JP7220846B2 - Pretreatment method for nickel oxide ore used as raw material for hydrometallurgy - Google Patents

Pretreatment method for nickel oxide ore used as raw material for hydrometallurgy Download PDF

Info

Publication number
JP7220846B2
JP7220846B2 JP2019082580A JP2019082580A JP7220846B2 JP 7220846 B2 JP7220846 B2 JP 7220846B2 JP 2019082580 A JP2019082580 A JP 2019082580A JP 2019082580 A JP2019082580 A JP 2019082580A JP 7220846 B2 JP7220846 B2 JP 7220846B2
Authority
JP
Japan
Prior art keywords
concentration
ore
nickel oxide
slurry
flocculant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019082580A
Other languages
Japanese (ja)
Other versions
JP2020180317A (en
Inventor
堅士 山本
勝輝 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2019082580A priority Critical patent/JP7220846B2/en
Publication of JP2020180317A publication Critical patent/JP2020180317A/en
Application granted granted Critical
Publication of JP7220846B2 publication Critical patent/JP7220846B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は湿式製錬の原料として使用されるニッケル酸化鉱石の前処理方法に関し、特に凝集剤の添加量によりスラリー濃度の調整を行うニッケル酸化鉱石の前処理方法に関する。 TECHNICAL FIELD The present invention relates to a pretreatment method for nickel oxide ore used as a raw material for hydrometallurgy, and more particularly to a nickel oxide ore pretreatment method for adjusting the slurry concentration by adjusting the amount of addition of a flocculant.

原料としてのニッケル酸化鉱石に対して高温高圧下で硫酸を用いて浸出処理を行うことで浸出液を生成するHPAL(High Pressure Acid Leach)プロセスとも称する高圧酸浸出工程を含んだ湿式製錬法が知られている。この湿式製錬法は、従来の一般的なニッケル酸化鉱石の製錬方法である乾式製錬法と異なり、リモナイト鉱石等に代表される低品位のニッケル酸化鉱石からニッケル品位を50~60質量%程度まで高められたニッケルとコバルトを含む混合硫化物(以下、ニッケルコバルト混合硫化物とも称する)を効率よく生成することができるうえ、還元及び乾燥工程を経ることなく一貫した湿式工程により処理が行われるので、エネルギー的及びコスト的に有利であるという利点を有している。 A hydrometallurgical process that includes a high-pressure acid leaching process, also called the HPAL (High Pressure Acid Leach) process, is known, in which nickel oxide ore as a raw material is subjected to a leaching treatment using sulfuric acid under high temperature and high pressure to generate a leachate. It is This hydrometallurgical method is different from the conventional pyrometallurgical method, which is a conventional method for smelting nickel oxide ore. In addition to being able to efficiently produce a mixed sulfide containing nickel and cobalt (hereinafter also referred to as a nickel-cobalt mixed sulfide), the treatment is performed by a consistent wet process without going through reduction and drying processes. It has the advantage of being advantageous in terms of energy and cost.

上記の高圧酸浸出工程を含む湿式製錬法は、ニッケル酸化鉱石を前処理して鉱石スラリーを調製する鉱石前処理工程と、該鉱石スラリーに高温高圧下で硫酸を添加することで、ニッケル、コバルト等の有価金属を浸出して浸出スラリーを得る浸出工程と、該浸出スラリーを多段洗浄しながらニッケル及びコバルトと共に不純物元素を含む浸出液を浸出残渣から分離する固液分離工程と、該浸出液のpHを調整すると共に、該浸出残渣の一部と凝結剤とを添加することで不純物元素から中和澱物を生成し、これを分離除去してニッケル及びコバルトを含む中和終液を得る中和工程と、該中和終液に硫化水素ガスを添加することにより亜鉛及び銅を含む混合硫化物を生成し、これを分離除去して脱亜鉛終液を得る脱亜鉛工程と、該脱亜鉛終液に硫化水素ガスを添加することによりニッケルコバルト混合硫化物を生成し、これを固液分離により回収するニッケル回収工程とから一般的に構成される。 The hydrometallurgical process including the high-pressure acid leaching process includes an ore pretreatment process of pretreating a nickel oxide ore to prepare an ore slurry, and adding sulfuric acid to the ore slurry at high temperature and high pressure to obtain nickel, A leaching step of leaching valuable metals such as cobalt to obtain a leaching slurry, a solid-liquid separation step of separating a leaching solution containing impurity elements together with nickel and cobalt from the leaching residue while washing the leaching slurry in multiple stages, and a pH of the leaching solution. is adjusted and a part of the leaching residue and a coagulant are added to generate a neutralized sediment from impurity elements, which is separated and removed to obtain a final neutralization solution containing nickel and cobalt. a dezincing step of adding hydrogen sulfide gas to the neutralization final solution to form a mixed sulfide containing zinc and copper, which is separated and removed to obtain a dezincing final solution; It generally comprises a nickel recovery step in which a nickel-cobalt mixed sulfide is produced by adding hydrogen sulfide gas to the liquid and recovered by solid-liquid separation.

上記鉱石前処理工程では、先ず原料としてのニッケル酸化鉱石に対して粉砕・解砕処理を行った後、水を加えて湿式分級することで、所定の粒度を有するニッケル酸化鉱石をスラリーの形態で篩下側に回収し、得られた低濃度鉱石スラリーに添加剤を添加して沈降濃縮を行っている。これにより、固形分濃度が調整された高濃度鉱石スラリーを作製することが行われている。この沈降濃縮には、一般的にシックナーが用いられている。シックナーは、中央部に向って徐々に深くなるように傾斜する底面を備えた円筒形の沈降分離槽と、該槽内の底部に沿って低速回転するレーキと、該槽内の中央部に鉱石スラリーを導入する円筒形状のフィードウェルとから主に構成され、該槽内において沈降分離により濃縮された高濃度鉱石スラリーがシックナーの底部中央から抜き出される。 In the ore pretreatment step, nickel oxide ore as a raw material is first subjected to pulverization and crushing treatment, and then wet-classified by adding water to obtain nickel oxide ore having a predetermined particle size in the form of slurry. An additive is added to the obtained low-concentration ore slurry to concentrate it by sedimentation. In this way, a high-concentration ore slurry with an adjusted solid content concentration is produced. A thickener is generally used for this sedimentation concentration. The thickener consists of a cylindrical sedimentation separation tank with a bottom surface that slopes gradually toward the center, a rake that rotates slowly along the bottom of the tank, and ore in the center of the tank. A high-concentration ore slurry concentrated by sedimentation in the tank is extracted from the center of the bottom of the thickener.

