JP2021046572A5 - - Google Patents

Download PDF

Info

Publication number
JP2021046572A5
JP2021046572A5 JP2019168541A JP2019168541A JP2021046572A5 JP 2021046572 A5 JP2021046572 A5 JP 2021046572A5 JP 2019168541 A JP2019168541 A JP 2019168541A JP 2019168541 A JP2019168541 A JP 2019168541A JP 2021046572 A5 JP2021046572 A5 JP 2021046572A5
Authority
JP
Japan
Prior art keywords
nickel oxide
slurry
ore slurry
oxide ore
ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019168541A
Other languages
Japanese (ja)
Other versions
JP7057900B2 (en
JP2021046572A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2019168541A priority Critical patent/JP7057900B2/en
Priority claimed from JP2019168541A external-priority patent/JP7057900B2/en
Priority to PCT/JP2020/034287 priority patent/WO2021054240A1/en
Publication of JP2021046572A publication Critical patent/JP2021046572A/en
Publication of JP2021046572A5 publication Critical patent/JP2021046572A5/ja
Application granted granted Critical
Publication of JP7057900B2 publication Critical patent/JP7057900B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

ニッケル酸化鉱石スラリーの前処理方法Pretreatment method for nickel oxide ore slurry

本発明は、ニッケル酸化鉱石から高圧酸浸出による処理を用いたニッケルの湿式製錬方法に関し、更に詳しくは、高圧酸浸出工程に送るニッケル酸化鉱石の鉱石スラリーの前処理に関する。 The present invention relates to a method for hydrometallurgy of nickel using a treatment by high pressure acid leaching from nickel oxide ore, and more particularly to a pretreatment of an ore slurry of nickel oxide ore to be sent to a high pressure acid leaching step.

低品位ニッケル酸化鉱石からニッケルを回収する高圧酸浸出(High Pressure Acid Leach:HPAL)プロセスを用いた湿式製錬方法では、高圧酸浸出工程に送られて処理される鉱石は、ニッケルを浸出しやすいように、予め解砕機や湿式篩を使用して、所定の大きさ以下に破砕および分類され、次いで水や工程水などを加えてスラリー化された、所謂鉱石スラリーを用いる。 In hydrometallurgical methods using the High Pressure Acid Leach (HPAL) process, which recovers nickel from low-grade nickel oxide ore, the ore sent to the high-pressure acid leaching process tends to leach nickel. As described above, a so-called ore slurry is used, which is crushed and classified into a predetermined size or less by using a crusher or a wet sieve in advance, and then slurried by adding water, process water, or the like.

このような鉱石スラリーは、高圧酸浸出工程における酸消費量、得られる浸出液のニッケル濃度、及びその他の不純物濃度が所定の割合となるように、数種類の酸化ニッケル鉱石をブレンドして作られることが多い。 Such an ore slurry may be made by blending several kinds of nickel oxide ores so that the acid consumption in the high-pressure acid leaching step, the nickel concentration of the obtained leachate, and the concentration of other impurities are in a predetermined ratio. many.

また鉱石スラリーでは、鉱石スラリーを構成する鉱石スラリー中の固形分(鉱石固体分)の重量割合(以下「Solid%」と称する)が高い(または大きいとも称す。)ほうが高圧酸浸出工程での単位時間当たりのニッケル通過量が増加することになり、相応して設備がコンパクトで済むので、投資や運転コストが低減でき、ニッケル回収効率も高くなるなど好ましい。 Further, in the ore slurry, the higher (or also referred to as, larger) the weight ratio (hereinafter referred to as “Solid%”) of the solid content (ore solid content) in the ore slurry constituting the ore slurry is the unit in the high-pressure acid leaching step. Since the amount of nickel passing per hour increases and the equipment can be made compact accordingly, investment and operating costs can be reduced, and nickel recovery efficiency is also improved, which is preferable.

しかしながら、一般的には鉱石スラリーは10〜20重量%と低くなることが多く、その結果高圧酸浸出工程で得られる浸出液のニッケル濃度が低く、効率的にニッケルを回収出来ないという課題があった。
このような鉱石スラリーから固液分離して高いSolid%を得ようとする場合、スラリー中の固形分の沈降速度ができるだけ大きい(速いとも称す。)ことが好ましい。
However, in general, the ore slurry is often as low as 10 to 20% by weight, and as a result, the nickel concentration of the leachate obtained in the high-pressure acid leaching step is low, and there is a problem that nickel cannot be recovered efficiently. ..
When solid-liquid separation is to be performed from such an ore slurry to obtain a high Solid%, it is preferable that the sedimentation rate of the solid content in the slurry is as high as possible (also referred to as high).

