JP2021044456A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2021044456A
JP2021044456A JP2019166581A JP2019166581A JP2021044456A JP 2021044456 A JP2021044456 A JP 2021044456A JP 2019166581 A JP2019166581 A JP 2019166581A JP 2019166581 A JP2019166581 A JP 2019166581A JP 2021044456 A JP2021044456 A JP 2021044456A
Authority
JP
Japan
Prior art keywords
connection pin
electrode pad
semiconductor device
semiconductor chip
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019166581A
Other languages
Japanese (ja)
Other versions
JP7404726B2 (en
Inventor
直之 金井
Naoyuki Kanai
直之 金井
裕一朗 日向
Yuichiro Hyuga
裕一朗 日向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2019166581A priority Critical patent/JP7404726B2/en
Publication of JP2021044456A publication Critical patent/JP2021044456A/en
Application granted granted Critical
Publication of JP7404726B2 publication Critical patent/JP7404726B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Lead Frames For Integrated Circuits (AREA)

Abstract

To provide a semiconductor device that can secure the reliability by preventing the inclination of a semiconductor chip due to the wettability of solder.SOLUTION: A semiconductor device includes: an insulating circuit board 2; a chip connection member 3 disposed on a conductive layer 21 provided on an upper surface of the insulating circuit board 2; a semiconductor chip having a back surface bonded by the chip connection member 3 and including a first electrode pad 15 on one end side and a second electrode pad 16 on the other end side, the second electrode pad 16 allowing larger current to flow than the first electrode pad 15; a first connection pin 5 press-fitted in a first penetration hole 25 provided to a wiring board 7 opposite to the insulating circuit board 2 and having one end bonded to a first solder material 4a disposed on the first electrode pad 15; and a second connection pin 6 press-fitted in a second penetration hole 26 provided to the wiring board 7 and having one end bonded to a second solder material 4b disposed on the second electrode pad 16. A first plating layer of the first connection pin 5 has higher solder wettability than a second plating layer of the second connection pin.SELECTED DRAWING: Figure 1

Description

本発明は、半導体装置に関し、特にパワー半導体素子を搭載した半導体装置に関する。 The present invention relates to a semiconductor device, and more particularly to a semiconductor device equipped with a power semiconductor element.

パワー半導体モジュールは、効率的な電力変換を求められる分野で広く適用されている。近年注目を浴びている太陽光発電や風力発電等の再生可能エネルギ分野、ハイブリッド自動車や電気自動車等の車載分野、車両等の鉄道分野等が挙げられる。このようなパワー半導体モジュールには、スイッチング素子やダイオード等のパワー半導体素子を有する半導体チップが内蔵されている。パワー半導体素子には、シリコン(Si)半導体や、炭化珪素(SiC)半導体等のワイドバンドギャップ半導体が用いられる。SiC半導体は、Si半導体に比べて高耐圧、高耐熱、低損失等の特徴を有し、パワー半導体モジュールに用いることにより、装置の小型化や低損失化が可能となる。パワー半導体モジュールでは、パワー半導体素子は、耐湿性、耐熱性、機械特性等に優れたエポキシ樹脂を含む封止材で封止される。 Power semiconductor modules are widely applied in fields where efficient power conversion is required. Examples include renewable energy fields such as solar power generation and wind power generation, in-vehicle fields such as hybrid vehicles and electric vehicles, and railway fields such as vehicles, which have been attracting attention in recent years. Such a power semiconductor module contains a semiconductor chip having a power semiconductor element such as a switching element or a diode. Wide bandgap semiconductors such as silicon (Si) semiconductors and silicon carbide (SiC) semiconductors are used as power semiconductor elements. Compared to Si semiconductors, SiC semiconductors have features such as high withstand voltage, high heat resistance, and low loss, and by using them in power semiconductor modules, it is possible to reduce the size and loss of the device. In a power semiconductor module, a power semiconductor element is sealed with a sealing material containing an epoxy resin having excellent moisture resistance, heat resistance, mechanical properties, and the like.

