JP2019044208A - Ore slurry concentration method in nickel oxide ore refining - Google Patents

Ore slurry concentration method in nickel oxide ore refining Download PDF

Info

Publication number
JP2019044208A
JP2019044208A JP2017165016A JP2017165016A JP2019044208A JP 2019044208 A JP2019044208 A JP 2019044208A JP 2017165016 A JP2017165016 A JP 2017165016A JP 2017165016 A JP2017165016 A JP 2017165016A JP 2019044208 A JP2019044208 A JP 2019044208A
Authority
JP
Japan
Prior art keywords
ore
slurry
amount
flocculant
nickel oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017165016A
Other languages
Japanese (ja)
Inventor
道 天野
Michi Amano
道 天野
宏之 三ツ井
Hiroyuki Mitsui
宏之 三ツ井
学 榎本
Manabu Enomoto
学 榎本
服部 靖匡
Yasumasa Hattori
靖匡 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2017165016A priority Critical patent/JP2019044208A/en
Priority to PH12018000247A priority patent/PH12018000247A1/en
Publication of JP2019044208A publication Critical patent/JP2019044208A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

To provide a method of producing ore slurry having stably high slurry solid concentration, in a production step of the ore slurry used when recovering nickel and cobalt from a nickel oxide ore by a high pressure acid leaching method.SOLUTION: A method of producing ore slurry includes: a step of classifying an ore when recovering nickel and cobalt from a nickel oxide ore by a high pressure acid leaching method; and a step of concentrating the ore slurry. In the method of producing the ore slurry, an addition amount of a flocculant used when the slurry is concentrated is adjusted based on the following. 1) in the case when a magnesium grade in the ore is 1.4% or higher; a flocculant solution of an amount equivalent to 55 g or less is added as an amount of the flocculant per 1 ton of a dry solid component of the ore, 2) in the case when a magnesium grade in the ore is 1.10 to 1.40%; a flocculant solution of an amount equivalent to 60 to 70 g is added as an amount of the flocculant per 1 ton of a dry solid component of the ore, 3) in the case when a magnesium grade in the ore is 0.95 to 1.10%; a flocculant solution of an amount equivalent to 70 to 80 g is added as an amount of the flocculant per 1 ton of a dry solid component of the ore, and 4) in the case when a magnesium grade in the ore is 0.95% or lower; a flocculant solution of an amount equivalent to 80 g or lower is added as an amount of the flocculant per 1 ton of a dry solid component of the ore.SELECTED DRAWING: None

Description

本発明は、高圧酸浸出法によりニッケル酸化鉱石からニッケルおよびコバルトを回収する際の鉱石の解砕・分級工程、鉱石スラリー濃縮工程を含む鉱石スラリーの製造方法において、鉱石スラリー濃縮時に鉱石中のマグネシウム品位もしくはマグネシウム品位と相関関係にある元素品位に応じて凝集剤添加量を調整することで、安定的に高い固形物濃度を有した鉱石スラリーを得ることを目的としたニッケル酸化鉱石スラリーの濃縮方法に関する。
The present invention relates to a method for producing an ore slurry including an ore crushing / classification step and an ore slurry concentration step in recovering nickel and cobalt from nickel oxide ore by a high pressure acid leaching method, comprising magnesium in the ore when the ore slurry is concentrated. A method of concentrating a nickel oxide ore slurry for the purpose of obtaining an ore slurry having a stably high solid concentration by adjusting the addition amount of a coagulant according to an element grade which has a correlation with the grade or magnesium grade About.

近年、ニッケル酸化鉱石の湿式製錬法として、硫酸を用いた高圧酸浸出法(High PressureAcid Leach)が注目されている。この方法は、従来の一般的なニッケル酸化鉱の製錬方法である乾式製錬法と異なり、還元及び乾燥工程等の乾式工程を含まず、一貫した湿式工程からなるため、エネルギー的及びコスト的に有利であることとともに、例えばニッケル品位を50質量%程度まで上昇したニッケルとコバルトを含む硫化物を得ることができるという利点を有している。   In recent years, a high pressure acid leaching method using sulfuric acid (High Pressure Acid Leach) has attracted attention as a wet smelting method of nickel oxide ore. This method differs from the conventional smelting method of nickel oxide ore, which is a conventional smelting method of nickel oxide ore, and does not include dry steps such as reduction and drying steps, but consists of a consistent wet step, so it is energy and cost effective In addition, it has the advantage of being able to obtain sulfides containing nickel and cobalt, for example, of which the grade of nickel is increased to about 50% by mass.