この鉱石スラリーの沈降速度を制御する方法として例えば特許文献1に示した方法がある。
特許文献1に開示される方法は、ニッケル酸化鉱石から湿式製錬方法によりニッケル等の有価金属を回収する際に、浸出工程等に固形物濃度が高い鉱石スラリーを効率的に供給するため、鉱石スラリーの沈降速度を向上させ、固液分離する際の沈降濃縮に要する時間を短縮すること、或いは鉱石スラリーの降伏応力を低下させ、流送する際の鉱石スラリーの固形物濃度を高めることができるニッケル酸化鉱石の前処理方法を提供するもので、具体的にはニッケル酸化鉱石の水性スラリーに、中和剤を添加して、pHを等電点近傍に調整することにより、鉱石スラリーの沈降速度又は降伏応力を制御するものである。
As a method of controlling the sedimentation speed of this ore slurry, for example, there is a method shown in Patent Document 1.
The method disclosed in Patent Document 1 is an ore in order to efficiently supply an ore slurry having a high solid content concentration to a leaching step or the like when recovering valuable metals such as nickel from nickel oxide ore by a wet smelting method. It is possible to improve the settling speed of the slurry and shorten the time required for settling and concentrating during solid-liquid separation, or reduce the yield stress of the ore slurry and increase the solid concentration of the ore slurry when flowing. It provides a pretreatment method for nickel oxide ore. Specifically, the sedimentation rate of the ore slurry is adjusted by adding a neutralizing agent to the aqueous slurry of nickel oxide ore to adjust the pH near the isoelectric point. Or it controls the yield stress.

これを利用して、Solid%が低い鉱石スラリーに対しては、特許文献2に示すように、シックナーと凝集剤を利用して、鉱石スラリーのSolid%を上げる沈降濃縮(シックニング)操作を行ってから高圧酸浸出工程へ送る方法が用いられる。
特許文献2に開示された方法は、スラリー処理量を維持しつつ、固体成分率および比重の高い鉱石スラリーを製造できる鉱石スラリー製造設備および鉱石スラリー製造方法を提供するもので、具体的には原料鉱石スラリーを予備濃縮して中間鉱石スラリーを得る第1シックナー1と、中間鉱石スラリーを濃縮して濃縮鉱石スラリーを得る、第1シックナー1よりシックニング効果の高い第2シックナー2とを備える鉱石スラリー製造設備A。第1シックナー1で予備濃縮された中間鉱石スラリーが第2シックナー2に供給されるので、第2シックナー2において鉱石スラリーの沈降速度が速くなり、スラリー処理量を増加できる。また、後段がシックニング効果の高い第2シックナー2であるので、固体成分率および比重の高い濃縮鉱石スラリーを製造できるものである。
Utilizing this, for an ore slurry having a low solid%, as shown in Patent Document 2, a sedimentation concentration (thickening) operation for increasing the solid% of the ore slurry is performed by using a thickener and a flocculant. Then, a method of sending to a high-pressure acid leaching process is used.
The method disclosed in Patent Document 2 provides an ore slurry production facility and an ore slurry production method capable of producing an ore slurry having a high solid component ratio and a high specific gravity while maintaining a slurry processing amount, and specifically, a raw material. An ore slurry having a first thickener 1 for pre-concentrating an ore slurry to obtain an intermediate ore slurry and a second thickener 2 for concentrating an intermediate ore slurry to obtain a concentrated ore slurry, which has a higher sickening effect than the first thickener 1. Manufacturing equipment A. Since the intermediate ore slurry pre-concentrated in the first thickener 1 is supplied to the second thickener 2, the sedimentation rate of the ore slurry in the second thickener 2 becomes high, and the slurry processing amount can be increased. Further, since the latter stage is the second thickener 2 having a high thickening effect, it is possible to produce a concentrated ore slurry having a high solid component ratio and a high specific gravity.