上記構造のシックナーでは、例えば特許文献1に開示されているように、フィードウェル中を流れる鉱石スラリーに対して添加剤として凝集剤を添加してフロックを形成させ、これにより鉱石スラリーの沈降性を向上させる技術が開示されている。また特許文献2には、鉱石前処理工程において、粉砕・解砕及び湿式分級により得た鉱石スラリーに硫酸又は苛性ソーダ等の中和剤を添加することでpHを等電点近傍に調整し、これにより後段のシックナーにおける沈降分離性を高めて鉱石スラリーの固形分濃度を高める技術が開示されている。 In the thickener having the above structure, a flocculating agent is added as an additive to the ore slurry flowing through the feedwell to form flocs, as disclosed in Patent Document 1, thereby improving the sedimentation of the ore slurry. Techniques for improving are disclosed. Further, in Patent Document 2, in the ore pretreatment process, a neutralizing agent such as sulfuric acid or caustic soda is added to the ore slurry obtained by pulverization, crushing and wet classification to adjust the pH to the vicinity of the isoelectric point. discloses a technique for increasing the sedimentation separation performance in the subsequent thickener to increase the solid content concentration of the ore slurry.

更に、特許文献3には、シックナーの沈降分離槽内に形成される沈降濃縮部と上澄み液部との界面のレベル(ベッドレベルとも称する)を超音波式レベル測定装置で測定し、これにより沈降状態を連続的に監視することでシックナーの操業を管理する技術が開示されている。また、特許文献4には、2基のシックナーを直列に接続し、上流側のシックナーでスラリーを予備濃縮することで得られる濃縮スラリーを下流側のシックナーに導入することで、該下流側のシックナーでの沈降速度を高め、これにより固体物濃度の高い鉱石スラリーを効率的に得る技術が開示されている。 Furthermore, in Patent Document 3, the level of the interface between the sedimentation concentration part and the supernatant liquid part formed in the sedimentation separation tank of the thickener (also referred to as a bed level) is measured with an ultrasonic level measurement device, and the sedimentation Techniques are disclosed for controlling thickener operations by continuously monitoring conditions. Further, in Patent Document 4, two thickeners are connected in series, and a concentrated slurry obtained by pre-concentrating the slurry in the upstream thickener is introduced into the downstream thickener, whereby A technique for increasing the sedimentation rate at 100 rpm and thereby efficiently obtaining an ore slurry with a high solids concentration is disclosed.

特開2012-153922号公報JP 2012-153922 A 特開2008-189999号公報JP 2008-189999 A 特開2013-154262号公報JP 2013-154262 A 特開2015-086457号公報JP 2015-086457 A

原料の低品位ニッケル酸化鉱石から高圧酸浸出工程を経てニッケルを回収する上記の湿式製錬法においては、原料に採用するニッケル酸化鉱石種によって該高圧酸浸出工程の前工程の鉱石前処理工程のシックナーにおける沈降挙動に差違が生じると考えられている。その結果、該シックナーの底部中央から抜き出される高濃度鉱石スラリーの固形分濃度が不安定になることがあるが、具体的にどのようなメカニズムでニッケル酸化鉱石種が沈降挙動に影響を及ぼすのかは解明されていないのが実情である。 In the above hydrometallurgical method in which nickel is recovered from low-grade nickel oxide ore as a raw material through a high-pressure acid leaching process, depending on the nickel oxide ore species used as a raw material, the ore pretreatment process before the high-pressure acid leaching process is performed. It is believed that there is a difference in sedimentation behavior in the thickener. As a result, the solid content concentration of the high-concentration ore slurry extracted from the center of the bottom of the thickener may become unstable. Specifically, what mechanism does the nickel oxide ore seed affect the sedimentation behavior? is not clarified.

そのため、従来、鉱石前処理工程のシックナーの操業では、沈降分離槽内のベッドレベルを測定装置により連続的に監視したり、ベッドレベルのレベル測定治具を用いてオペレータが定期的に測定したりすることで、シックナー内での凝集状態や沈降状態を確認して、沈降分離槽内のベッドレベルを適切な範囲内に管理することが行われていた。また、フィードウェルに流れ込む低濃度鉱石スラリーを定期的にサンプリングしてその粒子の大きさを目視等により確認し、その結果に基づいて凝集剤の添加量を調整することが行われていた。 Therefore, conventionally, in the thickener operation of the ore pretreatment process, the bed level in the sedimentation tank is continuously monitored by a measuring device, or the operator periodically measures it using a bed level level measuring jig. By doing so, the state of aggregation and sedimentation in the thickener was confirmed, and the bed level in the sedimentation tank was controlled within an appropriate range. In addition, the low-concentration ore slurry flowing into the feedwell is periodically sampled to visually confirm the particle size, and based on the result, the amount of coagulant to be added is adjusted.

