JP2021044499A - Light-emitting element - Google Patents

Light-emitting element Download PDF

Info

Publication number
JP2021044499A
JP2021044499A JP2019167380A JP2019167380A JP2021044499A JP 2021044499 A JP2021044499 A JP 2021044499A JP 2019167380 A JP2019167380 A JP 2019167380A JP 2019167380 A JP2019167380 A JP 2019167380A JP 2021044499 A JP2021044499 A JP 2021044499A
Authority
JP
Japan
Prior art keywords
organic electroluminescent
layer
light emitting
dimensional
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019167380A
Other languages
Japanese (ja)
Other versions
JP7424778B2 (en
Inventor
剛 呉屋
Takeshi Kureya
剛 呉屋
健二 ▲桑▼田
健二 ▲桑▼田
Kenji Kuwata
森井 克行
Katsuyuki Morii
克行 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2019167380A priority Critical patent/JP7424778B2/en
Priority to PCT/JP2020/034130 priority patent/WO2021049532A1/en
Publication of JP2021044499A publication Critical patent/JP2021044499A/en
Application granted granted Critical
Publication of JP7424778B2 publication Critical patent/JP7424778B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

To provide a light-emitting device that can be manufactured more easily than conventional three-dimensional light sources using organic electroluminescent devices, and that can easily meet the demand for small quantities of a wide variety of products.SOLUTION: The light-emitting device has an organic electroluminescent element with a structure consisting of a plurality of layers stacked between an anode and a cathode, and a three-dimensionally shaped member that is placed in contact with the organic electroluminescent element and has at least part of its surface in the form of a curved surface.SELECTED DRAWING: None

Description

本発明は、発光素子に関する。より詳しくは、電子機器の表示部等の表示装置や照明装置等としての利用可能な発光素子に関する。 The present invention relates to a light emitting device. More specifically, the present invention relates to a light emitting element that can be used as a display device such as a display unit of an electronic device or a lighting device.

有機電界発光素子は、表示装置として用いた場合には、高輝度、高精細な表示が可能となり、液晶表示装置に比べて視野角も広い等の優れた特徴を有することから、テレビや携帯電話のディスプレイや照明装置としての利用の拡大が期待されている。また有機電界発光素子をより有効に利用するための方法についても検討がされており、照明装置として使用する場合により輝度を高めたり、輝度ムラをなくしたりするために素子上にフィルムや光学部材を配置することが開示されている(特許文献1、2参照)。また近年は、有機電界発光素子を三次元光源として利用することも検討されており、例えば、平行に並べられた複数の有機電界発光素子を曲面状のカバーで覆った光源装置が提案されている(特許文献3参照)。 When used as a display device, the organic electroluminescent element enables high-brightness and high-definition display, and has excellent features such as a wider viewing angle than a liquid crystal display device. Therefore, televisions and mobile phones Is expected to expand its use as a display and lighting device. In addition, a method for more effectively using the organic electroluminescent element is also being studied, and a film or an optical member is placed on the element in order to increase the brightness or eliminate the uneven brightness when used as a lighting device. The arrangement is disclosed (see Patent Documents 1 and 2). Further, in recent years, it has been considered to use an organic electroluminescent element as a three-dimensional light source. For example, a light source device in which a plurality of organic electroluminescent elements arranged in parallel are covered with a curved cover has been proposed. (See Patent Document 3).

特開2018−185940号公報JP-A-2018-185940 特許第6119460号公報Japanese Patent No. 6119460 特開2017−208226号公報JP-A-2017-208226

上記のように、有機電界発光素子を用いた三次元光源として、平行に並べられた複数の有機電界発光素子を曲面状のカバーで覆った光源装置が提案されているが、構造が複雑であり、また光源の形を変える場合、その形状によっては光源を構成する複数の部品の設計変更が必要となるため、少量多品種といった要求に沿うには課題が多かった。 As described above, as a three-dimensional light source using an organic electroluminescent element, a light source device in which a plurality of organic electroluminescent elements arranged in parallel are covered with a curved cover has been proposed, but the structure is complicated. In addition, when changing the shape of the light source, it is necessary to change the design of a plurality of parts constituting the light source depending on the shape, so that there are many problems in meeting the demand for small quantity and high variety.

本発明は、上記現状に鑑みてなされたものであり、従来の有機電界発光素子を用いた三次元光源に比べて簡便に製造でき、少量多品種の要求にも対応しやすい発光素子を提供することを目的とする。 The present invention has been made in view of the above situation, and provides a light emitting element that can be easily manufactured as compared with a conventional three-dimensional light source using an organic electroluminescent element and can easily meet the demands of a wide variety of small quantities. The purpose is.

本発明者は、製造が簡便で少量多品種の要求にも対応しやすい三次元光源として使用できる発光素子について検討し、有機電界発光素子に接して表面の少なくとも一部が曲面状である立体形状の部材を配置すると、製造が簡便で少量多品種の要求にも対応しやすい三次元光源が得られることを見出し、本発明に到達したものである。 The present inventor has studied a light emitting element that can be used as a three-dimensional light source that is easy to manufacture and can easily meet the demands of a wide variety of small quantities, and has a three-dimensional shape in which at least a part of the surface is curved in contact with the organic electroluminescent element. We have arrived at the present invention by finding that a three-dimensional light source that is easy to manufacture and can easily meet the demands of a wide variety of small quantities can be obtained by arranging the members of

すなわち本発明は、陽極と陰極との間に複数の層が積層された構造を有する有機電界発光素子と、該有機電界発光素子に接して配置され、表面の少なくとも一部が曲面状である立体形状の部材とを有することを特徴とする発光素子である。 That is, the present invention is an organic electroluminescent device having a structure in which a plurality of layers are laminated between an anode and a cathode, and a solid that is arranged in contact with the organic electroluminescent device and has at least a curved surface. It is a light emitting element characterized by having a member having a shape.

上記発光素子は、有機電界発光素子の光取り出し面上の少なくとも一部に、立体形状の光拡散部材が配置されていることが好ましい。 In the above-mentioned light emitting element, it is preferable that a three-dimensional light diffusing member is arranged on at least a part of the light extraction surface of the organic electroluminescent element.

上記発光素子は、有機電界発光素子の光取り出し面とは逆の面が立体形状の部材の曲面状の表面に接して配置されていることもまた好ましい。 It is also preferable that the light emitting element is arranged so that the surface opposite to the light extraction surface of the organic electroluminescent element is in contact with the curved surface of the three-dimensional member.

上記立体形状の部材は、印刷造形物であることが好ましい。 The three-dimensional member is preferably a printed object.

上記有機電界発光素子は、陽極と、基板上に形成された陰極との間に複数の層が積層された構造を有する有機電界発光素子であることが好ましい。 The organic electroluminescent device is preferably an organic electroluminescent device having a structure in which a plurality of layers are laminated between an anode and a cathode formed on a substrate.

上記有機電界発光素子は、総膜厚が200μm以下であることが好ましい。 The organic electroluminescent device preferably has a total film thickness of 200 μm or less.

本発明はまた、本発明の発光素子を含むことを特徴とする表示装置又は照明装置でもある。 The present invention is also a display device or a lighting device, which comprises the light emitting element of the present invention.

本発明の発光素子は、簡便に製造することができ、また、形状の変更も容易であるため少量多品種の要求にも対応しやすく、三次元光源が望まれる様々な用途において用いることができる。 The light emitting device of the present invention can be easily manufactured, and since the shape can be easily changed, it is easy to meet the demands of a wide variety of small quantities, and it can be used in various applications in which a three-dimensional light source is desired. ..

実施例1で作製した、有機電界発光素子上に立体形状の部材が形成された発光素子1の写真である。It is a photograph of the light emitting element 1 in which a three-dimensional member was formed on the organic electroluminescent element produced in Example 1. 実施例2で作製した、有機電界発光素子上に立体形状の部材が形成された発光素子2の写真である。It is a photograph of the light emitting element 2 in which a three-dimensional member was formed on the organic electroluminescent element produced in Example 2.

以下に本発明を詳述する。
なお、以下において記載する本発明の個々の好ましい形態を2つ以上組み合わせたものもまた、本発明の好ましい形態である。
The present invention will be described in detail below.
A combination of two or more of the individual preferred embodiments of the present invention described below is also a preferred embodiment of the present invention.

本発明の発光素子は、陽極と陰極との間に複数の層が積層された構造を有する有機電界発光素子と、該有機電界発光素子に接して配置され、表面の少なくとも一部が曲面状である立体形状の部材とを有することを特徴とする。
有機電界発光素子が光取り出し面側で立体形状の部材と接している場合、立体形状の部材が光を透過し、拡散する部材であれば、有機電界発光素子の光取り出し面からの光が立体形状の部材内部を通って立体形状の部材の表面(本発明の発光素子の表面)から放出される。ここで、光が放出される立体形状の部材の表面(すなわち、立体形状の部材の表面のうち、有機電界発光素子と接していない部分)の少なくとも一部が曲面状であれば、本発明の発光素子は三次元光源となる。
また、立体形状の部材の曲面状部分と有機電界発光素子とが接している場合、有機電界発光素子の表面が曲面状になるため、有機電界発光素子の外側表面(立体形状の部材と接している側とは逆側の面)が光取り出し面であれば、発光素子は三次元光源となる。
このように、有機電界発光素子と、表面の少なくとも一部が曲面状である立体形状の部材とを組み合わせることで三次元光源を簡便に作製することができ、立体形状の部材の形状を変更することで三次元光源の形状を容易に変更できるため、少量多品種の要求にも対応しやすい。
なお、本発明の発光素子において、表面の少なくとも一部が曲面状である立体形状の部材とは、部材全体の外形表面の少なくとも一部が肉眼で確認できる程度の大きさの曲面状部分を有する立体形状の部材を意味する。したがって、顕微鏡なければ確認できない微細な曲面(凹凸)を表面に有し、全体としては平面的な形状である光拡散板、光拡散シート等は本発明における表面の少なくとも一部が曲面状である立体形状の部材には含まれない。
また本発明の発光素子において、有機電界発光素子と一部が曲面状である立体形状の部材とが接している形態には、有機電界発光素子の面上に立体形状の部材が直接形成され、有機電界発光素子の面と立体形状の部材とが接している場合の他、後述する接着層等を介して光取り出し面と遮光部材とが接している場合も含まれる。
The light emitting device of the present invention is arranged in contact with an organic electroluminescent device having a structure in which a plurality of layers are laminated between an anode and a cathode, and the organic electroluminescent device, and at least a part of the surface is curved. It is characterized by having a member having a certain three-dimensional shape.
When the organic electroluminescent element is in contact with a three-dimensional member on the light extraction surface side, if the three-dimensional member transmits and diffuses light, the light from the light extraction surface of the organic electroluminescent element is three-dimensional. It passes through the inside of the shaped member and is emitted from the surface of the three-dimensional member (the surface of the light emitting element of the present invention). Here, if at least a part of the surface of the three-dimensional member from which light is emitted (that is, the portion of the surface of the three-dimensional member that is not in contact with the organic electroluminescent element) is curved, the present invention is used. The light emitting element is a three-dimensional light source.
Further, when the curved surface portion of the three-dimensional member is in contact with the organic electroluminescent element, the surface of the organic electroluminescent element is curved, so that the outer surface of the organic electroluminescent element (in contact with the three-dimensional member) is in contact with the organic electroluminescent element. If the surface opposite to the side on which the light is emitted is the light extraction surface, the light emitting element becomes a three-dimensional light source.
In this way, by combining the organic electroluminescent element and the three-dimensional member having at least a curved surface, a three-dimensional light source can be easily manufactured, and the shape of the three-dimensional member can be changed. As a result, the shape of the three-dimensional light source can be easily changed, so it is easy to meet the demand for a wide variety of products in small quantities.
In the light emitting element of the present invention, the three-dimensional member having at least a curved surface has a curved surface having a size such that at least a part of the outer surface of the entire member can be visually confirmed. It means a three-dimensional member. Therefore, at least a part of the surface of the light diffusing plate, the light diffusing sheet, etc., which has a fine curved surface (unevenness) that cannot be confirmed without a microscope and has a flat shape as a whole, is a curved surface in the present invention. It is not included in the three-dimensional member.
Further, in the light emitting element of the present invention, in the form in which the organic electroluminescent element and the three-dimensional member having a partially curved surface are in contact with each other, the three-dimensional member is directly formed on the surface of the organic electroluminescent element. In addition to the case where the surface of the organic electroluminescent element is in contact with the three-dimensional member, the case where the light extraction surface and the light-shielding member are in contact with each other via an adhesive layer or the like described later is also included.