上記のシックニングでは、高分子炭化水素を主成分とする凝集剤を用いる。この凝集剤は、その添加量が不足するとSolid%を増加し難くなる。一方で過大に添加してもSolid%が過大に増加するものでもなく、むしろ、薬剤コストが増加し、鉱石スラリーの粘度を上昇させて設備負荷を増したり、液中の全有機炭素(TOC)濃度を上昇させ排水処理が難しくなるなどの課題があった。 In the above sickening, a flocculant containing a high molecular weight hydrocarbon as a main component is used. If the amount of this flocculant added is insufficient, it becomes difficult to increase Solid%. On the other hand, even if it is added excessively, Solid% does not increase excessively, but rather, the drug cost increases, the viscosity of the ore slurry is increased to increase the equipment load, and the total organic carbon (TOC) in the liquid is increased. There were problems such as increasing the concentration and making wastewater treatment difficult.

さらにシックニングでは、鉱石の種類と混合割合、シックナーの形状、などの影響もあり、得られる鉱石スラリーのSolid%を安定して得るように操業することは容易でなかった。 Furthermore, in the thickening, it was not easy to operate so as to stably obtain the Solid% of the obtained ore slurry due to the influence of the type and mixing ratio of the ore, the shape of the thickener, and the like.

特開2008−189999号公報Japanese Unexamined Patent Publication No. 2008-189999 特開2015−86457号公報Japanese Unexamined Patent Publication No. 2015-86457

本発明は、高圧酸浸出工程に送るニッケル酸化鉱石のスラリー(鉱石スラリーとも称す)を製造する工程において、使用する凝集剤や中和に要する薬剤量の増加を抑制するために、鉱石スラリーの沈降速度を所定の値に制御可能なニッケル酸化鉱石スラリーの前処理方法を提供するものである。 INDUSTRIAL APPLICABILITY The present invention is to settle an ore slurry in order to suppress an increase in the amount of flocculant used and the amount of chemicals required for neutralization in the process of producing a slurry of nickel oxide ore (also referred to as an ore slurry) to be sent to a high-pressure acid leaching step. It provides a pretreatment method for a nickel oxide ore slurry whose speed can be controlled to a predetermined value.

高圧酸浸出工程に送るニッケル酸化鉱石のスラリー製造工程において、本発明者は、鋭意研究を重ねた結果、鉱石スラリーのpHを調整することで所定範囲のSolid%の鉱石スラリーを得る沈降速度の制御方法を完成させ、本発明に至ったものである。 In the process of producing a slurry of nickel oxide ore to be sent to a high-pressure acid leaching step, the present inventor has conducted intensive studies and controlled the sedimentation rate to obtain a Solid% ore slurry in a predetermined range by adjusting the pH of the ore slurry. The method was completed and the present invention was reached.

上記の課題を解決するための本発明の第1の発明は、ニッケル酸化鉱石を水と混合して作製したニッケル酸化鉱石スラリーと鉱酸を加圧容器に装入して高圧の加圧酸処理に付して前記ニッケル酸化鉱石スラリーからニッケルを浸出した浸出スラリーを得た後に、前記浸出スラリーを固液分離してニッケルを含有する浸出液を得る方法における前記ニッケル酸化鉱石スラリーの前処理方法において、前記ニッケル酸化鉱石スラリーを加圧容器に装入する前に、ニッケル酸化鉱石スラリーのpHと、前記ニッケル酸化鉱石スラリーに添加される凝集剤の重量による前記ニッケル酸化鉱石スラリーの沈降速度の挙動を予め把握し、前記加圧酸処理時に、前記加圧容器に装入されるニッケル酸化鉱石スラリーのpHと凝集剤の重量と沈降速度を前記把握した挙動より設定し、前記ニッケル酸化鉱石スラリーに、前記設定したニッケル酸化鉱石スラリーのpHになるように、pH調整剤としてサプロライト鉱石、水のいずれか、或いは両者の添加と、前記設定したニッケル酸化鉱石スラリーの沈降速度を得るための前記設定した凝集剤の重量の凝集剤の添加を行うpH調整処理を実施し、次いで固液分離によるスラリー濃度調整処理に供して前記ニッケル酸化鉱石スラリーの固液分離性を調整する前処理に付すことを特徴とするニッケル酸化鉱石スラリーの前処理方法である。 In the first invention of the present invention for solving the above-mentioned problems, a nickel oxide slurry prepared by mixing nickel oxide ore with water and mineral acid are charged into a pressure vessel and treated with high-pressure pressurized acid. In the method for pretreating the nickel oxide ore slurry in the method of obtaining a leachate containing nickel by solid-liquid separation of the leachate slurry after obtaining a leachate slurry in which nickel is leached from the nickel oxide ore slurry. Before charging the nickel oxide slurry into a pressurized container, the behavior of the sedimentation rate of the nickel oxide slurry depending on the pH of the nickel oxide slurry and the weight of the flocculant added to the nickel oxide slurry is determined in advance. The pH of the nickel oxide ore slurry charged into the pressurized container, the weight of the flocculant, and the sedimentation rate are set from the grasped behavior at the time of the pressurized acid treatment, and the nickel oxide ore slurry is subjected to the above. Addition of either or both of saprolite ore or water as a pH adjuster so that the pH of the set nickel oxide ore slurry is obtained, and the above-mentioned set coagulant for obtaining the settling rate of the set nickel oxide ore slurry. The nickel oxide ore slurry is subjected to a pH adjusting treatment for adding a coagulant of the same weight as above, and then subjected to a slurry concentration adjusting treatment by solid-liquid separation to be subjected to a pretreatment for adjusting the solid-liquid separability of the nickel oxide ore slurry. This is a pretreatment method for nickel oxide ore slurry.

