この技術では、細胞分離装置からの培地抜出口と、培地と細胞の混合液の抜出口とを、培養槽に対して別々に設けている。ブリーディング液(ブリーディングの目的で培養系外に排出する培養液)は、培養槽に設けられた培地と細胞の混合液の抜出口から抜き出されている。 Patent Document 3 describes a technique for providing two outlets in a culture tank as a technique that can be used for perfusion culture. In this technique, a culture medium outlet from the cell separator and an outlet for a mixed solution of the culture medium and cells are separately provided for the culture tank. The bleeding solution (the culture solution discharged to the outside of the culture system for the purpose of bleeding) is extracted from the outlet of the mixed solution of the medium and the cells provided in the culture tank.

特開2014−217395号公報Japanese Unexamined Patent Publication No. 2014-217395 特許第6164487号公報Japanese Patent No. 6164487 特開平4−126072号公報Japanese Unexamined Patent Publication No. 4-126072

従来の灌流培養においては、培養液の細胞密度を調整するためのブリーディングが、特許文献3のように、培養槽に対して直接行われている。灌流培養中の培養槽内で増殖した過剰な細胞は、一定量の培養液と共に、培養槽から直接抜き取られている。しかし、ブリーディング液を培養槽から直接抜き取ると、培養液中に産生された物質や、培養に必要な栄養も、培養系外に抜き取られるという問題がある。 In the conventional perfusion culture, bleeding for adjusting the cell density of the culture solution is performed directly on the culture tank as in Patent Document 3. Excess cells grown in the culture tank during perfusion culture are directly withdrawn from the culture tank together with a certain amount of culture medium. However, when the bleeding solution is directly extracted from the culture tank, there is a problem that the substances produced in the culture solution and the nutrients necessary for the culture are also extracted from the culture system.

ブリーディング液を培養槽から抜き取ると、細胞が産生した物質の少なくとも一部が、細胞分離装置に送られることなく、培養系外に排出されることになるため、細胞が産生した物質の適切な分離・回収が難しくなる。細胞が産生した物質は、細胞分離装置で分離・回収されず、系外に回収されるため、物質生産の効率が悪くなる問題がある。細胞が産生した物質は、ブリーディング液から個別に分離・回収することも可能であるが、このような分離・回収には、余計なコストがかかる。 When the bleeding solution is removed from the culture tank, at least a part of the substance produced by the cells is excreted from the culture system without being sent to the cell separator, so that the substance produced by the cells is properly separated.・ Recovery becomes difficult. The substance produced by the cells is not separated and recovered by the cell separator, but is recovered outside the system, so that there is a problem that the efficiency of substance production deteriorates. Substances produced by cells can be individually separated and recovered from the bleeding solution, but such separation and recovery requires extra cost.

また、ブリーディング液を培養槽から抜き取ると、培養槽内の栄養の少なくとも一部が、培養系外に排出されることになるため、培地コストが余計にかかる問題を生じる。抜き取ったブリーディング液を廃棄せず、再利用することも考えられるが、再利用する場合、別の分離・回収系統が必要になるため、余計な設備コストや運転コストがかかる。また、栄養の排出に伴い、新鮮培地の追加が必要になるため、栄養濃度の変動が大きくなる虞もある。 Further, when the bleeding solution is withdrawn from the culture tank, at least a part of the nutrients in the culture tank is discharged to the outside of the culture system, which causes a problem that the medium cost is increased. It is conceivable to reuse the extracted bleeding liquid without discarding it, but if it is reused, a separate separation / recovery system is required, resulting in extra equipment costs and operating costs. In addition, since it is necessary to add a fresh medium with the excretion of nutrients, there is a possibility that the fluctuation of nutrient concentration becomes large.

特許文献1や特許文献2に記載されているように、TFF方式やATF方式の膜分離処理は、クロスフローを利用しており、分離膜の逆洗が容易であるため、細胞分離に有効であるといえる。しかし、これらの技術を単に灌流培養に適用したとしても、ブリーディングが生産物や栄養の多量な排出を伴うため、灌流培養の効率に改善の余地がある。また、分離膜の逆洗を行ったとしても、濾液を用いた場合には、ファウラントが再導入されることになり、培養系内にファウラントが残留するため、膜間差圧の上昇の抑制の点でも改善の余地がある。 As described in Patent Document 1 and Patent Document 2, the TFF method and ATF method membrane separation treatment uses cross flow, and the backwash of the separation membrane is easy, so that it is effective for cell separation. It can be said that there is. However, even if these techniques are simply applied to perfusion culture, there is room for improvement in the efficiency of perfusion culture because bleeding involves a large excretion of products and nutrients. Further, even if the separation membrane is backwashed, when the filtrate is used, the foulant is reintroduced and the foulant remains in the culture system, so that the increase in the intermembrane differential pressure is suppressed. There is room for improvement in terms of points.

他方、特許文献3に記載されているように、細胞分離装置からの培地抜出口と、培地と細胞の混合液の抜出口とを設けると、培養槽内の培養液量を一定に保つことができる。このとき、互いの流量比を適切に調節すると、培養槽内の培養液の細胞密度についても一定の範囲に調整することができる。しかし、培養液中に産生された物質の排出量や、培養に必要な栄養の排出量を削減する手段については明らかでない。 On the other hand, as described in Patent Document 3, if a medium outlet from the cell separator and an outlet for a mixed solution of the medium and cells are provided, the amount of the culture solution in the culture tank can be kept constant. it can. At this time, if the flow rate ratios of each other are appropriately adjusted, the cell density of the culture solution in the culture tank can also be adjusted within a certain range. However, it is not clear how to reduce the amount of substances produced in the culture solution and the amount of nutrients required for culture.

そこで、本発明は、培養系外に排出するブリーディング液の排出量を抑制して、灌流培養を安定的且つ効率的に行うことができる培養方法および培養装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a culture method and a culture apparatus capable of stably and efficiently performing perfusion culture by suppressing the discharge amount of the bleeding liquid discharged to the outside of the culture system.

本発明者らは、鋭意検討した結果、細胞分離処理によって濃縮された細胞濃縮液を、ブリーディング液として培養系外に抜き取ると、灌流培養における細胞密度を一定の範囲に制御するにあたり、培養系外に排出すべき細胞量当たりのブリーディング液の排出量が抑制されることを見出した。細胞密度が高くなった細胞濃縮液をブリーディング液として排出すると、灌流培養中に増殖した過剰な細胞を培養槽から直接抜き取る場合と比較して、培養系外に抜き取るべき細胞量に対する、培養系外に抜き取られる培養液量の比率が小さくなるため、細胞が産生した有用物質(生産物)の排出量や、栄養の排出量も抑制されることになり、コストが抑制された安定的で効率的な灌流培養が可能になることを見出し、本発明を完成するに至った。 As a result of diligent studies, the present inventors extracted the cell concentrate concentrated by the cell separation treatment to the outside of the culture system as a bleeding solution, and found that the cell density in the perfusion culture was controlled to a certain range outside the culture system. It was found that the amount of bleeding solution discharged per cell amount to be discharged was suppressed. When the cell concentrate with high cell density is discharged as a bleeding solution, the amount of cells to be extracted outside the culture system is relative to the amount of cells to be extracted outside the culture system, as compared with the case where excess cells proliferated during perfusion culture are directly extracted from the culture tank. Since the ratio of the amount of culture medium extracted to the cells is small, the amount of useful substances (products) produced by cells and the amount of nutrients discharged are also suppressed, and the cost is suppressed in a stable and efficient manner. We have found that various perfusion cultures are possible, and have completed the present invention.

すなわち、前記課題を解決するために本発明に係る培養方法は、細胞を培養している培養槽から前記細胞を含む培養液を抜き出して細胞分離処理し、前記細胞分離処理で生じた細胞濃縮液を前記培養槽に返送することにより灌流培養を行い、前記灌流培養中に、前記細胞濃縮液を培養系外に排出して前記培養液の細胞密度を調整するものである。 That is, in order to solve the above-mentioned problems, in the culture method according to the present invention, a culture solution containing the cells is extracted from the culture tank in which the cells are cultured and subjected to cell separation treatment, and the cell concentrate produced by the cell separation treatment is performed. Is returned to the culture tank for perfusion culture, and during the perfusion culture, the cell concentrate is discharged out of the culture system to adjust the cell density of the culture solution.

また、本発明に係る培養装置は、細胞を培養するための培養槽と、前記培養槽から抜き出された前記細胞を含む培養液を細胞分離処理して細胞濃縮液を生じる細胞分離装置と、前記培養槽から前記培養液を抜き出して前記細胞分離装置に送り、前記細胞濃縮液を前記細胞分離装置から前記培養槽に返送して前記細胞を循環させる循環配管と、前記細胞濃縮液を循環系外に排出するための排出配管と、を備える。 Further, the culture apparatus according to the present invention includes a culture tank for culturing cells, a cell separation device for producing a cell concentrate by cell separation treatment of a culture solution containing the cells extracted from the culture tank. A circulation pipe for extracting the culture solution from the culture tank and sending it to the cell separation device, returning the cell concentration solution from the cell separation device to the culture tank to circulate the cells, and a circulation system for the cell concentration solution. It is equipped with a discharge pipe for discharging to the outside.

本発明によると、培養系外に排出するブリーディング液の排出量を抑制して、灌流培養を安定的且つ効率的に行うことができる培養方法および培養装置を提供することができる。 According to the present invention, it is possible to provide a culturing method and a culturing apparatus capable of stably and efficiently performing perfusion culturing by suppressing the amount of bleeding liquid discharged to the outside of the culturing system.

本発明の第1実施形態に係る培養装置の一例を示す模式図である。It is a schematic diagram which shows an example of the culture apparatus which concerns on 1st Embodiment of this invention. 中空糸膜フィルタを備える膜分離装置を示す模式図である。It is a schematic diagram which shows the membrane separation apparatus provided with the hollow fiber membrane filter. 本発明の第1実施形態に係る培養装置の一例を示す模式図である。It is a schematic diagram which shows an example of the culture apparatus which concerns on 1st Embodiment of this invention.

以下、本発明の一実施形態に係る培養方法および培養装置について、図を参照しながら説明する。なお、以下の各図において共通する構成については同一の符号を付し、重複した説明を省略する。 Hereinafter, the culturing method and the culturing apparatus according to the embodiment of the present invention will be described with reference to the drawings. The same reference numerals are given to the configurations common to each of the following figures, and duplicate description will be omitted.

本実施形態に係る培養方法は、細胞を灌流培養する培養方法に関する。灌流培養では、細胞を培養している培養槽から細胞を含む培養液を抜き出して細胞分離処理し、この細胞分離処理で生じた細胞濃縮液を培養槽に返送することによって、目的の細胞を連続的に培養する。 The culturing method according to the present embodiment relates to a culturing method for perfusing and culturing cells. In perfusion culture, the culture medium containing cells is extracted from the culture tank in which the cells are cultured, subjected to cell separation treatment, and the cell concentrate produced by this cell separation treatment is returned to the culture tank to continuously produce the target cells. Cultivate.

培養対象の細胞は、特に制限されるものではない。培養対象の細胞は、動物細胞、昆虫細胞、植物細胞、微細藻類、ラン藻類、細菌、酵母、真菌、藻類、酵母等のいずれであってもよい。培養対象の細胞としては、ヒト抗体、ヒト化抗体、キメラ抗体、マウス抗体等の各種の抗体や、各種の生理活性物質や、医薬品原料、化学原料、食品原料等として有用な各種の有用物質を産生する細胞が好ましく、抗体を産生する細胞が特に好ましい。また、培養対象としては、チャイニーズハムスター卵巣(Chinese Hamster Ovary:CHO)細胞等の浮遊細胞が好ましい。 The cells to be cultured are not particularly limited. The cell to be cultured may be any of animal cells, insect cells, plant cells, microalgae, orchid algae, bacteria, yeast, fungi, algae, yeast and the like. As cells to be cultured, various antibodies such as human antibody, humanized antibody, chimeric antibody, mouse antibody, various physiologically active substances, and various useful substances useful as pharmaceutical raw materials, chemical raw materials, food raw materials, etc. are used. Producing cells are preferred, and antibody-producing cells are particularly preferred. Further, as a culture target, floating cells such as Chinese Hamster Ovary (CHO) cells are preferable.

灌流培養中には、培養槽内の培養液の細胞密度が一定の範囲になるように、ブリーディングを行う。しかし、従来の灌流培養では、過剰に増殖した細胞が、培養槽から直接抜き取られている。ブリーディング液を培養槽から直接抜き取ると、培養液中に分泌された有用物質や、培養に必要な栄養についても、培養系外に大量に抜き取られてしまう。 During perfusion culture, bleeding is performed so that the cell density of the culture solution in the culture tank is within a certain range. However, in conventional perfusion culture, overgrown cells are extracted directly from the culture tank. When the bleeding solution is directly withdrawn from the culture tank, a large amount of useful substances secreted into the culture solution and nutrients required for culture are also withdrawn from the culture system.

このような場合、抜き取られた生産物や栄養が無駄になるし、これらを分離・回収するとしても、別の系統・処理が必要になりコストがかかる。また、新鮮培地の追加が必要になるため、培養槽内の栄養濃度の変動が大きくなり、培養環境が安定しなくなる虞もある。 In such a case, the extracted products and nutrients are wasted, and even if they are separated and recovered, another system and treatment are required, which is costly. In addition, since it is necessary to add a fresh medium, the fluctuation of the nutrient concentration in the culture tank becomes large, and the culture environment may become unstable.

そこで、本実施形態に係る培養方法では、灌流培養中に、細胞分離処理で生じた細胞濃縮液をブリーディング液として培養系外に排出する。なお、細胞分離処理は、培養液中に含まれる細胞と、細胞よりも小さい低分子等、例えば、細胞が産生した有用物質(生産物)、老廃物等とを、互いに分離する処理である。 Therefore, in the culture method according to the present embodiment, during the perfusion culture, the cell concentrate produced by the cell separation treatment is discharged to the outside of the culture system as a bleeding solution. The cell separation treatment is a treatment for separating the cells contained in the culture medium from small molecules smaller than the cells, for example, useful substances (products) produced by the cells, waste products, and the like.