上記高圧酸浸出法によりニッケル酸化鉱石を湿式製錬する方法として、濃縮されたニッケル酸化鉱石スラリーは浸出工程において硫酸を用いた高温加圧浸出に付され、浸出スラリーが形成される。次いで、浸出スラリーは固液分離工程に付され、多段洗浄された後ニッケル及びコバルトを含む浸出液と浸出残渣に分離される。浸出液は、中和工程に付され、3価の鉄水酸化物を含む中和澱物スラリーと中和終液が形成される。続いて、中和終液は、脱亜鉛工程に付され、亜鉛硫化物とニッケル回収用母液に分離される。最後に、ニッケル回収用母液は、ニッケル回収工程に付され、例えばニッケルコバルト硫化物とニッケル等が除去された貧液に分離される。   As a method of wet refining nickel oxide ore by the high pressure acid leaching method, the concentrated nickel oxide ore slurry is subjected to high temperature pressure leaching using sulfuric acid in a leaching step to form a leached slurry. Next, the leached slurry is subjected to a solid-liquid separation step, and after being subjected to multistage washing, separated into a leachate containing nickel and cobalt and a leaching residue. The leachate is subjected to a neutralization step to form a neutralized precipitate slurry containing trivalent iron hydroxide and a neutralized final solution. Subsequently, the neutralized final solution is subjected to a dezincification step to be separated into zinc sulfide and a nickel recovery mother liquor. Finally, the nickel recovery mother liquor is subjected to a nickel recovery step and separated into a poor solution from which, for example, nickel cobalt sulfide and nickel etc. have been removed.

ここで原料として用いられるニッケル酸化鉱石は、通常採掘後の鉱石を製錬工程に適する原料とするために鉱石処理工程に付される。鉱石処理工程は鉱石の解砕・分級工程および鉱石スラリー濃縮工程に分類され、例えば、ニッケル品位が1.0〜1.5%程度である低品位のニッケル酸化鉱石が、多段階からなる分級(篩別)および解砕段によって、所定の粒度および濃度を有するスラリーに形成、回収されて、後工程である浸出工程に移送される(特許文献1参照)。より詳しくは、この鉱石処理工程は解砕・分級段階と、鉱石スラリー濃縮段階とに大別される。その解砕・分級段階では、湿式設備により原鉱石の解砕、粗大粒子や混入物の除去が行われる。ここで産出された鉱石スラリーには過剰の水分が含まれているため、次の鉱石スラリー濃縮段階で、過剰に含まれた水分の除去が行われる。この水分除去により、同じ移送量あたりの鉱石スラリーに含まれる鉱石成分が増加するため、プラント全体の操業効率向上に有効な側面をもつ。したがって、これまでにも安定して高い固形物濃度を維持するために多くの方法が発案されてきた(特許文献2〜5)。   Here, the nickel oxide ore used as a raw material is usually subjected to an ore treatment step to make the ore after mining the raw material suitable for the smelting process. The ore processing step is classified into ore crushing / classification step and ore slurry concentration step. For example, low grade nickel oxide ore having a nickel grade of about 1.0 to 1.5% is classified into multiple stages ((1) The slurry is formed into a slurry having a predetermined particle size and concentration, recovered by sieving) and a crushing stage, and transferred to a subsequent leaching step (see Patent Document 1). More specifically, the ore treatment process is roughly divided into a crushing / classification stage and an ore slurry concentration stage. In the crushing / classification stage, crushing of raw ore and removal of coarse particles and contaminants are performed by wet equipment. Since the ore slurry produced here contains excess water, excess water is removed in the next ore slurry concentration step. This water removal increases the ore component contained in the ore slurry per the same transfer amount, which is effective in improving the operation efficiency of the entire plant. Therefore, many methods have been proposed to maintain a stable and high solid concentration so far (patent documents 2 to 5).

しかしながら、鉱石スラリー濃縮工程では鉱石の組成や粒径等の変動から、スラリー固形物濃度が39重量%以下まで低下してしまい、目的とする水分量を除去できずにプラント全体の操業度が低下してしまう事態や、鉱石スラリーの急激な固形物濃度の変動から、後工程に変動が生じ操業効率が悪化してしまうことが問題となっていた。   However, in the ore slurry concentration process, the slurry solid concentration decreases to 39% by weight or less due to fluctuations in the composition and particle size of the ore, and the target water content can not be removed and the overall plant operation rate decreases. And rapid fluctuations in the solid concentration of the ore slurry cause fluctuations in subsequent processes, resulting in deterioration in operation efficiency.