本発明によれば、鉱石スラリーの製造工程において、鉱石の種類や混合割合に影響されずに、鉱石スラリーの沈降速度を所定範囲に制御可能となり、ニッケル酸化鉱石スラリーのSolid%の変動を制御し、一定のSolid%の鉱石スラリーを安定して得ることができ、凝集剤や中和に用いる薬剤の増加を抑制できるものであり、工業上顕著な効果を奏するものである。 According to the present invention, in the ore slurry manufacturing process, the sedimentation rate of the ore slurry can be controlled within a predetermined range without being affected by the type and mixing ratio of the ore, and the fluctuation of Solid% of the nickel oxide ore slurry can be controlled. It is possible to stably obtain a constant Solid% ore slurry, suppress an increase in a flocculant and a chemical used for neutralization, and exert a remarkable industrial effect.

鉱石スラリーの沈降速度に及ぼすスラリーpHの影響を示す図である。It is a figure which shows the influence of the slurry pH on the sedimentation rate of an ore slurry. pH調整方法と沈降速度の関係を示す図である。It is a figure which shows the relationship between a pH adjustment method and a sedimentation rate.

本発明は、ニッケル酸化鉱石などを高圧酸浸出するのに先立ってSolid%の高いニッケル酸化鉱石スラリーを得るために、鉱石をスラリー化した際にpHを調整してから固液分離に付すことで、高いSolid%のニッケル酸化鉱石スラリーを得るものである。
そのため、本発明を用いることにより常に高いSolid%のニッケル酸化鉱石スラリーを高温加圧浸出工程に送ることが出来、その結果安定したプロセスが実現できる。
In the present invention, in order to obtain a nickel oxide ore slurry having a high Solid% prior to high-pressure acid leaching of nickel oxide ore or the like, the pH of the ore is adjusted when the ore is slurried and then subjected to solid-liquid separation. , A high Solid% nickel oxide ore slurry is obtained.
Therefore, by using the present invention, a nickel oxide ore slurry having a high Solid% can always be sent to the high temperature pressure leaching step, and as a result, a stable process can be realized.

上述した原料のニッケル酸化鉱石には、表1に示すように、リモナイト(Limonite)鉱やサプロライト(Saprolite)鉱などのいくつかの種類があり、ニッケル湿式製錬プロセスでは、ニッケル品位や不純物品位により使い分けられる。 As shown in Table 1, there are several types of nickel oxide ores as raw materials described above, such as limonite ore and saprolite ore, and in the nickel hydrometallurgy process, depending on the nickel grade and impurity grade. It can be used properly.

Figure 2021046572
Figure 2021046572

ニッケル酸化鉱石を加圧酸浸出処理、即ち大気圧より高い圧力下での酸浸出である「高圧酸浸出」で処理する場合、より処理に適したリモナイト鉱を原料として用いることが多い。これは表1に示すように、リモナイト鉱はマグネシウム品位が低い特長があり、ニッケルの酸浸出に使用する硫酸がマグネシウムの浸出に利用されてロスとなる割合が低く商業的に有利なためである。 When nickel oxide ore is treated by pressure acid leaching treatment, that is, "high pressure acid leaching" which is acid leaching under a pressure higher than atmospheric pressure, limonite ore more suitable for the treatment is often used as a raw material. This is because, as shown in Table 1, limonite ore has a feature of low magnesium grade, and sulfuric acid used for acid leaching of nickel is used for magnesium leaching and the ratio of loss is low, which is commercially advantageous. ..