灌流培養中に、細胞濃縮液をブリーディング液として培養系外に排出すると、細胞を培養している培養液の細胞密度を調整することができる。細胞濃縮液は、培養槽内の培養液よりも細胞密度が高い状態に濃縮されているため、細胞が産生した有用物質の排出量や、栄養の排出量が抑制される。 By discharging the cell concentrate as a bleeding solution to the outside of the culture system during perfusion culture, the cell density of the culture solution in which the cells are cultured can be adjusted. Since the cell concentrate is concentrated in a state where the cell density is higher than that of the culture solution in the culture tank, the amount of useful substances produced by the cells and the amount of nutrients discharged are suppressed.

以下、灌流培養に用いる培養装置と共に、本実施形態に係る培養方法について具体的に説明する。 Hereinafter, the culture method according to the present embodiment will be specifically described together with the culture apparatus used for perfusion culture.

図1は、本発明の実施形態に係る培養装置の一例を示す模式図である。
図1に示すように、本実施形態に係る培養装置100は、培養槽1と、培地供給配管6と、循環配管11(抜出配管11a,返送配管11b)と、細胞分離装置13と、分離液排出配管14と、ブリーディング液排出配管(排出配管)17と、逆洗液供給配管20と、抜出配管バルブ23と、返送配管バルブ24と、排出配管バルブ25と、これらに付随する機器等を備えている。
FIG. 1 is a schematic view showing an example of a culture apparatus according to an embodiment of the present invention.
As shown in FIG. 1, the culture apparatus 100 according to the present embodiment separates the culture tank 1, the medium supply pipe 6, the circulation pipe 11 (extraction pipe 11a, return pipe 11b), and the cell separation device 13. Liquid discharge pipe 14, bleeding liquid discharge pipe (drainage pipe) 17, backwash liquid supply pipe 20, extraction pipe valve 23, return pipe valve 24, discharge pipe valve 25, equipment associated therewith, etc. It has.

培養装置100は、細胞を灌流培養するための装置である。培養装置100は、培養槽1で培養されている細胞を培養液と共に細胞分離装置13に抜き出し、細胞分離装置13で細胞分離処理し、細胞分離処理で分離された細胞を培養槽1に返送する構成とされている。 The culture device 100 is a device for perfusing and culturing cells. The culture device 100 extracts the cells cultured in the culture tank 1 together with the culture solution into the cell separation device 13, performs cell separation treatment in the cell separation device 13, and returns the cells separated by the cell separation treatment to the culture tank 1. It is composed.

培養装置100は、細胞分離処理を行う細胞分離装置13として、分離膜を用いた濾過(膜分離処理)を行う膜分離装置を備えている。図1に示す細胞分離装置13は、接線流濾過(TFF)方式の膜分離装置とされている。 The culture device 100 includes a membrane separation device that performs filtration (membrane separation treatment) using a separation membrane as the cell separation device 13 that performs the cell separation treatment. The cell separation device 13 shown in FIG. 1 is a tangential flow filtration (TFF) type membrane separation device.

培養槽1は、細胞を培養液中で培養するための槽である。培養槽1は、細胞の灌流培養に必要な各種の機器を備えることができる。図1において、培養槽1内には、通気用のスパージャ2や、機械攪拌用の攪拌機3や、培養槽1の細胞密度を計測するための挿入型の細胞密度計4が備えられている。但し、培養槽1には、通気装置、攪拌装置、培養環境や細胞量のモニタリング用のセンサとして、適宜の装置を備えることができる。 The culture tank 1 is a tank for culturing cells in a culture solution. The culture tank 1 can be provided with various devices necessary for perfusion culture of cells. In FIG. 1, the culture tank 1 is provided with a spurger 2 for aeration, a stirrer 3 for mechanical stirring, and an insertion type cell densitometer 4 for measuring the cell density of the culture tank 1. However, the culture tank 1 may be provided with an appropriate device as a ventilation device, a stirring device, and a sensor for monitoring the culture environment and the cell mass.

攪拌装置としては、細胞の浮遊、酸素の溶解、培養液の均一化等を促進する観点から、培養槽1の径方向、周方向および高さ方向のそれぞれに培養液を流動させることが可能な装置が好ましく用いられる。このような攪拌装置としては、攪拌翼を上下運動または三次元運動させる装置、培養槽を上下運動または三次元運動させる装置、複数の方向に多軸化された複数の攪拌軸を持つ装置、攪拌流の方向を転換するバッフルを備えた装置等が挙げられる。 As the stirring device, the culture solution can be flowed in each of the radial direction, the circumferential direction, and the height direction of the culture tank 1 from the viewpoint of promoting cell suspension, oxygen dissolution, homogenization of the culture solution, and the like. The device is preferably used. Examples of such a stirring device include a device for moving the stirring blade up and down or three-dimensionally, a device for moving the culture tank up and down or three-dimensionally, a device having a plurality of stirring axes multiaxial in a plurality of directions, and stirring. An example is a device equipped with a baffle that changes the direction of the flow.

培養槽1は、ステンレス鋼、アルミニウム合金等の金属や、プラスチックや、ガラス等の適宜の材料で形成することができる。ステンレス鋼製の槽は、洗浄性や滅菌性に優れており、繰り返しの使用に適している。樹脂製の槽は、ディスポーザブル品としての使用に適しており、培養槽1の洗浄や滅菌が省略化される。 The culture tank 1 can be formed of a metal such as stainless steel or an aluminum alloy, or an appropriate material such as plastic or glass. The stainless steel tank has excellent detergency and sterility and is suitable for repeated use. The resin tank is suitable for use as a disposable product, and cleaning and sterilization of the culture tank 1 can be omitted.

培養槽1は、可撓性の培養バックとして設けることもできる。可撓性の培養バックは、ディスポーザブル品としての使用が可能である。可撓性の培養バックは、例えば、エチレンビニルアセテート、エチレンビニルアルコール、低密度ポリエチレン、ポリアミド等の樹脂製の多層フィルムを用いて形成することができる。 The culture tank 1 can also be provided as a flexible culture bag. The flexible culture bag can be used as a disposable product. The flexible culture bag can be formed using, for example, a multilayer film made of a resin such as ethylene vinyl acetate, ethylene vinyl alcohol, low density polyethylene, or polyamide.

図1に示すように、培養槽1には、培地供給配管6を介して、培地供給タンク7が接続されている。培地供給配管6には、培地供給ポンプ8が備えられている。培地供給タンク7は、灌流培養に必要な新鮮培地が用意される容器である。培地供給タンク7に用意された新鮮培地は、灌流培養中、培地供給ポンプ8によって培養槽1に供給される。 As shown in FIG. 1, a medium supply tank 7 is connected to the culture tank 1 via a medium supply pipe 6. The culture medium supply pipe 6 is provided with a culture medium supply pump 8. The medium supply tank 7 is a container in which the fresh medium required for perfusion culture is prepared. The fresh medium prepared in the medium supply tank 7 is supplied to the culture tank 1 by the medium supply pump 8 during the perfusion culture.

また、培養槽1には、酸素ガス供給配管9を介して、酸素ガス供給装置10が接続されている。酸素ガス供給装置10は、細胞の培養に必要な酸素ガスを供給する装置である。酸素ガスは、灌流培養中、酸素ガス供給装置10から培養槽1のスパージャ2に供給されて、培養液中に散気される。 Further, an oxygen gas supply device 10 is connected to the culture tank 1 via an oxygen gas supply pipe 9. The oxygen gas supply device 10 is a device that supplies oxygen gas necessary for culturing cells. During the perfusion culture, the oxygen gas is supplied from the oxygen gas supply device 10 to the spurger 2 of the culture tank 1 and is dispersed in the culture solution.

また、培養槽1には、循環配管11を介して、細胞分離装置13が接続されている。循環配管11は、培養槽1から培養液を抜き出して細胞分離装置13に送り、細胞分離装置13で細胞が濃縮された培養液(細胞濃縮液)を細胞分離装置13から培養槽1に返送して、閉環状の循環系内で細胞を循環させる配管である。 Further, a cell separation device 13 is connected to the culture tank 1 via a circulation pipe 11. The circulation pipe 11 extracts the culture solution from the culture tank 1 and sends it to the cell separation device 13, and returns the culture solution (cell concentrate) in which the cells are concentrated in the cell separation device 13 from the cell separation device 13 to the culture tank 1. It is a pipe that circulates cells in a closed ring circulation system.

循環配管11は、培養槽1から培養液を抜き出すための抜出配管11aと、細胞濃縮液を培養槽1に返送するための返送配管11bと、によって構成されている。循環配管11は、細胞分離装置13と共に、細胞を含む培養液を培養槽1に対して循環させる循環系を形成している。 The circulation pipe 11 is composed of an extraction pipe 11a for extracting the culture solution from the culture tank 1 and a return pipe 11b for returning the cell concentrate to the culture tank 1. The circulation pipe 11 and the cell separation device 13 form a circulation system for circulating the culture solution containing cells to the culture tank 1.

抜出配管11aの一端は、培養槽1に接続している。抜出配管11aの他端は、細胞分離装置13の液入口に接続している。抜出配管11aには、培養液抜出ポンプ12と抜出配管バルブ23が、上流側から順に備えられている。 One end of the extraction pipe 11a is connected to the culture tank 1. The other end of the extraction pipe 11a is connected to the liquid inlet of the cell separation device 13. The extraction pipe 11a is provided with a culture solution extraction pump 12 and an extraction pipe valve 23 in this order from the upstream side.

返送配管11bの一端は、細胞分離装置13の一次側の液出口に接続している。返送配管11bの他端は、培養槽1に接続している。返送配管11bには、返送配管バルブ24が備えられている。返送配管バルブ24としては、流量を調整可能な流量制御弁および全開と全閉を切り替える切換弁のいずれを用いることもできる。 One end of the return pipe 11b is connected to the liquid outlet on the primary side of the cell separation device 13. The other end of the return pipe 11b is connected to the culture tank 1. The return pipe 11b is provided with a return pipe valve 24. As the return piping valve 24, either a flow rate control valve that can adjust the flow rate or a switching valve that switches between fully open and fully closed can be used.

灌流培養時、培養槽1には、細胞が懸濁している培養液が、所定の液量となるように張り込まれる。抜出配管バルブ23および返送配管バルブ24は、灌流培養中の通常時には、開放状態に制御される。培養槽1内の培養液は、培養液抜出ポンプ12によって細胞分離装置13に抜き出される。 At the time of perfusion culture, the culture solution in which the cells are suspended is filled in the culture tank 1 so as to have a predetermined amount. The extraction pipe valve 23 and the return pipe valve 24 are normally controlled to be in an open state during perfusion culture. The culture solution in the culture tank 1 is withdrawn into the cell separation device 13 by the culture solution extraction pump 12.

細胞分離装置13は、培養槽1から抜き出された培養液を細胞分離処理して、培養液中に含まれる細胞と、細胞よりも小さい低分子等とを、互いに分離するために備えられている。図1において、細胞分離装置13としては、TFF方式の膜分離装置が備えられている。膜分離装置の分離膜としては、細胞の大きさよりも小さい膜孔径を持つ限外濾過膜が用いられる。 The cell separation device 13 is provided for cell separation processing of the culture solution extracted from the culture tank 1 to separate cells contained in the culture solution and small molecules smaller than the cells from each other. There is. In FIG. 1, as the cell separation device 13, a TFF type membrane separation device is provided. As the separation membrane of the membrane separation device, an ultrafiltration membrane having a membrane pore size smaller than the cell size is used.

細胞分離装置13には、分離液排出配管14を介して、分離液タンク15が接続されている。分離液排出配管14には、分離液ポンプ16が備えられている。分離液タンク15は、細胞分離装置13において細胞から分離された低分子、例えば、細胞が産生した有用物質(生産物)、老廃物等を回収するための容器である。細胞分離装置13に流入した培養液は、灌流培養中、分離液ポンプ16によって分離膜を介して吸引される。分離膜の二次側が陰圧となり、分離膜の膜間に操作圧力が加えられる。 A separation liquid tank 15 is connected to the cell separation device 13 via a separation liquid discharge pipe 14. The separation liquid discharge pipe 14 is provided with a separation liquid pump 16. The separation liquid tank 15 is a container for collecting small molecules separated from cells in the cell separation device 13, for example, useful substances (products) produced by the cells, waste products, and the like. The culture solution that has flowed into the cell separation device 13 is sucked through the separation membrane by the separation solution pump 16 during perfusion culture. Negative pressure is applied to the secondary side of the separation membrane, and operating pressure is applied between the separation membranes.

図2は、中空糸膜フィルタを備える膜分離装置を示す模式図である。
図2に示すように、細胞分離装置13としては、例えば、中空糸膜フィルタを備える内圧濾過方式の膜分離装置130を用いることができる。膜分離装置130は、ケーシング131と、複数の中空糸膜フィルタ132と、を備えている。
FIG. 2 is a schematic view showing a membrane separation device including a hollow fiber membrane filter.
As shown in FIG. 2, as the cell separation device 13, for example, an internal pressure filtration type membrane separation device 130 including a hollow fiber membrane filter can be used. The membrane separation device 130 includes a casing 131 and a plurality of hollow fiber membrane filters 132.

ケーシング131は、例えば、筒状に設けられて、一端側に入口側ヘッダ133、他端側に出口側ヘッダ134が取り付けられる。入口側ヘッダ133には、中空糸膜フィルタ132の一次側の液入口が設けられ、各中空糸膜フィルタ132の一端側が接続される。また、出口側ヘッダ134には、中空糸膜フィルタ132の一次側の液出口が設けられ、各中空糸膜フィルタ132の他端側が接続される。 The casing 131 is provided, for example, in a tubular shape, and an inlet side header 133 is attached to one end side and an outlet side header 134 is attached to the other end side. The inlet side header 133 is provided with a liquid inlet on the primary side of the hollow fiber membrane filter 132, and one end side of each hollow fiber membrane filter 132 is connected. Further, the outlet side header 134 is provided with a liquid outlet on the primary side of the hollow fiber membrane filter 132, and the other end side of each hollow fiber membrane filter 132 is connected.