上記立体形状の部材は、厚みが最も厚い部分の厚みが1mm以上であることが好ましい。このような厚みを有する部材であることで、本発明の発光素子が三次元光源としての機能をより充分に発揮することができる。最も厚い部分の厚みはより好ましくは、5mm以上であり、更に好ましくは、10mm以上である。また、立体形状の部材の製造のしやすさ等の点から、最も厚い部分の厚みは100mm以下であることが好ましい。
なお、上記立体形状の部材は、中空形状のものであってもよく、中空形状のものである場合には、部材の外形の厚みが上記値であることが好ましい。
立体形状の部材の厚みはノギス等で測定することができる。
The thickness of the thickest portion of the three-dimensional member is preferably 1 mm or more. By having a member having such a thickness, the light emitting element of the present invention can more fully exhibit the function as a three-dimensional light source. The thickness of the thickest portion is more preferably 5 mm or more, still more preferably 10 mm or more. Further, from the viewpoint of ease of manufacturing a three-dimensional member, the thickness of the thickest portion is preferably 100 mm or less.
The three-dimensional member may have a hollow shape, and when the member has a hollow shape, the thickness of the outer shape of the member is preferably the above value.
The thickness of the three-dimensional member can be measured with a caliper or the like.

上記立体形状の部材は、曲面状部分が凸型形状であることが好ましい。このような形状であることで、本発明の発光素子が三次元光源としての機能をより充分に発揮することができる。より好ましくは、立体形状の部材における凸型形状部分の端部の、立体形状の部材の厚みが最も薄い部分の厚みに対する、凸型形状部分の中央の、立体形状の部材の厚みが最も厚い部分の厚みの比が1〜1000である形状であることである。このような形状であると、発光素子が三次元光源としての機能を更に充分に発揮することができ、また、立体形状の部材の曲面状部分に沿わせて有機電界発光素子を配置することも容易である。当該比は、更に好ましくは、1〜100であり、特に好ましくは、1〜10である。
なお、ここで凸型形状部分の端部の厚みとは、凸型形状部分の最も端の厚みと、該端から凸型形状部分の中央までの長さの10分の1の長さ分だけ中央に寄った位置の厚みとの平均値を意味する。
It is preferable that the curved surface of the three-dimensional member has a convex shape. With such a shape, the light emitting element of the present invention can more fully exhibit the function as a three-dimensional light source. More preferably, the thickest portion of the three-dimensional member at the center of the convex portion with respect to the thickness of the thinnest portion of the convex portion of the three-dimensional member. The shape has a thickness ratio of 1 to 1000. With such a shape, the light emitting element can more fully exert its function as a three-dimensional light source, and the organic electroluminescent element can be arranged along the curved surface portion of the three-dimensional member. It's easy. The ratio is more preferably 1 to 100, and particularly preferably 1 to 10.
Here, the thickness of the end portion of the convex shape portion is only one tenth of the thickness of the outermost end of the convex shape portion and the length from the end to the center of the convex shape portion. It means the average value with the thickness of the position closer to the center.

また上記立体形状の部材は、曲面状部分の表面積が、有機電界発光素子の発光面積の50%以上であることが好ましい。曲面状部分がこのような大きさを有することで、発光素子が三次元光源としての機能をより充分に発揮することができる。曲面状部分の表面積は、より好ましくは有機電界発光素子の発光面積の70%以上であり、更に好ましくは90%以上である。 Further, in the three-dimensional member, the surface area of the curved surface portion is preferably 50% or more of the light emitting area of the organic electroluminescent element. When the curved surface portion has such a size, the light emitting element can more fully exhibit the function as a three-dimensional light source. The surface area of the curved surface portion is more preferably 70% or more, and further preferably 90% or more of the light emitting area of the organic electroluminescent element.

上記発光素子が、有機電界発光素子の光取り出し面上の少なくとも一部に立体形状の光拡散部材が配置され、該光拡散部材の有機電界発光素子と接していない表面の少なくとも一部が曲面状であることは、本発明の好適な実施形態の1つである。
上記のとおり、このように有機電界発光素子と立体形状の光拡散部材が配置されたものであれば、有機電界発光素子の光取り出し面からの光が立体形状の部材内部を通って立体形状の部材の曲面状表面から放出され、三次元光源となる。このような構成にすると、有機電界発光素子は平面形状のままで発光素子が三次元光源となるため、厚みがあり、曲げにくい有機電界発光素子を用いた場合でも三次元光源を得ることができる。
以下においては、この形態を本発明の発光素子の第一の実施形態ともいう。
A three-dimensional light diffusing member is arranged on at least a part of the light emitting element on the light extraction surface of the organic electroluminescent element, and at least a part of the surface of the light diffusing member that is not in contact with the organic electroluminescent element is curved. Is one of the preferred embodiments of the present invention.
As described above, if the organic electroluminescent element and the three-dimensional light diffusing member are arranged in this way, the light from the light extraction surface of the organic electroluminescent element passes through the inside of the three-dimensional member and has a three-dimensional shape. It is emitted from the curved surface of the member and becomes a three-dimensional light source. With such a configuration, the organic electroluminescent element remains in a planar shape and the light emitting element serves as a three-dimensional light source. Therefore, a three-dimensional light source can be obtained even when an organic electroluminescent element that is thick and difficult to bend is used. ..
Hereinafter, this embodiment is also referred to as a first embodiment of the light emitting device of the present invention.

上記発光素子が、有機電界発光素子の光取り出し面とは逆の面が立体形状の部材の曲面状の表面に接して配置されていることもまた、本発明の好適な実施形態の1つである。
上記のとおり、立体形状の部材の曲面状部分と、有機電界発光素子の光取り出し面とは逆の面とが接している場合、有機電界発光素子が光取り出し面側を外側にして曲面状になるため、三次元光源となる。
以下においては、この形態を本発明の発光素子の第二の実施形態ともいう。
It is also one of the preferred embodiments of the present invention that the light emitting element is arranged so that the surface opposite to the light extraction surface of the organic electroluminescent element is in contact with the curved surface of the three-dimensional member. is there.
As described above, when the curved surface portion of the three-dimensional member and the surface opposite to the light extraction surface of the organic electroluminescent element are in contact with each other, the organic electroluminescent element has a curved surface shape with the light extraction surface side facing outward. Therefore, it becomes a three-dimensional light source.
Hereinafter, this embodiment is also referred to as a second embodiment of the light emitting device of the present invention.

上記第一の実施形態の場合には、立体形状の部材が光を透過することが求められるため、可視光透過率が5%以上の材料を用いることが好ましい。より好ましくは、20%以上の材料である。
第一の実施形態の場合の材料としては、上記可視光透過率を満たす樹脂、ガラス、シリコーン等を材料として用いることが好ましい。
上記第二の実施形態の場合には、立体形状の部材が透明であることは求められない。このため、立体形状の部材の材料は特に制限されず、金属、木材、樹脂、ガラス等の様々な材料を用いることができる。
中でも、後述する立体印刷法を用いることで、様々な色や形状の部材を容易に形成することができるため、立体印刷法の材料として汎用されているABS樹脂、PLA樹脂、アクリル樹脂、エポキシ樹脂、ナイロン、ポリカーボネート、ポリオレフィン等の各種樹脂;SUS、チタン、銅、アルミニウム等の金属の中から、発光素子の実施形態に応じて適した材料を選択して用いることは、本発明の好適な実施形態の1つである。
In the case of the first embodiment, since it is required that the three-dimensional member transmits light, it is preferable to use a material having a visible light transmittance of 5% or more. More preferably, it is 20% or more of the material.
As the material in the case of the first embodiment, it is preferable to use a resin, glass, silicone or the like satisfying the visible light transmittance as the material.
In the case of the second embodiment, it is not required that the three-dimensional member is transparent. Therefore, the material of the three-dimensional member is not particularly limited, and various materials such as metal, wood, resin, and glass can be used.
Among them, ABS resin, PLA resin, acrylic resin, and epoxy resin, which are widely used as materials for the three-dimensional printing method, can be easily formed by using the three-dimensional printing method described later. , Nylon, Polycarbonate, Polycarbonate, etc .; It is a preferable practice of the present invention to select and use a suitable material from metals such as SUS, titanium, copper, aluminum, etc. according to the embodiment of the light emitting element. It is one of the forms.

上記第一の実施形態に用いる立体形状の部材の材料は、有機電界発光素子の封止材料と屈折率の差が0.01以下の材料であることが好ましい。そのような材料を用いて形成された立体形状の部材を用いることで、有機電界発光素子と立体形状の部材との界面で光の反射が起こりにくくなり、本発明の発光素子が三次元光源としてよりきれいに発光する素子となる。上記屈折率の差は、より好ましくは、0.05以下であり、更に好ましくは、0.1以下である。
立体形状の部材の材料や有機電界発光素子の封止材料の屈折率は、屈折計により確認することができる。
The material of the three-dimensional member used in the first embodiment is preferably a material having a refractive index difference of 0.01 or less from the sealing material of the organic electroluminescent element. By using a three-dimensional member formed by using such a material, light reflection is less likely to occur at the interface between the organic electroluminescent element and the three-dimensional member, and the light emitting element of the present invention can be used as a three-dimensional light source. It becomes an element that emits more beautiful light. The difference in refractive index is more preferably 0.05 or less, still more preferably 0.1 or less.
The refractive index of the material of the three-dimensional member and the sealing material of the organic electroluminescent element can be confirmed by a refractometer.

上記立体形状の部材を形成する方法は特に制限されないが、立体印刷法が好ましい。立体印刷法を用いることで、効率的に、かつ高い寸法精度で所望の立体形状の部材を形成することができる。したがって、上記立体形状の部材が、印刷造形物であることは本発明の好適な実施形態の1つである。
印刷造形物の形成には、3Dプリンタを材料に合わせて選択して用いることができる。
The method for forming the three-dimensional member is not particularly limited, but the three-dimensional printing method is preferable. By using the three-dimensional printing method, it is possible to efficiently form a member having a desired three-dimensional shape with high dimensional accuracy. Therefore, it is one of the preferred embodiments of the present invention that the three-dimensional member is a printed object.
A 3D printer can be selected and used according to the material for forming the printed matter.

本発明の発光素子が、上記第一の実施形態のものである場合、有機電界発光素子上に直接立体形状の部材を形成して製造してもよく、立体形状の部材を別に形成した後、有機電界発光素子上に配置して製造してもよい。
本発明の発光素子が、上記第二の実施形態のものである場合、立体形状の部材を別に形成した後、立体形状の部材の曲面状部分と有機電界発光素子とが接するように有機電界発光素子を配置して製造することができる。
立体形状の部材を別に形成した後、有機電界発光素子と該立体形状の部材とを接するように配置する場合、有機電界発光素子と該立体形状の部材との間に接着層を有していてもよい。
接着層を形成する材料としては、エポキシ樹脂等の、透明な接着層を形成することができる通常の接着剤等を用いることができる。本発明の発光素子が上記第一の実施形態のものである場合、立体形状の部材の材料と接着剤との屈折率の差が0.01以下であることが好ましいため、そのような接着剤を選択して用いることが好ましい。
When the light emitting device of the present invention is of the above-mentioned first embodiment, it may be manufactured by directly forming a three-dimensional member on the organic electroluminescent device, and after separately forming the three-dimensional member, the light emitting element may be manufactured. It may be manufactured by arranging it on an organic electroluminescent device.
When the light emitting element of the present invention is of the second embodiment, after forming a three-dimensional member separately, the organic electroluminescent element is in contact with the curved surface portion of the three-dimensional member and the organic electroluminescent element. The element can be arranged and manufactured.
When the three-dimensional member is separately formed and then arranged so that the organic electroluminescent element and the three-dimensional member are in contact with each other, an adhesive layer is provided between the organic electroluminescent element and the three-dimensional member. May be good.
As a material for forming the adhesive layer, an ordinary adhesive or the like capable of forming a transparent adhesive layer such as an epoxy resin can be used. When the light emitting element of the present invention is of the first embodiment, the difference in refractive index between the material of the three-dimensional member and the adhesive is preferably 0.01 or less, so such an adhesive. It is preferable to select and use.

上記有機電界発光素子は、総膜厚が200μm以下であることが好ましい。有機電界発光素子の総膜厚が200μm以下であると、有機電界発光素子を曲面形状にしやすいため、特に上記第二の実施形態に用いる有機電界発光素子として好適なものとなる。有機電界発光素子は、総膜厚は、より好ましくは、150μm以下であり、更に好ましくは、100μm以下である。有機電界発光素子は、総膜厚は、通常1000μm以上である。
有機電界発光素子の総膜厚は、デジタルノギスにより測定することができる。
The organic electroluminescent device preferably has a total film thickness of 200 μm or less. When the total thickness of the organic electroluminescent element is 200 μm or less, the organic electroluminescent element tends to have a curved surface shape, which is particularly suitable as the organic electroluminescent element used in the second embodiment. The total film thickness of the organic electroluminescent device is more preferably 150 μm or less, still more preferably 100 μm or less. The total film thickness of the organic electroluminescent device is usually 1000 μm or more.
The total film thickness of the organic electroluminescent device can be measured with a digital caliper.