上記のようなオペレータの経験に基づく運転管理では、シックナーの操業が不安定になりやすく、特に原料の鉱石種変更時は上記したように沈降挙動に変化が生じて凝集剤不足により凝集性が低下したり、逆に凝集剤の過剰添加によりスラリー粘度が過度に上昇したりすることがあった。本発明は、上記した従来の湿式製錬法が有する鉱石前処理工程が抱える問題点に鑑みてなされたものであり、原料として使用するニッケル酸化鉱石の鉱石種や鉱石品位が変化しても所定の固形分濃度を有する高濃度鉱石スラリーを安定的に調製することができる方法を提供することを目的としている。 In the operation management based on the experience of the operator as described above, the operation of the thickener tends to be unstable, especially when changing the ore type of the raw material, the sedimentation behavior changes as described above, and the flocculant is insufficient and the flocculation is reduced. Conversely, excessive addition of the flocculant may cause an excessive increase in slurry viscosity. The present invention has been made in view of the problems of the ore pretreatment process of the conventional hydrometallurgical method described above, and even if the ore type and ore grade of the nickel oxide ore used as a raw material change, An object of the present invention is to provide a method capable of stably preparing a high-concentration ore slurry having a solid content concentration of

本発明者は、上記した湿式製錬法の鉱石前処理工程について鋭意検討を重ねた結果、原料として使用するニッケル酸化鉱石のFe品位に基づいて鉱石前処理工程のシックナーの操業を管理することにより、該シックナーに導入される低濃度鉱石スラリーに含まれるニッケル酸化鉱石の種類が変化しても、安定した固形分濃度を有する高濃度スラリーを調製できることを見出し、本発明を完成するに至った。 As a result of extensive studies on the ore pretreatment process of the above hydrometallurgical method, the present inventors have found that by controlling the operation of the thickener in the ore pretreatment process based on the Fe grade of the nickel oxide ore used as a raw material, , even if the kind of nickel oxide ore contained in the low-concentration ore slurry introduced into the thickener is changed, it was found that a high-concentration slurry having a stable solid content concentration can be prepared, and the present invention was completed.

すなわち、本発明のニッケル酸化鉱石の前処理方法は、湿式製錬法によりニッケルコバルト混合硫化物を生成する際の原料として用いるニッケル酸化鉱石の前処理方法であって、鉱石原料を粉砕及び/又は解砕した後に水を加えて湿式分級を行う選別工程と、該湿式分級の篩下側に回収される所定の粒度を有するニッケル酸化鉱石を含んだ低濃度鉱石スラリーを沈降濃縮することで高濃度鉱石スラリーを得る濃縮工程とからなり、前記ニッケル酸化鉱石のFe品位が50%未満の場合は該ニッケル酸化鉱石1トン当たり110~130gの凝集剤が該低濃度鉱石スラリーに添加されるように該凝集剤の添加量を調整し、該Fe品位が50%以上の場合は該ニッケル酸化鉱石1トン当たり160~170gの凝集剤が該低濃度鉱石スラリーに添加されるように該凝集剤の添加量を調整し、該凝集剤が分子量8×10 ~20×10 のポリアクリルアミドであることを特徴とする。 That is, the method for pretreating nickel oxide ore of the present invention is a method for pretreating nickel oxide ore used as a raw material when producing nickel-cobalt mixed sulfide by hydrometallurgical method, wherein the ore raw material is pulverized and / or A sorting step in which water is added after crushing and wet classification is performed, and a low-concentration ore slurry containing nickel oxide ore having a predetermined particle size recovered on the lower side of the sieve of the wet classification is precipitated and concentrated to a high concentration. and a concentration step to obtain an ore slurry, wherein when the Fe grade of the nickel oxide ore is less than 50%, 110 to 130 g of a flocculant per ton of the nickel oxide ore is added to the low-concentration ore slurry. The amount of flocculant added is adjusted so that 160 to 170 g of flocculant per ton of nickel oxide ore is added to the low-concentration ore slurry when the Fe grade is 50% or more. and the flocculant is polyacrylamide with a molecular weight of 8×10 6 to 20×10 6 .

本発明によれば、湿式製錬法が有する鉱石前処理工程において処理される鉱石品位が変化しても、安定した固形分濃度を有する高濃度鉱石スラリーを得ることができる。 According to the present invention, it is possible to obtain a high-concentration ore slurry having a stable solid content concentration even if the grade of ore processed in the ore pretreatment step of the hydrometallurgical process changes.

本発明のニッケル酸化鉱石の前処理方法の実施形態を含んだ湿式製錬法の工程フロー図である。BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a process flow diagram of a hydrometallurgical process including an embodiment of a nickel oxide ore pretreatment method of the present invention. 本発明の実施例のニッケル酸化鉱石の前処理方法においてニッケル酸化鉱石を凝集剤と共にシックナーに導入して沈降濃縮させた際の、該凝集剤の添加量と高濃度鉱石スラリーの固形分濃度との関係を表すグラフである。In the nickel oxide ore pretreatment method of the embodiment of the present invention, when the nickel oxide ore is introduced into the thickener together with the flocculant and is sedimented and concentrated, the amount of the flocculant added and the solid content concentration of the high-concentration ore slurry It is a graph showing the relationship.