特開2005−350766Japanese Patent Application Laid-Open No. 2005-350766 特開2015−086458Japanese Patent Application Publication No. 2015-086458 特開2014−037632JP 2014-037632 特開2013−154262JP 2013-154262 特開2012−153922JP 2012-153922

本発明の目的は、上記従来技術の問題点に鑑み、高圧酸浸出法によりニッケル酸化鉱石からニッケルおよびコバルトを回収する際に用いる鉱石スラリーの製造工程において、安定して高いスラリー固形物濃度を有する鉱石スラリー製造方法を提供することにある。   In view of the problems of the prior art described above, an object of the present invention is to have a stably high slurry solid concentration in the process of producing ore slurry used in recovering nickel and cobalt from nickel oxide ore by high pressure acid leaching method. An object of the present invention is to provide an ore slurry production method.

本発明はニッケル酸化鉱石の湿式製錬に用いる鉱石スラリーの製造工程において、解砕・分級工程後の鉱石スラリーを濃縮させる際に適用される方法であり、前記課題を達成するために、鉱石スラリー濃縮工程において凝集剤添加量を鉱石のマグネシウム品位から規定することにより、鉱石スラリーの固形物濃度を安定的に高く維持可能であることを見出したものである。   The present invention is a method applied to concentrate an ore slurry after crushing and classification steps in a process for producing ore slurry used for wet refining of nickel oxide ore, and in order to achieve the above object, the ore slurry It is found that the solid concentration of the ore slurry can be stably maintained high by specifying the addition amount of the coagulant from the magnesium grade of the ore in the concentration step.

例えばニッケル品位が0.5〜1.5%程度である低品位のニッケル酸化鉱石は多段階からなる解砕・分級工程に付され、最終的に粒径が1.4mm以下程度の鉱石スラリーが産出される。鉱石スラリーは続いて濃縮工程へ付され、例えばシックナーのような固液分離装置に鉱石スラリーを送入し、固形成分のみを沈降、濃縮させ装置下部よりスラリーを抜き出し、分離された液体は上部よりオーバーフローさせる。また、固形成分の沈降を促進させ、鉱石スラリーの固形物濃度を向上させるために、例えば水で希釈した高分子系の凝集剤と鉱石スラリーをシックナーフィードウェル内部にて混合させることが一般的である。   For example, a low grade nickel oxide ore having a nickel grade of about 0.5 to 1.5% is subjected to a multistage crushing and classification process, and finally an ore slurry having a particle size of about 1.4 mm or less It is produced. The ore slurry is subsequently subjected to a concentration step, for example, the ore slurry is fed into a solid-liquid separator such as thickener, only solid components are allowed to settle and concentrated, the slurry is withdrawn from the bottom of the device, and the separated liquid is from the top Overflow Also, in order to promote the sedimentation of solid components and improve the solid concentration of the ore slurry, for example, it is common to mix the polymer flocculant diluted with water and the ore slurry inside the thickener feed well. is there.

鉱石スラリーの固形物濃度を44重量%程度に安定して維持するために、凝集剤の添加量を鉱石中のマグネシウム品位を基準にして調整する必要がある。例えば鉱石中のマグネシウム品位が1.4%以上であれば、鉱石スラリー中の乾燥固形分1トン当り凝集剤量として55g以下に相当する量の凝集剤溶液を添加する。鉱石中のマグネシウム品位が1.2%、1.0%、0.9%程度であれば、鉱石スラリー中の乾燥固形分1トン当り凝集剤量としてそれぞれ60g、75g、85g以上に相当する量の凝集剤溶液を添加することにより、鉱石スラリー濃縮工程後のスラリー固形物濃度を44重量%程度に安定して維持させることが可能となる。   In order to stably maintain the solid concentration of the ore slurry at about 44% by weight, it is necessary to adjust the addition amount of the coagulant based on the magnesium grade in the ore. For example, if the magnesium grade in the ore is 1.4% or more, a flocculant solution is added in an amount corresponding to 55 g or less as the amount of flocculant per ton of dry solid content in the ore slurry. If the magnesium grade in the ore is about 1.2%, 1.0%, 0.9%, the amount corresponding to 60 g, 75 g, 85 g or more as the amount of flocculant per ton of dry solid content in the ore slurry By adding the flocculant solution of the above, it becomes possible to stably maintain the slurry solid concentration after the ore slurry concentration step at about 44% by weight.

本発明によれば、安定して高いスラリー固形物濃度を有する鉱石スラリーを得ることができる。
According to the present invention, it is possible to obtain an ore slurry having a stably high slurry solid concentration.