以下においては、本発明の発光素子を構成する有機電界発光素子の構造や材料について記載する。
本発明の発光素子を構成する有機電界発光素子は、陽極と陰極との間に複数の有機化合物層が積層された構造を有する。本発明における有機電界発光素子の構成は特に制限されないが、陰極、電子注入層及び/又は電子輸送層、発光層、正孔輸送層及び/又は正孔注入層、陽極の各層をこの順に隣接して有する素子であることが好ましい。なお、これらの各層は、1層からなるものであってもよく、2層以上からなるものであってもよい。
上記構成の有機電界素子において、素子が電子注入層、電子輸送層のいずれか一方のみを有する場合には、当該一方の層が陰極と発光層とに隣接して積層されることになり、素子が電子注入層と電子輸送層の両方を有する場合には、陰極、電子注入層、電子輸送層、発光層の順にこれらの層が隣接して積層されることになる。また、素子が正孔輸送層、正孔注入層のいずれか一方のみを有する場合には、当該一方の層が発光層と陽極とに隣接して積層されることになり、素子が正孔輸送層と正孔注入層の両方を有する場合には、発光層、正孔輸送層、正孔注入層、陽極の順にこれらの層が隣接して積層されることになる。
Hereinafter, the structure and material of the organic electroluminescent device constituting the light emitting device of the present invention will be described.
The organic electroluminescent device constituting the light emitting device of the present invention has a structure in which a plurality of organic compound layers are laminated between an anode and a cathode. The configuration of the organic electroluminescent device in the present invention is not particularly limited, but each layer of the cathode, the electron injection layer and / or the electron transport layer, the light emitting layer, the hole transport layer and / or the hole injection layer, and the anode is adjacent to each other in this order. It is preferable that the element is provided. Each of these layers may be composed of one layer or two or more layers.
In the organic electric field element having the above configuration, when the element has only one of the electron injection layer and the electron transport layer, the one layer is laminated adjacent to the cathode and the light emitting layer, and the element When has both an electron injecting layer and an electron transporting layer, these layers are laminated adjacent to each other in the order of the cathode, the electron injecting layer, the electron transporting layer, and the light emitting layer. When the device has only one of the hole transport layer and the hole injection layer, the one layer is laminated adjacent to the light emitting layer and the anode, and the device transports holes. When both the layer and the hole injection layer are provided, these layers are laminated adjacent to each other in the order of the light emitting layer, the hole transport layer, the hole injection layer, and the anode.

上記有機電界発光素子は、基板上に陽極が形成された順構造の素子であってもよく、基板上に陰極が形成された逆構造の素子であってもよいが、基板上に形成された陰極と陽極との間に複数の層が積層された構造を有する逆構造の素子であることが好ましい。
逆構造の有機電界発光素子では、陰極に大気安定性の高い材料を用いることで基板上に陽極が形成された順構造の有機電界発光素子に比べて大気安定性の高い素子とすることができ、厳密な封止が必要でなくなるため、素子の厚みを薄くすることができる。これにより、上記第一の実施形態において、3Dプリンタを用いて有機電界発光素子上に立体形状の部材を形成する際に、より多くの様々なプリンタを支障なく使用することが可能となる。また、上記第二の実施形態においても素子の厚みが薄くなることで立体形状の部材の曲面状部分に有機電界発光素子を沿わせることが容易になる。
The organic electroluminescent device may be an element having a forward structure in which an anode is formed on a substrate, or an element having a reverse structure in which a cathode is formed on a substrate, but is formed on a substrate. It is preferable that the device has an inverted structure having a structure in which a plurality of layers are laminated between the cathode and the anode.
In an organic electroluminescent device having an inverse structure, by using a material having high atmospheric stability for the cathode, it is possible to obtain an element having higher atmospheric stability than an organic electroluminescent device having a forward structure in which an anode is formed on a substrate. Since strict sealing is not required, the thickness of the element can be reduced. This makes it possible to use more various printers without any trouble when forming a three-dimensional member on the organic electroluminescent element by using the 3D printer in the first embodiment. Further, also in the second embodiment, since the thickness of the element is reduced, it becomes easy to align the organic electroluminescent element along the curved surface portion of the three-dimensional member.

本発明の発光素子を構成する有機電界発光素子は、更に陰極と陽極との間に金属酸化物層を有する有機無機ハイブリッド型の有機電界発光素子であることが好ましい。金属酸化物を素子の材料として用いることで、素子がより連続駆動寿命や保存安定性に優れたものとなる。
本発明における有機電界発光素子は、基板上に隣接して陰極が形成され、陽極と陰極との間に金属酸化物層を有する有機無機ハイブリッド型の有機電界発光素子であって、発光層と陽極とを有し、陰極と発光層との間に、電子注入層と、必要に応じて電子輸送層とを有し、陽極と発光層との間に正孔輸送層及び/又は正孔注入層を有する構成の素子であることが好ましい。本発明における有機電界発光素子は、これらの各層の間に他の層を有していてもよいが、これらの各層のみから構成される素子であることが好ましい。すなわち、陰極、電子注入層、必要に応じて電子輸送層、発光層、正孔輸送層及び/又は正孔注入層、陽極の各層がこの順に隣接して積層された素子であることが好ましい。なお、これらの各層は、1層からなるものであってもよく、2層以上からなるものであってもよい。
The organic electroluminescent device constituting the light emitting device of the present invention is preferably an organic-inorganic hybrid type organic electroluminescent device further having a metal oxide layer between the cathode and the anode. By using the metal oxide as the material of the device, the device becomes more excellent in continuous drive life and storage stability.
The organic electroluminescent element in the present invention is an organic-inorganic hybrid type organic electroluminescent element in which a cathode is formed adjacent to a substrate and a metal oxide layer is provided between the anode and the cathode, and the light emitting layer and the anode are used. It has an electron injection layer and, if necessary, an electron transport layer between the cathode and the light emitting layer, and a hole transport layer and / or a hole injection layer between the anode and the light emitting layer. It is preferable that the element has a structure of. The organic electroluminescent device in the present invention may have another layer between each of these layers, but is preferably an element composed of only each of these layers. That is, it is preferable that the element is such that the cathode, the electron injection layer, and if necessary, the electron transport layer, the light emitting layer, the hole transport layer and / or the hole injection layer, and the anode layers are laminated adjacent to each other in this order. Each of these layers may be composed of one layer or two or more layers.

本発明の発光素子を構成する有機電界発光素子において、発光層を形成する材料としては、発光層の材料として通常用いることができるいずれの化合物も用いるができ、低分子化合物であっても高分子化合物であってもよく、これらを混合して用いてもよい。
なお、本発明において低分子材料とは、高分子材料(重合体)ではない材料を意味し、分子量が低い有機化合物を必ずしも意味するものではない。
In the organic electroluminescent element constituting the light emitting element of the present invention, any compound that can be usually used as a material of the light emitting layer can be used as the material for forming the light emitting layer, and even a low molecular weight compound is a polymer. It may be a compound, or a mixture of these may be used.
In the present invention, the low molecular weight material means a material that is not a high molecular weight material (polymer), and does not necessarily mean an organic compound having a low molecular weight.

上記発光層を形成する高分子材料としては、例えば、トランス型ポリアセチレン、シス型ポリアセチレン、ポリ(ジ−フェニルアセチレン)(PDPA)、ポリ(アルキル,フェニルアセチレン)(PAPA)のようなポリアセチレン系化合物;ポリ(パラ−フェンビニレン)(PPV)、ポリ(2,5−ジアルコキシ−パラ−フェニレンビニレン)(RO−PPV)、シアノ−置換−ポリ(パラ−フェンビニレン)(CN−PPV)、ポリ(2−ジメチルオクチルシリル−パラ−フェニレンビニレン)(DMOS−PPV)、ポリ(2−メトキシ,5−(2’−エチルヘキソキシ)−パラ−フェニレンビニレン)(MEH−PPV)のようなポリパラフェニレンビニレン系化合物;ポリ(3−アルキルチオフェン)(PAT)、ポリ(オキシプロピレン)トリオール(POPT)のようなポリチオフェン系化合物;ポリ(9,9−ジアルキルフルオレン)(PDAF)、ポリ(ジオクチルフルオレン−アルト−ベンゾチアジアゾール)(F8BT)、α,ω−ビス[N,N’−ジ(メチルフェニル)アミノフェニル]−ポリ[9,9−ビス(2−エチルヘキシル)フルオレン−2,7−ジル](PF2/6am4)、ポリ(9,9−ジオクチル−2,7−ジビニレンフルオレニル−オルト−コ(アントラセン−9,10−ジイル)のようなポリフルオレン系化合物;ポリ(パラ−フェニレン)(PPP)、ポリ(1,5−ジアルコキシ−パラ−フェニレン)(RO−PPP)のようなポリパラフェニレン系化合物;ポリ(N−ビニルカルバゾール)(PVK)のようなポリカルバゾール系化合物;ポリ(メチルフェニルシラン)(PMPS)、ポリ(ナフチルフェニルシラン)(PNPS)、ポリ(ビフェニリルフェニルシラン)(PBPS)のようなポリシラン系化合物;更には特願2010−230995号、特願2011−6457号に記載のホウ素化合物系高分子材料等が挙げられる。 Examples of the polymer material forming the light emitting layer include polyacetylene compounds such as trans-type polyacetylene, cis-type polyacetylene, poly (di-phenylacetylene) (PDPA), and poly (alkyl, phenylacetylene) (PAPA); Poly (para-phenylene) (PPV), poly (2,5-dialkoxy-para-phenylene vinylene) (RO-PPV), cyano-substituted-poly (para-phenylene) (CN-PPV), poly ( Polyparaphenylene vinylenes such as 2-dimethyloctylsilyl-para-phenylene vinylene) (DMOS-PPV), poly (2-methoxy, 5- (2'-ethylhexoxy) -para-phenylene vinylene) (MEH-PPV) Compounds; Polythiophene compounds such as poly (3-alkylthiophene) (PAT), poly (oxypropylene) triol (POPT); poly (9,9-dialkylfluorene) (PDAF), poly (dioctylfluorene-alto-benzo) Thianazol) (F8BT), α, ω-bis [N, N'-di (methylphenyl) aminophenyl] -poly [9,9-bis (2-ethylhexyl) fluorene-2,7-zil] (PF2 / 6am4) ), Poly (9,9-dioctyl-2,7-divinylenefluorenyl-ortho-co (anthracene-9,10-diyl)) polyfluorene compounds; poly (para-phenylene) (PPP), Polyparaphenylene compounds such as poly (1,5-dialkoxy-para-phenylene) (RO-PPP); polycarbazole compounds such as poly (N-vinylcarbazole) (PVK); poly (methylphenylsilane) ) (PMPS), poly (naphthylphenylsilane) (PNPS), poly (biphenylylphenylsilane) (PBPS) and other polysilane compounds; further described in Japanese Patent Application No. 2010-230995 and Japanese Patent Application No. 2011-6457. Examples include boron compound-based polymer materials.