中空糸膜フィルタ132の内空は、入口側ヘッダ133に設けられた一次側の液入口と、出口側ヘッダ134に設けられた一次側の液出口とに、それぞれ連通するように設けられる。入口側ヘッダ133には、抜出配管11aを接続することができる。また、出口側ヘッダ134には、返送配管11bを接続することができる。ケーシング131の他端側の内部の空間には、中空糸膜フィルタ132の二次側の液出口135が設けられる。この液出口135には、分離液排出配管14を接続することができる。 The inner space of the hollow fiber membrane filter 132 is provided so as to communicate with the primary side liquid inlet provided in the inlet side header 133 and the primary side liquid outlet provided in the outlet side header 134, respectively. An extraction pipe 11a can be connected to the inlet side header 133. Further, the return pipe 11b can be connected to the outlet side header 134. A liquid outlet 135 on the secondary side of the hollow fiber membrane filter 132 is provided in the space inside the other end side of the casing 131. A separation liquid discharge pipe 14 can be connected to the liquid outlet 135.

TFF方式の膜分離装置では、被処理液が、中空糸膜フィルタ132の内空に流入して長さ方向に沿って流れる。二次側の陰圧で膜間に所定の操作圧力が加えられると、中空糸膜フィルタ132の孔径よりも小さい物質は、一次側から二次側に透過してケーシング131の内部の空間から流出する。一方、中空糸膜フィルタ132の孔径よりも大きい物質は、一次側から二次側に透過せず、中空糸膜フィルタ132の内空を長さ方向に沿って流れて出口側ヘッダ134から流出する。 In the TFF type membrane separation device, the liquid to be treated flows into the inner space of the hollow fiber membrane filter 132 and flows along the length direction. When a predetermined operating pressure is applied between the membranes by the negative pressure on the secondary side, substances smaller than the pore size of the hollow fiber membrane filter 132 permeate from the primary side to the secondary side and flow out from the space inside the casing 131. To do. On the other hand, a substance larger than the pore size of the hollow fiber membrane filter 132 does not permeate from the primary side to the secondary side, flows through the inner space of the hollow fiber membrane filter 132 along the length direction, and flows out from the outlet side header 134. ..

中空糸膜フィルタ132を備える内圧濾過方式の膜分離装置130によると、被処理液として流入する培養液中の細胞が、中空糸膜フィルタ132の内空を長さ方向に沿って流れるため、摩擦、衝突等によるせん断力で細胞が損傷されることが少なくなる。また、被処理液の流速を高くして膜分離処理を行うことができるため、細胞分離の速度的効率を高くすることができる。 According to the internal pressure filtration type membrane separation device 130 provided with the hollow fiber membrane filter 132, cells in the culture solution flowing in as the liquid to be treated flow along the inner space of the hollow fiber membrane filter 132 along the length direction, so that friction occurs. , Cells are less likely to be damaged by shearing force due to collision or the like. Further, since the membrane separation treatment can be performed by increasing the flow rate of the liquid to be treated, the speed efficiency of cell separation can be increased.

このような細胞分離装置13によると、培養槽1から抜き出された培養液が細胞分離処理されて、目的の細胞が濃縮された培養液(細胞濃縮液)と、目的の細胞を実質的に含まず、有用物質、老廃物等の低分子を含む培養液(分離液)と、に分離される。分離膜の二次側に透過した分離液は、分離液排出配管14に流出して分離液タンク15に回収される。一方、分離膜を透過せず一次側に濃縮した細胞濃縮液は、返送管11bに流出する。 According to such a cell separation device 13, the culture solution extracted from the culture tank 1 is subjected to cell separation treatment, and the culture solution (cell concentrate) in which the target cells are concentrated and the target cells are substantially separated. It is separated into a culture solution (separation solution) that does not contain but contains small molecules such as useful substances and waste products. The separation liquid that has permeated to the secondary side of the separation membrane flows out to the separation liquid discharge pipe 14 and is collected in the separation liquid tank 15. On the other hand, the cell concentrate that does not permeate the separation membrane and is concentrated on the primary side flows out to the return tube 11b.

図1に示すように、細胞分離装置13には、逆洗液供給配管20を介して、逆洗液供給タンク21が接続されている。逆洗液供給配管20は、分離膜の二次側に逆洗液を供給するための配管である。逆洗液供給配管20は、例えば、細胞分離装置13の分離膜の二次側に設けられる洗浄液入口136(図2参照)に接続することができる。逆洗液供給配管20には、逆洗液供給ポンプ22が備えられている。逆洗液供給タンク21は、分離膜を逆洗するための逆洗液が用意される容器である。逆洗液供給タンク21に用意された逆洗液は、所定の時期に、逆洗液供給ポンプ22によって細胞分離装置13の分離膜の二次側に圧送される。 As shown in FIG. 1, a backwash liquid supply tank 21 is connected to the cell separation device 13 via a backwash liquid supply pipe 20. The backwash liquid supply pipe 20 is a pipe for supplying the backwash liquid to the secondary side of the separation membrane. The backwash liquid supply pipe 20 can be connected to, for example, a wash liquid inlet 136 (see FIG. 2) provided on the secondary side of the separation membrane of the cell separation device 13. The backwash liquid supply pipe 20 is provided with a backwash liquid supply pump 22. The backwash liquid supply tank 21 is a container in which a backwash liquid for backwashing the separation membrane is prepared. The backwash liquid prepared in the backwash liquid supply tank 21 is pressure-fed to the secondary side of the separation membrane of the cell separation device 13 by the backwash liquid supply pump 22 at a predetermined time.

培養装置100において、循環系を構成する返送配管11bには、ブリーディング液排出配管17が接続されている。ブリーディング液排出配管17は、返送配管11bから分岐しており、ブリーディング液タンク18に接続している。ブリーディング液排出配管17には、排出配管バルブ25とブリーディング液ポンプ19が、上流側から順に備えられている。排出配管バルブ25としては、流量を調整可能な流量制御弁および全開と全閉を切り替える切換弁のいずれを用いることもできる。ブリーディング液排出配管17は、細胞分離装置13で生じた細胞濃縮液を循環系外に排出するためのブリーディング用の配管である。 In the culture apparatus 100, the bleeding liquid discharge pipe 17 is connected to the return pipe 11b constituting the circulatory system. The bleeding liquid discharge pipe 17 branches from the return pipe 11b and is connected to the bleeding liquid tank 18. The bleeding liquid discharge pipe 17 is provided with a discharge pipe valve 25 and a bleeding liquid pump 19 in this order from the upstream side. As the discharge pipe valve 25, either a flow rate control valve that can adjust the flow rate or a switching valve that switches between fully open and fully closed can be used. The bleeding liquid discharge pipe 17 is a bleeding pipe for discharging the cell concentrate generated by the cell separation device 13 to the outside of the circulatory system.

細胞を含む培養液を培養槽1に対して循環させる循環系において、細胞分離装置13よりも後段にブリーディング液排出配管17を設けると、培養槽1に返送される細胞濃縮液をブリーディング液として循環系外に排出することができる。すなわち、灌流培養における細胞密度を一定の範囲に制御するにあたり、細胞が濃縮された細胞濃縮液を循環系外に排出して、培養槽1内の培養液の細胞密度を減少側に調整することができる。 In a circulatory system in which a culture solution containing cells is circulated to a culture tank 1, if a bleeding solution discharge pipe 17 is provided after the cell separation device 13, the cell concentrate returned to the culture tank 1 is circulated as a bleeding solution. It can be discharged to the outside of the system. That is, in order to control the cell density in the perfusion culture within a certain range, the cell concentrate in which the cells are concentrated is discharged out of the circulatory system, and the cell density of the culture solution in the culture tank 1 is adjusted to the decreasing side. Can be done.

細胞濃縮液は、培養槽1内の培養液と比較して、単位液量当たりの細胞量が多い高細胞密度の状態に濃縮されている。そのため、細胞濃縮液をブリーディング液とすると、培養槽1内の培養液を直接抜き取る場合と比較して、培養系外に抜き取るべき細胞量に対する、培養系外に抜き取られる培養液量の比率が、小さくなる。細胞が産生した有用物質の排出量や、栄養の排出量が抑制されるため、コストが抑制された安定的で効率的な灌流培養を行うことができる。 The cell concentrate is concentrated in a state of high cell density in which the amount of cells per unit amount is larger than that of the culture solution in the culture tank 1. Therefore, when the cell concentrate is used as the bleeding solution, the ratio of the amount of the culture solution extracted outside the culture system to the amount of cells to be extracted outside the culture system is higher than that in the case of directly extracting the culture solution in the culture tank 1. It becomes smaller. Since the amount of useful substances produced by cells and the amount of nutrients excreted are suppressed, stable and efficient perfusion culture with reduced cost can be performed.

培養装置100においては、ブリーディング液排出配管17を通じて循環系外に排出するブリーディング液(細胞濃縮液)の排出量を調節して、培養槽1内の培養液の細胞密度を調整することができる。例えば、培養槽1内の培養液の細胞密度が高くなりすぎると、細胞死や不要な分化等が起こるため、ブリーディング液の排出量を増加させて、培養槽1内の培養液の細胞密度を減少させることができる。 In the culture apparatus 100, the cell density of the culture solution in the culture tank 1 can be adjusted by adjusting the discharge amount of the bleeding solution (cell concentrate) discharged to the outside of the circulatory system through the bleeding solution discharge pipe 17. For example, if the cell density of the culture solution in the culture tank 1 becomes too high, cell death or unnecessary differentiation occurs. Therefore, the amount of bleeding solution discharged is increased to increase the cell density of the culture solution in the culture tank 1. Can be reduced.

培養装置100においては、培養液等の液量や細胞量の収支に関して、以下の数式(1)〜(2)が成り立つ。
=F−F−F・・・(1)
V・(N−N)=F・Δt・N・F/(F−F)・・・(2)
In the culture apparatus 100, the following mathematical formulas (1) and (2) are established with respect to the balance of the amount of the culture solution and the amount of cells.
F 3 = F 0- F 1- F 2 ... (1)
V · (N-N 0) = F 2 · Δt · N · F 0 / (F 0 -F 1) ··· (2)

但し、数式中の各記号は、次のとおりである。Δtは、細胞の倍加時間よりも十分に短い時間であるものとする。
V:培養槽1に対する培養液の張込量[m
N:培養槽1の細胞密度[cells/m
:培養槽1の細胞密度の制御目標値[cells/m
:抜出配管11aの流量[m/s]
:分離液排出配管14の流量[m/s]
:ブリーディング液排出配管17の流量[m/s]
:培地供給配管6の流量[m/s]
Δt:ブリーディング液ポンプ19の運転時間[s]
However, each symbol in the formula is as follows. It is assumed that Δt is a time sufficiently shorter than the doubling time of cells.
V: Amount of culture solution charged into culture tank 1 [m 3 ]
N: Cell density of culture tank 1 [cells / m 3 ]
N 0 : Control target value of cell density in culture tank 1 [cells / m 3 ]
F 0 : Flow rate of extraction pipe 11a [m 3 / s]
F 1 : Flow rate of the separation liquid discharge pipe 14 [m 3 / s]
F 2 : Flow rate of bleeding liquid discharge pipe 17 [m 3 / s]
F 3 : Flow rate of medium supply pipe 6 [m 3 / s]
Δt: Operating time of the bleeding liquid pump 19 [s]

細胞分離装置13における濃縮率は、F/(F−F)で表されるため、濃縮による細胞密度の増分は、N・F/(F−F)で表される。数式(2)で表されるとおり、この細胞密度の増分をブリーディング液排出配管17を通じて循環系外に排出すると、培養槽1内の培養液の細胞密度は増加しなくなる。 Since the concentration rate in the cell separator 13 is represented by F 0 / (F 0 −F 1 ), the increase in cell density due to concentration is represented by NF 0 / (F 0 −F 1). As expressed by the mathematical formula (2), when the increment of the cell density is discharged to the outside of the circulatory system through the bleeding liquid discharge pipe 17, the cell density of the culture solution in the culture tank 1 does not increase.

は、細胞当たりの培地消費量(Cell Specific Perfusion Rate:CSPR)を用いると、F=CSPR・N・Vで表される。したがって、ブリーディング液ポンプ19の運転に必要な排出流量Fや運転時間Δtは、以下の数式(3)〜(4)で表される。
=F−F−CSPR・N・V・・・(3)
Δt=V・(N−N)・(F−F
/{(F−F−CSPR・N・V)・N・F}・・・(4)
F 3 is represented by F 3 = CSPR · N 0 · V using the medium consumption per cell (Cell Specific Perfusion Rate: CSPR). Therefore, the discharge flow rate F 2 and the operation time Δt required for the operation of the bleeding liquid pump 19 are expressed by the following mathematical formulas (3) to (4).
F 2 = F 0- F 1- CSPR ・ N 0・ V ・ ・ ・ (3)
Δt = V · (N−N 0 ) · (F 0 −F 1 )
/ {(F 0- F 1- CSPR / N 0 / V) / N / F 0 } ... (4)

また、ブリーディング液排出配管17を通じて循環系外に排出すべきブリーディング液の排出量F・Δtは、次の数式(5)で表される。
・Δt=V・(N−N)・(F−F)/(N・F)・・・(5)
Also, emissions F 2 · Delta] t bleeding liquid to be discharged out of the circulatory system through the bleeding liquid discharge tube 17 is expressed by the following equation (5).
F 2 · Δt = V · (N−N 0 ) · (F 0 −F 1 ) / ( NF 0 ) ··· (5)

一方、従来のように、ブリーディング液を培養槽1から直接抜き取る場合には、その抜取量をV[m]とすると、以下の数式(6)が成り立つ。
V・(N−N)=V・N・・・(6)
On the other hand, when the bleeding solution is directly withdrawn from the culture tank 1 as in the conventional case, the following mathematical formula (6) is established if the withdrawal amount is V 1 [m 3].
V · (N-N 0) = V 1 · N ··· (6)

数式(5)の排出量F・Δtと、数式(6)の抜取量Vとを比較すると、灌流培養における細胞密度を一定の範囲に制御するにあたり、ブリーディング液排出配管17を通じて循環系外に排出すべきブリーディング液の排出量F・Δtは、ブリーディング液を培養槽1から直接抜き取る場合と比較して、(F−F)/F倍で小さくなることが分かる。 Comparing the discharge amount F 2 · Δt of the formula (5) with the withdrawal amount V 1 of the formula (6), in order to control the cell density in the perfusion culture within a certain range, the bleeding liquid discharge pipe 17 is used outside the circulatory system. It can be seen that the discharge amount F 2 · Δt of the bleeding liquid to be discharged to is smaller by (F 0 −F 1 ) / F 0 times as compared with the case where the bleeding liquid is directly withdrawn from the culture tank 1.