以下、高圧酸浸出法によりニッケル酸化鉱石からニッケルおよびコバルトを回収する際に用いる鉱石スラリーについて、安定して44重量%程度の高い固形物濃度を有する鉱石スラリーの製造方法を詳細に説明する。   Hereinafter, a method for producing an ore slurry stably having a high solid concentration of about 44% by weight will be described in detail, regarding an ore slurry used when recovering nickel and cobalt from nickel oxide ore by a high pressure acid leaching method.

鉱石処理工程では鉱石中に含まれる過大なサイズの鉱石を除去するために解砕・分級工程に送られ、鉱石粒径は1.4mm以下程度となる。分級された鉱石スラリーは固形分成分として10−18重量%程度に調整され、スラリー濃縮工程に送付される。スラリー濃縮工程では例えばシックナーのような固液分離装置に鉱石スラリーを送入し、固形成分のみを沈降・濃縮させ、スラリーを装置下部より抜き出すとともに、分離された液体は上部よりオーバーフローさせる。固形成分の沈降を促進させ、鉱石スラリーの固形物濃度を向上させるために、例えば水で0.3重量%程度に希釈した高分子系の凝集剤をシックナーフィードウェル内部にて鉱石スラリーと混合させることが一般的である。また、凝集剤添加量はこれまでシックナーでの沈降性や濃縮された鉱石スラリーの固形物濃度から調整を行なうことが一般的であるが、本発明では鉱石中のマグネシウム品位により凝集剤添加量を以下のように調整することで安定して44重量%程度の高い固形物濃度の鉱石スラリーを得ることができる。   In the ore processing step, the ore particle size is about 1.4 mm or less, which is sent to a crushing and classification step in order to remove an oversized ore contained in the ore. The classified ore slurry is adjusted to about 10-18% by weight as a solid component, and sent to the slurry concentration step. In the slurry concentration step, for example, the ore slurry is fed to a solid-liquid separator such as a thickener, and only solid components are allowed to settle and concentrate, and the slurry is withdrawn from the lower portion of the device, and the separated liquid overflows from the upper portion. In order to promote the sedimentation of the solid component and improve the solid concentration of the ore slurry, for example, a polymeric flocculant diluted to about 0.3% by weight with water is mixed with the ore slurry inside the thickener feed well. Is common. In addition, although it is general to adjust the addition amount of the coagulant from the settling property in the thickener or the solid substance concentration of the concentrated ore slurry, in the present invention, the addition amount of the coagulant is adjusted according to the magnesium grade in the ore. By adjusting as described below, it is possible to stably obtain an ore slurry with a high solid concentration of about 44% by weight.

・ 鉱石中マグネシウム品位≧1.4% ; 鉱石の乾燥固形分1トン当り凝集剤量として55g以下を添加
・ 鉱石中マグネシウム品位 1.10〜1.40% ; 鉱石の乾燥固形分1トン当り凝集剤量として60〜70gを添加
・ 鉱石中マグネシウム品位 0.95〜1.10% ; 鉱石の乾燥固形分1トン当り凝集剤量として70〜80gを添加
・ 鉱石中マグネシウム品位≦0.95% ; 鉱石の乾燥固形分1トン当り凝集剤量として80g以上を添加
これは鉱石のマグネシウム品位が、鉱石の粒径と関係があることに起因する。鉱石採掘が表層部に近づくに従い、鉱石の風化が進んでいるため粒径は小さくなり、また表層部に近づくにつれマグネシウム品位が低下することが一般的に知られている。一方で、採掘箇所が表層部より深い箇所の鉱石は風化が進みにくいことから、表層部に比べ粒径が大きいことが考えられる。また、表層部より深い箇所の鉱石は一般的にマグネシウム品位やニッケル品位が表層部に比べ高いことが知られている。
Magnesium content in ore 1.4 1.4% or less Add 55g or less as the amount of flocculant per ton of dry solid content of ore Magnesium content in ore from 1.10 to 1.40%; ore cohesion per ton of dry solid content Add 60 to 70g as agent amount-Magnesium grade in ore 0.95 to 1.10%; Add 70 to 80g as flocculant amount per ton of dry solid content of ore-Magnesium grade in ore ≦ 0.95%; Addition of 80 g or more as an amount of flocculant per ton of dry solid content of ore is attributed to the fact that the magnesium grade of the ore is related to the particle size of the ore. It is generally known that as ore mining approaches the surface layer, the grain size decreases as the weathering of the ore proceeds, and the magnesium grade decreases as it approaches the surface layer. On the other hand, it is considered that the grain size of the ore at a location where the mining site is deeper than the surface layer portion is larger in grain size than the surface layer portion because weathering hardly progresses. In addition, it is known that the ore at a location deeper than the surface layer is generally higher in magnesium grade and nickel grade than in the surface zone.