上記発光層を形成する低分子材料としては、例えば、配位子に2,2’−ビピリジン−4,4’−ジカルボン酸を持つ、3配位のイリジウム錯体、ファクトリス(2−フェニルピリジン)イリジウム(Ir(ppy))、8−ヒドロキシキノリン アルミニウム(Alq)、トリス(4−メチル−8キノリノレート) アルミニウム(III)(Almq)、8−ヒドロキシキノリン 亜鉛(Znq)、(1,10−フェナントロリン)−トリス−(4,4,4−トリフルオロ−1−(2−チエニル)−ブタン−1,3−ジオネート)ユーロピウム(III)(Eu(TTA)(phen))、2,3,7,8,12,13,17,18−オクタエチル−21H,23H−ポルフィン プラチナム(II)のような各種金属錯体;ジスチリルベンゼン(DSB)、ジアミノジスチリルベンゼン(DADSB)のようなベンゼン系化合物;ナフタレン、ナイルレッドのようなナフタレン系化合物;フェナントレンのようなフェナントレン系化合物;クリセン、6−ニトロクリセンのようなクリセン系化合物;ペリレン、N,N’−ビス(2,5−ジ−t−ブチルフェニル)−3,4,9,10−ペリレン−ジ−カルボキシイミド(BPPC)のようなペリレン系化合物;コロネンのようなコロネン系化合物;アントラセン、ビススチリルアントラセンのようなアントラセン系化合物;ピレンのようなピレン系化合物;4−(ジ−シアノメチレン)−2−メチル−6−(パラ−ジメチルアミノスチリル)−4H−ピラン(DCM)のようなピラン系化合物;アクリジンのようなアクリジン系化合物;スチルベンのようなスチルベン系化合物;2,5−ジベンゾオキサゾールチオフェンのようなチオフェン系化合物;ベンゾオキサゾールのようなベンゾオキサゾール系化合物;ベンゾイミダゾールのようなベンゾイミダゾール系化合物;2,2’−(パラ−フェニレンジビニレン)−ビスベンゾチアゾールのようなベンゾチアゾール系化合物;ビスチリル(1,4−ジフェニル−1,3−ブタジエン)、テトラフェニルブタジエンのようなブタジエン系化合物;ナフタルイミドのようなナフタルイミド系化合物;クマリンのようなクマリン系化合物;ペリノンのようなペリノン系化合物;オキサジアゾールのようなオキサジアゾール系化合物;アルダジン系化合物;1,2,3,4,5−ペンタフェニル−1,3−シクロペンタジエン(PPCP)のようなシクロペンタジエン系化合物;キナクリドン、キナクリドンレッドのようなキナクリドン系化合物;ピロロピリジン、チアジアゾロピリジンのようなピリジン系化合物;2,2’,7,7’−テトラフェニル−9,9’−スピロビフルオレンのようなスピロ化合物;フタロシアニン(HPc)、銅フタロシアニンのような金属または無金属のフタロシアニン系化合物;更には特開2009−155325号公報および特願2010−230995号、特願2011−6458号に記載のホウ素化合物材料等が挙げられる。また、ケミプロ化成社の製品であるKHLHS−04、KHLDR−03等も用いることができる。 Examples of the low molecular weight material forming the light emitting layer include a tricoordinated iridium complex having 2,2'-bipyridine-4,4'-dicarboxylic acid as a ligand, and factories (2-phenylpyridine). Iridium (Ir (ppy) 3 ), 8-hydroxyquinolin aluminum (Alq 3 ), tris (4-methyl-8 quinolinolate) aluminum (III) (Almq 3 ), 8-hydroxyquinolin zinc (Znq 2 ), (1, 10-Phenantroline) -Tris- (4,4,4-trifluoro-1- (2-thienyl) -butane-1,3-geonate) Europium (III) (Eu (TTA) 3 (phen)), 2, Various metal compounds such as 3,7,8,12,13,17,18-octaethyl-21H, 23H-porphin platinum (II); benzenes such as distyrylbenzene (DSB), diaminodistyrylbenzene (DADSB) Phosphoric compounds; Naphthalene compounds such as naphthalene and Nile Red; Phenantren compounds such as phenanthrene; Crescent compounds such as chrysene and 6-nitrochrycene; Perylene, N, N'-bis (2,5-di-) Perylene compounds such as t-butylphenyl) -3,4,9,10-perylene-di-carboxyimide (BPPC); coronene compounds such as coronen; anthracene compounds such as anthracene and bisstyrylanthracene; Pyrene compounds such as pyrene; pyrane compounds such as 4- (di-cyanomethylene) -2-methyl-6- (para-dimethylaminostyryl) -4H-pyran (DCM); aclysine compounds such as aclysine Compounds; Stilben compounds such as Stilben; thiophene compounds such as 2,5-dibenzoxazolethiophene; benzoxazole compounds such as benzoxazole; benzoimidazole compounds such as benzoimidazole; 2,2'-( Para-phenylenedivinylene) -benzothiazole compounds such as bisbenzothiazole; butadiene compounds such as bistilyl (1,4-diphenyl-1,3-butadiene), tetraphenylbutadiene; naphthalimide such as naphthalimide Compounds; Cumarin compounds such as coumarin; Perinone compounds such as perinone; Oxaziazole compounds such as oxadiazole; Ardazine compounds; 1,2,3,4,5-pentaf Cyclopentadiene compounds such as enyl-1,3-cyclopentadiene (PPCP); quinacridone compounds such as quinacridone and quinacridone red; pyridine compounds such as spirolopyridine and thiadiazolopyridine; 2,2', 7 , 7'-Tetraphenyl-9,9'-Spiro compound such as spirobifluorene; metal or non-metallic phthalocyanine compounds such as phthalocyanine (H 2 Pc), copper phthalocyanine; Examples thereof include the boron compound materials described in Japanese Patent Application No. 2010-230995 and Japanese Patent Application No. 2011-6458. Further, KHLHS-04, KHLDR-03 and the like, which are products of Chemipro Kasei Co., Ltd., can also be used.

上記発光層の平均厚さは、特に限定されないが、10〜150nmであることが好ましい。より好ましくは、20〜100nmであり、更に好ましくは、40〜100nmである。
発光層の平均厚さは、低分子化合物の場合は水晶振動子膜厚計により、高分子化合物の場合は接触式段差計により測定することができる。
The average thickness of the light emitting layer is not particularly limited, but is preferably 10 to 150 nm. It is more preferably 20 to 100 nm, and even more preferably 40 to 100 nm.
The average thickness of the light emitting layer can be measured by a crystal oscillator film thickness meter in the case of a low molecular weight compound and by a contact type step meter in the case of a high molecular weight compound.

本発明の発光素子を構成する有機電界発光素子が、電子輸送層を有する場合、その材料としては、電子輸送層の材料として通常用いることができるいずれの化合物も用いるができ、これらを混合して用いてもよい。
電子輸送層の材料として用いることができる化合物の例としては、トリス−1,3,5−(3’−(ピリジン−3’’−イル)フェニル)ベンゼン(TmPyPhB)のようなピリジン誘導体、(2−(3−(9−カルバゾリル)フェニル)キノリン(mCQ))のようなキノリン誘導体、2−フェニル−4,6−ビス(3,5−ジピリジルフェニル)ピリミジン(BPyPPM)のようなピリミジン誘導体、ピラジン誘導体、バソフェナントロリン(BPhen)のようなフェナントロリン誘導体、2,4−ビス(4−ビフェニル)−6−(4’−(2−ピリジニル)−4−ビフェニル)−[1,3,5]トリアジン(MPT)のようなトリアジン誘導体、3−フェニル−4−(1’−ナフチル)−5−フェニル−1,2,4−トリアゾール(TAZ)のようなトリアゾール誘導体、オキサゾール誘導体、2−(4−ビフェニリル)−5−(4−tert−ブチルフェニル−1,3,4−オキサジアゾール)(PBD)のようなオキサジアゾール誘導体、2,2’,2’’−(1,3,5−ベントリイル)−トリス(1−フェニル−1−H−ベンズイミダゾール)(TPBI)のようなイミダゾール誘導体、ナフタレン、ペリレン等の芳香環テトラカルボン酸無水物、ビス[2−(2−ヒドロキシフェニル)ベンゾチアゾラト]亜鉛(Zn(BTZ))、トリス(8−ヒドロキシキノリナト)アルミニウム(Alq3)などに代表される各種金属錯体、2,5−ビス(6’−(2’,2’’−ビピリジル))−1,1−ジメチル−3,4−ジフェニルシロール(PyPySPyPy)等のシロール誘導体に代表される有機シラン誘導体等が挙げられ、これらの1種又は2種以上を用いることができる。
これらの中でも、Alqのような金属錯体、TmPyPhBのようなピリジン誘導体が好ましい。
When the organic electroluminescent device constituting the light emitting device of the present invention has an electron transport layer, any compound that can be usually used as a material for the electron transport layer can be used as the material, and these can be mixed. You may use it.
Examples of compounds that can be used as materials for the electron transport layer include pyridine derivatives such as Tris-1,3,5- (3'-(pyridine-3''-yl) phenyl) benzene (TmPyPhB). Kinolin derivatives such as 2- (3- (9-carbazolyl) phenyl) quinoline (mCQ)), pyrimidine derivatives such as 2-phenyl-4,6-bis (3,5-dipyridylphenyl) pyrimidine (BPyPPM), Pyrazine derivatives, phenanthroline derivatives such as basophenanthroline (BPhen), 2,4-bis (4-biphenyl) -6- (4'-(2-pyridinyl) -4-biphenyl)-[1,3,5] triazine Triazine derivatives such as (MPT), triazole derivatives such as 3-phenyl-4- (1'-naphthyl) -5-phenyl-1,2,4-triazole (TAZ), oxazole derivatives, 2- (4- (4- Oxaziazole derivatives such as biphenylyl) -5- (4-tert-butylphenyl-1,3,4-oxadiazole) (PBD), 2,2', 2''-(1,3,5-) Imidazole derivatives such as benzyl) -tris (1-phenyl-1-H-benzimidazole) (TPBI), aromatic ring tetracarboxylic acid anhydrides such as naphthalene and perylene, bis [2- (2-hydroxyphenyl) benzothiazolate] Various metal complexes typified by zinc (Zn (BTZ) 2 ), tris (8-hydroxyquinolinato) aluminum (Alq3), etc., 2,5-bis (6'-(2', 2''-bipyridyl)) Examples thereof include organic silane derivatives typified by syrol derivatives such as -1,1-dimethyl-3,4-diphenylsilol (PyPySPyPy), and one or more of these can be used.
Among these, a metal complex such as Alq 3 and a pyridine derivative such as TmPyPhB are preferable.

上記電子注入層としては、窒素含有化合物から形成される窒素含有膜からなる層を用いることができる。
窒素含有膜からなる層を形成する窒素含有化合物としては、例えば、ポリビニルピロリドンのようなピロリドン類、ポリピロールのようなピロール類又はポリアニリンのようなアニリン類、又はポリビニルピリジンのようなピリジン類、同様に、ピロリジン類、イミダゾール類、ピペリジン類、ピリミジン類、トリアジン類などの含窒素複素環を有する化合物や、アミン化合物が挙げられる。
As the electron injection layer, a layer made of a nitrogen-containing film formed of a nitrogen-containing compound can be used.
Examples of the nitrogen-containing compound forming the layer composed of the nitrogen-containing film include pyrrolidones such as polyvinylpyrrolidone, pyrroles such as polypyrrole or anilins such as polyaniline, and pyridines such as polyvinylpyridine. , Pyrrolidines, imidazoles, piperidines, pyrimidines, triazines and other compounds having a nitrogen-containing heterocycle, and amine compounds.

上記窒素含有化合物としてはまた、窒素含有率の高い化合物が好ましく、ポリアミン類が好ましい。ポリアミン類は、化合物を構成する全原子数に対する窒素原子数の比率が高いため、有機電界発光素子を高い電子注入性と駆動安定性を有するものとする点から適している。
ポリアミン類としては、塗布により層を形成することができるものが好ましく、低分子化合物であっても高分子化合物であってもよい。低分子化合物としては、ジエチレントリアミン、ペンタメチルジエチレントリアミンのようなポリアルキレンポリアミンが好適に用いられ、高分子化合物では、ポリアルキレンイミン構造を有する重合体が好適に用いられる。特にポリエチレンイミンが好ましい。中でも、窒素含有化合物が、ポリエチレンイミン又はジエチレントリアミンであることは本発明の好適な実施形態の1つである。
なお、ここで低分子化合物とは、高分子化合物(重合体)ではない化合物を意味し、分子量の低い化合物を必ずしも意味するものではない。
As the nitrogen-containing compound, a compound having a high nitrogen content is preferable, and polyamines are preferable. Since polyamines have a high ratio of the number of nitrogen atoms to the total number of atoms constituting the compound, they are suitable from the viewpoint of making the organic electroluminescent element have high electron injection property and drive stability.
As the polyamines, those capable of forming a layer by coating are preferable, and they may be low molecular weight compounds or high molecular weight compounds. As the low molecular weight compound, polyalkylene polyamines such as diethylenetriamine and pentamethyldiethylenetriamine are preferably used, and as the high molecular weight compound, a polymer having a polyalkyleneimine structure is preferably used. Polyethyleneimine is particularly preferable. Above all, it is one of the preferred embodiments of the present invention that the nitrogen-containing compound is polyethyleneimine or diethylenetriamine.
Here, the low molecular weight compound means a compound that is not a high molecular weight compound (polymer), and does not necessarily mean a compound having a low molecular weight.

上記窒素含有膜の平均厚さは、特に限定されないが、0.5〜10nmであることが好ましい。より好ましくは、1〜5nmであり、更に好ましくは、1〜3nmである。
発光層の平均厚さは、低分子化合物の場合は水晶振動子膜厚計により測定することができる。
The average thickness of the nitrogen-containing film is not particularly limited, but is preferably 0.5 to 10 nm. It is more preferably 1 to 5 nm, and even more preferably 1 to 3 nm.
The average thickness of the light emitting layer can be measured by a crystal oscillator film thickness meter in the case of a low molecular weight compound.

本発明の発光素子を構成する有機電界発光素子が、正孔輸送層を有する場合、正孔輸送層として用いる正孔輸送性有機材料には、各種p型の高分子材料や、各種p型の低分子材料を単独または組み合わせて用いることができる。
p型の高分子材料(有機ポリマー)としては、例えば、ポリアリールアミン、フルオレン−アリールアミン共重合体、フルオレン−ビチオフェン共重合体、ポリ(N−ビニルカルバゾール)、ポリビニルピレン、ポリビニルアントラセン、ポリチオフェン、ポリアルキルチオフェン、ポリヘキシルチオフェン、ポリ(p−フェニレンビニレン)、ポリチニレンビニレン、ピレンホルムアルデヒド樹脂、エチルカルバゾールホルムアルデヒド樹脂またはその誘導体等が挙げられる。
またこれらの化合物は、他の化合物との混合物として用いることもできる。一例として、ポリチオフェンを含有する混合物としては、ポリ(3,4−エチレンジオキシチオフェン/スチレンスルホン酸)(PEDOT/PSS)等が挙げられる。
When the organic electroluminescent device constituting the light emitting device of the present invention has a hole transport layer, the hole transporting organic material used as the hole transport layer includes various p-type polymer materials and various p-type. The electroluminescent materials can be used alone or in combination.
Examples of the p-type polymer material (organic polymer) include polyarylamine, fluorene-arylamine copolymer, fluorene-bithiophene copolymer, poly (N-vinylcarbazole), polyvinylpyrene, polyvinylanthracene, and polythiophene. Examples thereof include polyalkylthiophene, polyhexylthiophene, poly (p-phenylene vinylene), polytinylene vinylene, pyrene formaldehyde resin, ethylcarbazole formaldehyde resin or a derivative thereof.
These compounds can also be used as a mixture with other compounds. As an example, a mixture containing polythiophene includes poly (3,4-ethylenedioxythiophene / styrenesulfonic acid) (PEDOT / PSS) and the like.