(F−F)/Fという倍率は、細胞分離装置13における濃縮率の逆数を表す。この倍率は、ブリーディング液排出配管17を通じてブリーディング液を排出した場合、培養槽1から直接抜き取る場合と比較して、排出流量Fに相当する流量分が削減されることを意味している。ブリーディング液排出配管17を使用すると、分離液排出配管14を通じて排出される分離液の流量分が、循環系内に留められることを意味する。 The magnification of (F 0 −F 1 ) / F 0 represents the reciprocal of the enrichment rate in the cell separator 13. This ratio, when discharged bleeding fluid through bleeding liquid discharge tube 17, as compared with the case where withdrawn directly from the culture tank 1, which means that the flow amount corresponding to the discharged flow rate F 1 is reduced. When the bleeding liquid discharge pipe 17 is used, it means that the flow rate of the separation liquid discharged through the separation liquid discharge pipe 14 is kept in the circulation system.

また、ブリーディング液の排出量F・Δtは、(F−F)/F倍で小さくなるため、Fを固定してFを小さくしたり、Fを固定してFを大きくしたりすると、更に小さい排出量になることが分かる(但し、F<F)。Fを小さくしたり、Fを大きくしたりすると、より少ないブリーディング液で培養液の細胞密度を下げることができるため、有用物質の排出量や栄養の排出量が、より抑制されることになる。 Further, since the discharge amount F 2 · Δt of the bleeding liquid becomes smaller by (F 0 −F 1 ) / F 0 times, F 1 is fixed to make F 0 smaller, or F 0 is fixed to make F 1 It can be seen that if the amount is increased, the amount of emissions will be even smaller (however, F 1 <F 0 ). By reducing F 0 or increasing F 1 , the cell density of the culture medium can be reduced with less bleeding solution, so that the amount of useful substances and nutrients discharged can be further suppressed. Become.

培養装置100において、制御装置5は、細胞密度計4によって計測される培養槽1の細胞密度の計測結果(N)と、現在の抜出配管11aの流量(F)および現在の分離液排出配管14の流量(F)とに基づいて、ブリーディング液排出配管17の流量(F)、ブリーディング液ポンプ19の運転時間(Δt)、ブリーディング液の排出量(F・Δt)を演算する機能を備えることができる。 In the culture apparatus 100, the control apparatus 5 includes the measurement result (N) of the cell density of the culture tank 1 measured by the cell densitometer 4, the current flow rate (F 0 ) of the extraction pipe 11a, and the current discharge of the separated liquid. Based on the flow rate of the pipe 14 (F 1 ), the flow rate of the bleeding liquid discharge pipe 17 (F 2 ), the operating time of the bleeding liquid pump 19 (Δt), and the discharge amount of the bleeding liquid (F 2 · Δt) are calculated. It can be equipped with a function.

また、制御装置5は、ブリーディング液排出配管17の流量(F)、ブリーディング液ポンプ19の運転時間(Δt)、ブリーディング液の排出量(F・Δt)等の演算結果を、表示装置に表示することができる。表示装置としては、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ、ブラウン管等が挙げられる。このような表示を行うと、培養装置100の使用者によるブリーディングの手動操作や、ブリーディングの監視を行うことができる。 Further, the control device 5 displays calculation results such as the flow rate of the bleeding liquid discharge pipe 17 (F 2 ), the operating time of the bleeding liquid pump 19 (Δt), and the discharge amount of the bleeding liquid (F 2 · Δt) on the display device. Can be displayed. Examples of the display device include a liquid crystal display, a plasma display, an organic EL display, a cathode ray tube, and the like. With such a display, the user of the incubator 100 can manually operate the bleeding and monitor the bleeding.

また、制御装置5は、培地供給ポンプ8、培養液抜出ポンプ12、分離液ポンプ16およびブリーディング液ポンプ19の出力や、抜出配管バルブ23、返送配管バルブ24および排出配管バルブ25の開度や、その他の送液系統・通気系統を制御する機能を備えることができる。ブリーディング液ポンプ19の出力、返送配管バルブ24および排出配管バルブ25の開度は、F、Δt、F・Δt等の演算結果に基づいて制御することができる。 Further, the control device 5 includes the output of the medium supply pump 8, the culture solution extraction pump 12, the separation solution pump 16 and the bleeding solution pump 19, and the opening degree of the extraction piping valve 23, the return piping valve 24, and the discharge piping valve 25. And other functions to control the liquid feeding system and ventilation system can be provided. The output of bleeding pump 19, opening of the return line valve 24 and the exhaust pipe valve 25, F 2, Delta] t, may be controlled according to the result of such F 2 · Δt.

培養装置100においては、灌流培養中、細胞分離装置13から流出した細胞濃縮液を、間欠的に循環系外に排出することもできるし、連続的に循環系外に排出することもできる。すなわち、返送配管バルブ24と排出配管バルブ25とを、交互に開閉させることもできるし、返送配管バルブ24と排出配管バルブ25との両方を、中間開度に維持することもできる。 In the culture device 100, the cell concentrate that has flowed out of the cell separation device 13 during perfusion culture can be intermittently discharged to the outside of the circulatory system, or can be continuously discharged to the outside of the circulatory system. That is, the return pipe valve 24 and the discharge pipe valve 25 can be opened and closed alternately, and both the return pipe valve 24 and the discharge pipe valve 25 can be maintained at an intermediate opening degree.

間欠的なブリーディングを行う場合は、返送配管バルブ24を全閉に制御し、排出配管バルブ25を全開に制御する。返送配管バルブ24および排出配管バルブ25は、開閉のデューティー比を、所定のブリーディング液排出配管17の流量(F)の下で、ブリーディング液排出配管17側が開放される開時間の合計が、ブリーディング液ポンプ19の運転時間(Δt)と略等しくなるように設定することができる。 When intermittent bleeding is performed, the return pipe valve 24 is controlled to be fully closed, and the discharge pipe valve 25 is controlled to be fully open. The return pipe valve 24 and the discharge pipe valve 25 have a duty ratio of opening and closing, and the total opening time when the bleeding liquid discharge pipe 17 side is opened under a predetermined flow rate (F 2) of the bleeding liquid discharge pipe 17 is bleeding. It can be set so as to be substantially equal to the operating time (Δt) of the liquid pump 19.

間欠的なブリーディングは、灌流培養中、適宜の時間間隔で行うことができる。ブリーディングを行う際には、細胞分離装置13から流出した細胞濃縮液の実質的に略全部を、返送配管11bからブリーディング液排出配管17に流し、ブリーディング液排出配管17を通じて循環系外に排出する。この間に、細胞分離処理は継続されるが、培養槽1への返送は中断される。間欠的なブリーディングによると、返送配管バルブ24や排出配管バルブ25の制御を容易に行うことができる。 Intermittent bleeding can be performed at appropriate time intervals during perfusion culture. When bleeding is performed, substantially all of the cell concentrate flowing out of the cell separation device 13 is flowed from the return pipe 11b to the bleeding liquid discharge pipe 17 and discharged to the outside of the circulatory system through the bleeding liquid discharge pipe 17. During this period, the cell separation process is continued, but the return to the culture tank 1 is interrupted. According to the intermittent bleeding, the return pipe valve 24 and the discharge pipe valve 25 can be easily controlled.

一方、連続的なブリーディングを行う場合は、返送配管バルブ24および排出配管バルブ25を中間開度に制御する。ブリーディング液ポンプ19の運転時間(Δt)を細胞の倍加時間の範囲内で設定し、その下で、ブリーディング液排出配管17の流量(F)を設定することができる。返送配管バルブ24および排出配管バルブ25のそれぞれの開度の設定や、ブリーディング液ポンプ19の出力の選定を行うことができる。 On the other hand, when continuous bleeding is performed, the return pipe valve 24 and the discharge pipe valve 25 are controlled to have an intermediate opening degree. The operating time (Δt) of the bleeding liquid pump 19 can be set within the range of the cell doubling time, and the flow rate (F 2 ) of the bleeding liquid discharge pipe 17 can be set below that. The opening degree of each of the return pipe valve 24 and the discharge pipe valve 25 can be set, and the output of the bleeding liquid pump 19 can be selected.

連続的なブリーディングを行う際には、細胞分離装置13から流出した細胞濃縮液の一部を、返送配管11bからブリーディング液排出配管17に分流し、ブリーディング液排出配管17を通じて循環系外に排出する。この間に、細胞分離処理および培養槽1への返送は継続される。連続的なブリーディングによると、培養液の細胞密度の変動や、培養槽1内の培養環境の変動を小さくすることができる。 When performing continuous bleeding, a part of the cell concentrate flowing out of the cell separation device 13 is diverted from the return pipe 11b to the bleeding liquid discharge pipe 17 and discharged to the outside of the circulatory system through the bleeding liquid discharge pipe 17. .. During this period, the cell separation process and the return to the culture tank 1 are continued. According to continuous bleeding, fluctuations in cell density of the culture medium and fluctuations in the culture environment in the culture tank 1 can be reduced.

培養装置100は、循環系の収支に関して、ブリーディング液排出配管17を通じて排出されるブリーディング液の単位時間当たり平均排出量と、細胞分離装置13から培養槽1に返送される細胞濃縮液の単位時間当たり平均返送量と、細胞分離装置13から分離液排出配管14に抜き出される分離液の単位時間当たり平均抜出量との合計が、培養槽1から細胞分離装置13に抜き出される培養液の単位時間当たり平均抜出量と略等しくなるように運転される。 Regarding the balance of the circulation system, the culture apparatus 100 has an average discharge amount of the bleeding liquid discharged through the bleeding liquid discharge pipe 17 per unit time and a cell concentrate returned from the cell separation device 13 to the culture tank 1 per unit time. The total of the average return amount and the average amount of the separated solution extracted from the cell separation device 13 to the separation solution discharge pipe 14 per unit time is the unit of the culture solution extracted from the culture tank 1 to the cell separation device 13. It is operated so as to be approximately equal to the average withdrawal amount per hour.

そのため、培養装置100の培地供給ポンプ8は、培地供給配管6を通じて供給される新鮮培地の単位時間当たり平均供給量が、培養槽1から細胞分離装置13に抜き出される培養液の単位時間当たり平均抜出量と、細胞分離装置13から培養槽1に返送される細胞濃縮液の単位時間当たり平均返送量との差分と略等しくなるように制御することができる。間欠的なブリーディングを行う場合、培地供給ポンプ8による新鮮培地の供給流量は、可変的に制御することもできる。 Therefore, in the medium supply pump 8 of the culture device 100, the average supply amount of fresh medium supplied through the medium supply pipe 6 per unit time is the average per unit time of the culture solution extracted from the culture tank 1 to the cell separation device 13. It can be controlled so as to be substantially equal to the difference between the withdrawal amount and the average return amount of the cell concentrate returned from the cell separation device 13 to the culture tank 1 per unit time. When intermittent bleeding is performed, the flow rate of fresh medium supplied by the medium supply pump 8 can be variably controlled.

培養装置100においては、細胞分離装置13における濃縮率を、一定に制御してもよいし、可変的に制御してもよい。ブリーディング液の排出量F・Δtは、濃縮率の逆数を意味する(F−F)/F倍で小さくなるため、Fを小さくしたり、Fを大きくしたりすると、より少ないブリーディング液で培養槽1内の培養液の細胞密度を下げることができる。 In the culture device 100, the concentration rate in the cell separation device 13 may be controlled to be constant or variably. The amount of bleeding liquid discharged F 2 · Δt means the reciprocal of the concentration rate (F 0 −F 1 ) / F 0 times, so it becomes smaller when F 0 is made smaller or F 1 is made larger. The cell density of the culture solution in the culture tank 1 can be reduced with a small amount of bleeding solution.

このようなブリーディング液の排出量を減らす観点から、ブリーディング液(細胞濃縮液)を培養系外に排出するとき、細胞分離処理における細胞の濃縮率を高くする操作を行い、培養系外に排出される細胞濃縮液の細胞密度を高くすることもできる。例えば、間欠的なブリーディングを行う場合、返送配管バルブ24および排出配管バルブ25と同期するように、細胞分離処理における細胞の濃縮率を高くする操作を行うことができる。 From the viewpoint of reducing the amount of such bleeding solution discharged, when the bleeding solution (cell concentrate) is discharged out of the culture system, an operation of increasing the cell concentration rate in the cell separation process is performed and the cells are discharged out of the culture system. It is also possible to increase the cell density of the cell concentrate. For example, in the case of intermittent bleeding, an operation of increasing the cell concentration rate in the cell separation process can be performed so as to synchronize with the return pipe valve 24 and the discharge pipe valve 25.

細胞の濃縮率を高くする操作としては、例えば、培養槽1から抜き出す培養液の流量を小さくする操作、細胞分離処理に用いる分離膜の膜間差圧を高くする操作、複数の系統を備えた細胞分離装置13について使用系統を制限する操作等が挙げられる。これらの操作は、一種を単独で用いてもよいし、複数種を組み合わせて用いてもよい。 Examples of the operation of increasing the cell concentration rate include an operation of reducing the flow rate of the culture solution extracted from the culture tank 1, an operation of increasing the intermembrane differential pressure of the separation membrane used for the cell separation treatment, and a plurality of lines. Examples thereof include an operation of limiting the line of use of the cell separation device 13. These operations may be used alone or in combination of two or more.