特許文献1には、リード端子のそれぞれが金(Au)バンプを介して半導体チップのソース電極及びゲート電極に接続され、ダイ端子が銀(Ag)めっきを介して半導体チップの裏面電極に接続されることが記載されている。Auバンプは、ボールボンディング法によりソース電極及びゲート電極それぞれの全面に均等に配置される。ダイ端子は、加熱しながら超音波接合法により裏面電極に接合される。特許文献2には、パワー半導体モジュールにおいて、半導体チップの表面電極への電気配線にボンディングワイヤやリードフレーム等に代えて、インプラントピン等の接続ピン及びプリント配線基板(PCB)等の配線基板を用いる構造が開示されている。半導体チップの表面には、ソース電極及びゲート電極に電気的に接続されたソースパッド及びゲートパッドが配置される。ソースパッド及びゲートパッドのそれぞれに、配線基板に挿入された接続ピンがはんだにより電気的に接続される。 In Patent Document 1, each of the lead terminals is connected to the source electrode and the gate electrode of the semiconductor chip via gold (Au) bumps, and the die terminal is connected to the back electrode of the semiconductor chip via silver (Ag) plating. It is stated that Au bumps are evenly arranged on the entire surface of each of the source electrode and the gate electrode by the ball bonding method. The die terminal is bonded to the back electrode by an ultrasonic bonding method while heating. In Patent Document 2, in a power semiconductor module, a connection pin such as an implant pin and a wiring board such as a printed wiring board (PCB) are used instead of a bonding wire or a lead frame for electrical wiring to a surface electrode of a semiconductor chip. The structure is disclosed. A source pad and a gate pad electrically connected to the source electrode and the gate electrode are arranged on the surface of the semiconductor chip. The connection pins inserted in the wiring board are electrically connected to each of the source pad and the gate pad by soldering.

半導体チップの表面に配置されるソースパッドとゲートパッドとは、面積が異なり、はんだ接合する接続ピンの数も異なる。そのため、接続ピンをソースパッド及びゲートパッドにはんだ接合する際に、半導体チップが傾斜してしまい、パワー半導体モジュールの信頼性が低下する。 The area of the source pad and the gate pad arranged on the surface of the semiconductor chip are different, and the number of connection pins to be soldered is also different. Therefore, when the connection pin is soldered to the source pad and the gate pad, the semiconductor chip is tilted and the reliability of the power semiconductor module is lowered.

特開2008‐311685号公報Japanese Unexamined Patent Publication No. 2008-311685 特許第5241177号公報Japanese Patent No. 5241177

本発明は上記課題に着目してなされたものであって、はんだの濡れ性に起因する半導体チップの傾斜を防止することができ、信頼性の確保が可能な半導体装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a semiconductor device capable of preventing tilting of a semiconductor chip due to wettability of solder and ensuring reliability. To do.

上記課題を解決するために、本発明の一態様は、(a)絶縁回路基板と、(b)絶縁回路基板の上面に設けられた導電層の上に配置されたチップ接続部材と、(c)チップ接続部材により裏面が接合され、一端側に第1電極パッドと他端側に第1電極パッドよりも大電流が流れる第2電極パッドとを有する半導体チップと、(d)絶縁回路基板に対面する配線基板に設けられた第1貫通孔に圧入され、第1電極パッドの上に配置された第1はんだ材に一端が接合された第1接続ピンと、(e)配線基板に設けられた第2貫通孔に圧入され、第2電極パッドの上に配置された第2はんだ材に一端が接合された第2接続ピンとを備え、第1接続ピンの表面に設けられた第1めっき層は、第2接続ピンの表面に設けられた第2めっき層よりはんだの濡れ性が高い半導体装置であることを要旨とする。 In order to solve the above problems, one aspect of the present invention includes (a) an insulated circuit board, (b) a chip connecting member arranged on a conductive layer provided on the upper surface of the insulated circuit board, and (c). ) A semiconductor chip whose back surface is joined by a chip connecting member and which has a first electrode pad on one end side and a second electrode pad on the other end side where a larger current flows than the first electrode pad, and (d) an insulating circuit board. The first connection pin, which is press-fitted into the first through hole provided in the facing wiring board and one end is joined to the first solder material arranged on the first electrode pad, and (e) provided in the wiring board. The first plating layer provided on the surface of the first connection pin is provided with a second connection pin which is press-fitted into the second through hole and has one end bonded to the second solder material arranged on the second electrode pad. It is a gist that the solder is a semiconductor device having a higher solder wettability than the second plating layer provided on the surface of the second connection pin.