上記p型の低分子材料としては、例えば、1,1−ビス(4−ジ−パラ−トリアミノフェニル)シクロへキサン、1,1’−ビス(4−ジ−パラ−トリルアミノフェニル)−4−フェニル−シクロヘキサンのようなアリールシクロアルカン系化合物、4,4’,4’’−トリメチルトリフェニルアミン、N,N,N’,N’−テトラフェニル−1,1’−ビフェニル−4,4’−ジアミン、N,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−1,1’−ビフェニル−4,4’−ジアミン(TPD1)、N,N’−ジフェニル−N,N’−ビス(4−メトキシフェニル)−1,1’−ビフェニル−4,4’−ジアミン(TPD2)、N,N,N’,N’−テトラキス(4−メトキシフェニル)−1,1’−ビフェニル−4,4’−ジアミン(TPD3)、N,N’−ジ(1−ナフチル)−N,N’−ジフェニル−1,1’−ビフェニル−4,4’−ジアミン(α−NPD)、TPTEのようなアリールアミン系化合物、N,N,N’,N’−テトラフェニル−パラ−フェニレンジアミン、N,N,N’,N’−テトラ(パラ−トリル)−パラ−フェニレンジアミン、N,N,N’,N’−テトラ(メタ−トリル)−メタ−フェニレンジアミン(PDA)のようなフェニレンジアミン系化合物、カルバゾール、N−イソプロピルカルバゾール、N−フェニルカルバゾールのようなカルバゾール系化合物、スチルベン、4−ジ−パラ−トリルアミノスチルベンのようなスチルベン系化合物、OZのようなオキサゾール系化合物、トリフェニルメタン、m−MTDATAのようなトリフェニルメタン系化合物、1−フェニル−3−(パラ−ジメチルアミノフェニル)ピラゾリンのようなピラゾリン系化合物、ベンジン(シクロヘキサジエン)系化合物、トリアゾールのようなトリアゾール系化合物、イミダゾールのようなイミダゾール系化合物、1,3,4−オキサジアゾール、2,5−ジ(4−ジメチルアミノフェニル)−1,3,4−オキサジアゾールのようなオキサジアゾール系化合物、アントラセン、9−(4−ジエチルアミノスチリル)アントラセンのようなアントラセン系化合物、フルオレノン、2,4,7−トリニトロ−9−フルオレノン、2,7−ビス(2−ヒドロキシ−3−(2−クロロフェニルカルバモイル)−1−ナフチルアゾ)フルオレノンのようなフルオレノン系化合物、ポリアニリンのようなアニリン系化合物、シラン系化合物、1,4−ジチオケト−3,6−ジフェニル−ピロロ−(3,4−c)ピロロピロールのようなピロール系化合物、フローレンのようなフローレン系化合物、ポルフィリン、金属テトラフェニルポルフィリンのようなポルフィリン系化合物、キナクリドンのようなキナクリドン系化合物、フタロシアニン、銅フタロシアニン、テトラ(t−ブチル)銅フタロシアニン、鉄フタロシアニンのような金属または無金属のフタロシアニン系化合物、銅ナフタロシアニン、バナジルナフタロシアニン、モノクロロガリウムナフタロシアニンのような金属または無金属のナフタロシアニン系化合物、N,N’−ジ(ナフタレン−1−イル)−N,N’−ジフェニル−ベンジジン、N,N,N’,N’−テトラフェニルベンジジンのようなベンジジン系化合物等が挙げられる。 Examples of the p-type low molecular weight material include 1,1-bis (4-di-para-triaminophenyl) cyclohexane and 1,1'-bis (4-di-para-trilaminophenyl)-. Arylcycloalkane compounds such as 4-phenyl-cyclohexane, 4,4', 4''-trimethyltriphenylamine, N, N, N', N'-tetraphenyl-1,1'-biphenyl-4, 4'-diamine, N, N'-diphenyl-N, N'-bis (3-methylphenyl) -1,1'-biphenyl-4,4'-diamine (TPD1), N, N'-diphenyl-N , N'-bis (4-methoxyphenyl) -1,1'-biphenyl-4,4'-diamine (TPD2), N, N, N', N'-tetrakis (4-methoxyphenyl) -1,1 '-Biphenyl-4,4'-diamine (TPD3), N, N'-di (1-naphthyl) -N, N'-diphenyl-1,1'-biphenyl-4,4'-diamine (α-NPD) ), Arylamine compounds such as TPTE, N, N, N', N'-tetraphenyl-para-phenylenediamine, N, N, N', N'-tetra (para-tolyl) -para-phenylenediamine , N, N, N', N'-tetra (meth-trill) -meth-phenylenediamine (PDA) and other phenylenediamine compounds, carbazole, N-isopropylcarbazole, N-phenylcarbazole and other carbazole compounds. , stilbene, 4-di - para - stilbene compounds such as tolyl aminostilbene, oxazole compounds, such as O x Z, triphenylmethane, triphenylmethane compounds such as m-MTDATA, 1-phenyl-3 -Pyrazoline compounds such as (para-dimethylaminophenyl) pyrazoline, benzine (cyclohexadiene) compounds, triazole compounds such as triazole, imidazole compounds such as imidazole, 1,3,4-oxadiazol, Oxaziazole compounds such as 2,5-di (4-dimethylaminophenyl) -1,3,4-oxadiazole, anthracene, anthracene compounds such as 9- (4-diethylaminostyryl) anthracene, fluorenone , 2,4,7-Trinitro-9-fluorenone, 2,7-bis (2-hydroxy-3- (2-chlorophenylcarbamoyl) -1-naphthylazo) fluorenone compounds such as fluorenone, polyani Aniline compounds such as phosphorus, silane compounds, pyrrol compounds such as 1,4-dithioketo-3,6-diphenyl-pyrrolo- (3,4-c) pyrrolopyrrole, floren compounds such as floren, Porphyrin, metal tetraphenyl Porphyrin compounds such as porphyrin, quinacridone compounds such as quinacridone, phthalocyanines, copper phthalocyanines, tetra (t-butyl) copper phthalocyanines, metal or metal-free phthalocyanines such as iron phthalocyanines, copper Metallic or metal-free naphthalocyanine compounds such as naphthalocyanine, vanadyl naphthalocyanine, monochlorogally naphthalocyanine, N, N'-di (naphthalen-1-yl) -N, N'-diphenyl-benzidine, N, N , N', N'-Benzidine-based compounds such as tetraphenylbenzidine and the like can be mentioned.

本発明の発光素子を構成する有機電界発光素子が、電子輸送層や正孔輸送層を有する場合、これらの層の平均厚さは、特に限定されないが、10〜150nmであることが好ましい。より好ましくは、20〜100nmであり、更に好ましくは、40〜100nmである。
電子輸送層や正孔輸送層の平均厚さは、低分子化合物の場合は水晶振動子膜厚計により、高分子化合物の場合は接触式段差計により測定することができる。
When the organic electroluminescent device constituting the light emitting device of the present invention has an electron transport layer and a hole transport layer, the average thickness of these layers is not particularly limited, but is preferably 10 to 150 nm. It is more preferably 20 to 100 nm, and even more preferably 40 to 100 nm.
The average thickness of the electron transport layer and the hole transport layer can be measured by a crystal oscillator film thickness meter in the case of a low molecular weight compound and by a contact type step meter in the case of a high molecular weight compound.

本発明の発光素子を構成する有機電界発光素子が金属酸化物層を有する場合、陰極から発光層までの間、陽極から発光層までの間のいずれか又は両方に金属酸化物層を有することになるが、陰極から発光層までの間との発光層から陽極までの間の両方に金属酸化物層を有することが好ましい。陰極から発光層までの間の金属酸化物層を第1の金属酸化物層、陽極から発光層までの間の金属酸化物層を第2の金属酸化物層とすると、第1の金属酸化物層は電子注入層、第2の金属酸化物層は正孔注入層として用いられることが好ましい。本発明における有機電界発光素子の好ましい素子の構成の一例を表すと、陰極、第1の金属酸化物層、窒素含有膜からなる層、発光層、正孔輸送層、第2の金属酸化物層、陽極がこの順に隣接して積層された構成である。なお、窒素含有膜からなる層と、発光層との間に必要に応じて電子輸送層を有していてもよい。金属酸化物層の重要性は、第1の金属酸化物層の方が高く、第2の金属酸化物層は、最低非占有分子軌道の極端に深い有機材料、例えば、HATCNでも置き換える事ができる。 When the organic electroluminescent element constituting the light emitting element of the present invention has a metal oxide layer, the metal oxide layer is provided in either or both of the cathode to the light emitting layer and the anode to the light emitting layer. However, it is preferable to have a metal oxide layer both between the cathode and the light emitting layer and between the light emitting layer and the anode. Assuming that the metal oxide layer between the cathode and the light emitting layer is the first metal oxide layer and the metal oxide layer between the anode and the light emitting layer is the second metal oxide layer, the first metal oxide The layer is preferably used as an electron injection layer, and the second metal oxide layer is preferably used as a hole injection layer. An example of the configuration of a preferable element of the organic electroluminescent device in the present invention is as follows: a cathode, a first metal oxide layer, a layer made of a nitrogen-containing film, a light emitting layer, a hole transport layer, and a second metal oxide layer. , The anodes are laminated adjacent to each other in this order. An electron transport layer may be provided between the layer made of the nitrogen-containing film and the light emitting layer, if necessary. The importance of the metal oxide layer is higher in the first metal oxide layer, and the second metal oxide layer can be replaced with an organic material having an extremely deep minimum unoccupied molecular orbital, for example, HATCN. ..

上記第1の金属酸化物層は、単体の金属酸化物膜の一層からなる層、もしくは、単体又は二種類以上の金属酸化物を積層及び/又は混合した層である半導体もしくは絶縁体積層薄膜の層である。金属酸化物を構成する金属元素としては、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガン、インジウム、ガリウム、鉄、コバルト、ニッケル、銅、亜鉛、カドミウム、アルミニウム、ケイ素からなる群から選ばれる。これらのうち、積層又は混合金属酸化物層を構成する金属元素の少なくとも一つが、マグネシウム、アルミニウム、カルシウム、ジルコニウム、ハフニウム、ケイ素、チタン、亜鉛からなる層であることが好ましく、その中でも単体の金属酸化物ならば、酸化マグネシウム、酸化アルミニウム、酸化ジルコニウム、酸化ハフニウム、酸化ケイ素、酸化チタン、酸化亜鉛からなる群から選ばれる金属酸化物を含むことが好ましい。 The first metal oxide layer is a semiconductor or insulator laminated thin film which is a layer composed of one layer of a single metal oxide film, or a layer in which a simple substance or two or more kinds of metal oxides are laminated and / or mixed. It is a layer. Metal elements that make up metal oxides include magnesium, calcium, strontium, barium, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, indium, gallium, iron, cobalt, nickel, and copper. , Zinc, cadmium, aluminum, silicon. Of these, at least one of the metal elements constituting the laminated or mixed metal oxide layer is preferably a layer composed of magnesium, aluminum, calcium, zirconium, hafnium, silicon, titanium, and zinc, and among them, a single metal. The oxide preferably contains a metal oxide selected from the group consisting of magnesium oxide, aluminum oxide, zirconium oxide, hafnium oxide, silicon oxide, titanium oxide, and zinc oxide.