粒径の小さな鉱石はスラリー濃縮工程にて凝集剤と混合された後に凝集体の大きさを1〜3mm程度に維持するため、粒径の大きな鉱石に比べ多くの凝集剤添加が必要である。一方で粒径の大きな鉱石に多量の凝集剤を添加した場合には凝集体のサイズが適切と考えられる1〜3mmより大きくなり、鉱石スラリーをシックナー下部での圧密させる際に凝集体間の空隙率が増加し、水分が分離され難くなり固形物濃度が低下してしまう。従って粒径の比較的大きな鉱石に対しては凝集剤添加量が過剰にならないようにする必要が生じる。   In order to maintain the size of aggregates at about 1 to 3 mm after mixing with a coagulant in the slurry concentration step, it is necessary to add more coagulant than the ore with a large particle size. On the other hand, when a large amount of flocculant is added to ore having a large particle size, the size of the aggregate becomes larger than 1 to 3 mm which is considered appropriate, and the void between the aggregates when compacting the ore slurry in the lower part of the thickener The rate increases, water is difficult to separate, and the solid concentration decreases. Therefore, it is necessary to prevent excessive addition of flocculant to relatively large particle size ore.

本発明では粒径とマグネシウム品位に関係があることを見出し、鉱石中のマグネシウム品位により凝集剤添加量を調整することで、安定して44重量%程度の高い固形物濃度を有した鉱石スラリーを得る方法を見出した。なお、例えば鉄などのマグネシウムと相関のある元素であれば、マグネシウムと同様の関係から凝集剤調整の指標とすることが可能となる。   In the present invention, it is found that there is a relationship between particle size and magnesium grade, and the ore slurry stably having a high solid concentration of about 44% by weight by adjusting the addition amount of the coagulant according to the magnesium grade in the ore I found a way to get. For example, if it is an element which has correlation with magnesium, such as iron, it will become possible to use it as an index of flocculant adjustment from the same relation as magnesium.

以下に、本発明の実施例及び比較例によって本発明をさらに詳細に説明する。なお、実施例および比較例では凝集剤添加量の調整方法を除き、ほぼ同じ条件にて比較を行った。またデータ採取は1日平均および最大・最小値を示しており、それぞれ22点のデータを採取した。   Hereinafter, the present invention will be described in more detail by examples of the present invention and comparative examples. In addition, in the Example and the comparative example, comparison was performed on substantially the same conditions except the adjustment method of the coagulant | flocculant addition amount. Moreover, data collection showed daily average and maximum / minimum value, and collected 22 points of data each.


(実施例1)
高圧酸浸出法によりニッケル酸化鉱石からニッケルおよびコバルトを回収する際に用いる鉱石スラリーの製造工程において、ニッケル酸化鉱石を1.4mm以下へ分級させ、且つ水量を調整し固形物濃度が4〜5重量%程度の鉱石スラリーを得た後、0.3重量%の凝集剤混合することにより、鉱石スラリー固形成分の凝集・圧密を行った。なお、シックナーへの鉱石固形物の送量は平均267t/Hrである。また、凝集剤添加量の調整については、鉱石のマグネシウム品位により以下に示す添加量に調整した。

Example 1
In the process of producing ore slurry used in recovering nickel and cobalt from nickel oxide ore by high-pressure acid leaching method, nickel oxide ore is classified to 1.4 mm or less, and the amount of water is adjusted and solid concentration is 4 to 5 weight After the ore slurry of about% was obtained, aggregation and consolidation of the solid component of the ore slurry were carried out by mixing with 0.3% by weight of a coagulant. In addition, the amount of ore solid delivered to the thickener is an average of 267 t / Hr. Moreover, about adjustment of the addition amount of a coagulant | flocculant, it adjusted to the addition amount shown below with the magnesium grade of the ore.

・ 鉱石中マグネシウム品位≧1.4% ; 鉱石の乾燥固形分1トン当り凝集剤量として55g以下を添加
・ 鉱石中マグネシウム品位 1.10〜1.40% ; 鉱石の乾燥固形分1トン当り凝集剤量として60〜70gを添加
・ 鉱石中マグネシウム品位 0.95〜1.10% ; 鉱石の乾燥固形分1トン当り凝集剤量として70〜80gを添加
・ 鉱石中マグネシウム品位≦0.95% ; 鉱石の乾燥固形分1トン当り凝集剤量として80g以上を添加
上記の条件にて得られた鉱石スラリーの固形物濃度は平均44重量%(最大46重量%、最小42重量%)となり、得られた22点のデータにおける固形物濃度標準偏差は1.0となった。結果を表1に示す。
Magnesium content in ore 1.4 1.4% or less Add 55g or less as the amount of flocculant per ton of dry solid content of ore Magnesium content in ore from 1.10 to 1.40%; ore cohesion per ton of dry solid content Add 60 to 70g as agent amount-Magnesium grade in ore 0.95 to 1.10%; Add 70 to 80g as flocculant amount per ton of dry solid content of ore-Magnesium grade in ore ≦ 0.95%; 80g or more added as flocculant amount per ton of dry solid content of ore, solid content of ore slurry obtained under the above conditions is 44% by weight (maximum 46% by weight, minimum 42% by weight) on average The solid concentration standard deviation in the data of 22 points was 1.0. The results are shown in Table 1.