本発明によれば、はんだの濡れ性に起因する半導体チップの傾斜を防止することができ、信頼性の確保が可能な半導体装置を提供することができる。 According to the present invention, it is possible to provide a semiconductor device capable of preventing tilting of a semiconductor chip due to wettability of solder and ensuring reliability.

本発明の代表的な実施形態(以下において「代表実施形態」という。)に係る半導体装置の一例を示す断面概略図である。It is sectional drawing which shows an example of the semiconductor device which concerns on the typical embodiment of this invention (hereinafter referred to as "representative embodiment"). 図1の半導体装置の一部となる半導体チップに対する接続ピンの配置の一例を示す平面概略図である。It is a plan schematic diagram which shows an example of the arrangement of the connection pin with respect to the semiconductor chip which becomes a part of the semiconductor device of FIG. 図3(a)は代表実施形態に係る半導体装置に用いる制御電極用接続ピンとしての第1接続ピンの一例を示す断面概略図で、図3(b)は代表実施形態に係る半導体装置に用いる主電極用接続ピンとしての第2接続ピンの一例を示す断面概略図である。FIG. 3A is a schematic cross-sectional view showing an example of a first connection pin as a control electrode connection pin used in the semiconductor device according to the representative embodiment, and FIG. 3B is used for the semiconductor device according to the representative embodiment. It is sectional drawing which shows an example of the 2nd connection pin as a connection pin for a main electrode. 図2のA−A線から見た半導体チップ周りの拡大断面概略図である。It is an enlarged cross-sectional schematic view around the semiconductor chip seen from the line AA of FIG. 図5(a)は従来の半導体装置に用いる制御電極用接続ピンを示す断面概略図で、図5(b)は従来の半導体装置の主電極用接続ピンを示す断面概略図である。FIG. 5A is a schematic cross-sectional view showing a control electrode connection pin used in a conventional semiconductor device, and FIG. 5B is a cross-sectional schematic view showing a main electrode connection pin of a conventional semiconductor device. 従来の半導体装置の一部となる半導体チップ周りの拡大断面概略図である。It is an enlarged cross-sectional schematic diagram around a semiconductor chip which becomes a part of a conventional semiconductor device. 代表実施形態に係る半導体装置に用いる配線基板の作製方法の一例を説明する断面概略図である。It is sectional drawing explaining an example of the manufacturing method of the wiring board used for the semiconductor device which concerns on a typical embodiment. 代表実施形態に係る半導体装置に用いる配線基板の作製方法の一例を説明するための図7に引き続く断面概略図である。FIG. 5 is a schematic cross-sectional view following FIG. 7 for explaining an example of a method for manufacturing a wiring board used in a semiconductor device according to a representative embodiment. 代表実施形態に係る半導体装置に対する熱サイクル試験結果の一例を説明する表である。It is a table explaining an example of the thermal cycle test result with respect to the semiconductor device which concerns on a representative embodiment.

以下に代表実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。但し、図面は模式的なものであり、厚みと平面寸法との関係、各装置や各部材の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判定すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。 A representative embodiment will be described below. In the description of the drawings below, the same or similar parts are designated by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the plane dimension, the ratio of the thickness of each device and each member, etc. are different from the actual ones. Therefore, the specific thickness and dimensions should be determined in consideration of the following explanation. In addition, it goes without saying that the drawings include parts having different dimensional relationships and ratios from each other.

また、以下の説明における「左右」や「上下」の方向は、単に説明の便宜上の定義であって、本発明の技術的思想を限定するものではない。よって、例えば、紙面を90度回転すれば「左右」と「上下」とは交換して読まれ、紙面を180度回転すれば「左」が「右」に、「右」が「左」になることは勿論である。 Further, the directions of "left and right" and "up and down" in the following description are merely definitions for convenience of explanation, and do not limit the technical idea of the present invention. Therefore, for example, if the paper surface is rotated 90 degrees, "left and right" and "up and down" are read interchangeably, and if the paper surface is rotated 180 degrees, "left" becomes "right" and "right" becomes "left". Of course it will be.