培養槽1から抜き出す培養液の流量を小さくする操作としては、例えば、培養液抜出ポンプ12の流量を減少方向に調整する操作や、抜出配管バルブ23の開度を閉鎖方向に制御する操作を用いることができる。また、細胞分離処理に用いる分離膜の膜間差圧を高くする操作としては、例えば、分離液ポンプ16の流量を増加方向に調整する操作を用いることができる。 Examples of operations for reducing the flow rate of the culture solution extracted from the culture tank 1 include an operation of adjusting the flow rate of the culture solution extraction pump 12 in the decreasing direction and an operation of controlling the opening degree of the extraction piping valve 23 in the closing direction. Can be used. Further, as an operation of increasing the intermembrane differential pressure of the separation membrane used for the cell separation treatment, for example, an operation of adjusting the flow rate of the separation liquid pump 16 in the increasing direction can be used.

また、培養装置100においては、逆洗液供給配管20の系統を使用して、細胞分離装置13の分離膜を逆洗することができる。分離膜の逆洗は、灌流培養の開始前に行うこともできるし、灌流培養の終了後に行うこともできるし、灌流培養中に間欠的に行うこともできる。灌流培養中に行う場合、培養液抜出ポンプ12および分離液ポンプ16と、逆洗液供給ポンプ22とを、交互に稼働させて間欠的に逆洗を行う。 Further, in the culture apparatus 100, the separation membrane of the cell separation apparatus 13 can be backwashed by using the system of the backwash liquid supply pipe 20. The backwash of the separation membrane can be performed before the start of the perfusion culture, after the end of the perfusion culture, or intermittently during the perfusion culture. When performed during perfusion culture, the culture solution extraction pump 12, the separation solution pump 16, and the backwash solution supply pump 22 are operated alternately to perform backwash intermittently.

一般に、分離膜を用いた細胞分離処理では、宿主細胞由来タンパク質(Host Cell Protein:HCP)等のファウラントが、分離膜に付着し、処理の継続に伴って膜面上に堆積することがある。分離膜は、ファウラントによるゲル状物等で覆われるため、次第に膜間差圧が上昇し、最終的には破過に至り、分離能を喪失する。 Generally, in a cell separation treatment using a separation membrane, a foulant such as a host cell protein (HCP) may adhere to the separation membrane and deposit on the membrane surface as the treatment is continued. Since the separation membrane is covered with a gel-like substance due to foulant, the differential pressure between the membranes gradually increases, eventually leading to rupture and loss of separation ability.

これに対し、逆洗液供給配管20の系統を設けると、細胞分離処理に用いる分離膜を、培養系外から供給される逆洗液で間欠的に逆洗して、ファウラントを細胞濃縮液中に浮遊させることができる。細胞分離装置13の分離膜の二次側に逆洗液を圧送すると、逆洗液が分離膜の二次側から一次側に流れ、分離膜に付着しているファウラントが、細胞濃縮液側に剥離することになる。そのため、ファウラントを一次側の細胞濃縮液と共に細胞分離装置13から流出させることができる。 On the other hand, when the system of the backwash liquid supply pipe 20 is provided, the separation membrane used for the cell separation treatment is intermittently backwashed with the backwash liquid supplied from outside the culture system, and the foulant is contained in the cell concentrate. Can be floated in. When the backwash solution is pumped to the secondary side of the separation membrane of the cell separation device 13, the backwash solution flows from the secondary side to the primary side of the separation membrane, and the foulant adhering to the separation membrane moves to the cell concentrate side. It will peel off. Therefore, the foulant can be discharged from the cell separation device 13 together with the cell concentrate on the primary side.

逆洗液としては、例えば、新鮮培地、緩衝液等を用いることができる。新鮮培地や緩衝液は、細胞や、HCP等の微粒子を含まず、培養環境に与える影響が小さい液体である。そのため、新鮮培地、緩衝液等を用いると、循環系内に新たなファウラントが導入されることが少なく、分離膜の逆洗に伴う膜間差圧の上昇が抑制される。また、分離膜の逆洗に伴う培養環境の変動が生じ難くなる。 As the backwash solution, for example, a fresh medium, a buffer solution, or the like can be used. The fresh medium and buffer solution are liquids that do not contain cells or fine particles such as HCP and have a small effect on the culture environment. Therefore, when a fresh medium, a buffer solution, or the like is used, new foulant is rarely introduced into the circulatory system, and an increase in the intermembrane differential pressure due to backwashing of the separation membrane is suppressed. In addition, fluctuations in the culture environment due to backwashing of the separation membrane are less likely to occur.

細胞分離装置13の分離膜の逆洗は、間欠的なブリーディングと同時期に行うこともできるし、間欠的なブリーディングと異なる時期に行うこともできるし、連続的なブリーディングの間に間欠的に行うこともできる。分離膜の逆洗を、間欠的なブリーディングと同時期や、連続的なブリーディングの間に行うと、細胞濃縮液中に浮遊させたファウラントが、ブリーディング液排出配管17を通じて循環系外に排出されるため、膜間差圧が上昇し難くなり、分離膜の使用寿命が長くなる。 The backwash of the separation membrane of the cell separation device 13 can be performed at the same time as the intermittent bleeding, at a different time from the intermittent bleeding, or intermittently during the continuous bleeding. You can also do it. When the separation membrane is backwashed at the same time as intermittent bleeding or during continuous bleeding, the foulant suspended in the cell concentrate is discharged to the outside of the circulatory system through the bleeding liquid discharge pipe 17. Therefore, the differential pressure between the membranes is less likely to increase, and the service life of the separation membrane is extended.

細胞分離装置13の分離膜の逆洗は、例えば、分離膜の膜間差圧が、予め設定されている閾値を超えたときに行うことができる。分離膜のファウリングが進行すると、分離膜の膜孔の多くが閉塞し、逆洗を実行しても膜間差圧が下がらなくなる。このような場合、分離膜の交換が必要になるが、開放作業を伴う交換は、コンタミネーションの虞がある。そのため、分離膜の交換の頻度を少なくする観点からは、通常の膜間差圧の最大値のような通常の圧力範囲に近い小さい膜間差圧値を閾値とすることが好ましい。 The backwashing of the separation membrane of the cell separation device 13 can be performed, for example, when the intermembrane differential pressure of the separation membrane exceeds a preset threshold value. As the fouling of the separation membrane progresses, many of the membrane pores of the separation membrane are blocked, and the differential pressure between the membranes does not decrease even if backwashing is performed. In such a case, it is necessary to replace the separation membrane, but replacement involving opening work may cause contamination. Therefore, from the viewpoint of reducing the frequency of replacement of the separation membrane, it is preferable to set a small intermembrane differential pressure value close to the normal pressure range, such as the maximum value of the normal intermembrane differential pressure, as the threshold value.

分離膜の膜間差圧は、例えば、細胞分離装置13の出口に差圧計26を設定して計測することができる。分離膜の膜間差圧は、例えば、細胞分離装置13の入出口間の圧力差のような見かけ値や、培養液の流量、細胞濃縮液の流量、分離液の流量、静水圧等に基づいて解析される実効値として求めることもできる。 The intermembrane differential pressure of the separation membrane can be measured, for example, by setting a differential pressure gauge 26 at the outlet of the cell separation device 13. The intermembrane differential pressure of the separation membrane is based on, for example, an apparent value such as a pressure difference between the inlet and outlet of the cell separation device 13, a flow rate of a culture solution, a flow rate of a cell concentrate, a flow rate of a separation solution, a hydrostatic pressure, and the like. It can also be obtained as an effective value to be analyzed.

培養装置100においては、ブリーディング液排出配管17を通じて培養系外に排出された細胞濃縮液を、適宜の分離・精製処理に供して、細胞が産生した物質を回収することができる。分離・精製処理としては、半透膜分離処理または遠心分離処理が好ましく用いられる。半透膜分離処理としては、デッドエンドフロー濾過による全量濾過が特に好ましい。これらの分離・精製処理を用いると、細胞が濃縮された状態の細胞濃縮液から、不純物が少ない高純度の有用物質を効率的に回収することができる。 In the culture apparatus 100, the cell concentrate discharged to the outside of the culture system through the bleeding liquid discharge pipe 17 is subjected to an appropriate separation / purification treatment, and the substance produced by the cells can be recovered. As the separation / purification treatment, a semipermeable membrane separation treatment or a centrifugation treatment is preferably used. As the semipermeable membrane separation treatment, total filtration by dead end flow filtration is particularly preferable. By using these separation / purification treatments, high-purity useful substances with few impurities can be efficiently recovered from the cell concentrate in the state where the cells are concentrated.

以上の培養装置100や、これを用いた培養方法によると、灌流培養中に、細胞分離処理で生じた細胞濃縮液を培養系外に排出して、培養槽内の培養液の細胞密度を調整することができる。そのため、増殖した過剰な細胞を培養槽から直接抜き取る場合と比較して、灌流培養中に培養系外に排出する細胞当たりのブリーディング液の排出量を抑制することができる。培養液の排出量が抑制されることによって、細胞が産生した有用物質の排出量や、栄養の排出量も抑制されるため、分離・回収に多大なコストをかける必要や、多量の新鮮培地を追加する必要が無くなる。例えば、ブリーディング液用の分離・回収設備を個別に設けなくとも、生産物の回収負荷や培地の無駄を削減することができる。そのため、このような分離・回収設備の簡略化が可能であるし、生産物や培地の逸失価値が分離・回収設備の運用コストを下回るような場合には、分離・回収設備の省略化も可能になる。すなわち、コストや新鮮培地の供給を抑制しつつ、培養環境や物質生産性を安定させることができるため、灌流培養を安定的且つ効率的に行うことができる。 According to the above-mentioned culture apparatus 100 and the culture method using the above, during perfusion culture, the cell concentrate produced by the cell separation treatment is discharged out of the culture system to adjust the cell density of the culture solution in the culture tank. can do. Therefore, it is possible to suppress the discharge amount of the bleeding solution per cell discharged to the outside of the culture system during perfusion culture, as compared with the case where the excess cells that have proliferated are directly extracted from the culture tank. By suppressing the excretion of the culture solution, the excretion of useful substances produced by the cells and the excretion of nutrients are also suppressed, so that it is necessary to spend a great deal of cost on separation and recovery, and a large amount of fresh medium is used. No need to add. For example, it is possible to reduce the recovery load of the product and the waste of the medium without separately providing the separation / recovery equipment for the bleeding liquid. Therefore, it is possible to simplify such separation / recovery equipment, and if the lost value of the product or medium is lower than the operating cost of the separation / recovery equipment, the separation / recovery equipment can be omitted. become. That is, since the culture environment and substance productivity can be stabilized while suppressing the cost and the supply of the fresh medium, the perfusion culture can be performed stably and efficiently.

また、以上の培養装置100や、これを用いた培養方法によると、循環系内のファウラントがブリーディングと共に系外に排出されるため、細胞分離処理に用いる分離膜の使用寿命を延ばすことができる。このようなファウラントを排出する作用は、細胞分離処理に用いる分離膜の二次側に逆洗液を供給することによって更に高められる。そのため、分離膜の交換コストや、交換作業に伴うコンタミネーションのリスクを低減することができる。細胞分離装置13は、TFF方式の膜分離装置とされているため、細胞分離処理と有用物質の回収を、脈動少なく連続的に行うことができる。 Further, according to the above-mentioned culture apparatus 100 and the culture method using the above, the foulant in the circulatory system is discharged to the outside of the system together with bleeding, so that the service life of the separation membrane used for the cell separation treatment can be extended. The action of discharging such foulants is further enhanced by supplying a backwash solution to the secondary side of the separation membrane used for the cell separation treatment. Therefore, it is possible to reduce the replacement cost of the separation membrane and the risk of contamination associated with the replacement work. Since the cell separation device 13 is a TFF type membrane separation device, the cell separation process and the recovery of useful substances can be continuously performed with less pulsation.

図3は、本発明の実施形態に係る培養装置の一例を示す模式図である。
図3に示すように、本実施形態に係る培養装置200は、前記の培養装置100と同様に、培養槽1と、培地供給配管6と、細胞分離装置13と、分離液排出配管14と、ブリーディング液排出配管(排出配管)17と、逆洗液供給配管20と、排出配管バルブ25と、これらに付随する機器等を備えている。
FIG. 3 is a schematic view showing an example of the culture apparatus according to the embodiment of the present invention.
As shown in FIG. 3, the culture device 200 according to the present embodiment includes the culture tank 1, the medium supply pipe 6, the cell separation device 13, the separation liquid discharge pipe 14, and the separation liquid discharge pipe 14, similarly to the culture device 100 described above. It is provided with a bleeding liquid discharge pipe (discharge pipe) 17, a backwash liquid supply pipe 20, a discharge pipe valve 25, and equipment associated therewith.

本実施形態に係る培養装置200が、前記の培養装置100と異なる点は、細胞分離装置13の方式が変更されている点である。培養装置200においては、循環配管11(抜出配管11a,返送配管11b)、培養液抜出ポンプ12、抜出配管バルブ23および返送配管バルブ24に代えて、往復配管29、ダイアフラムポンプ30、往復配管バルブ31が備えられている。 The difference between the culture device 200 according to the present embodiment and the culture device 100 is that the method of the cell separation device 13 is changed. In the culture apparatus 200, the reciprocating pipe 29, the diaphragm pump 30, and the reciprocating pipe are replaced with the circulation pipe 11 (extraction pipe 11a, return pipe 11b), culture solution extraction pump 12, extraction pipe valve 23, and return pipe valve 24. A piping valve 31 is provided.

培養装置200は、細胞分離処理を行う細胞分離装置13として、分離膜を用いた濾過(膜分離処理)を行う膜分離装置を備えている。図3に示す細胞分離装置13は、交互接線流濾過(ATF)方式の膜分離装置とされている。 The culture device 200 includes a membrane separation device that performs filtration (membrane separation treatment) using a separation membrane as the cell separation device 13 that performs the cell separation treatment. The cell separation device 13 shown in FIG. 3 is an alternating tangential flow filtration (ATF) type membrane separation device.