上記単体又は二種類以上の金属酸化物を積層及び/又は混合した層の例としては、酸化チタン/酸化亜鉛、酸化チタン/酸化マグネシウム、酸化チタン/酸化ジルコニウム、酸化チタン/酸化アルミニウム、酸化チタン/酸化ハフニウム、酸化チタン/酸化ケイ素、酸化亜鉛/酸化マグネシウム、酸化亜鉛/酸化ジルコニウム、酸化亜鉛/酸化ハフニウム、酸化亜鉛/酸化ケイ素、酸化カルシウム/酸化アルミニウムなどの金属酸化物の組合せを積層及び/又は混合したものや、酸化チタン/酸化亜鉛/酸化マグネシウム、酸化チタン/酸化亜鉛/酸化ジルコニウム、酸化チタン/酸化亜鉛/酸化アルミニウム、酸化チタン/酸化亜鉛/酸化ハフニウム、酸化チタン/酸化亜鉛/酸化ケイ素、酸化インジウム/酸化ガリウム/酸化亜鉛などの三種の金属酸化物の組合せを積層及び/又は混合したものなどが挙げられる。これらの中には、特殊な組成として良好な特性を示す酸化物半導体であるIGZOやエレクトライドである12CaO・7Alも含まれる。
これら第1の金属酸化物層は、電子注入層ともいえ、また、電極(陰極)ともいえる。
なお、本発明においては、シート抵抗が100Ω/□より低い物は導電体、シート抵抗が100Ω/□より高い物は半導体または絶縁体として分類される。従って、透明電極として知られているITO(錫ドープ酸化インジウム)、ATO(アンチモンドープ酸化インジウム)、IZO(インジウムドープ酸化亜鉛)、AZO(アルミニウムドープ酸化亜鉛)、FTO(フッ素ドープ酸化インジウム)等の薄膜は、導電性が高く半導体または絶縁体の範疇に含まれないことから上記第1の金属酸化物層を構成する一層に該当しない。
Examples of the single layer or a layer in which two or more kinds of metal oxides are laminated and / or mixed are titanium oxide / zinc oxide, titanium oxide / magnesium oxide, titanium oxide / zirconium oxide, titanium oxide / aluminum oxide, titanium oxide / Laminate and / or stack combinations of metal oxides such as hafnium oxide, titanium oxide / silicon oxide, zinc oxide / magnesium oxide, zinc oxide / zirconium oxide, zinc oxide / hafnium oxide, zinc oxide / silicon oxide, calcium oxide / aluminum oxide. Mixed or titanium oxide / zinc oxide / magnesium oxide, titanium oxide / zinc oxide / zirconium oxide, titanium oxide / zinc oxide / aluminum oxide, titanium oxide / zinc oxide / hafnium oxide, titanium oxide / zinc oxide / silicon oxide, Examples thereof include laminated and / or mixed combinations of three types of metal oxides such as indium oxide / gallium oxide / zinc oxide. Among these, a IGZO and electride an oxide semiconductor having good characteristics as a special composition 12CaO · 7Al 2 O 3 are also included.
These first metal oxide layers can be said to be electron injection layers and also electrodes (cathodes).
In the present invention, a material having a sheet resistance lower than 100Ω / □ is classified as a conductor, and a material having a sheet resistance higher than 100Ω / □ is classified as a semiconductor or an insulator. Therefore, ITO (tin-doped indium oxide), ATO (antimon-doped indium oxide), IZO (indium-doped zinc oxide), AZO (aluminum-doped zinc oxide), FTO (fluorine-doped indium oxide), etc., which are known as transparent electrodes, are used. Since the thin film has high conductivity and is not included in the category of semiconductor or insulator, it does not correspond to the layer constituting the first metal oxide layer.

また上記第1の金属酸化物層は、金属酸化物の層を含む限り、金属酸化物の層と金属単体の層とが積層したものであってもよい。
金属酸化物を構成する元素は上記のとおりである。
金属単体の層の材料となる金属としては、銀、パラジウム等が挙げられ、これらの1種又は2種以上を用いることができる。
Further, the first metal oxide layer may be a laminate of a metal oxide layer and a single metal layer as long as the metal oxide layer is included.
The elements constituting the metal oxide are as described above.
Examples of the metal used as the material for the layer of the metal alone include silver, palladium, and the like, and one or more of these can be used.

上記第1の金属酸化物層が、金属酸化物の層と金属単体の層とが積層したものである場合、金属酸化物の層と金属単体の層とが交互に積層したものであることが好ましい。この場合、金属酸化物の層と金属単体の層の数は、金属酸化物の層が2層であり、金属単体の層が1層であることが好ましい。すなわち、1つの金属単体の層が2つの金属酸化物の層に挟まれた構造が好ましい。 When the first metal oxide layer is a layer of a metal oxide layer and a layer of a single metal, the layer of the metal oxide and the layer of a single metal may be alternately laminated. preferable. In this case, the number of the metal oxide layer and the metal single layer is preferably two layers of the metal oxide layer and one layer of the single metal layer. That is, a structure in which one metal simple substance layer is sandwiched between two metal oxide layers is preferable.

上記第2の金属酸化物層を形成する金属酸化物としては、特に制限されないが、酸化バナジウム(V)、酸化モリブテン(MoO)、酸化タングステン(WO)、酸化ルテニウム(RuO)等の1種又は2種以上を用いることができる。これらの中でも、酸化バナジウム又は酸化モリブテンを主成分とするものが好ましい。第2の金属酸化物層が酸化バナジウム又は酸化モリブテンを主成分とするものにより構成されると、第2の金属酸化物層が陽極から正孔を注入して発光層又は正孔輸送層へ輸送するという正孔注入層としての機能により優れたものとなる。また、酸化バナジウム又は酸化モリブテンは、それ自体の正孔輸送性が高いため、陽極から発光層又は正孔輸送層への正孔の注入効率が低下するのを好適に防止することもできるという利点がある。より好ましくは、酸化バナジウム及び/又は酸化モリブテンから構成されるものである。 The metal oxide forming the second metal oxide layer is not particularly limited, but is limited to vanadium oxide (V 2 O 5 ), molybdenum oxide (MoO 3 ), tungsten oxide (WO 3 ), and ruthenium oxide (RuO 2). ) Etc., or two or more types can be used. Among these, those containing vanadium oxide or molybdenum oxide as a main component are preferable. When the second metal oxide layer is composed mainly of vanadium oxide or molybdenum oxide, the second metal oxide layer injects holes from the anode and transports them to the light emitting layer or the hole transport layer. It becomes more excellent due to its function as a hole injection layer. Further, since vanadium oxide or molybdenum oxide has high hole transporting property itself, it has an advantage that it is possible to preferably prevent a decrease in the injection efficiency of holes from the anode into the light emitting layer or the hole transporting layer. There is. More preferably, it is composed of vanadium oxide and / or molybdenum oxide.

上記第1の金属酸化物層の平均厚さは、1nmから数μm程度まで許容できるが、低電圧で駆動できる有機電界発光素子とする点から、1〜1000nmであることが好ましい。より好ましくは、2〜100nmである。
上記第2の金属酸化物層の平均厚さは、特に限定されないが、1〜1000nmであることが好ましい。より好ましくは、5〜50nmである。
第1の金属酸化物層の平均厚さは、触針式段差計、分光エリプソメトリーにより測定することができる。
第2の金属酸化物層の平均厚さは、水晶振動子膜厚計により成膜時に測定することができる。
The average thickness of the first metal oxide layer is acceptable from 1 nm to several μm, but is preferably 1 to 1000 nm from the viewpoint of an organic electroluminescent device that can be driven at a low voltage. More preferably, it is 2 to 100 nm.
The average thickness of the second metal oxide layer is not particularly limited, but is preferably 1 to 1000 nm. More preferably, it is 5 to 50 nm.
The average thickness of the first metal oxide layer can be measured by a stylus type step meter and spectroscopic ellipsometry.
The average thickness of the second metal oxide layer can be measured at the time of film formation with a crystal oscillator film thickness meter.

本発明の発光素子を構成する有機電界発光素子において、陽極及び陰極としては、公知の導電性材料を適宜用いることができるが、光取り出しのために少なくともいずれか一方は透明であることが好ましい。公知の透明導電性材料の例としてはITO(錫ドープ酸化インジウム)、ATO(アンチモンドープ酸化インジウム)、IZO(インジウムドープ酸化亜鉛)、AZO(アルミニウムドープ酸化亜鉛)、FTO(フッ素ドープ酸化インジウム)などが上げられる。不透明な導電性材料の例としては、カルシウム、マグネシウム、アルミニウム、錫、インジウム、銅、銀、金、白金やこれらの合金などが挙げられる。
陰極としては、この中でも、ITO、IZO、FTOが好ましい。
陽極としては、これらの中でも、Au、Ag、Alが好ましい。
上記のように、一般に陽極に用いられる金属を陰極及び陽極に用いる事ができる事から、上部電極からの光の取り出しを想定する場合(トップエミッション構造の場合)も容易に実現でき、上記電極を種々選んでそれぞれの電極に用いる事ができる。例えば、下部電極としてAl、上部電極にITOなどである。逆構造の有機ELでは、大気安定性の高いITOを陰極に用いることができるため、大気安定性が高く、素子寿命の長い素子とすることができる。
In the organic electroluminescent device constituting the light emitting device of the present invention, known conductive materials can be appropriately used as the anode and the cathode, but it is preferable that at least one of them is transparent for light extraction. Examples of known transparent conductive materials include ITO (tin-doped indium oxide), ATO (antimon-doped indium oxide), IZO (indium-doped zinc oxide), AZO (aluminum-doped zinc oxide), and FTO (fluorine-doped indium oxide). Is raised. Examples of opaque conductive materials include calcium, magnesium, aluminum, tin, indium, copper, silver, gold, platinum and alloys thereof.
Among these, ITO, IZO, and FTO are preferable as the cathode.
Among these, Au, Ag, and Al are preferable as the anode.
As described above, since the metal generally used for the anode can be used for the cathode and the anode, it is possible to easily realize the case where light is taken out from the upper electrode (in the case of the top emission structure), and the above electrode can be used. It can be selected in various ways and used for each electrode. For example, Al is used as the lower electrode, ITO is used as the upper electrode, and the like. In an organic EL having a reverse structure, ITO having high atmospheric stability can be used as a cathode, so that the device can have high atmospheric stability and a long device life.

上記陰極の平均厚さは、特に制限されないが、10〜500nmであることが好ましい。より好ましくは、100〜200nmである。陰極の平均厚さは、触針式段差計、分光エリプソメトリーにより測定することができる。
上記陽極の平均厚さは、特に限定されないが、10〜1000nmであることが好ましい。より好ましくは、30〜150nmである。また、不透過な材料を用いる場合でも、例えば平均厚さを10〜30nm程度にすることで、トップエミッション型及び透明型の陽極として使用することができる。
陽極の平均厚さは、水晶振動子膜厚計により成膜時に測定することができる。
The average thickness of the cathode is not particularly limited, but is preferably 10 to 500 nm. More preferably, it is 100 to 200 nm. The average thickness of the cathode can be measured by a stylus profilometer or spectroscopic ellipsometry.
The average thickness of the anode is not particularly limited, but is preferably 10 to 1000 nm. More preferably, it is 30 to 150 nm. Even when an opaque material is used, it can be used as a top emission type or transparent type anode by setting the average thickness to about 10 to 30 nm, for example.
The average thickness of the anode can be measured at the time of film formation with a crystal oscillator film thickness meter.

本発明における有機電界発光素子において、有機化合物から形成される層の成膜方法は特に限定されず、材料の特性に合わせて種々の方法を適宜用いることができるが、溶液にして塗布できる場合はスピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、スリットコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法等の各種塗布法を用いて成膜することができる。このうち、膜厚をより制御しやすいという点でスピンコート法やスリットコート法が好ましい。塗布しない場合や溶媒溶解性が低い場合は真空蒸着法や、ESDUS(Evaporative Spray Deposition from Ultra−dilute Solution)法などが好適な例として挙げられる。 In the organic electroluminescent element of the present invention, the method for forming a layer formed of an organic compound is not particularly limited, and various methods can be appropriately used according to the characteristics of the material, but when it can be applied as a solution, it can be applied. Spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, slit coating method, dip coating method, spray coating method, screen printing method, flexographic printing method, offset printing. The film can be formed by using various coating methods such as a printing method and an inkjet printing method. Of these, the spin coating method and the slit coating method are preferable because the film thickness can be more easily controlled. When not coated or when the solvent solubility is low, a vacuum vapor deposition method, an ESDUS (Evaporative Spray Deposition Solution from Ultra-dilute Solution) method and the like can be mentioned as preferable examples.