一方、サプロライト鉱は、ニッケル品位が高い特長があるが、上述のようにマグネシウム品位がリモナイト鉱に比較して高いために、高圧酸浸出を用いた製錬方法では、添加した硫酸がマグネシウムの浸出に消費され、硫酸ロスが多くなる短所がある。 On the other hand, saprolite ore has a feature of high nickel grade, but as described above, magnesium grade is higher than that of limonite ore. Therefore, in the smelting method using high-pressure acid leaching, the added sulfuric acid leaches magnesium. It has the disadvantage of being consumed in a large amount and increasing sulfuric acid loss.

このため、低品位ニッケル酸化鉱石からニッケルを回収する高圧酸浸出に基づく湿式製錬方法においては、高圧酸浸出工程に送られる鉱石スラリーが、所定の酸消費量、浸出液のニッケル濃度及びその他の不純物濃度となるように、リモナイト鉱やサプロライト鉱を数種類のニッケル酸化鉱石をブレンドして作られることが多かった。 Therefore, in the hydrometallurgy method based on high-pressure acid leaching that recovers nickel from low-grade nickel oxide ore, the ore slurry sent to the high-pressure acid leaching step has a predetermined acid consumption, nickel concentration in the leachate, and other impurities. It was often made by blending limonite ore and saprolite ore with several types of nickel oxide ore to achieve the concentration.

また、高圧酸浸出工程に送られる鉱石スラリーは、高圧酸浸出工程への単位時間当たりのニッケル通過量を増加させ高い生産性を実現するために、できるだけSolid%が高いことが求められる。 Further, the ore slurry sent to the high-pressure acid leaching step is required to have as high a Solid% as possible in order to increase the amount of nickel passing through the high-pressure acid leaching step per unit time and realize high productivity.

高いSolid%を得るために固液分離時に凝集剤を用いるが、凝集剤の最適な添加量を選定することは容易でなく添加が不足すると固液分離が不完全となり、過剰に添加すると薬剤コストが増加するだけではなく、凝集剤の主成分が高分子炭化水素であるために、鉱石スラリーの粘度を過度に増加させたり、鉱石スラリーの液中のC品位の上昇をもたらす懸念がある。 A flocculant is used at the time of solid-liquid separation in order to obtain a high solid%, but it is not easy to select the optimum amount of the flocculant to be added. However, since the main component of the flocculant is a high molecular weight hydrocarbon, there is a concern that the viscosity of the ore slurry may be excessively increased or the C grade in the liquid of the ore slurry may be increased.

そこで本発明者は、凝集剤の添加量と沈降速度とpHの影響から最適な添加量を選定する方法を用いた。
この方法の場合には、鉱石スラリーのpHが異なると凝集剤添加量が大きく異なるため、できる限り事前にpH調整することが重要となる。
Therefore, the present inventor used a method of selecting the optimum addition amount from the influence of the addition amount of the flocculant, the sedimentation rate and the pH.
In the case of this method, it is important to adjust the pH in advance as much as possible because the amount of the flocculant added differs greatly depending on the pH of the ore slurry.

また、pH調整に用いる中和剤の選定により沈降速度に影響があることも見出している。
つまり、同じpHであっても水酸化ナトリウムなどの薬剤を用いて調整した場合よりも、上記のサプロライト鉱などの鉱石や元来pHが高い水などを用いて調整した場合の方が、凝集剤の効果が発揮でき、より大きな沈降速度が得られることを見出した。
このことは、水酸化ナトリウムなどの薬剤の場合、スラリー中の液部分の塩濃度が過度の上昇を示すことで、凝集剤の効果がそれだけ弱められたと考えられる。
It has also been found that the sedimentation rate is affected by the selection of the neutralizing agent used for pH adjustment.
In other words, even if the pH is the same, the flocculant is more likely to be adjusted using the above-mentioned ore such as saprolite ore or water that originally has a high pH than when adjusted using a chemical such as sodium hydroxide. It was found that the effect of the above can be exhibited and a larger sedimentation rate can be obtained.
This is considered to be because, in the case of a drug such as sodium hydroxide, the effect of the flocculant was weakened by the excessive increase in the salt concentration of the liquid portion in the slurry.

なお、上記「pHが高い水」として具体的には、鉱石スラリーを調製する際に用いる水として河川から採取した水を使うことが多いが、これに工程内で生じた排水を繰り返し、適宜混合した水などがある。また地下水などアルカリ性の土壌から採取した水などが挙げられる。
以上述べてきた方法を用いることにより、本発明では凝集剤の添加量を最適に管理すると同時に高い沈降速度を得ることを実現するもので、以下に具体例を用いて説明する。
Specifically, as the above-mentioned "water having a high pH", water collected from a river is often used as water used when preparing an ore slurry, but the wastewater generated in the process is repeated and mixed appropriately. There is water etc. In addition, water collected from alkaline soil such as groundwater can be mentioned.
By using the method described above, in the present invention, it is possible to optimally control the amount of the flocculant added and at the same time obtain a high sedimentation rate, which will be described below using specific examples.