培養装置200において、培養槽1には、往復配管29を介して、細胞分離装置13が接続されている。往復配管29は、培養槽1から培養液を抜き出して細胞分離装置13に送り、細胞分離装置13で細胞が濃縮された培養液(細胞濃縮液)を細胞分離装置13から培養槽1に返送して、直線状の流路内の往復で細胞を循環させる配管である。往復配管29は、細胞分離装置13と共に、細胞を含む培養液を培養槽1に対して往復動で循環させる循環系を形成している。 In the culture device 200, the cell separation device 13 is connected to the culture tank 1 via a reciprocating pipe 29. The reciprocating pipe 29 extracts the culture solution from the culture tank 1 and sends it to the cell separation device 13, and returns the culture solution (cell concentrate) in which the cells are concentrated in the cell separation device 13 from the cell separation device 13 to the culture tank 1. It is a pipe that circulates cells by reciprocating in a linear flow path. The reciprocating pipe 29, together with the cell separation device 13, forms a circulatory system that reciprocally circulates the culture solution containing cells to the culture tank 1.

往復配管29の一端は、培養槽1に接続している。往復配管29の他端は、細胞分離装置13の液入出口に接続している。往復配管29は、例えば、膜分離装置130の入口側ヘッダ133に接続される。往復配管29には、往復配管バルブ31が備えられている。往復配管バルブ31としては、流量を調整可能な流量制御弁および全開と全閉を切り替える切換弁のいずれを用いることもできる。 One end of the reciprocating pipe 29 is connected to the culture tank 1. The other end of the reciprocating pipe 29 is connected to the liquid inlet / outlet of the cell separation device 13. The reciprocating pipe 29 is connected to, for example, the inlet side header 133 of the membrane separation device 130. The reciprocating pipe 29 is provided with a reciprocating pipe valve 31. As the reciprocating piping valve 31, either a flow rate control valve that can adjust the flow rate or a switching valve that switches between fully open and fully closed can be used.

培養装置200の細胞分離装置13には、培養装置100と同様に、分離液排出配管14を介して、分離液タンク15が接続されている。また、培養装置200の細胞分離装置13には、培養装置100と同様に、逆洗液供給配管20を介して、逆洗液供給タンク21が接続されている。 Similar to the culture device 100, the cell separation device 13 of the culture device 200 is connected to the separation liquid tank 15 via the separation liquid discharge pipe 14. Further, the backwash liquid supply tank 21 is connected to the cell separation device 13 of the culture device 200 via the backwash liquid supply pipe 20 as in the culture device 100.

培養装置200の細胞分離装置13は、培養装置100と同様に、培養槽1から抜き出された培養液を細胞分離処理して、培養液中に含まれる細胞と、細胞よりも小さい低分子等とを、互いに分離するために備えられている。図3において、細胞分離装置13としては、ATF方式の膜分離装置が備えられている。膜分離装置の分離膜としては、細胞の大きさよりも小さい膜孔径を持つ限外濾過膜が用いられる。 In the cell separation device 13 of the culture device 200, similarly to the culture device 100, the culture solution extracted from the culture tank 1 is subjected to cell separation treatment, and the cells contained in the culture solution, small molecules smaller than the cells, etc. And are provided to separate from each other. In FIG. 3, as the cell separation device 13, an ATF type membrane separation device is provided. As the separation membrane of the membrane separation device, an ultrafiltration membrane having a membrane pore size smaller than the cell size is used.

培養装置200の細胞分離装置13には、エアー駆動型のダイアフラムポンプ30が配管を介して接続されている。ダイアフラムポンプ30は、送液を駆動するチャンバ30aと、チャンバ30aに圧縮空気を供給するコンプレッサ30bと、を備えている。 An air-driven diaphragm pump 30 is connected to the cell separation device 13 of the culture device 200 via a pipe. The diaphragm pump 30 includes a chamber 30a for driving a liquid feed and a compressor 30b for supplying compressed air to the chamber 30a.

チャンバ30aは、中空構造であり、その内部が、柔軟性を有するダイアフラムによって、被処理液室と、駆動流体室と、に区画されている。被処理液室は、細胞分離装置13の分離膜の一次側と連通している。被処理液室は、例えば、膜分離装置130の出口側ヘッダ134に配管等を介して接続される。駆動流体室は、コンプレッサ30bの流体出口と連通している。 The chamber 30a has a hollow structure, and the inside thereof is divided into a liquid to be treated chamber and a driving fluid chamber by a flexible diaphragm. The liquid chamber to be treated communicates with the primary side of the separation membrane of the cell separation device 13. The liquid chamber to be treated is connected to, for example, the outlet side header 134 of the membrane separation device 130 via a pipe or the like. The drive fluid chamber communicates with the fluid outlet of the compressor 30b.

ダイアフラムポンプ30では、駆動流体室内の圧縮空気が排気されると、ダイアフラムが変形して、駆動流体室の容積が縮小し、被処理液室の容積が拡張する。被処理液室の容積が拡張することにより、被処理液が吸引される。一方、駆動流体室内にコンプレッサ30bから圧縮空気が導入されると、ダイアフラムが変形して、駆動流体室の容積が拡張し、被処理液室の容積が縮小する。被処理液室の容積が縮小することにより、被処理液が吐出される。 In the diaphragm pump 30, when the compressed air in the driving fluid chamber is exhausted, the diaphragm is deformed, the volume of the driving fluid chamber is reduced, and the volume of the liquid chamber to be treated is expanded. By expanding the volume of the liquid to be treated chamber, the liquid to be treated is sucked. On the other hand, when compressed air is introduced into the driving fluid chamber from the compressor 30b, the diaphragm is deformed, the volume of the driving fluid chamber is expanded, and the volume of the liquid chamber to be treated is reduced. By reducing the volume of the liquid chamber to be treated, the liquid to be treated is discharged.

灌流培養時、培養槽1には、細胞が懸濁している培養液が、所定の液量となるように張り込まれる。往復配管バルブ31は、灌流培養中の通常時には、開放状態に制御される。培養槽1内の培養液は、ダイアフラムポンプ30の吸引動作によって細胞分離装置13に抜き出される。細胞分離装置13に流入した培養液は、灌流培養中、分離液ポンプ16によって分離膜を介して吸引される。分離膜の二次側が陰圧とされて、分離膜の膜間に操作圧力が加えられる。 At the time of perfusion culture, the culture solution in which the cells are suspended is filled in the culture tank 1 so as to have a predetermined amount. The reciprocating piping valve 31 is normally controlled to be in an open state during perfusion culture. The culture solution in the culture tank 1 is extracted into the cell separation device 13 by the suction operation of the diaphragm pump 30. The culture solution that has flowed into the cell separation device 13 is sucked through the separation membrane by the separation solution pump 16 during perfusion culture. Negative pressure is applied to the secondary side of the separation membrane, and operating pressure is applied between the separation membranes.

培養槽1から抜き出された培養液は、操作圧力が加えられることにより、細胞濃縮液と、分離液と、に分離される。分離膜の二次側に透過した分離液は、分離液排出配管14に流出して分離液タンク15に回収される。一方、分離膜を透過せず一次側に濃縮した細胞濃縮液は、ダイアフラムポンプ30の吐出動作によって往復配管29に流出する。吐出動作の間には、分離膜の二次側に透過した分離液の一部が一次側に移動して、分離膜に逆洗作用が加えられる。往復配管29に流出した細胞濃縮液は、灌流培養中の通常時には、培養槽1に戻される。 The culture solution extracted from the culture tank 1 is separated into a cell concentrate and a separation solution by applying an operating pressure. The separation liquid that has permeated to the secondary side of the separation membrane flows out to the separation liquid discharge pipe 14 and is collected in the separation liquid tank 15. On the other hand, the cell concentrate that does not permeate the separation membrane and is concentrated on the primary side flows out to the reciprocating pipe 29 by the discharge operation of the diaphragm pump 30. During the discharge operation, a part of the separation liquid that has permeated to the secondary side of the separation membrane moves to the primary side, and a backwashing action is applied to the separation membrane. The cell concentrate flowing out to the reciprocating pipe 29 is returned to the culture tank 1 at normal times during perfusion culture.

培養装置200において、循環系を構成する往復配管29には、ブリーディング液排出配管17が接続されている。ブリーディング液排出配管17は、往復配管29から分岐しており、ブリーディング液タンク18に接続している。ブリーディング液排出配管17には、培養装置100と同様に、排出配管バルブ25とブリーディング液ポンプ19が、上流側から順に備えられている。培養装置200の排出配管バルブ25としては、全開と全閉を切り替える切換弁が好ましく用いられる。 In the culture apparatus 200, the bleeding liquid discharge pipe 17 is connected to the reciprocating pipe 29 that constitutes the circulatory system. The bleeding liquid discharge pipe 17 branches from the reciprocating pipe 29 and is connected to the bleeding liquid tank 18. Similar to the culture apparatus 100, the bleeding liquid discharge pipe 17 is provided with a discharge pipe valve 25 and a bleeding liquid pump 19 in order from the upstream side. As the discharge pipe valve 25 of the incubator 200, a switching valve for switching between fully open and fully closed is preferably used.

培養装置200のように、往復配管29にブリーディング液排出配管17を接続すると、培養槽1に返送される細胞濃縮液をブリーディング液として循環系外に排出することができる。すなわち、灌流培養における細胞密度を一定の範囲に制御するにあたり、細胞が濃縮された細胞濃縮液を循環系外に排出して、培養槽1内の培養液の細胞密度を減少側に調整することができる。 When the bleeding liquid discharge pipe 17 is connected to the reciprocating pipe 29 as in the culture device 200, the cell concentrate returned to the culture tank 1 can be discharged to the outside of the circulatory system as the bleeding liquid. That is, in order to control the cell density in the perfusion culture within a certain range, the cell concentrate in which the cells are concentrated is discharged out of the circulatory system, and the cell density of the culture solution in the culture tank 1 is adjusted to the decreasing side. Can be done.

培養装置200においては、培養装置100と同様に、ブリーディング液排出配管17を通じて循環系外に排出するブリーディング液(細胞濃縮液)の排出量を調節して、培養槽1内の培養液の細胞密度を調整することができる。また、制御装置5は、抜出配管11aの流量(F)に代えて、往復配管29における単位時間当たりの平均流量を用いて、ブリーディング液排出配管17の流量(F)、ブリーディング液ポンプ19の運転時間(Δt)、ブリーディング液の排出量(F・Δt)を演算することができる。 In the culture device 200, similarly to the culture device 100, the amount of the bleeding liquid (cell concentrate) discharged to the outside of the circulatory system through the bleeding liquid discharge pipe 17 is adjusted to adjust the cell density of the culture liquid in the culture tank 1. Can be adjusted. Further, the control device 5 uses the average flow rate per unit time in the reciprocating pipe 29 instead of the flow rate (F 0 ) of the extraction pipe 11a, and uses the flow rate (F 2 ) of the bleeding liquid discharge pipe 17 and the bleeding liquid pump. 19 operation time of (Delta] t), can be calculated emissions bleeding fluid (F 2 · Δt).

培養装置200の制御装置5は、培地供給ポンプ8、分離液ポンプ16およびブリーディング液ポンプ19の出力や、ダイアフラムポンプ30の出力および動作や、排出配管バルブ25および往復配管バルブ31の開度や、その他の送液系統・通気系統を制御する機能を備えることができる。ブリーディング液ポンプ19の出力、排出配管バルブ25および往復配管バルブ31の開度は、F、Δt、F・Δt等の演算結果に基づいて制御することができる。 The control device 5 of the culture device 200 includes the output of the medium supply pump 8, the separation liquid pump 16 and the bleeding liquid pump 19, the output and operation of the diaphragm pump 30, the opening degree of the discharge pipe valve 25 and the reciprocating pipe valve 31, and the opening degree of the reciprocating pipe valve 31. It can be equipped with a function to control other liquid feeding systems and ventilation systems. The output of bleeding pump 19, opening of the exhaust pipe valve 25 and the reciprocating line valve 31, F 2, Delta] t, may be controlled according to the result of such F 2 · Δt.

培養装置200においては、灌流培養中、細胞分離装置13から流出した細胞濃縮液を、間欠的に循環系外に排出することができる。すなわち、往復配管バルブ31と排出配管バルブ25とを、交互に開閉させることができる。排出配管バルブ25は、ダイアフラムポンプ30が吐出動作を行っている期間に開放され、ダイアフラムポンプ30が吸引動作を行っている期間に閉鎖される。 In the culture device 200, the cell concentrate that has flowed out of the cell separation device 13 during perfusion culture can be intermittently discharged to the outside of the circulatory system. That is, the reciprocating piping valve 31 and the discharging piping valve 25 can be opened and closed alternately. The discharge pipe valve 25 is opened during the period when the diaphragm pump 30 is performing the discharge operation, and is closed during the period when the diaphragm pump 30 is performing the suction operation.

間欠的なブリーディングを行う場合は、往復配管バルブ31を全閉に制御し、排出配管バルブ25を全開に制御する。往復配管バルブ31および排出配管バルブ25は、開閉のデューティー比を、所定のブリーディング液排出配管17の流量(F)の下で、ブリーディング液排出配管17側が開放される開時間の合計が、ブリーディング液ポンプ19の運転時間(Δt)と略等しくなるように設定することができる。 When intermittent bleeding is performed, the reciprocating pipe valve 31 is controlled to be fully closed, and the discharge pipe valve 25 is controlled to be fully open. The reciprocating pipe valve 31 and the discharge pipe valve 25 have a duty ratio of opening and closing, and the total opening time when the bleeding liquid discharge pipe 17 side is opened under a predetermined flow rate (F 2) of the bleeding liquid discharge pipe 17 is bleeding. It can be set so as to be substantially equal to the operating time (Δt) of the liquid pump 19.

間欠的なブリーディングは、灌流培養中、適宜の時間間隔で行うことができる。ブリーディングを行う際には、細胞分離装置13から流出した細胞濃縮液の実質的に略全部を、往復配管29からブリーディング液排出配管17に流し、ブリーディング液排出配管17を通じて循環系外に排出する。この間に、細胞分離処理は継続されるが、培養槽1への返送は中断される。 Intermittent bleeding can be performed at appropriate time intervals during perfusion culture. When bleeding is performed, substantially all of the cell concentrate flowing out of the cell separation device 13 is flowed from the reciprocating pipe 29 to the bleeding liquid discharge pipe 17 and discharged to the outside of the circulatory system through the bleeding liquid discharge pipe 17. During this period, the cell separation process is continued, but the return to the culture tank 1 is interrupted.