(比較例1)
高圧酸浸出法によりニッケル酸化鉱石からニッケルおよびコバルトを回収する際に用いる鉱石スラリーの製造工程においてニッケル酸化鉱石を実施例1と同様に1.4mm以下へ分級させ、且つ水量を調整し固形物濃度が4〜5重量%程度の鉱石スラリーを得た後、0.3重量%の凝集剤混合することにより、鉱石スラリー固形成分の凝集・圧密を行った。シックナーへの鉱石固形物の送量は平均239t/Hrである。また、凝集剤添加量の調整については、鉱石の乾燥固形分1トン当り凝集剤量として75gに固定し添加した。上記の条件にて得られた鉱石スラリーの固形物濃度は平均42重量%(最大44重量%、最小38重量%)となり、得られた22点のデータにおける固形物濃度標準偏差は1.6となった。結果を表1に示す。凝集剤添加量を常に固定したことから、鉱石のマグネシウム品位上昇時には凝集剤が過剰となり、また鉱石のマグネシウム品位低下時には凝集剤不足となったことから、実施例に比べ得られた鉱石スラリーの固形物濃度が低下し、且つ標準偏差が上昇したと考えられる。

(Comparative example 1)
In the production process of ore slurry used in recovering nickel and cobalt from nickel oxide ore by high pressure acid leaching method, nickel oxide ore is classified to 1.4 mm or less as in Example 1, and the amount of water is adjusted to obtain solid concentration After obtaining an ore slurry of about 4 to 5% by weight, aggregation and consolidation of the solid component of the ore slurry were carried out by mixing with 0.3% by weight of a coagulant. Delivery of ore solids to thickeners is 239 t / hr on average. Moreover, about adjustment of the amount of coagulant | flocculants addition, it fixed to 75 g as coagulant | flocculant amount per 1 t of dry solid of ore, and added. The solid concentration of the ore slurry obtained under the above conditions averages 42% by weight (maximum 44% by weight, minimum 38% by weight), and the solid concentration standard deviation in the data of 22 points obtained is 1.6 became. The results are shown in Table 1. Since the addition amount of coagulant was always fixed, the coagulant became excessive when the magnesium grade of the ore increased, and the coagulant lacked when the magnesium grade of the ore decreased. It is thought that the substance concentration decreased and the standard deviation increased.


(比較例2)
高圧酸浸出法によりニッケル酸化鉱石からニッケルおよびコバルトを回収する際に用いる鉱石スラリーの製造工程においてニッケル酸化鉱石を実施例1と同様に1.4mm以下へ分級させ、且つ水量を調整し固形物濃度が4〜5重量%程度の鉱石スラリーを得た後、0.3重量%の凝集剤混合することにより、鉱石スラリー固形成分の凝集・圧密を行った。シックナーへの鉱石固形物の送量は248t/Hrである。また、凝集剤添加量の調整については、得られた鉱石スラリーの固形物濃度により、鉱石スラリー中の乾燥固形分1トン当り凝集剤量3〜5gを増減させることで、平均72g(最大88g、最小65g)にて凝集剤を添加した。

(Comparative example 2)
Nickel oxide ore is classified to 1.4 mm or less in the same manner as in Example 1 in the production process of ore slurry used in recovering nickel and cobalt from nickel oxide ore by high pressure acid leaching method, and the amount of water is adjusted to obtain solid concentration After obtaining an ore slurry of about 4 to 5% by weight, the solid component of the ore slurry was coagulated / consolidated by mixing with a 0.3% by weight coagulant. The feed rate of ore solids to the thickener is 248 t / hr. Moreover, about adjustment of the amount of flocculant addition, average 72 g (maximum 88 g, by increasing or decreasing the amount of flocculant per 1 ton of dry solid content in the ore slurry) according to the solid concentration of the obtained ore slurry. The flocculant was added at a minimum of 65 g).