1.湿式製錬法
先ず、本発明の実施形態に係るニッケル酸化鉱石スラリーの前処理方法を含む湿式製錬法について、図1に示す高圧酸浸出工程を含んだ湿式製錬法を例に挙げて説明する。この図1に示す湿式製錬法は、原料としてのニッケル酸化鉱石を前処理することで所定の粒度を有するニッケル酸化鉱石を含んだ鉱石スラリーの調製を行う鉱石前処理工程S0と、該鉱石スラリーに硫酸を添加して高温高圧下で浸出処理を施すことで浸出スラリーを生成する浸出工程S1と、該浸出スラリーにpH調整剤を添加してpHを所定範囲内に調整する予備中和工程S2と、該pH調整された浸出スラリーを多段洗浄することでニッケル及びコバルトと共に不純物元素を含む浸出液を浸出残渣から分離する固液分離工程S3と、該浸出液に中和剤を添加することで不純物元素を含む中和澱物を生成し、これを分離除去してニッケル及びコバルトと共に亜鉛を含む中和終液を得る中和工程S4と、該中和終液に硫化剤を添加することで亜鉛硫化物を生成し、これを分離除去してニッケル及びコバルトを含むニッケル回収用母液を得る脱亜鉛工程S5と、該ニッケル回収用母液に硫化剤として硫化水素と水流化ナトリウムを添加することでニッケル及びコバルトを含むNiCo混合硫化物を生成した後、固液分離により該NiCo混合硫化物を回収するニッケル回収工程S6と、該ニッケル回収工程S6の固液分離により液相側に排出されるニッケル回収終液に酸化性スラリーを所定量添加して硫化剤の分解処理を行う硫化剤除去工程S7と、該分解処理により排出される貧液を上記固液分離工程S3から排出される浸出残渣と共に無害化処理する最終中和工程S8とを有している。本発明の実施形態の調製方法は、上記の鉱石前処理工程S0から最終中和工程S8までの一連の工程を含む湿式製錬法のうち、鉱石前処理工程S0に関するものである。以下、この鉱石前処理工程S0について詳細に説明する。
1. Hydrometallurgical method First, the hydrometallurgical method including the pretreatment method for the nickel oxide ore slurry according to the embodiment of the present invention will be described by taking the hydrometallurgical method including the high-pressure acid leaching step shown in FIG. 1 as an example. do. The hydrometallurgical method shown in FIG. 1 includes an ore pretreatment step S0 for preparing an ore slurry containing nickel oxide ore having a predetermined particle size by pretreating nickel oxide ore as a raw material, and the ore slurry A leaching step S1 in which sulfuric acid is added to the leached slurry and subjected to leaching treatment under high temperature and high pressure to generate a leached slurry, and a preliminary neutralization step S2 in which a pH adjuster is added to the leached slurry to adjust the pH within a predetermined range. a solid-liquid separation step S3 for separating the leachate containing impurity elements together with nickel and cobalt from the leach residue by washing the pH-adjusted leach slurry in multiple stages; a neutralization step S4 of producing a neutralized precipitate containing and separating and removing it to obtain a final neutralization solution containing zinc together with nickel and cobalt; A dezincing step S5 in which a nickel recovery mother liquor containing nickel and cobalt is obtained by separating and removing this, and hydrogen sulfide and sodium hydrosulfide are added as sulfurizing agents to the nickel recovery mother liquor to remove nickel and nickel. After producing the NiCo mixed sulfide containing cobalt, a nickel recovery step S6 for recovering the NiCo mixed sulfide by solid-liquid separation; A sulfiding agent removal step S7 in which a predetermined amount of oxidizing slurry is added to the liquid to decompose the sulfiding agent, and the poor liquid discharged by the decomposition processing is detoxified together with the leaching residue discharged from the solid-liquid separation step S3. and a final neutralization step S8 for processing. The preparation method of the embodiment of the present invention relates to the ore pretreatment step S0 in the hydrometallurgical process including a series of steps from the ore pretreatment step S0 to the final neutralization step S8. The ore pretreatment step S0 will be described in detail below.

2.鉱石前処理工程
鉱石前処理工程S0では、原料としてのニッケル酸化鉱石を粉砕・解砕した後、水を加えて湿式分級する選別工程S0と、該湿式分級の篩下側に回収した低濃度鉱石スラリーを沈降濃縮することで高濃度鉱石スラリーを得る濃縮工程S0とから構成される。具体的には、先ず原料として用意したニッケル酸化鉱石に対して、例えば蛍光X線分析装置を用いてNi品位、Fe品位等を定量分析し、原料として適切な鉱石を選別する。これにより、Niをほとんど含まない鉱石や、不純物品位が規定値よりも高い鉱石が除外される。上記の不適切な鉱石が除去された後の適切な鉱石を一旦ホッパーに投入して貯留した後、該ホッパーの底部から一定量を抜き出しながら目開き100mm程度の固定篩を用いて先ず大塊を除外し、最終的に目開き1mm程度の湿式篩で篩別するまで必要に応じて固定篩や振動篩を数段経由させる。これにより、該湿式篩の篩下側に、所定の粒度を有するニッケル酸化鉱石を含む固形分濃度10~20質量%程度の低濃度鉱石スラリーが回収される。
2. Ore pretreatment step In the ore pretreatment step S0, the nickel oxide ore as a raw material is pulverized and crushed, and then water is added to wet classify. and a concentration step S02 for obtaining a high-concentration ore slurry by sedimentation concentration of the ore slurry. Specifically, first, nickel oxide ores prepared as raw materials are quantitatively analyzed for Ni grade, Fe grade, etc., using, for example, a fluorescent X-ray analyzer, and ores suitable for raw materials are selected. As a result, ores containing almost no Ni and ores with impurity grades higher than the specified value are excluded. After the unsuitable ore has been removed, the appropriate ore is once put into a hopper and stored, and then a fixed sieve with an opening of about 100 mm is used to extract a certain amount from the bottom of the hopper, and large lumps are first filtered. It is passed through several stages of fixed sieves and vibrating sieves as necessary until it is finally sieved with a wet sieve having an opening of about 1 mm. As a result, a low-concentration ore slurry containing nickel oxide ore having a predetermined particle size and having a solid content concentration of about 10 to 20% by mass is recovered on the underside of the wet sieve.

次に、得られた低濃度鉱石スラリーの比重と固形分濃度をそれぞれ測定すると共に、蛍光X線分析装置を用いて該低濃度鉱石スラリーのNi品位とFe品位を定量分析し、必要に応じてその他の不純物品位も定量分析する。その後、該低濃度鉱石スラリーをスラリーポンプを介してシックナーのフィードウェルに導入して沈降濃縮させる。この低濃度鉱石スラリーには、水で希釈することで濃度調整された凝集剤を凝集剤ポンプを用いて添加する。その際、所定の設定流量で凝集剤が供給されるように、上記凝集剤ポンプの吸込側又は吐出側に設けた流量計で流量を測定しながら添加する。 Next, the specific gravity and solid content concentration of the resulting low-concentration ore slurry are measured, and the Ni and Fe grades of the low-concentration ore slurry are quantitatively analyzed using a fluorescent X-ray analyzer. Other impurity grades are also quantitatively analyzed. After that, the low-concentration ore slurry is introduced into the feedwell of the thickener via the slurry pump for sedimentation and concentration. A flocculant whose concentration is adjusted by diluting it with water is added to this low-concentration ore slurry using a flocculant pump. At that time, the coagulant is added while measuring the flow rate with a flow meter provided on the suction side or the discharge side of the coagulant pump so that the coagulant is supplied at a predetermined set flow rate.