培養装置200は、循環系の収支に関して、培養装置100と同様に、ブリーディング液排出配管17を通じて排出されるブリーディング液の単位時間当たり平均排出量と、細胞分離装置13から培養槽1に返送される細胞濃縮液の単位時間当たり平均返送量と、細胞分離装置13から分離液排出配管14に抜き出される分離液の単位時間当たり平均抜出量との合計が、培養槽1から細胞分離装置13に抜き出される培養液の単位時間当たり平均抜出量と略等しくなるように運転される。 Similar to the culture device 100, the culture device 200 returns the average discharge amount of the bleeding liquid discharged through the bleeding liquid discharge pipe 17 per unit time and the cell separation device 13 to the culture tank 1 with respect to the balance of the circulation system. The total of the average return amount of the cell concentrate per unit time and the average amount of the separation solution extracted from the cell separation device 13 to the separation solution discharge pipe 14 per unit time is transferred from the culture tank 1 to the cell separation device 13. The operation is performed so as to be substantially equal to the average withdrawal amount of the withdrawn culture solution per unit time.

そのため、培養装置200の培地供給ポンプ8は、培養装置100と同様に、培地供給配管6を通じて供給される新鮮培地の単位時間当たり平均供給量が、培養槽1から細胞分離装置13に抜き出される培養液の単位時間当たり平均抜出量と、細胞分離装置13から培養槽1に返送される細胞濃縮液の単位時間当たり平均返送量との差分と略等しくなるように制御される。培地供給ポンプ8による新鮮培地の供給流量は、可変的に制御することもできる。 Therefore, in the medium supply pump 8 of the culture device 200, the average supply amount of fresh medium supplied through the medium supply pipe 6 per unit time is extracted from the culture tank 1 to the cell separation device 13 in the same manner as the culture device 100. The difference between the average withdrawal amount of the culture medium per unit time and the average return amount of the cell concentrate returned from the cell separation device 13 to the culture tank 1 per unit time is controlled to be substantially equal. The flow rate of fresh medium supplied by the medium supply pump 8 can also be variably controlled.

また、培養装置200においては、培養装置100と同様に、細胞分離装置13における濃縮率を、一定に制御してもよいし、可変的に制御してもよい。培養装置100と同様に、ブリーディング液(細胞濃縮液)を培養系外に排出するとき、細胞分離処理における細胞の濃縮率を高くする操作を行い、培養系外に排出される細胞濃縮液の細胞密度を高くすることもできる。 Further, in the culture device 200, similarly to the culture device 100, the concentration rate in the cell separation device 13 may be controlled to be constant or variably. Similar to the culture apparatus 100, when the bleeding solution (cell concentrate) is discharged out of the culture system, an operation is performed to increase the cell concentration rate in the cell separation process, and the cells of the cell concentrate discharged out of the culture system are performed. The density can also be increased.

細胞の濃縮率を高くする操作としては、培養装置100と同様に、培養槽1から抜き出す培養液の流量を小さくする操作、細胞分離処理に用いる分離膜の膜間差圧を高くする操作、複数の系統を備えた細胞分離装置13について使用系統を制限する操作等が挙げられる。 Similar to the culture apparatus 100, the operations for increasing the cell concentration rate include an operation of reducing the flow rate of the culture solution extracted from the culture tank 1, an operation of increasing the intermembrane differential pressure of the separation membrane used for the cell separation treatment, and a plurality of operations. An operation of limiting the line to be used for the cell separation device 13 provided with the above line can be mentioned.

培養槽1から抜き出す培養液の流量を小さくする操作としては、例えば、ダイアフラムポンプ30の単位時間当たりの平均吸引流量を減少方向に調整する操作や、ダイアフラムポンプ30の吸引動作中に往復配管バルブ31の開度を閉鎖方向に制御する操作を用いることができる。 Examples of the operation of reducing the flow rate of the culture solution extracted from the culture tank 1 include an operation of adjusting the average suction flow rate per unit time of the diaphragm pump 30 in a decreasing direction and a reciprocating piping valve 31 during the suction operation of the diaphragm pump 30. An operation of controlling the opening degree of is in the closing direction can be used.

また、培養装置200においては、培養装置100と同様に、逆洗液供給配管20の系統を使用して、細胞分離装置13の分離膜を逆洗することができる。分離膜の逆洗は、灌流培養の開始前に行うこともできるし、灌流培養の終了後に行うこともできるし、灌流培養中に間欠的に行うこともできる。灌流培養中に行う場合、ダイアフラムポンプ30および分離液ポンプ16と、逆洗液供給ポンプ22とを、交互に稼働させて間欠的に逆洗を行う。 Further, in the culture device 200, the separation membrane of the cell separation device 13 can be backwashed by using the system of the backwash liquid supply pipe 20 as in the culture device 100. The backwash of the separation membrane can be performed before the start of the perfusion culture, after the end of the perfusion culture, or intermittently during the perfusion culture. When performed during perfusion culture, the diaphragm pump 30, the separation liquid pump 16, and the backwash liquid supply pump 22 are operated alternately to perform backwash intermittently.

細胞分離装置13の分離膜の逆洗は、間欠的なブリーディングと同時期に行うこともできるし、間欠的なブリーディングと異なる時期に行うこともできる。分離膜の逆洗を、間欠的なブリーディングと同時期に行うと、細胞濃縮液中に浮遊させたファウラントが、ブリーディング液排出配管17を通じて循環系外に排出されるため、膜間差圧が上昇し難くなり、分離膜の使用寿命が長くなる。 The backwashing of the separation membrane of the cell separation device 13 can be performed at the same time as the intermittent bleeding, or can be performed at a different time from the intermittent bleeding. When the separation membrane is backwashed at the same time as the intermittent bleeding, the foulant suspended in the cell concentrate is discharged to the outside of the circulatory system through the bleeding liquid discharge pipe 17, so that the differential pressure between the membranes increases. It becomes difficult to do so, and the service life of the separation membrane is extended.

培養装置200においては、培養装置100と同様に、ブリーディング液排出配管17を通じて培養系外に排出された細胞濃縮液を、適宜の分離・精製処理に供して、細胞が産生した物質を回収することができる。分離・精製処理としては、半透膜分離処理または遠心分離処理が好ましく用いられる。半透膜分離処理としては、デッドエンドフロー濾過による全量濾過が特に好ましい。 In the culturing device 200, similarly to the culturing device 100, the cell concentrate discharged to the outside of the culture system through the bleeding liquid discharge pipe 17 is subjected to an appropriate separation / purification treatment to recover the substance produced by the cells. Can be done. As the separation / purification treatment, a semipermeable membrane separation treatment or a centrifugation treatment is preferably used. As the semipermeable membrane separation treatment, total filtration by dead end flow filtration is particularly preferable.

以上の培養装置200や、これを用いた培養方法によると、前記の培養装置100や培養方法と同様に、灌流培養中に、細胞分離処理で生じた細胞濃縮液を培養系外に排出して、培養槽内の培養液の細胞密度を調整することができる。そのため、増殖した過剰な細胞を培養槽から直接抜き取る場合と比較して、灌流培養中に培養系外に排出する細胞当たりのブリーディング液の排出量を抑制することができる。コストや新鮮培地の供給を抑制しつつ、培養環境や物質生産性を安定させることができるため、灌流培養を安定的且つ効率的に行うことができる。 According to the above-mentioned culturing apparatus 200 and the culturing method using the same, the cell concentrate produced by the cell separation treatment is discharged to the outside of the culturing system during the perfusion culture, as in the case of the culturing apparatus 100 and the culturing method. , The cell density of the culture solution in the culture tank can be adjusted. Therefore, it is possible to suppress the discharge amount of the bleeding solution per cell discharged to the outside of the culture system during perfusion culture, as compared with the case where the excess cells that have proliferated are directly extracted from the culture tank. Since the culture environment and substance productivity can be stabilized while suppressing the cost and the supply of fresh medium, perfusion culture can be performed stably and efficiently.

また、以上の培養装置200や、これを用いた培養方法によると、循環系内のファウラントがブリーディングと共に系外に排出されるため、細胞分離処理に用いる分離膜の使用寿命を延ばすことができる。このようなファウラントを排出する作用は、細胞分離処理に用いる分離膜の二次側に逆洗液を供給することによって更に高められる。そのため、分離膜の交換コストや、交換作業に伴うコンタミネーションのリスクを低減することができる。細胞分離装置13は、ATF方式の膜分離装置とされているため、循環系内に付着したファウラントを洗い流す作用が、TFF方式と比較して高くなる。 Further, according to the above-mentioned culture apparatus 200 and the culture method using the above, the foulant in the circulatory system is discharged to the outside of the system together with the bleeding, so that the service life of the separation membrane used for the cell separation treatment can be extended. The action of discharging such foulants is further enhanced by supplying a backwash solution to the secondary side of the separation membrane used for the cell separation treatment. Therefore, it is possible to reduce the replacement cost of the separation membrane and the risk of contamination associated with the replacement work. Since the cell separation device 13 is an ATF type membrane separation device, the action of washing away the foulant adhering to the circulatory system is higher than that of the TFF method.

以上、本発明について説明したが、本発明は、前記の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更が可能である。例えば、本発明は、必ずしも前記の実施形態が備える全ての構成を備えるものに限定されない。或る実施形態の構成の一部を他の構成に置き換えたり、或る実施形態の構成の一部を他の形態に追加したり、或る実施形態の構成の一部を省略したりすることができる。 Although the present invention has been described above, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, the present invention is not necessarily limited to those having all the configurations included in the above-described embodiment. Replacing part of the configuration of one embodiment with another, adding part of the configuration of one embodiment to another, or omitting part of the configuration of one embodiment. Can be done.

例えば、前記の培養装置100,200は、培養槽、細胞分離装置等の形状・型式や、ポンプ、バルブ等の機器の型式・配置や、配管の接続等を、発明の趣旨を逸脱しない限り、適宜の形態に変更することができる。例えば、ブリーディング液排出配管17を、細胞分離装置13に直結することもできる。また、逆洗液供給配管20を、細胞分離装置13の分離膜の二次側の適宜の位置に接続させることもできる。前記の培養装置100,200は、細胞分離装置13として、膜分離装置を備えているが、細胞分離処理は、重力沈降分離、遠心分離、音響分離等の他の原理に基づく装置で行うこともできる。 For example, the culture devices 100 and 200 described above do not deviate from the gist of the invention, such as the shape and model of the culture tank, cell separation device, etc., the model and arrangement of devices such as pumps and valves, and the connection of pipes. It can be changed to an appropriate form. For example, the bleeding liquid discharge pipe 17 can be directly connected to the cell separation device 13. Further, the backwash liquid supply pipe 20 can be connected to an appropriate position on the secondary side of the separation membrane of the cell separation device 13. The culture devices 100 and 200 include a membrane separation device as the cell separation device 13, but the cell separation process may be performed by a device based on other principles such as gravity sedimentation separation, centrifugation, and acoustic separation. it can.

以下、実施例を示して本発明について具体的に説明するが、本発明の技術的範囲はこれに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the technical scope of the present invention is not limited thereto.

<比較例1>
灌流培養中に、細胞を含む培養液を培養槽から直接抜き取る方法で培養を行った。
<Comparative example 1>
During the perfusion culture, the culture solution was cultured by directly extracting the culture solution containing the cells from the culture tank.

培養装置としては、図1に示すような循環系を備える培養装置を用いた。培養対象の細胞としては、CHO細胞を用いた。培養槽に対する培養液の張込量は、2Lとした。培養槽の細胞密度の制御目標値は、生細胞について、1.0×10cells/mLとした。培養槽から細胞分離装置への抜出流量・循環系内の循環流量は、40L/d(一日当たり培養槽の張込量の20倍量)とした。 As the culturing device, a culturing device provided with a circulatory system as shown in FIG. 1 was used. CHO cells were used as the cells to be cultured. The amount of the culture solution charged into the culture tank was 2 L. Control target value of the cell density of the culture tank, for viable cells, was 1.0 × 10 7 cells / mL. The extraction flow rate from the culture tank to the cell separator and the circulation flow rate in the circulatory system were set to 40 L / d (20 times the amount charged in the culture tank per day).

灌流培養は、培養液を培養槽から直接抜き取る方法でブリーディングを行いながら、数日間にわたって継続した。培養したCHO細胞の細胞当たりの培地消費量(CSPR)は、1.0×10−10L/cells・dである。灌流率は、1.0v/v・dとなった。CHO細胞の倍加時間は、約2日であったため、約2日が経過する毎に、培養液を培養槽から直接抜き取り、培養系外に排出して、培養槽内の生細胞量を維持した。この間に培養系外に排出したブリーディング液の量は、1Lであった。 Perfusion culture was continued for several days, bleeding by removing the culture broth directly from the culture tank. The medium consumption (CSPR) per cell of the cultured CHO cells is 1.0 × 10 -10 L / cells · d. The perfusion rate was 1.0 v / v · d. Since the doubling time of CHO cells was about 2 days, the culture solution was directly withdrawn from the culture tank and discharged out of the culture system every 2 days to maintain the amount of viable cells in the culture tank. .. The amount of the bleeding solution discharged to the outside of the culture system during this period was 1 L.

<実施例1>
灌流培養中に、細胞が分離・濃縮された細胞濃縮液を培養系外に排出する方法で培養を行った。
<Example 1>
During the perfusion culture, the cells were cultured by a method of discharging the cell concentrate from which the cells were separated and concentrated to the outside of the culture system.

培養装置としては、図1に示すような循環系を備える培養装置を用いた。培養対象の細胞としては、CHO細胞を用いた。培養槽に対する培養液の張込量は、2Lとした。培養槽の細胞密度の制御目標値は、生細胞について、1.0×10cells/mLとした。培養槽から細胞分離装置への抜出流量・循環系内の循環流量は、40L/d(一日当たり培養槽の張込量の20倍量)とした。 As the culturing device, a culturing device provided with a circulatory system as shown in FIG. 1 was used. CHO cells were used as the cells to be cultured. The amount of the culture solution charged into the culture tank was 2 L. Control target value of the cell density of the culture tank, for viable cells, was 1.0 × 10 7 cells / mL. The extraction flow rate from the culture tank to the cell separator and the circulation flow rate in the circulatory system were set to 40 L / d (20 times the amount charged in the culture tank per day).