上記有機化合物から形成される層を、有機化合物溶液を塗布して形成する場合、有機化合物を溶解するために用いる溶媒としては、例えば、硝酸、硫酸、アンモニア、過酸化水素、水、二硫化炭素、四塩化炭素、エチレンカーボネイト等の無機溶媒や、メチルエチルケトン(MEK)、アセトン、ジエチルケトン、メチルイソブチルケトン(MIBK)、メチルイソプロピルケトン(MIPK)、シクロヘキサノン等のケトン系溶媒、メタノール、エタノール、イソプロパノール、エチレングリコール、ジエチレングリコール(DEG)、グリセリン等のアルコール系溶媒、ジエチルエーテル、ジイソプロピルエーテル、1,2−ジメトキシエタン(DME)、1,4−ジオキサン、テトラヒドロフラン(THF)、テトラヒドロピラン(THP)、アニソール、ジエチレングリコールジメチルエーテル(ジグリム)、ジエチレングリコールエチルエーテル(カルビトール)等のエーテル系溶媒、メチルセロソルブ、エチルセロソルブ、フェニルセロソルブ等のセロソルブ系溶媒、ヘキサン、ペンタン、ヘプタン、シクロヘキサン等の脂肪族炭化水素系溶媒、トルエン、キシレン、ベンゼン等の芳香族炭化水素系溶媒、ピリジン、ピラジン、フラン、ピロール、チオフェン、メチルピロリドン等の芳香族複素環化合物系溶媒、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMA)等のアミド系溶媒、クロロベンゼン、ジクロロメタン、クロロホルム、1,2−ジクロロエタン等のハロゲン化合物系溶媒、酢酸エチル、酢酸メチル、ギ酸エチル等のエステル系溶媒、ジメチルスルホキシド(DMSO)、スルホラン等の硫黄化合物系溶媒、アセトニトリル、プロピオニトリル、アクリロニトリル等のニトリル系溶媒、ギ酸、酢酸、トリクロロ酢酸、トリフルオロ酢酸等の有機酸系溶媒のような各種有機溶媒、または、これらを含む混合溶媒等が挙げられる。
これらの中でも、溶媒としては、非極性溶媒が好適であり、例えば、キシレン、トルエン、シクロヘキシルベンゼン、ジハイドロベンゾフラン、トリメチルベンゼン、テトラメチルベンゼン等の芳香族炭化水素系溶媒、ピリジン、ピラジン、フラン、ピロール、チオフェン、メチルピロリドン等の芳香族複素環化合物系溶媒、ヘキサン、ペンタン、ヘプタン、シクロヘキサン等の脂肪族炭化水素系溶媒等が挙げられ、これらを単独または混合して用いることができる。
When the layer formed from the above organic compound is formed by applying an organic compound solution, the solvent used for dissolving the organic compound is, for example, nitrate, sulfuric acid, ammonia, hydrogen peroxide, water, carbon disulfide. , Inorganic solvents such as carbon tetrachloride, ethylene carbonate, ketone solvents such as methyl ethyl ketone (MEK), acetone, diethyl ketone, methyl isobutyl ketone (MIBK), methyl isopropyl ketone (MICK), cyclohexanone, methanol, ethanol, isopropanol, Alcohol-based solvents such as ethylene glycol, diethylene glycol (DEG) and glycerin, diethyl ether, diisopropyl ether, 1,2-dimethoxyethane (DME), 1,4-dioxane, tetrahydrofuran (THF), tetrahydropyran (THP), anisole, Ether-based solvents such as diethylene glycol dimethyl ether (digrim) and diethylene glycol ethyl ether (carbitol), cellosolve-based solvents such as methyl cellosolve, ethyl cellosolve, and phenyl cellosolve, aliphatic hydrocarbon solvents such as hexane, pentane, heptane, and cyclohexane, and toluene. , Aromatic hydrocarbon solvents such as xylene, benzene, aromatic heterocyclic solvents such as pyridine, pyrazine, furan, pyrrol, thiophene, methylpyrrolidone, N, N-dimethylformamide (DMF), N, N-dimethyl Amid solvents such as acetoamide (DMA), halogen compound solvents such as chlorobenzene, dichloromethane, chloroform, 1,2-dichloroethane, ester solvents such as ethyl acetate, methyl acetate and ethyl formate, dimethyl sulfoxide (DMSO), sulfolane and the like. Sulfur compound solvent, nitrile solvent such as acetonitrile, propionitrile, acrylonitrile, various organic solvents such as organic acid solvent such as formic acid, acetic acid, trichloroacetic acid, trifluoroacetic acid, or mixed solvent containing these. Can be mentioned.
Among these, non-polar solvents are preferable as the solvent, and for example, aromatic hydrocarbon solvents such as xylene, toluene, cyclohexylbenzene, dihydrobenzofuran, trimethylbenzene, and tetramethylbenzene, pyridine, pyrazine, furan, Examples thereof include aromatic heterocyclic solvent such as pyrrole, thiophene and methylpyrrolidone, and aliphatic hydrocarbon solvent such as hexane, pentane, heptane and cyclohexane, and these can be used alone or in combination.

上記陰極、陽極、及び、酸化物層は、スパッタ法、真空蒸着法、ゾルゲル法、スプレー熱分解(SPD)法、原子層堆積(ALD)法、気相成膜法、液相成膜法等により形成することができる。陽極、陰極の形成には、金属箔の接合も用いることができる。これらの方法は各層の材料の特性に応じて選択するのが好ましく、層ごとに作製方法が異なっていても良い。第2の金属酸化物層は、これらの中でも、気相製膜法を用いて形成するのがより好ましい。気相製膜法によれば、有機化合物層の表面を壊すことなく清浄にかつ陽極と接触よく形成することができ、その結果、上述したような第2の金属酸化物層を有することによる効果がより顕著なものとなる。 The cathode, anode, and oxide layer are formed by a sputtering method, a vacuum deposition method, a sol-gel method, a spray pyrolysis (SPD) method, an atomic layer deposition (ALD) method, a vapor phase deposition method, a liquid phase deposition method, or the like. Can be formed by A metal foil bond can also be used to form the anode and cathode. These methods are preferably selected according to the characteristics of the material of each layer, and the production method may be different for each layer. Among these, the second metal oxide layer is more preferably formed by using a vapor phase film forming method. According to the vapor phase film forming method, the organic compound layer can be formed cleanly and in good contact with the anode without damaging the surface, and as a result, the effect of having the second metal oxide layer as described above is obtained. Becomes more prominent.

上記有機電界発光素子の特性をさらに向上させる等の理由から、必要に応じて例えば正孔阻止層、電子阻止層などを有していてもよい。これらの層を形成するための材料としては、これらの層を形成するために通常用いられる材料を用い、また、これらの層を形成するために通常用いられる方法により層を形成することができる。 For the reason of further improving the characteristics of the organic electroluminescent device, for example, a hole blocking layer, an electron blocking layer, or the like may be provided, if necessary. As the material for forming these layers, a material usually used for forming these layers can be used, and the layers can be formed by a method usually used for forming these layers.

また、積層構造の最後の電極を形成した後に、表面を保護するパッシベーション層をその上に形成してもよい。パッシベーション層の材料としてはこれらの層を形成するために通常用いられる材料を用いることができる。例えば、上述した正孔輸送層の材料及び/又は金属酸化物層の材料を用いることができるが、絶縁を保持できる組み合わせであればこれに限らない。 Further, after forming the final electrode of the laminated structure, a passivation layer for protecting the surface may be formed on the passivation layer. As the material of the passivation layer, a material usually used for forming these layers can be used. For example, the material of the hole transport layer and / or the material of the metal oxide layer described above can be used, but the combination is not limited as long as it can maintain insulation.

上記パッシベーション層の平均厚さは、特に制限されないが、20〜300nmであることが好ましい。より好ましくは、50〜200nmである。
パッシベーション層の平均厚さは、水晶振動子膜厚計により成膜時に測定することができる。
The average thickness of the passivation layer is not particularly limited, but is preferably 20 to 300 nm. More preferably, it is 50 to 200 nm.
The average thickness of the passivation layer can be measured at the time of film formation with a crystal oscillator film thickness meter.

本発明の発光素子を構成する有機電界発光素子において、基板の材料としては、樹脂材料、ガラス材料等が挙げられる。
基板に用いられる樹脂材料としては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、シクロオレフィンポリマー、ポリアミド、ポリエーテルサルフォン、ポリメチルメタクリレート、ポリカーボネート、ポリアリレート等が挙げられる。基板の材料として、樹脂材料を用いた場合、柔軟性に優れた有機電界発光素子が得られる。
基板に用いられるガラス材料としては、石英ガラス、ソーダガラス等が挙げられる。
In the organic electroluminescent device constituting the light emitting device of the present invention, examples of the substrate material include a resin material and a glass material.
Examples of the resin material used for the substrate include polyethylene terephthalate, polyethylene naphthalate, polypropylene, cycloolefin polymer, polyamide, polyether sulfone, polymethylmethacrylate, polycarbonate, polyarylate and the like. When a resin material is used as the substrate material, an organic electroluminescent device having excellent flexibility can be obtained.
Examples of the glass material used for the substrate include quartz glass and soda glass.

上記基板の平均厚さは、10〜150μmであることが好ましい。より好ましくは、10〜50μmである。
基板の平均厚さはデジタルノギスにより測定することができる。
The average thickness of the substrate is preferably 10 to 150 μm. More preferably, it is 10 to 50 μm.
The average thickness of the substrate can be measured with a digital caliper.

上記有機電界発光素子は、パッシベーション層の上に更に封止層を有していてもよい。封止層を形成する材料としては上記基板の材料と同様のものを用いることができ、封止層の厚みも上記基板の厚みと同様であることが好ましい。 The organic electroluminescent device may further have a sealing layer on the passivation layer. As the material for forming the sealing layer, the same material as that of the substrate can be used, and it is preferable that the thickness of the sealing layer is also the same as the thickness of the substrate.

本発明の発光素子を構成する有機電界発光素子に封止を施す場合、封止工程としては、通常の方法を適宜使用できる。例えば、不活性ガス中で封止容器を接着する方法や、有機電界発光素子の上に直接封止膜を形成する方法などが挙げられる。これらに加えて、水分吸収材を封入する方法を併用してもよい。
上述した逆構造の有機電界発光素子は、順構造の有機電界発光素子に比べると厳密な封止は必要ないが、必要であれば封止を施しても良い。
When sealing the organic electroluminescent device constituting the light emitting device of the present invention, a usual method can be appropriately used as the sealing step. For example, a method of adhering a sealing container in an inert gas, a method of forming a sealing film directly on an organic electroluminescent device, and the like can be mentioned. In addition to these, a method of encapsulating a moisture absorbing material may be used in combination.
The above-mentioned reverse-structured organic electroluminescent device does not require strict sealing as compared with the forward-structured organic electroluminescent device, but may be sealed if necessary.

上記有機電界発光素子は、基板がある側とは反対側に光を取り出す(すなわち、基板がある側とは反対側が光取り出し面である)トップエミッション型のものであってもよく、基板がある側に光を取り出す(すなわち、基板がある側が光取り出し面である)ボトムエミッション型のものであってもよい。 The organic electroluminescent device may be a top emission type device that extracts light to the side opposite to the side where the substrate is located (that is, the side opposite to the side where the substrate is located is the light extraction surface), and has the substrate. It may be a bottom emission type that extracts light to the side (that is, the side where the substrate is located is the light extraction surface).

本発明の発光素子は、三次元光源として好適に用いることができる素子であって、表示装置や照明装置等に好適に用いることができる。このような本発明の発光素子を含む表示装置や照明装置もまた、本発明の1つである。 The light emitting element of the present invention is an element that can be suitably used as a three-dimensional light source, and can be suitably used for a display device, a lighting device, or the like. A display device or a lighting device including such a light emitting element of the present invention is also one of the present inventions.