上記凝集剤と共に導入された低濃度鉱石スラリーは、シックナーの沈降分離槽内において重力沈降により濃縮され、レーキにより中央部にかき集められて濃縮した高濃度鉱石スラリーとして底部中央から排出される。一方、この高濃度鉱石スラリーから分離された上澄み液は、該沈降分離槽の上端部からオーバーフローにより排出される。このようにして底部中央から抜き出される高濃度鉱石スラリーは、定期的に又は必要に応じてサンプリングされ、その比重と固形分濃度がそれぞれ測定される。 The low-concentration ore slurry introduced together with the flocculant is concentrated by gravity sedimentation in the thickener sedimentation tank, collected in the center by a rake, and discharged from the center of the bottom as a concentrated high-concentration ore slurry. On the other hand, the supernatant liquid separated from this high-concentration ore slurry is discharged from the upper end of the sedimentation tank by overflow. The high-concentration ore slurry extracted from the center of the bottom in this manner is sampled periodically or as required, and its specific gravity and solid content concentration are measured.

上記の測定結果から把握されるシックナーにおける沈降濃縮の運転状態に基づいて、凝集剤の添加量の上記設定流量の変更を行う。例えば低濃度鉱石スラリーの固形分濃度に変動がないにも変わらず高濃度鉱石スラリーの固形分濃度が低下する傾向にある場合は、凝集剤の流量設定値を高めに変更することで管理する。なお、上記の蛍光X線分析装置による定量分析で得たNi品位、Fe品位、その他の不純物品位の結果に基づいて後工程の浸出工程S1における高圧酸浸出処理の際に添加する硫酸量が定められる。 Based on the operational state of sedimentation concentration in the thickener ascertained from the above measurement results, the set flow rate of the addition amount of the flocculant is changed. For example, if the solid content concentration of the low-concentration ore slurry does not fluctuate but the solid content concentration of the high-concentration ore slurry tends to decrease, control is performed by increasing the flow rate setting value of the flocculant. The amount of sulfuric acid to be added during the high-pressure acid leaching treatment in the subsequent leaching step S1 is determined based on the results of the Ni grade, Fe grade, and other impurity grades obtained by quantitative analysis using the X-ray fluorescence spectrometer. be done.

上記凝集剤には分子量が8×10~20×10程度のポリアクリルアミドを使用するのが好ましい。この凝集剤の分子量が8×10未満では、凝集の効果が低くなってシックナー内で重力沈降に時間がかかりすぎるおそれがある。逆にこの分子量が20×10を超えると、凝集による濃縮の効果が高くなりすぎて、適切な粘度範囲に収まらなくなるおそれがある。 It is preferable to use polyacrylamide having a molecular weight of about 8×10 6 to 20×10 6 as the flocculant. If the molecular weight of this flocculant is less than 8×10 6 , the effect of flocculation may be low, and the gravitational sedimentation in the thickener may take too long. Conversely, if this molecular weight exceeds 20×10 6 , the effect of concentration by aggregation becomes too high, and there is a risk that the viscosity will not fall within the appropriate range.

また、上記の凝集剤の水での希釈による濃度調整では、凝集剤の濃度が0.010~0.050質量%となるように濃度調整するのが好ましい。この濃度が0.010質量%未満では、シックナーの沈降分離槽に装入される総液量(低濃度鉱石スラリー+水で希釈された凝集剤)の量が多くなりすぎ、十分な滞留時間が得られなくなるおそれがある。逆に、この濃度が0.050質量%より高くなると、低濃度鉱石スラリー中に含まれるニッケル酸化鉱石粒子と凝集剤とが出会う機会が減少するので好ましくない。 Further, in the concentration adjustment by diluting the flocculant with water, the concentration of the flocculant is preferably adjusted to 0.010 to 0.050% by mass. If this concentration is less than 0.010% by mass, the total amount of liquid charged into the thickener sedimentation tank (low-concentration ore slurry + flocculant diluted with water) will be too large, and the residence time will be insufficient. You may not get it. Conversely, if the concentration is higher than 0.050% by mass, chances of contact between the nickel oxide ore particles contained in the low-concentration ore slurry and the flocculant are reduced, which is not preferable.

上記の低濃度鉱石スラリーに含まれるニッケル酸化鉱石のFe品位は、一般的には48%以上53%以下の範囲内で推移している。そこで、本発明の実施形態の鉱石前処理工程S0においては、該ニッケル酸化鉱石のFe品位が50%未満の場合は該ニッケル酸化鉱石1トン当たり凝集剤を110~130g添加し、該Fe品位が50%以上の場合は該ニッケル酸化鉱石1トン当たり凝集剤を160~170g添加するように凝集剤の添加量を調整するのが好ましい。これにより、シックナーの沈降分離槽の底部中央から抜き出される高濃度鉱石スラリーの固形分濃度をより安定させることが可能になる。 The Fe grade of the nickel oxide ore contained in the low-concentration ore slurry generally changes within the range of 48% or more and 53% or less. Therefore, in the ore pretreatment step S0 of the embodiment of the present invention, when the Fe grade of the nickel oxide ore is less than 50%, 110 to 130 g of a flocculant is added per ton of the nickel oxide ore, and the Fe grade is In the case of 50% or more, it is preferable to adjust the addition amount of the flocculant so that 160 to 170 g of the flocculant is added per ton of the nickel oxide ore. This makes it possible to further stabilize the solid content concentration of the high-concentration ore slurry extracted from the center of the bottom of the sedimentation tank of the thickener.