灌流培養は、細胞濃縮液を培養系外に排出する方法でブリーディングを行いながら、数日間にわたって継続した。培養したCHO細胞の細胞当たりの培地消費量(CSPR)は、1.0×10−10L/cells・dである。灌流率は、1.0v/v・dとなった。CHO細胞の倍加時間は、約2日であったため、約2日が経過する毎に、循環系外に排出する細胞濃縮液の流量を37L/d、排出時間を0.6hとして、ブリーディングを行うと、培養槽内の生細胞量が維持された。この間に培養系外に排出したブリーディング液の量は、950mLであった。 Perfusion culture was continued for several days, bleeding by draining the cell concentrate out of the culture system. The medium consumption (CSPR) per cell of the cultured CHO cells is 1.0 × 10 -10 L / cells · d. The perfusion rate was 1.0 v / v · d. Since the doubling time of CHO cells was about 2 days, bleeding was performed every time about 2 days passed, with the flow rate of the cell concentrate discharged to the outside of the circulatory system set to 37 L / d and the discharge time set to 0.6 h. The amount of viable cells in the culture tank was maintained. The amount of the bleeding solution discharged to the outside of the culture system during this period was 950 mL.

以上のとおり、実施例1のブリーディング液の量は、比較例1に対して、5%低減する結果となった。 As described above, the amount of the bleeding liquid of Example 1 was reduced by 5% as compared with Comparative Example 1.

100 培養装置
1 培養槽
2 スパージャ
3 攪拌機
4 細胞密度計
5 制御装置
6 培地供給配管
7 培地供給タンク
8 培地供給ポンプ
9 酸素ガス供給配管
10 酸素ガス供給装置
11 循環配管
11a 抜出配管
11b 返送配管
12 培養液抜出ポンプ
13 細胞分離装置
14 分離液排出配管
15 分離液タンク
16 分離液ポンプ
17 ブリーディング液排出配管(排出配管)
18 ブリーディング液タンク
19 ブリーディング液ポンプ
20 逆洗液供給配管
21 逆洗液供給タンク
22 逆洗液供給ポンプ
23 抜出配管バルブ
24 返送配管バルブ
25 排出配管バルブ
29 往復配管
30 ダイアフラムポンプ
30a チャンバ
30b コンプレッサ
31 往復配管バルブ
130 膜分離装置
131 ケーシング
132 中空糸膜フィルタ
133 入口側ヘッダ
134 出口側ヘッダ
135 液出口
136 洗浄液入口
100 Culture device 1 Culture tank 2 Spager 3 Stirrer 4 Cell densitometer 5 Control device 6 Medium supply pipe 7 Medium supply tank 8 Medium supply pump 9 Oxygen gas supply pipe 10 Oxygen gas supply pipe 11 Oxygen gas supply equipment 11 Circulation pipe 11a Extraction pipe 11b Return pipe 12 Culture medium extraction pump 13 Cell separator 14 Separation liquid discharge pipe 15 Separation liquid tank 16 Separation liquid pump 17 Bleeding liquid discharge pipe (discharge pipe)
18 Bleeding liquid tank 19 Bleeding liquid pump 20 Backwashing liquid supply pipe 21 Backwashing liquid supply tank 22 Backwashing liquid supply pump 23 Extraction piping valve 24 Return piping valve 25 Discharge piping valve 29 Reciprocating piping 30 Diaphragm pump 30a Chamber 30b Compressor 31 Reciprocating piping valve 130 Film separator 131 Casing 132 Hollow thread film filter 133 Inlet side header 134 Outlet side header 135 Liquid outlet 136 Cleaning liquid inlet

Claims (10)

細胞を培養している培養槽から前記細胞を含む培養液を抜き出して細胞分離処理し、前記細胞分離処理で生じた細胞濃縮液を前記培養槽に返送することにより灌流培養を行い、前記灌流培養中に、前記細胞濃縮液を培養系外に排出して前記培養液の細胞密度を調整する培養方法。 The culture solution containing the cells is extracted from the culture tank in which the cells are cultured, subjected to cell separation treatment, and the cell concentrate produced by the cell separation treatment is returned to the culture tank to perform perfusion culture, and the perfusion culture is performed. A culture method in which the cell concentrate is discharged out of the culture system to adjust the cell density of the culture solution. 請求項1に記載の培養方法であって、
前記灌流培養中に、前記細胞濃縮液を間欠的に前記培養系外に排出するか、または、前記細胞濃縮液の一部を連続的に前記培養系外に排出する培養方法。
The culture method according to claim 1.
A culture method in which the cell concentrate is intermittently discharged out of the culture system during the perfusion culture, or a part of the cell concentrate is continuously discharged out of the culture system.
請求項2に記載の培養方法であって、
前記灌流培養中に、前記細胞濃縮液を間欠的に前記培養系外に排出し、
前記細胞濃縮液を前記培養系外に排出するとき、前記細胞分離処理における前記細胞の濃縮率を高くする操作を行い、前記培養系外に排出される前記細胞濃縮液の細胞密度を高くする培養方法。
The culture method according to claim 2.
During the perfusion culture, the cell concentrate is intermittently discharged out of the culture system.
When the cell concentrate is discharged to the outside of the culture system, an operation of increasing the concentration rate of the cells in the cell separation treatment is performed to increase the cell density of the cell concentrate discharged to the outside of the culture system. Method.
請求項3に記載の培養方法であって、
前記細胞の濃縮率を高くする操作は、前記培養槽から抜き出す前記培養液の流量を小さくする操作、または、前記細胞分離処理に用いる分離膜の膜間差圧を高くする操作である培養方法。
The culture method according to claim 3.
The operation of increasing the concentration rate of the cells is an operation of reducing the flow rate of the culture solution extracted from the culture tank, or an operation of increasing the intermembrane differential pressure of the separation membrane used for the cell separation treatment.
請求項1に記載の培養方法であって、
前記培養系外に排出された前記細胞濃縮液を、半透膜分離処理または遠心分離処理して、前記細胞が産生した物質を回収する培養方法。
The culture method according to claim 1.
A culture method in which the cell concentrate discharged to the outside of the culture system is subjected to a semipermeable membrane separation treatment or a centrifugation treatment to recover the substance produced by the cells.
請求項1に記載の培養方法であって、
前記灌流培養中に、前記細胞分離処理に用いる分離膜を、前記培養系外から供給される新鮮培地または緩衝液で間欠的に逆洗して、前記分離膜のファウラントを前記細胞濃縮液中に浮遊させる培養方法。
The culture method according to claim 1.
During the perfusion culture, the separation membrane used for the cell separation treatment is intermittently backwashed with a fresh medium or a buffer solution supplied from outside the culture system, and the foulant of the separation membrane is put into the cell concentrate. Floating culture method.
細胞を培養するための培養槽と、
前記培養槽から抜き出された前記細胞を含む培養液を細胞分離処理して細胞濃縮液を生じる細胞分離装置と、
前記培養槽から前記培養液を抜き出して前記細胞分離装置に送り、前記細胞濃縮液を前記細胞分離装置から前記培養槽に返送して前記細胞を循環させる循環配管と、
前記細胞濃縮液を循環系外に排出するための排出配管と、を備える培養装置。
A culture tank for culturing cells and
A cell separation device that produces a cell concentrate by performing cell separation treatment on a culture solution containing the cells extracted from the culture tank.
A circulation pipe that extracts the culture solution from the culture tank and sends it to the cell separation device, returns the cell concentrate from the cell separation device to the culture tank, and circulates the cells.
A culture device including a discharge pipe for discharging the cell concentrate to the outside of the circulatory system.
請求項7に記載の培養装置であって、
前記循環配管は、前記培養槽と前記細胞分離装置の液入口との間を接続する抜出配管と、前記細胞分離装置の液出口と前記培養槽との間を接続する返送配管と、であり、
前記細胞分離装置は、分離膜による膜分離処理を行う装置であり、
前記膜分離処理は、接線流濾過方式である培養装置。
The culture apparatus according to claim 7.
The circulation pipe is an extraction pipe connecting the culture tank and the liquid inlet of the cell separation device, and a return pipe connecting the liquid outlet of the cell separation device and the culture tank. ,
The cell separation device is a device that performs a membrane separation process using a separation membrane.
The membrane separation treatment is a culture apparatus using a tangential flow filtration method.
請求項7に記載の培養装置であって、
前記循環配管は、前記培養槽と前記細胞分離装置の液入出口との間を接続する往復配管であり、
前記細胞分離装置は、分離膜による膜分離処理を行う装置であり、
前記膜分離処理は、交互接線流濾過方式である培養装置。
The culture apparatus according to claim 7.
The circulation pipe is a reciprocating pipe that connects the culture tank and the liquid inlet / outlet of the cell separation device.
The cell separation device is a device that performs a membrane separation process using a separation membrane.
The membrane separation treatment is a culture apparatus using an alternating tangential flow filtration method.
請求項7に記載の培養装置であって、
前記細胞分離装置は、分離膜による膜分離処理を行う装置であり、前記分離膜の二次側に新鮮培地または緩衝液を供給するための供給配管が接続しており、
前記細胞の灌流培養中に、前記分離膜を前記新鮮培地または前記緩衝液で間欠的に逆洗して、前記分離膜に付着しているファウラントを前記細胞濃縮液中に浮遊させる培養装置。
The culture apparatus according to claim 7.
The cell separation device is a device that performs a membrane separation process using a separation membrane, and a supply pipe for supplying a fresh medium or a buffer solution is connected to the secondary side of the separation membrane.
A culture apparatus in which the separation membrane is intermittently backwashed with the fresh medium or the buffer solution during perfusion culture of the cells, and the foulant adhering to the separation membrane is suspended in the cell concentrate.
JP2019172228A 2019-09-20 2019-09-20 Culture method and culture apparatus Active JP7330834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019172228A JP7330834B2 (en) 2019-09-20 2019-09-20 Culture method and culture apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019172228A JP7330834B2 (en) 2019-09-20 2019-09-20 Culture method and culture apparatus

Publications (2)

Publication Number Publication Date
JP2021048776A true JP2021048776A (en) 2021-04-01
JP7330834B2 JP7330834B2 (en) 2023-08-22

Family

ID=75154801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019172228A Active JP7330834B2 (en) 2019-09-20 2019-09-20 Culture method and culture apparatus

Country Status (1)

Country Link
JP (1) JP7330834B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024337A1 (en) * 2022-07-28 2024-02-01 株式会社ダイセル Device for purifying and concentrating liquid that contains minute useful substance, and method for producing purified concentrate that contains minute useful substance using said device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144086A (en) * 1980-04-09 1981-11-10 Hitachi Ltd Cultivation of microorganism in high concentration of mold
JPS61257181A (en) * 1985-05-09 1986-11-14 Teijin Ltd Culture of animal cell
JPS62134086A (en) * 1985-12-06 1987-06-17 Teijin Ltd Cultivation of animal cell
JPH01101882A (en) * 1987-10-15 1989-04-19 Teijin Ltd Cultivation of mammalian cells
WO2018003476A1 (en) * 2016-06-30 2018-01-04 富士フイルム株式会社 Cell-suspension membrane separation method and cell culture device
JP2019122363A (en) * 2018-01-17 2019-07-25 株式会社Ihi Cell culture system and cell culture method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144086A (en) * 1980-04-09 1981-11-10 Hitachi Ltd Cultivation of microorganism in high concentration of mold
JPS61257181A (en) * 1985-05-09 1986-11-14 Teijin Ltd Culture of animal cell
JPS62134086A (en) * 1985-12-06 1987-06-17 Teijin Ltd Cultivation of animal cell
JPH01101882A (en) * 1987-10-15 1989-04-19 Teijin Ltd Cultivation of mammalian cells
WO2018003476A1 (en) * 2016-06-30 2018-01-04 富士フイルム株式会社 Cell-suspension membrane separation method and cell culture device
JP2019122363A (en) * 2018-01-17 2019-07-25 株式会社Ihi Cell culture system and cell culture method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024337A1 (en) * 2022-07-28 2024-02-01 株式会社ダイセル Device for purifying and concentrating liquid that contains minute useful substance, and method for producing purified concentrate that contains minute useful substance using said device

Also Published As

Publication number Publication date
JP7330834B2 (en) 2023-08-22

Similar Documents

Publication Publication Date Title
JP7298054B2 (en) Disposable bioprocess systems that support bioactivity
KR102539167B1 (en) Alternating tangential flow rapid harvesting
JP6862001B2 (en) Improved methods for improving filtration yields in tangential flow filtration systems
TWI675696B (en) Tangential flow filtration device for perfusion applications
DK2673072T3 (en) CELL SEPARATION SYSTEM WITH MEMBRANE WITH PNEUMATIC ALTERNATIVE PRESSURE
US9101857B2 (en) Gas scrubbed perfusion filter
WO2019240222A1 (en) Cell culturing system and cell culturing method
JP2018076291A (en) Method of recovering useful substances from continuous culture
US11597904B2 (en) Liquid filtration system with integrated bleed function
JP7330834B2 (en) Culture method and culture apparatus
JP6758194B2 (en) High cell density fill and draw fermentation process
CN115786112A (en) Differential pressure regulating system, continuous harvesting system and using method thereof
US11680239B2 (en) Filter for mammalian cell culture perfusion and clarification with hydrophobic hollow fiber
CN219603595U (en) Alternating tangential flow perfusion system
JP2021045100A (en) Cell separation device and cell separation method
WO2024080892A2 (en) Perfusion filtration system for continuous cultivation of cell cultures
WO2023091794A1 (en) Device and method for separation, concentration, and collection of algal biomass from aqueous or marine culture
JPH02138963A (en) Method for culturing cell and apparatus therefor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191101

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230809

R150 Certificate of patent or registration of utility model

Ref document number: 7330834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150