[鉱石スラリーの沈降速度に及ぼすスラリーpHの影響]
ニッケル酸化鉱石として、表1に示したリモナイト鉱を破砕し、スラリー濃度が4重量%になるように純水で希釈した鉱石スラリーを作製し、この鉱石スラリーのpHは5.6だった。これに水酸化ナトリウム溶液を添加してpHを5.8と6.0に調整した。
上記2試料の調整済鉱石スラリーと、水酸化ナトリウムを添加しなかった場合を含めた3試料に、アニオン性凝集剤である栗田工業株式会社製の商品名PA834を、スラリー中での濃度が0.03重量%になるように添加し、固液分離させた。この際の鉱石スラリーが固液分離し、固形分が沈降する際の固形分の上端の移動速度を記録し、1時間当たりの沈降速度に換算し、この値を沈降速度[m・h−1]とした。
[Effect of slurry pH on ore slurry sedimentation rate]
As the nickel oxide ore, the limonite ore shown in Table 1 was crushed to prepare an ore slurry diluted with pure water so that the slurry concentration was 4% by weight, and the pH of this ore slurry was 5.6. A sodium hydroxide solution was added thereto to adjust the pH to 5.8 and 6.0.
Kurita Water Industries, Ltd.'s trade name PA834, which is an anionic flocculant, was added to the three samples including the adjusted ore slurry of the above two samples and the case where sodium hydroxide was not added, and the concentration in the slurry was 0. It was added so as to be 0.03% by weight, and the mixture was separated into solid and liquid. At this time, the ore slurry is solid-liquid separated, and the moving speed of the upper end of the solid content when the solid content is settled is recorded, converted into the settling speed per hour, and this value is converted into the settling speed [m · h -1. ].

その結果を図1に示す。図1において、横軸(Flocculant dosage、Ffloc/g・t−1)は鉱石1トン当たりの凝集剤添加量[gr]を示し、縦軸(Settling rate、R/m・h−1)は単位時間当たりの沈降距離[m]で示す沈降速度[m・h−1]である。 The results are shown in FIG. In FIG. 1, the horizontal axis (Flocculant dose, Ffloc / g · t -1 ) indicates the amount of flocculant added per ton of ore [gr], and the vertical axis (Settling rate, R / m · h -1 ) is. It is a settling speed [m · h -1 ] indicated by a settling distance [m] per unit time.

図1に示すように、pH5.6〜6.0の範囲では、凝集剤の添加量が増加するとともに沈降速度が大きくなる。しかし、ある添加量以上では沈降速度はほぼ一定となる。また、凝集剤を添加する前の鉱石スラリーのpHが低いほど、同じ沈降速度を得るために必要な凝集剤の量は増加する。
すなわち図1の条件の場合、pHを6.0に調整し、凝集剤をスラリー中の鉱石1トン当たり80g程度添加することで、最低の凝集剤添加量で最も高い沈降速度、すなわち固液分離性が得られることになる。
As shown in FIG. 1, in the range of pH 5.6 to 6.0, the amount of the flocculant added increases and the sedimentation rate increases. However, the sedimentation rate becomes almost constant above a certain amount of addition. Also, the lower the pH of the ore slurry before adding the flocculant, the greater the amount of flocculant required to obtain the same sedimentation rate.
That is, in the case of the conditions shown in FIG. 1, by adjusting the pH to 6.0 and adding about 80 g of the agglutinating agent per ton of ore in the slurry, the highest sedimentation rate with the minimum amount of the agglutinating agent added, that is, solid-liquid separation. Sex will be obtained.

このようにpHと沈降速度の関係をあらかじめ把握しておくことで、最適な沈降速度を最低限の凝集剤添加量で実現できる。 By grasping the relationship between pH and sedimentation rate in advance in this way, the optimum sedimentation rate can be realized with the minimum amount of coagulant added.