上記の条件にて得られた鉱石スラリーの固形物濃度は平均42重量%(最大44重量%、最小39重量%)となり、得られた22点のデータにおける固形物濃度の標準偏差は1.4となった。結果を表1に示す。得られた固形物濃度より凝集剤添加量を調整したことから、鉱石のマグネシウム品位の変動時には凝集剤添加量の過不足が生じたため、実施例に比べ得られた鉱石スラリーの固形物濃度が低下し、且つ標準偏差が上昇したと考えられる。   The solid concentration of the ore slurry obtained under the above conditions averages 42% by weight (maximum 44% by weight, minimum 39% by weight), and the standard deviation of the solid concentration in the data of 22 points obtained is 1.4 It became. The results are shown in Table 1. Since the addition amount of the coagulant was adjusted from the solid concentration obtained, excess and deficiency of the addition amount of the coagulant occurred when the magnesium grade of the ore fluctuated, so the solid concentration of the obtained ore slurry decreased compared to the example. And the standard deviation is considered to have increased.

以上より明らかなように、ニッケル酸化鉱石スラリーの濃縮工程において、鉱石中のマグネシウム品位により凝集剤添加量を調整することにより、安定して高い固形物濃度を有する鉱石スラリーを得ることが可能となる。これはニッケル酸化鉱石の湿式製錬において、高効率な操業を容易に継続することが可能となりその効果は極めて大きい。   As apparent from the above, in the concentration step of the nickel oxide ore slurry, it is possible to stably obtain the ore slurry having a high solid concentration by adjusting the addition amount of the coagulant according to the magnesium grade in the ore . This makes it possible to easily continue highly efficient operation in the hydrometallurgical process of nickel oxide ore, and the effect is extremely large.


Claims (1)

高圧酸浸出法によりニッケル酸化鉱石からニッケルおよびコバルトを回収する際の鉱石の分級工程、鉱石スラリー濃縮工程を含む鉱石スラリーの製造方法であって、前記スラリー濃縮時に使用する凝集剤添加量を鉱石のマグネシウム品位に応じて、以下を基準として調整を行うことを特徴とするニッケル鉱石スラリーの濃縮方法。
1) 鉱石中マグネシウム品位≧1.4% ; 鉱石の乾燥固形分1トン当り凝集剤量として55g以下を添加
2) 鉱石中マグネシウム品位 1.10〜1.40% ; 鉱石の乾燥固形分1トン当り凝集剤量として60〜70gを添加
3) 鉱石中マグネシウム品位 0.95〜1.10% ; 鉱石の乾燥固形分1トン当り凝集剤量として70〜80gを添加
4) 鉱石中マグネシウム品位≦0.95% ; 鉱石の乾燥固形分1トン当り凝集剤量として80g以上を添加

A method for producing an ore slurry including an ore classification step and an ore slurry concentration step in recovering nickel and cobalt from nickel oxide ore by a high pressure acid leaching method, wherein the coagulant added amount used at the time of said slurry concentration is ore Adjustment method is performed on the basis of the following according to magnesium grade, The concentration method of the nickel ore slurry characterized by the above-mentioned.
1) Magnesium grade in ore 1.4 1.4%; 55g or less of coagulant added per tonne of dry solid of ore 2) Magnesium grade in ore 1.10 to 1.40%; dry solid of 1 ton of ore 60-70 g is added as the amount of coagulant per 3) Magnesium grade in the ore 0.95 to 1.10%; 70-80 g as the amount of coagulant per ton of dry solids of the ore is added 4) magnesium grade in the ore 0 0 .95%; Add 80 g or more of flocculant per ton of dry solids of ore

JP2017165016A 2017-08-30 2017-08-30 Ore slurry concentration method in nickel oxide ore refining Pending JP2019044208A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017165016A JP2019044208A (en) 2017-08-30 2017-08-30 Ore slurry concentration method in nickel oxide ore refining
PH12018000247A PH12018000247A1 (en) 2017-08-30 2018-08-29 Method for concentrating ore slurry in nickel oxide ore smelting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017165016A JP2019044208A (en) 2017-08-30 2017-08-30 Ore slurry concentration method in nickel oxide ore refining

Publications (1)

Publication Number Publication Date
JP2019044208A true JP2019044208A (en) 2019-03-22

Family

ID=65813786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017165016A Pending JP2019044208A (en) 2017-08-30 2017-08-30 Ore slurry concentration method in nickel oxide ore refining

Country Status (2)