本明細書においてMISトランジスタのソース領域は絶縁ゲート型バイポーラトランジスタ(IGBT)のエミッタ領域として選択可能な「一方の主電極領域」である。又、MIS制御静電誘導サイリスタ(SIサイリスタ)等のサイリスタにおいては、一方の主電極領域はカソード領域として選択可能である。MISトランジスタのドレイン領域は、IGBTにおいてはコレクタ領域を、サイリスタにおいてはアノード領域として選択可能な半導体装置の「他方の主電極領域」である。本明細書において単に「主電極領域」と言うときは、当業者の技術常識から妥当な一方の主電極領域又は他方の主電極領域のいずれかを意味する。また、「制御電極」とは、一方の主電極領域と他方の主電極領域の間を流れる主電流を制御する電極を意味する。例えば、MISトランジスタにおいてソース領域とドレイン領域の間、あるいはIGBTにおいてはエミッタ領域とコレクタ領域の間を流れる主電流を制御するゲート電極が該当する。 In the present specification, the source region of the MIS transistor is a “one main electrode region” that can be selected as the emitter region of the insulated gate bipolar transistor (IGBT). Further, in a thyristor such as a MIS controlled electrostatic induction thyristor (SI thyristor), one of the main electrode regions can be selected as a cathode region. The drain region of the MIS transistor is the "other main electrode region" of the semiconductor device, which can be selected as the collector region in the IGBT and the anode region in the thyristor. As used herein, the term "main electrode region" means either one main electrode region or the other main electrode region, which is appropriate from the common general technical knowledge of those skilled in the art. Further, the “control electrode” means an electrode that controls the main current flowing between one main electrode region and the other main electrode region. For example, a gate electrode that controls a main current flowing between a source region and a drain region in a MIS transistor, or between an emitter region and a collector region in an IGBT is applicable.