[pH調整方法と沈降速度との関係]
上記と同じ鉱石スラリーを用意し、これに中和剤として水酸化ナトリウムや表1に示す組成のサプロライト鉱石を粉砕したものを添加してpHを調整し、上記と同じ凝集剤、添加量を添加して沈降速度を測定した。
その結果を図2に示す。図2において、横軸、縦軸共に図1と同じである。
[Relationship between pH adjustment method and sedimentation rate]
Prepare the same ore slurry as above, add sodium hydroxide or crushed saprolite ore having the composition shown in Table 1 as a neutralizing agent to adjust the pH, and add the same flocculant and addition amount as above. Then, the settling speed was measured.
The results are shown in FIG. In FIG. 2, both the horizontal axis and the vertical axis are the same as those in FIG.

図2に示すように、サプロライト鉱を添加して鉱石スラリーのpHを6.0に調整した場合(図2の黒四角/■)、同じpH6.0でも水酸化ナトリウムを添加して調整した場合(図2の黒三角/▲)に比べて大きな沈降速度が得られた。
また、サプロライト鉱の添加量が10%と20%ではpHの差が0.1程度でも沈降速度に大きな差が生じた。(図2の黒丸/●:10%と黒四角/■:20%)
さらに、元々pHが6.2である水を用いた場合(図2での×)は、水酸化ナトリウムやサプロライト鉱を用いた場合に比較して、大きい沈降速度が得られる。
As shown in FIG. 2, when the pH of the ore slurry is adjusted to 6.0 by adding saprolite ore (black square in FIG. 2 / ■), when the pH is adjusted to 6.0 by adding sodium hydroxide. A larger settling speed was obtained as compared with (black triangle / ▲ in FIG. 2).
Further, when the amount of saprolite ore added was 10% and 20%, a large difference in sedimentation rate occurred even if the difference in pH was about 0.1. (Black circle in Fig. 2 / ●: 10% and black square / ■: 20%)
Furthermore, when water originally having a pH of 6.2 is used (x in FIG. 2), a large sedimentation rate can be obtained as compared with the case where sodium hydroxide or saprolite ore is used.

このようにpHの調整にサプロライト鉱やpHが高い水を用いることにより、より少ない凝集剤で大きな沈降速度を得ることができることを見出した。 As described above, it has been found that by using saprolite ore or water having a high pH for adjusting the pH, a large sedimentation rate can be obtained with a smaller amount of coagulant.

Claims (1)

ニッケル酸化鉱石を水と混合して作製したニッケル酸化鉱石スラリーと鉱酸を加圧容器に装入して加圧酸処理に付して前記ニッケル酸化鉱石スラリーからニッケルを浸出した浸出スラリーを得た後に、前記浸出スラリーを固液分離してニッケルを含有する浸出液を得る方法における前記ニッケル酸化鉱石スラリーの前処理方法において、
前記ニッケル酸化鉱石スラリーの加圧容器装入する前に、
ニッケル酸化鉱石スラリーのpHと、前記ニッケル酸化鉱石スラリーに添加される凝集剤の重量による前記ニッケル酸化鉱石スラリーの沈降速度の挙動を予め把握し、前記加圧酸処理時に、前記加圧容器に装入されるニッケル酸化鉱石スラリーのpHと凝集剤の重量と沈降速度を前記把握した挙動より設定し、
前記ニッケル酸化鉱石スラリーに、前記設定したニッケル酸化鉱石スラリーのpHになるように、pH調整剤としてサプロライト鉱石、水のいずれか、或いは両者の添加と、前記設定したニッケル酸化鉱石スラリーの沈降速度を得るための前記設定した凝集剤の重量の凝集剤の添加を行うpH調整処理を実施し、
次いで固液分離によるスラリー濃度調整処理に供して前記ニッケル酸化鉱石スラリーの固液分離性を調整する前処理に付すことを特徴とするニッケル酸化鉱石スラリーの前処理方法。
The nickel oxide ore slurry prepared by mixing nickel oxide ore with water and the ore acid were charged into a pressurized container and subjected to pressure acid treatment to obtain a leached slurry in which nickel was leached from the nickel oxide ore slurry. Later, in the method for pretreating the nickel oxide ore slurry in the method of solid-liquid separating the leachate slurry to obtain a nickel-containing leachate.
Before charging the pressure vessel of the nickel oxide ore slurry,
The behavior of the sedimentation rate of the nickel oxide ore slurry depending on the pH of the nickel oxide ore slurry and the weight of the flocculant added to the nickel oxide ore slurry is grasped in advance, and the nickel oxide ore slurry is loaded in the pressurized container during the pressurized acid treatment. The pH of the nickel oxide ore slurry to be added, the weight of the flocculant, and the sedimentation rate are set from the above-mentioned behavior.
Add either or both of saprolite ore or water as a pH adjuster to the nickel oxide ore slurry so that the pH of the nickel oxide ore slurry is set, and the settling rate of the nickel oxide ore slurry. A pH adjustment treatment was carried out in which the coagulant was added in the weight of the coagulant set above to obtain the oil.
Next, a method for pretreating a nickel oxide ore slurry, which is subjected to a slurry concentration adjusting treatment by solid-liquid separation and subjected to a pretreatment for adjusting the solid-liquid separability of the nickel oxide ore slurry.
JP2019168541A 2019-09-17 2019-09-17 Pretreatment method for nickel oxide ore slurry Active JP7057900B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019168541A JP7057900B2 (en) 2019-09-17 2019-09-17 Pretreatment method for nickel oxide ore slurry
PCT/JP2020/034287 WO2021054240A1 (en) 2019-09-17 2020-09-10 Pretreatment method for nickel oxide ore slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019168541A JP7057900B2 (en) 2019-09-17 2019-09-17 Pretreatment method for nickel oxide ore slurry