以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

1.有機電界発光素子の作製
(製造例1)
以下に示す方法により、有機電界発光素子1を製造した。
[工程1]
基板1として、尾池工業から購入した厚さ25μmのバリア層付PETフィルム上に、日本化薬製のSU−8をスピンコートにより塗布し、100℃に加熱されたホットプレート上でベークした。
[工程2]
基板1をスパッタリング装置にセットし、基板1上に、亜鉛金属をターゲットとし、反応ガスとして酸素をキャリアガスとしてアルゴンを用いたスパッタ法により、平均厚さ20nmの酸化亜鉛(ZnO)層を形成した。その後、真空蒸着装置にセットし、平均厚さ8nmの銀層を形成した。その後、再びスパッタリング装置にセットし、平均厚さ2nmの酸化亜鉛層を形成した。基板1を大気下に移し、ホットプレートにより100℃30分アニールを行うことで、透明電極2と酸化物層3を形成した。
[工程3]
次に、日本触媒製ポリエチレンイミンを酸化物層3の上にスピンコートにより塗布し、電子注入層4を形成した。電子注入層4の平均厚さは、2nmであった。
[工程4]
次に、電子注入層4までの各層が形成された基板1を、真空蒸着装置の基板ホルダーに固定した。また、ケミプロ化成より購入したKHLHS−04、KHLDR−03、下記式(1)で示されるN,N’−ジ(1−ナフチル)−N,N’−ジフェニル−1,1’−ビフェニル−4,4’−ジアミン(α−NPD)をそれぞれアルミナルツボに入れて蒸着源にセットした。そして、真空蒸着装置内を約1×10−5Paの圧力となるまで減圧して、KHLHS−04を10nm蒸着し、電子輸送層5を形成した。次にKHLHS−04、α−NPDをホスト材料、KHLDR−03を発光ドーパントとして15nm共蒸着し、発光層6を成膜した。 次に、α−NPDを40nm蒸着することにより、正孔輸送層7を成膜した。さらに、三酸化モリブデンMoOを真空一貫で蒸着することにより成膜し、膜厚が10nmの正孔注入層8を形成した。
[工程5]
次に、正孔注入層8まで形成した基板1上に、アルミニウム(陽極9)を膜厚が70nmとなるように蒸着した。
[工程6]
次に、陽極9まで形成した基板1上にα−NPDを100nm蒸着し、続いてスパッタリング装置で酸化亜鉛を20nm成膜することで、パッシベーション層10を得た。
[工程7]
次にパッシベーション層10まで形成した基板1をグローブボックスに輸送し、基板1上にスリーボンド製TB1655、尾池工業から購入した厚さ25μmのバリア層付PETフィルムをそれぞれ積層し、90℃に加熱されたホットプレート上で1時間アニールすることにより、封止層11を形成し、「有機電界発光素子1」を得た。
ミツトヨ製デジマチックインジケーター、ID−C112ABにより得られた有機電界発光素子1の厚みを測定したところ、総膜厚は72μmであった。
1. 1. Fabrication of Organic Electroluminescent Device (Manufacturing Example 1)
The organic electroluminescent device 1 was manufactured by the method shown below.
[Step 1]
As the substrate 1, SU-8 manufactured by Nippon Kayaku Co., Ltd. was applied by spin coating on a PET film with a barrier layer having a thickness of 25 μm purchased from Oike Kogyo, and baked on a hot plate heated to 100 ° C.
[Step 2]
The substrate 1 was set in a sputtering apparatus, and a zinc oxide (ZnO) layer having an average thickness of 20 nm was formed on the substrate 1 by a sputtering method using zinc metal as a target and argon as a carrier gas as a reaction gas. .. Then, it was set in a vacuum vapor deposition apparatus to form a silver layer having an average thickness of 8 nm. Then, it was set in the sputtering apparatus again to form a zinc oxide layer having an average thickness of 2 nm. The substrate 1 was moved to the atmosphere and annealed on a hot plate at 100 ° C. for 30 minutes to form the transparent electrode 2 and the oxide layer 3.
[Step 3]
Next, polyethyleneimine manufactured by Nippon Shokubai was applied onto the oxide layer 3 by spin coating to form an electron injection layer 4. The average thickness of the electron injection layer 4 was 2 nm.
[Step 4]
Next, the substrate 1 on which each layer up to the electron injection layer 4 was formed was fixed to the substrate holder of the vacuum vapor deposition apparatus. In addition, KHLHS-04 and KHLDR-03 purchased from Chemipro Kasei, N, N'-di (1-naphthyl) -N, N'-diphenyl-1,1'-biphenyl-4 represented by the following formula (1). , 4'-Diamine (α-NPD) were placed in the alumina crucible and set in the vapor deposition source. Then, the pressure inside the vacuum vapor deposition apparatus was reduced to about 1 × 10 −5 Pa, and KHLHS-04 was vapor-deposited at 10 nm to form an electron transport layer 5. Next, KHLHS-04 and α-NPD were used as host materials, and KHLDR-03 was used as a light emitting dopant to co-deposit at 15 nm to form a light emitting layer 6. Next, the hole transport layer 7 was formed by depositing α-NPD at 40 nm. Further, molybdenum trioxide MoO 3 was formed by vapor deposition in a vacuum-consistent manner to form a hole injection layer 8 having a film thickness of 10 nm.
[Step 5]
Next, aluminum (anode 9) was deposited on the substrate 1 on which the hole injection layer 8 was formed so that the film thickness was 70 nm.
[Step 6]
Next, α-NPD was deposited at 100 nm on the substrate 1 formed up to the anode 9, and then zinc oxide was deposited at 20 nm with a sputtering apparatus to obtain a passivation layer 10.
[Step 7]
Next, the substrate 1 formed up to the passivation layer 10 was transported to the glove box, and TB1655 manufactured by ThreeBond and a PET film with a barrier layer having a thickness of 25 μm purchased from Oike Kogyo were laminated on the substrate 1 and heated to 90 ° C. The sealing layer 11 was formed by annealing on a hot plate for 1 hour to obtain an "organic electroluminescent element 1".
When the thickness of the organic electroluminescent device 1 obtained by Mitutoyo's digital indicator ID-C112AB was measured, the total film thickness was 72 μm.

Figure 2021044499
Figure 2021044499

2.有機電界発光素子と立体形状の部材とを有する発光素子の作製
(実施例1)
製造例1で作製した有機電界発光素子1上に、XYZプリンティング社製の3Dプリンター、ノーベル1.0を用い、クリア色の標準レジンを材料として3Dプリントし、図1に示す写真の様な、厚さ約65mm、幅約45mmの柱が多数組み合わさった形状の3D曲面を有する立体形状の部材を造形することで、曲面表面まで導光された発光素子1が得られた。3Dプリント造形された立体形状部材の表面積は、有機電界発光素子1の発光面の面積の200%以上であった。ATAGO社の屈折計DR−M2を用いて、有機電界発光素子1の封止材と3Dプリントした硬化樹脂の屈折率差を測定すると0.05であった。
2. Fabrication of a light emitting element having an organic electroluminescent element and a three-dimensional member (Example 1)
Using a 3D printer manufactured by XYZ Printing Co., Ltd., Nobel 1.0, 3D printing was performed on the organic electroluminescent device 1 manufactured in Production Example 1 using a clear color standard resin as a material, as shown in the photograph shown in FIG. By forming a three-dimensional member having a 3D curved surface in which a large number of columns having a thickness of about 65 mm and a width of about 45 mm are combined, a light emitting element 1 guided to the curved surface surface was obtained. The surface area of the three-dimensional shape member formed by 3D printing was 200% or more of the area of the light emitting surface of the organic electroluminescent element 1. Using a refractometer DR-M2 manufactured by ATAGO, the difference in refractive index between the encapsulant of the organic electroluminescent element 1 and the 3D-printed cured resin was 0.05.

(実施例2)
製造例1で作製した有機電界発光素子1上に、XYZプリンティング社製の3Dプリンター、ノーベル1.0を用いて、クリア色の標準レジンを材料として3Dプリントし、図2に示す写真の様な、直径約3mmの中央の柱から厚さ約65mm、幅約45mmの6枚の葉が垂れ下がったような形状の部材を造形することで、曲面表面まで導光された発光素子2が得られた。3Dプリント造形された立体形状部材の表面積は、有機電界発光素子1の発光面の面積の200%以上であった。ATAGO社の屈折計DR−M2を用いて、有機電界発光素子1の封止材と3Dプリントした硬化樹脂の屈折率差を測定すると0.05であった。
(Example 2)
Using a 3D printer manufactured by XYZ Printing Co., Ltd., Nobel 1.0, 3D printing is performed on the organic electroluminescent device 1 manufactured in Production Example 1 using a clear color standard resin as a material, as shown in the photograph shown in FIG. By forming a member having a shape in which six leaves having a thickness of about 65 mm and a width of about 45 mm hang down from a central pillar having a diameter of about 3 mm, a light emitting element 2 guided to a curved surface surface was obtained. .. The surface area of the three-dimensional shape member formed by 3D printing was 200% or more of the area of the light emitting surface of the organic electroluminescent element 1. Using a refractometer DR-M2 manufactured by ATAGO, the difference in refractive index between the encapsulant of the organic electroluminescent element 1 and the 3D-printed cured resin was 0.05.

Claims (8)

陽極と陰極との間に複数の層が積層された構造を有する有機電界発光素子と、
該有機電界発光素子に接して配置され、表面の少なくとも一部が曲面状である立体形状の部材とを有することを特徴とする発光素子。
An organic electroluminescent device having a structure in which a plurality of layers are laminated between an anode and a cathode,
A light emitting element that is arranged in contact with the organic electroluminescent element and has a three-dimensional member having a curved surface at least a part of the surface.
前記有機電界発光素子の光取り出し面上の少なくとも一部に、立体形状の光拡散部材が配置されていることを特徴とする請求項1に記載の発光素子。 The light emitting element according to claim 1, wherein a three-dimensional light diffusing member is arranged on at least a part of the light extraction surface of the organic electroluminescent element. 前記有機電界発光素子の光取り出し面とは逆の面が立体形状の部材の曲面状の表面に接して配置されていることを特徴とする請求項1に記載の発光素子。 The light emitting element according to claim 1, wherein a surface opposite to the light extraction surface of the organic electroluminescent element is arranged in contact with a curved surface of a three-dimensional member. 前記立体形状の部材は、印刷造形物であることを特徴とする請求項1〜3のいずれかに記載の発光素子。 The light emitting element according to any one of claims 1 to 3, wherein the three-dimensional member is a printed object. 前記有機電界発光素子は、陽極と、基板上に形成された陰極との間に複数の層が積層された構造を有する有機電界発光素子であることを特徴とする請求項1〜4のいずれかに記載の発光素子。 Any of claims 1 to 4, wherein the organic electroluminescent device is an organic electroluminescent device having a structure in which a plurality of layers are laminated between an anode and a cathode formed on a substrate. The light emitting element according to. 前記有機電界発光素子は、総膜厚が200μm以下であることを特徴とする請求項1〜5のいずれかに記載の発光素子。 The light emitting element according to any one of claims 1 to 5, wherein the organic electroluminescent element has a total film thickness of 200 μm or less. 請求項1〜6のいずれかに記載の発光素子を含むことを特徴とする表示装置。 A display device comprising the light emitting element according to any one of claims 1 to 6. 請求項1〜6のいずれかに記載の発光素子を含むことを特徴とする照明装置。 A lighting device comprising the light emitting element according to any one of claims 1 to 6.
JP2019167380A 2019-09-13 2019-09-13 light emitting element Active JP7424778B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019167380A JP7424778B2 (en) 2019-09-13 2019-09-13 light emitting element
PCT/JP2020/034130 WO2021049532A1 (en) 2019-09-13 2020-09-09 Light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019167380A JP7424778B2 (en) 2019-09-13 2019-09-13 light emitting element

Publications (2)

Publication Number Publication Date
JP2021044499A true JP2021044499A (en) 2021-03-18
JP7424778B2 JP7424778B2 (en) 2024-01-30

Family

ID=74863228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019167380A Active JP7424778B2 (en) 2019-09-13 2019-09-13 light emitting element

Country Status (1)

Country Link
JP (1) JP7424778B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1039811A (en) * 1996-07-24 1998-02-13 Tesac Corp Electrluminescent light source body
JP2003308977A (en) * 2002-04-12 2003-10-31 Morio Taniguchi Organic electroluminescent device and method of manufacturing the same
JP2011028890A (en) * 2009-07-22 2011-02-10 Nec Lighting Ltd Outdoor lighting system
JP2015191690A (en) * 2014-03-27 2015-11-02 株式会社ライトボーイ Balloon type lighting device and balloon type floodlight

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9099575B2 (en) 2013-07-16 2015-08-04 Cree, Inc. Solid state lighting devices and fabrication methods including deposited light-affecting elements
JP2016001548A (en) 2014-06-11 2016-01-07 コニカミノルタ株式会社 Electroluminescence element and quantum dot material
JP6774410B2 (en) 2015-07-29 2020-10-21 株式会社カネカ Manufacturing method of photo-curable three-dimensional model

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1039811A (en) * 1996-07-24 1998-02-13 Tesac Corp Electrluminescent light source body
JP2003308977A (en) * 2002-04-12 2003-10-31 Morio Taniguchi Organic electroluminescent device and method of manufacturing the same
JP2011028890A (en) * 2009-07-22 2011-02-10 Nec Lighting Ltd Outdoor lighting system
JP2015191690A (en) * 2014-03-27 2015-11-02 株式会社ライトボーイ Balloon type lighting device and balloon type floodlight

Also Published As

Publication number Publication date
JP7424778B2 (en) 2024-01-30

Similar Documents

Publication Publication Date Title
JP6852172B2 (en) Organic electroluminescent device
JP6226533B2 (en) Organic electroluminescence device
JP6037894B2 (en) ORGANIC ELECTROLUMINESCENCE ELEMENT, ITS MANUFACTURING METHOD, AND DISPLAY DEVICE
WO2013027735A1 (en) Organic electroluminescent element
JP2021048393A (en) Light emitting element
JP2014154715A (en) Organic electroluminescent element, display device and method of manufacturing organic electroluminescent element
JP7231436B2 (en) organic electroluminescent element
JP2009205985A (en) Organic electroluminescent element, and its manufacturing method
WO2021049532A1 (en) Light emitting element
JP7424778B2 (en) light emitting element
JP2018093080A (en) Organic electroluminescent element, method of manufacturing the same, display device, and lighting device
JP7108493B2 (en) Organic thin film and organic thin film manufacturing method, organic electroluminescence element and its manufacturing method, display device, lighting device, organic thin film solar cell, thin film transistor
JP7251740B2 (en) organic electroluminescent element
JP6863765B2 (en) Organic electroluminescence element, display device, lighting device
JP6814617B2 (en) Organic electroluminescence device and its manufacturing method, display device, lighting device
JP2020027875A (en) Organic optical sensor
JP7475172B2 (en) Organic electroluminescent device panel
JP7049888B2 (en) Organic electroluminescence elements, display devices, lighting devices
JP7232616B2 (en) organic element
JP2019080078A (en) Organic electroluminescent element, method for manufacturing the same, display device, and lighting device
JP6105299B2 (en) Composition for organic electroluminescence device and organic electroluminescence device
JP6511657B2 (en) ORGANIC METAL COMPLEX, ORGANIC ELECTROLUMINESCENT DEVICE AND METHOD FOR MANUFACTURING THE SAME, DISPLAY DEVICE, LIGHTING DEVICE, ORGANIC THIN FILM SOLAR CELL
JP6212261B2 (en) Organic electroluminescence device
JP6925201B2 (en) Organic electroluminescence device and its manufacturing method, display device, lighting device
JP6496183B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE, LIGHTING DEVICE, AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240118

R150 Certificate of patent or registration of utility model

Ref document number: 7424778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150