(半導体装置の構造)
代表実施形態に係る半導体装置は、図1に示すように、絶縁回路基板2、絶縁回路基板2に搭載された半導体チップ1、及び半導体チップ1の上方に配置された配線基板7を備える。絶縁回路基板2は、絶縁板22、絶縁板22の上面にパターニングされた配線層となる導電層21、及び絶縁板22の下面に設けられた放熱層となる導電層23を有する。配線基板7は、樹脂板72、樹脂板72の上面にパターニングされた配線層71、及び樹脂板72の下面にパターニングされた配線層73を有する。配線基板7の下面側は、絶縁回路基板2の導電層21の上面側に平行に対面するように設けられる。配線基板7においては、配線基板7を貫通するように、インプラントピン等の制御電極用接続ピンとしての第1接続ピン5及び主電極用接続ピンとしての第2接続ピン6が第1貫通孔25及び第2貫通孔26にそれぞれ圧入されている。半導体チップ1の下面は、はんだ等のチップ接続部材3を介して絶縁回路基板2の導電層21に電気的に接続される。半導体チップ1をなす半導体基板の上部には、図示は省略したが、制御電極(ゲート電極)となる導体層及び主電極領域(ソース電極領域)となる半導体領域が設けられる。半導体チップ1の上面には、図2に示すように、制御電極に電気的に接続された第1電極パッド(制御電極パッド)15、及び主電極領域に電気的に接続された第2電極パッド(主電極パッド)16がそれぞれ絶縁膜等からなる保護膜9の上に設けられる。第1電極パッド15は半導体チップ1の一端側に配置され、平面パターンとして第2電極パッド16は半導体チップ1の他端側で第1電極パッド15に対面するように配置される。第1電極パッド15及び第2電極パッド16の上には、それぞれ第1はんだ材4a及び第2はんだ材4bが配置される。第1接続ピン5は、一端が第1はんだ材4aに接合され、半導体チップ1の制御電極と電気的に接続される。第2接続ピン6は、一端が第1はんだ材4bに接合され、半導体チップ1の主電極領域と電気的に接続される。代表実施形態に係る半導体装置として、図1に示すように、封止樹脂8に配線基板7、第1接続ピン5、第2接続ピン6、半導体チップ1、及び絶縁回路基板2の一部が封止された構造が例示されているが、限定されない。例えば、絶縁回路基板2の導電層23を、はんだ等の接合層を介して放熱ベースに接続した構造であってもよい。また、封止樹脂8を外装ケースに内蔵した構造であってもよい。
(Structure of semiconductor device)
As shown in FIG. 1, the semiconductor device according to the representative embodiment includes an insulating circuit board 2, a semiconductor chip 1 mounted on the insulating circuit board 2, and a wiring board 7 arranged above the semiconductor chip 1. The insulating circuit board 2 has an insulating plate 22, a conductive layer 21 which is a wiring layer patterned on the upper surface of the insulating plate 22, and a conductive layer 23 which is a heat radiating layer provided on the lower surface of the insulating plate 22. The wiring board 7 has a resin plate 72, a wiring layer 71 patterned on the upper surface of the resin plate 72, and a wiring layer 73 patterned on the lower surface of the resin plate 72. The lower surface side of the wiring board 7 is provided so as to face parallel to the upper surface side of the conductive layer 21 of the insulating circuit board 2. In the wiring board 7, the first connection pin 5 as a connection pin for a control electrode such as an implant pin and the second connection pin 6 as a connection pin for a main electrode penetrate the first through hole 25 so as to penetrate the wiring board 7. And are press-fitted into the second through hole 26, respectively. The lower surface of the semiconductor chip 1 is electrically connected to the conductive layer 21 of the insulating circuit board 2 via a chip connecting member 3 such as solder. Although not shown, a conductor layer serving as a control electrode (gate electrode) and a semiconductor region serving as a main electrode region (source electrode region) are provided on the upper portion of the semiconductor substrate forming the semiconductor chip 1. As shown in FIG. 2, the upper surface of the semiconductor chip 1 has a first electrode pad (control electrode pad) 15 electrically connected to the control electrode and a second electrode pad electrically connected to the main electrode region. (Main electrode pads) 16 are provided on the protective film 9 made of an insulating film or the like. The first electrode pad 15 is arranged on one end side of the semiconductor chip 1, and the second electrode pad 16 is arranged so as to face the first electrode pad 15 on the other end side of the semiconductor chip 1 as a plane pattern. The first solder material 4a and the second solder material 4b are arranged on the first electrode pad 15 and the second electrode pad 16, respectively. One end of the first connection pin 5 is joined to the first solder material 4a and is electrically connected to the control electrode of the semiconductor chip 1. One end of the second connection pin 6 is joined to the first solder material 4b and is electrically connected to the main electrode region of the semiconductor chip 1. As a semiconductor device according to a typical embodiment, as shown in FIG. 1, a wiring board 7, a first connection pin 5, a second connection pin 6, a semiconductor chip 1, and a part of an insulating circuit board 2 are attached to a sealing resin 8. A sealed structure is exemplified, but is not limited. For example, the conductive layer 23 of the insulating circuit board 2 may be connected to the heat dissipation base via a bonding layer such as solder. Further, the structure may be such that the sealing resin 8 is built in the outer case.

半導体チップ1には、炭化珪素(SiC)を用いた絶縁ゲート型バイポーラトランジスタ(IGBT)、MOS電界効果トランジスタ(MOSFET)、ショットキバリアダイオード(SBD)等の電力用半導体素子が用いられる。半導体チップ1は、SiCに限定されない。SiCの他にも、例えばシリコン(Si)、窒化ガリウム(GaN)、ロンズデーライト(六方晶ダイヤモンド)又は窒化アルミニウム(AlN)等の六方晶系の半導体材料がそれぞれ使用可能である。また、電力用半導体素子として、バイポーラトランジスタ(BPT)、静電誘導トランジスタ(SIT)、静電誘導サイリスタ(SIサイリスタ)やゲートターンオフサイリスタ(GTOサイリスタ)等も使用可能である。また、上記した半導体素子を組み合わせて用いてもよい。例えば、Si‐IGBTとSiC‐SBDを用いたハイブリッドモジュール等を用いてもよい。また、図1及び図2に示すように、半導体チップ1を1つ搭載した構造を例示したが、限定されない。搭載する半導体チップ1の数は複数であってもよい。更に、搭載する絶縁回路基板2や配線基板7の数も複数であってもよい。 A power semiconductor element such as an insulated gate bipolar transistor (IGBT), a MOS field effect transistor (MOSFET), or a Schottky barrier diode (SBD) using silicon carbide (SiC) is used for the semiconductor chip 1. The semiconductor chip 1 is not limited to SiC. In addition to SiC, hexagonal semiconductor materials such as silicon (Si), gallium nitride (GaN), lonsdaleite (hexagonal diamond), and aluminum nitride (AlN) can be used. Further, as a power semiconductor element, a bipolar transistor (BPT), a static induction transistor (SIT), an electrostatic induction thyristor (SI thyristor), a gate turn-off thyristor (GTO thyristor), or the like can also be used. Further, the above-mentioned semiconductor elements may be used in combination. For example, a hybrid module using a Si-IGBT and a SiC-SBD may be used. Further, as shown in FIGS. 1 and 2, a structure in which one semiconductor chip 1 is mounted has been illustrated, but the structure is not limited. The number of semiconductor chips 1 to be mounted may be plural. Further, the number of the insulating circuit boards 2 and the wiring boards 7 to be mounted may be plural.