Country Link
JP (1) JP2019044208A (en)
PH (1) PH12018000247A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020180317A (en) * 2019-04-24 2020-11-05 住友金属鉱山株式会社 Pretreatment method for nickel oxide ore to be used as raw material for wet smelting method
JP2021046572A (en) * 2019-09-17 2021-03-25 住友金属鉱山株式会社 Pretreatment method of nickel oxide ore slurry
WO2022118743A1 (en) * 2020-12-01 2022-06-09 住友金属鉱山株式会社 Method for preparing nickel oxide ore slurry
JP7176595B1 (en) 2021-05-28 2022-11-22 住友金属鉱山株式会社 Method for producing ore slurry, hydrometallurgical method for nickel oxide ore

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5141781B2 (en) * 2011-01-25 2013-02-13 住友金属鉱山株式会社 Method for producing ore slurry
JP5757442B2 (en) * 2013-04-23 2015-07-29 住友金属鉱山株式会社 Method for hydrometallizing nickel oxide ore

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020180317A (en) * 2019-04-24 2020-11-05 住友金属鉱山株式会社 Pretreatment method for nickel oxide ore to be used as raw material for wet smelting method
JP7220846B2 (en) 2019-04-24 2023-02-13 住友金属鉱山株式会社 Pretreatment method for nickel oxide ore used as raw material for hydrometallurgy
JP2021046572A (en) * 2019-09-17 2021-03-25 住友金属鉱山株式会社 Pretreatment method of nickel oxide ore slurry
WO2021054240A1 (en) * 2019-09-17 2021-03-25 住友金属鉱山株式会社 Pretreatment method for nickel oxide ore slurry
JP7057900B2 (en) 2019-09-17 2022-04-21 住友金属鉱山株式会社 Pretreatment method for nickel oxide ore slurry
WO2022118743A1 (en) * 2020-12-01 2022-06-09 住友金属鉱山株式会社 Method for preparing nickel oxide ore slurry
JP2022087368A (en) * 2020-12-01 2022-06-13 住友金属鉱山株式会社 Preparation method of nickel oxide ore slurry
JP7272342B2 (en) 2020-12-01 2023-05-12 住友金属鉱山株式会社 Method for preparing nickel oxide ore slurry
JP7176595B1 (en) 2021-05-28 2022-11-22 住友金属鉱山株式会社 Method for producing ore slurry, hydrometallurgical method for nickel oxide ore
JP2022182237A (en) * 2021-05-28 2022-12-08 住友金属鉱山株式会社 Manufacturing method of ore slurry and wet-smelting method for nickel oxide ore

Also Published As

Publication number Publication date
PH12018000247A1 (en) 2019-03-11

Similar Documents

Publication Publication Date Title
JP2019044208A (en) Ore slurry concentration method in nickel oxide ore refining
AU2015224243B2 (en) Method for producing hematite for iron production
US9981858B2 (en) Process for producing hemataite for ironmaking
JP5360243B2 (en) Thickener device in ore slurry manufacturing process and method for controlling solid component ratio
EP2829621A1 (en) Method for producing hematite for iron production
JP2019065341A (en) Hydrometallurgical process for nickel oxide ore
JP5141781B2 (en) Method for producing ore slurry
JP6984191B2 (en) Solid-liquid separation method of nickel high-pressure leachate residue
CN102676820A (en) Treatment method of zinc sulfate leach solution
AU2014413023B2 (en) Ore slurry manufacturing facility and ore slurry manufacturing method
WO2019049593A1 (en) Wet metallurgy method for nickel oxide mineral ore
JP5692313B2 (en) Thickener device in ore slurry manufacturing process and method for controlling solid component ratio
JP7183503B2 (en) METHOD FOR MANUFACTURING HIGH CONCENTRATION ORE SLURRY
JP5811297B1 (en) Ore slurry manufacturing equipment and ore slurry manufacturing method
JP5783223B2 (en) Ore slurry manufacturing equipment and ore slurry manufacturing method
JP7057900B2 (en) Pretreatment method for nickel oxide ore slurry
JP2019065340A (en) Hydrometallurgical process for nickel oxide ore
JP7220846B2 (en) Pretreatment method for nickel oxide ore used as raw material for hydrometallurgy
JP7127679B2 (en) Method for producing ore slurry, hydrometallurgical method for nickel oxide ore
JP2019214778A (en) Pretreatment method of nickel oxide ore raw material
WO2022118743A1 (en) Method for preparing nickel oxide ore slurry
JP2021046572A5 (en)
JP5786921B2 (en) Ore slurry manufacturing equipment and ore slurry manufacturing method
JP2020132982A (en) Solid-liquid separation method of nickel high-pressure leach residue
WO2016117051A1 (en) Mineral slurry manufacturing facility and mineral slurry manufacturing method