上記の凝集剤の添加量が170g/t-Ni酸化鉱石を超える場合、濃縮後の高濃度鉱石スラリーの粘度が上昇して例えば降伏応力が100Pa以上になり、沈降分離槽の底部中央から抜き出される高濃度鉱石スラリーをスラリーポンプで良好に送液できなくなったり、該沈降分離槽の底部中央のスラリー抜出配管において閉塞しやすくなったりする等の弊害が生じるおそれがある。なお、上記のように低濃度鉱石スラリーに含まれるニッケル酸化鉱石粒子のFe品位の高低に応じてその凝集性に差違が生じる理由としては、Fe品位が高いと、より微細な鉱石が含まれる割合が高くなるためと発明者は考えている。 When the amount of the flocculant added exceeds 170 g/t-Ni oxide ore, the viscosity of the high-concentration ore slurry after concentration increases, for example, the yield stress becomes 100 Pa or more, and it is extracted from the center of the bottom of the sedimentation tank. There is a risk that the high-concentration ore slurry that is contained in the sedimentation tank will not be able to be sent satisfactorily by the slurry pump, or that the slurry extraction pipe at the center of the bottom of the sedimentation tank will become easily clogged. As described above, the reason why the cohesiveness of the nickel oxide ore particles contained in the low-concentration ore slurry varies depending on the Fe grade is that the higher the Fe grade, the more fine the ore is included. The inventor believes that this is because the

3.浸出工程
上記したように、鉱石前処理工程S0の濃縮工程S0において沈降分離槽の底部中央から抜き出される高濃度鉱石スラリーはスラリーポンプで昇圧され、オートクレーブと称する圧力容器に硫酸と共に装入され、後工程の浸出工程S1が施される。具体的には、オートクレーブ内において攪拌されながら3~4.5MPaG程度、220~280℃程度の高温高圧条件下で高圧酸浸出処理が施され、浸出液と浸出残渣とからなる浸出スラリーが生成される。この浸出工程S1によって得られた浸出スラリーに対して、前述したように、予備中和工程S2からニッケル回収工程S6までの一連の湿式処理を施すことで、ニッケルコバルト混合硫化物が生成される。
3. Leaching Step As described above, in the concentration step S02 of the ore pretreatment step S0, the highly concentrated ore slurry extracted from the center of the bottom of the sedimentation tank is pressurized by a slurry pump and charged into a pressure vessel called an autoclave together with sulfuric acid. , the subsequent leaching step S1 is performed. Specifically, while being stirred in an autoclave, a high-pressure acid leaching treatment is performed under high-temperature and high-pressure conditions of about 3 to 4.5 MPaG and about 220 to 280° C. to produce a leaching slurry consisting of a leaching solution and a leaching residue. . Nickel-cobalt mixed sulfide is produced by subjecting the leached slurry obtained in the leaching step S1 to a series of wet treatments from the preliminary neutralization step S2 to the nickel recovery step S6 as described above.

上記のように、湿式製錬法によるニッケルコバルト混合硫化物の生成では、鉱石前処理工程S0において調製される高濃度鉱石スラリーの固形分濃度は、ニッケルコバルト混合硫化物の生産性及び製造コストを左右するので重要な要件のうちの1つである。すなわち、高濃度鉱石スラリーの固形分濃度が高ければ高いほど、浸出工程S1においてオートクレーブに装入するNi量を増やすことができるので、ニッケルコバルト混合硫化物の生産性を高めることができる。 As described above, in the production of nickel-cobalt mixed sulfides by hydrometallurgy, the solid content concentration of the high-concentration ore slurry prepared in the ore pretreatment step S0 affects the productivity and production cost of nickel-cobalt mixed sulfides. It is one of the important requirements because it influences. That is, the higher the solid content concentration of the high-concentration ore slurry, the more Ni can be charged into the autoclave in the leaching step S1, so the productivity of the nickel-cobalt mixed sulfide can be increased.

一般的には、浸出工程S1において、鉱石スラリー中の遊離酸濃度を比較的高めの例えば30~60g/L程度に設定するのが好ましく、これによりニッケル等の有価金属を効率よく浸出させることができる。この場合、上記した高濃度鉱石スラリーの固形分濃度が高ければ、オートクレーブ内における滞留時間を長時間確保することができるので、遊離酸濃度が比較的低い場合であってもニッケルの浸出率を向上させることができる。但し、高濃度鉱石スラリーの固形分濃度が高すぎると、オートクレーブに装入する該高濃度鉱石スラリーをスラリーポンプで送液するのが困難になるおそれがある。従って、一般的には高濃度鉱石スラリーの固形分濃度は、40~50質量%の範囲内にあるのが好ましい。 Generally, in the leaching step S1, it is preferable to set the free acid concentration in the ore slurry to a relatively high value, for example, about 30 to 60 g/L, so that valuable metals such as nickel can be efficiently leached. can. In this case, if the solid content concentration of the high-concentration ore slurry is high, it is possible to ensure a long residence time in the autoclave, so even if the free acid concentration is relatively low, the nickel leaching rate is improved. can be made However, if the solid content concentration of the high-concentration ore slurry is too high, it may become difficult to feed the high-concentration ore slurry charged into the autoclave with a slurry pump. Therefore, it is generally preferable that the solid content concentration of the high-concentration ore slurry is in the range of 40 to 50% by mass.

なお、この浸出工程S1における高圧酸浸出処理では、浸出反応と高温熱加水分解反応が生じ、ニッケル酸化鉱石からのニッケル、コバルト等の金属元素の硫酸塩としての浸出と、浸出された硫酸鉄のヘマタイトとしての固定化が行われる。その際、鉄イオンの固定化は完全には進行しないため、通常、得られる浸出スラリーの液相部分には、ニッケル、コバルト等のほかに2価と3価の鉄イオンが含まれる。 In the high-pressure acid leaching treatment in the leaching step S1, a leaching reaction and a high-temperature thermal hydrolysis reaction occur, and metal elements such as nickel and cobalt are leached from the nickel oxide ore as sulfates, and the leached iron sulfate is converted into Immobilization as hematite takes place. At that time, iron ions are not fixed completely, so that the liquid phase portion of the obtained leaching slurry usually contains divalent and trivalent iron ions in addition to nickel, cobalt, and the like.

以上、本発明のニッケル酸化鉱石の前処理方法について実施形態を挙げて説明したが、本発明は上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更例や代替例を含みうるものである。すなわち、本発明の権利範囲は特許請求の範囲及びその均等の範囲に及ぶものである。次に、実施例を示して本発明をより具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。 Although the method for pretreating nickel oxide ore according to the present invention has been described above with reference to the embodiments, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the present invention. and alternatives. That is, the scope of rights of the present invention covers the claims and their equivalents. EXAMPLES Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.