Publications (3)

Publication Number Publication Date
JP2021046572A JP2021046572A (en) 2021-03-25
JP2021046572A5 true JP2021046572A5 (en) 2022-01-04
JP7057900B2 JP7057900B2 (en) 2022-04-21

Family

ID=74877869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019168541A Active JP7057900B2 (en) 2019-09-17 2019-09-17 Pretreatment method for nickel oxide ore slurry

Country Status (2)

Country Link
JP (1) JP7057900B2 (en)
WO (1) WO2021054240A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2320781A1 (en) * 1975-08-14 1977-03-11 Nickel Sln Ste Metallurg Le PROCESS FOR PRECONCENTRING NICKEL-OXIDIZED OXIDES OF LATERITIC ORIGIN
JPH08112585A (en) * 1994-08-25 1996-05-07 Shinko Kagaku Kogyo Kk Treatment of dust-collector ash
EP1929056A4 (en) * 2005-09-30 2009-04-15 Bhp Billiton Innovation Pty Process for leaching lateritic ore at atmospheric pressure
JP2019044208A (en) * 2017-08-30 2019-03-22 住友金属鉱山株式会社 Ore slurry concentration method in nickel oxide ore refining

Similar Documents

Publication Publication Date Title
WO2013077296A1 (en) Method for producing high-purity nickel sulfate
JP2007297717A (en) Method for recovering copper from sulfide ore material using high temperature pressure leaching, solvent extraction and electrowinning
JP5360243B2 (en) Thickener device in ore slurry manufacturing process and method for controlling solid component ratio
AU2013236726B2 (en) Method for producing hematite for iron production
JP5692458B1 (en) Solid-liquid separation treatment method and nickel oxide ore hydrometallurgy method
JP2019044208A (en) Ore slurry concentration method in nickel oxide ore refining
JP5790839B2 (en) Chromite recovery method
PH12018000170A1 (en) Solid-liquid separation process of nickel high pressure leached residue
JP5971364B1 (en) Ore slurry pretreatment method, ore slurry production method
JP7057900B2 (en) Pretreatment method for nickel oxide ore slurry
JP2017133050A (en) Method for recovering scandium
JP2021046572A5 (en)
CN110036123A (en) The method for controlling iron via the formation of magnetic iron ore in hydrometallurgical processes
JP5692313B2 (en) Thickener device in ore slurry manufacturing process and method for controlling solid component ratio
WO2016088240A1 (en) Apparatus for producing ore slurry and process for producing ore slurry
JP7279546B2 (en) Nickel oxide ore leaching method and hydrometallurgical method including the same
Lopez et al. Copper and cyanide recovery from barren leach solution at the gold processing plant
JP7112677B2 (en) Selective Cobalt Leaching Method
JP2021176981A (en) Method for managing thickener for obtaining high-concentration slurry
JP5811297B1 (en) Ore slurry manufacturing equipment and ore slurry manufacturing method
JP2011058018A (en) Method for recovering gold concentrate from leach residue of copper sulfide minerals
WO2022118743A1 (en) Method for preparing nickel oxide ore slurry
JP2020033602A (en) Method of manufacturing high concentration ore slurry
JP5783223B2 (en) Ore slurry manufacturing equipment and ore slurry manufacturing method
JP7127679B2 (en) Method for producing ore slurry, hydrometallurgical method for nickel oxide ore