図1に示す湿式製錬法の工程フローのうち、鉱石前処理工程の工程フローに沿って、様々な組成のニッケル酸化鉱石を前処理して高濃度鉱石スラリーを調製した。具体的には、原料のニッケル酸化鉱石を解砕した後、水を加えて湿式分級により篩下側に回収した低濃度鉱石スラリーと凝集剤とをシックナーに導入し、沈降濃縮を行った。その際、凝集剤の添加量も様々に変えながら添加した。なお、凝集剤には、分子量8×10~20×10を持つ高分子凝集剤を、水で0.2~0.3 質量%程度に希釈したものを用いた。また、該低濃度鉱石スラリー中の固形分を構成するニッケル酸化鉱石のFe品位は、蛍光X線分析装置で測定した。 Nickel oxide ores of various compositions were pretreated to prepare high-concentration ore slurries along the process flow of the ore pretreatment step in the hydrometallurgical process flow shown in FIG. Specifically, after pulverizing the raw material nickel oxide ore, water was added and the low-concentration ore slurry collected on the underside of the sieve by wet classification and the flocculant were introduced into a thickener, and sedimentation and concentration were performed. At that time, the addition amount of the flocculant was also changed variously. As the flocculant, a polymer flocculant having a molecular weight of 8×10 6 to 20×10 6 diluted with water to about 0.2 to 0.3 mass % was used. Further, the Fe grade of the nickel oxide ore constituting the solid content in the low-concentration ore slurry was measured with a fluorescent X-ray analyzer.

上記のように様々な条件で前処理した際の、凝集剤と高濃度鉱石スラリーの固形分濃度の関係を図1に示す。この図1から、ニッケル酸化鉱石のFe品位が50%未満の場合は、シックナーに導入したニッケル酸化鉱石1トン当たり凝集剤を110~130g添加したときに高濃度鉱石スラリーの固形分濃度が最大となることが分かる。また、該ニッケル酸化鉱石1トン当たり130gを超えて凝集剤を添加しても、高濃度鉱石スラリーの固形分濃度はほとんど上昇しないことが分かる。 FIG. 1 shows the relationship between the solid concentration of the flocculant and the high-concentration ore slurry when pretreated under various conditions as described above. From FIG. 1, when the Fe grade of the nickel oxide ore is less than 50%, the solid content concentration of the high-concentration ore slurry is maximum when 110 to 130 g of the flocculant is added per 1 ton of the nickel oxide ore introduced into the thickener. I know it will be. Moreover, it can be seen that even if the amount of flocculant added exceeds 130 g per ton of the nickel oxide ore, the solid content concentration of the high-concentration ore slurry hardly increases.

一方、ニッケル酸化鉱石のFe品位が50%以上の場合は、シックナーに導入したニッケル酸化鉱石1トン当たり凝集剤の添加量を160~170gまで上昇させると、高濃度鉱石スラリーの固形分濃度を高めることができることが分かる。上述のように、使用する鉱石原料のFe品位に応じて凝集剤の添加量を変更することで、高い固形分濃度を有する高濃度鉱石スラリーを安定的に得ることが可能となる。 On the other hand, when the Fe grade of nickel oxide ore is 50% or more, increasing the amount of flocculant added to 160 to 170 g per ton of nickel oxide ore introduced into the thickener increases the solid content concentration of the high-concentration ore slurry. I know it can be done. As described above, by changing the addition amount of the flocculant according to the Fe grade of the ore raw material to be used, it is possible to stably obtain a high-concentration ore slurry having a high solid content concentration.

S0 選別工程
S0 濃縮工程
S0 鉱石前処理工程
S1 浸出工程
S2 予備中和工程
S3 固液分離工程
S4 中和工程
S5 脱亜鉛工程
S6 ニッケル回収工程
S7 化剤除去工程
S8 最終中和工程
S0 1 sorting step S0 2 concentration step S0 ore pretreatment step S1 leaching step S2 preliminary neutralization step S3 solid-liquid separation step S4 neutralization step S5 dezincification step S6 nickel recovery step S7 agent removal step S8 final neutralization step

Claims (4)

湿式製錬法によりニッケルコバルト混合硫化物を生成する際の原料として用いるニッケル酸化鉱石の前処理方法であって、鉱石原料を粉砕及び/又は解砕した後に水を加えて湿式分級を行う選別工程と、該湿式分級の篩下側に回収される所定の粒度を有するニッケル酸化鉱石を含んだ低濃度鉱石スラリーを沈降濃縮することで高濃度鉱石スラリーを得る濃縮工程とからなり、前記ニッケル酸化鉱石のFe品位が50%未満の場合は該ニッケル酸化鉱石1トン当たり110~130gの凝集剤が該低濃度鉱石スラリーに添加されるように該凝集剤の添加量を調整し、該Fe品位が50%以上の場合は該ニッケル酸化鉱石1トン当たり160~170gの凝集剤が該低濃度鉱石スラリーに添加されるように該凝集剤の添加量を調整し、該凝集剤が分子量8×10 ~20×10 のポリアクリルアミドであることを特徴とするニッケル酸化鉱石の前処理方法。 A pretreatment method for nickel oxide ore used as a raw material when producing nickel-cobalt mixed sulfide by hydrometallurgical method, which comprises a sorting step in which the ore raw material is pulverized and/or crushed and then wet-classified by adding water. and a concentration step of obtaining a high-concentration ore slurry by sedimentation and concentration of the low-concentration ore slurry containing the nickel oxide ore having a predetermined particle size recovered on the lower side of the sieve of the wet classification, wherein the nickel oxide ore When the Fe grade of is less than 50%, the amount of the flocculant added is adjusted so that 110 to 130 g of the flocculant per ton of the nickel oxide ore is added to the low-concentration ore slurry, and the Fe grade is 50%. % or more, the addition amount of the flocculant is adjusted so that 160 to 170 g of the flocculant per ton of the nickel oxide ore is added to the low-concentration ore slurry , and the flocculant has a molecular weight of 8×10 6 to A pretreatment method for nickel oxide ore, characterized in that it is 20×10 6 polyacrylamide . 前記湿式製錬法は、前記高濃度鉱石スラリーに対して高圧酸浸出処理を施し、得られた浸出液に硫化水素を添加することでニッケルコバルト混合硫化物を生成するものであることを特徴とする、請求項に記載のニッケル酸化鉱石の前処理方法。 The hydrometallurgical method is characterized in that the high-concentration ore slurry is subjected to a high-pressure acid leaching treatment, and hydrogen sulfide is added to the obtained leachate to produce a nickel-cobalt mixed sulfide. , The pretreatment method for nickel oxide ore according to claim 1 . 前記低濃度鉱石スラリーの固形分濃度が10~20質量%であることを特徴とする、請求項1又は2に記載のニッケル酸化鉱石の前処理方法。 3. The method for pretreating nickel oxide ore according to claim 1 , wherein the low-concentration ore slurry has a solid content concentration of 10 to 20% by mass. 前記凝集剤は、水で0.010~0.050質量%に濃度調整されたものであることを特徴とする、請求項1~のいずれか1項に記載のニッケル酸化鉱石の前処理方法。 The pretreatment method for nickel oxide ore according to any one of claims 1 to 3 , wherein the flocculant is adjusted to a concentration of 0.010 to 0.050% by mass with water. .
JP2019082580A 2019-04-24 2019-04-24 Pretreatment method for nickel oxide ore used as raw material for hydrometallurgy Active JP7220846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019082580A JP7220846B2 (en) 2019-04-24 2019-04-24 Pretreatment method for nickel oxide ore used as raw material for hydrometallurgy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019082580A JP7220846B2 (en) 2019-04-24 2019-04-24 Pretreatment method for nickel oxide ore used as raw material for hydrometallurgy

Publications (2)

Publication Number Publication Date
JP2020180317A JP2020180317A (en) 2020-11-05
JP7220846B2 true JP7220846B2 (en) 2023-02-13

Family

ID=73023358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019082580A Active JP7220846B2 (en) 2019-04-24 2019-04-24 Pretreatment method for nickel oxide ore used as raw material for hydrometallurgy

Country Status (1)

Country Link
JP (1) JP7220846B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012153922A (en) 2011-01-25 2012-08-16 Sumitomo Metal Mining Co Ltd Method for production of ore slurry
JP2015206126A (en) 2015-07-09 2015-11-19 住友金属鉱山株式会社 Installation and method for production of ore slurry
JP2019000834A (en) 2017-06-20 2019-01-10 住友金属鉱山株式会社 Solid-liquid separation method of nickel high pressure leach residue
JP2019044208A (en) 2017-08-30 2019-03-22 住友金属鉱山株式会社 Ore slurry concentration method in nickel oxide ore refining

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2767143A1 (en) * 1997-08-06 1999-02-12 Le Nickel Sln Method for diminishing water content of nickel iron oxide pulp

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012153922A (en) 2011-01-25 2012-08-16 Sumitomo Metal Mining Co Ltd Method for production of ore slurry
JP2015206126A (en) 2015-07-09 2015-11-19 住友金属鉱山株式会社 Installation and method for production of ore slurry
JP2019000834A (en) 2017-06-20 2019-01-10 住友金属鉱山株式会社 Solid-liquid separation method of nickel high pressure leach residue
JP2019044208A (en) 2017-08-30 2019-03-22 住友金属鉱山株式会社 Ore slurry concentration method in nickel oxide ore refining

Also Published As

Publication number Publication date
JP2020180317A (en) 2020-11-05

Similar Documents

Publication Publication Date Title
JP5644878B2 (en) Solid-liquid separation treatment method and nickel oxide ore hydrometallurgy method
WO2013150642A1 (en) Method for recovering chromite, and method for wet smelting of nickel oxide ore
JP5556608B2 (en) Chromite recovery method and nickel oxide ore hydrometallurgical method
JP5692458B1 (en) Solid-liquid separation treatment method and nickel oxide ore hydrometallurgy method
WO2016181673A1 (en) Mineral ore slurry pretreatment method, and method for manufacturing mineral ore slurry
WO2013027603A1 (en) Nickel recovery loss reduction method, hydrometallurgical method for nickel oxidized ore, and sulfuration treatment system
JP2019065341A (en) Hydrometallurgical process for nickel oxide ore
JP2019044208A (en) Ore slurry concentration method in nickel oxide ore refining
JP6984191B2 (en) Solid-liquid separation method of nickel high-pressure leachate residue
JP5790839B2 (en) Chromite recovery method
JP7220846B2 (en) Pretreatment method for nickel oxide ore used as raw material for hydrometallurgy
WO2016136069A1 (en) Ore slurry pre-treatment method and ore slurry manufacturing method
JP7183503B2 (en) METHOD FOR MANUFACTURING HIGH CONCENTRATION ORE SLURRY
JP7115170B2 (en) Nickel oxide ore treatment method and nickel-cobalt mixed sulfide production method including the treatment method
JP7279546B2 (en) Nickel oxide ore leaching method and hydrometallurgical method including the same
JP7155639B2 (en) Pretreatment method for nickel oxide ore raw material
WO2020149122A1 (en) Method for manufacturing nickel/cobalt mixed sulfide from nickel oxide ore by wet smelting method
JP6977458B2 (en) Hydrometallurgical method for nickel oxide ore
JP2020117749A (en) Method for preparing ore slurry
JP2019157236A (en) Solid liquid separation treatment method, and wet refining method of nickel oxide ore
WO2022118743A1 (en) Method for preparing nickel oxide ore slurry
JP7057900B2 (en) Pretreatment method for nickel oxide ore slurry
JP6750698B2 (en) Solid-liquid separation method of nickel high pressure leaching residue
JP7127679B2 (en) Method for producing ore slurry, hydrometallurgical method for nickel oxide ore
JP7176595B1 (en) Method for producing ore slurry, hydrometallurgical method for nickel oxide ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230109

R150 Certificate of patent or registration of utility model

Ref document number: 7220846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150