図2に示すように、半導体チップ1の上面に設けられる第1電極パッド15及び第2電極パッド16として、矩形状の表面パターンを例示したが、限定されない。半導体チップ1の主電流が通電される第2電極パッド16は、主電流の通電を制御する制御電極に電気的に接続された第1電極パッド15に比べて、面積を大きくすることが望ましい。図2では、第1電極パッド15に1つの第1接続ピン5を、第2電極パッド16には2つの第2接続ピン6を配置しているが、限定されない。第1接続ピン5として1以上であってもよく、第2接続ピン6として1、あるいは3以上であってもよい。なお。半導体チップ1のチップ寸法は10mm角未満が望ましい。 As shown in FIG. 2, as the first electrode pad 15 and the second electrode pad 16 provided on the upper surface of the semiconductor chip 1, a rectangular surface pattern has been illustrated, but the present invention is not limited. It is desirable that the second electrode pad 16 on which the main current of the semiconductor chip 1 is energized has a larger area than the first electrode pad 15 electrically connected to the control electrode that controls the energization of the main current. In FIG. 2, one first connection pin 5 is arranged on the first electrode pad 15, and two second connection pins 6 are arranged on the second electrode pad 16, but the present invention is not limited. The first connection pin 5 may be 1 or more, and the second connection pin 6 may be 1 or 3 or more. In addition. The chip size of the semiconductor chip 1 is preferably less than 10 mm square.

絶縁回路基板2の絶縁板22には、電気絶縁性、熱伝導性に優れたセラミック基板が用いられる。セラミック基板には、例えば、窒化ケイ素(Si34)、窒化アルミニウム(AlN)、アルミナ(Al23)等を採用可能である。特に、高耐圧用途においては、電気絶縁性及び熱伝導性を両立した材料が好ましく、例えば、AlNやSi34を用いることが可能である。絶縁回路基板2の導電層21、23として、加工性に優れている銅(Cu)やアルミニウム(Al)等の金属材料が用いられる。また、CuやAl等の金属層の表面に防錆等の目的でニッケル(Ni)めっき等の処理を施してもよい。絶縁回路基板2は、例えば、セラミック基板の表面に銅が共晶接合された直接銅接合(DCB)基板、セラミック基板の表面に活性金属ろう付け(AMB)法により金属が配置されたAMB基板等を採用可能である。 As the insulating plate 22 of the insulating circuit board 2, a ceramic substrate having excellent electrical insulation and thermal conductivity is used. For the ceramic substrate, for example, silicon nitride (Si 3 N 4 ), aluminum nitride (Al N), alumina (Al 2 O 3 ) and the like can be adopted. Particularly, in the high-voltage applications, the material preferably having both electrical insulation and thermal conductivity, for example, it is possible to use AlN or Si 3 N 4. As the conductive layers 21 and 23 of the insulating circuit board 2, metal materials such as copper (Cu) and aluminum (Al), which are excellent in workability, are used. Further, the surface of the metal layer such as Cu or Al may be subjected to a treatment such as nickel (Ni) plating for the purpose of rust prevention or the like. The insulating circuit board 2 includes, for example, a direct copper bonded (DCB) substrate in which copper is eutectic bonded to the surface of a ceramic substrate, an AMB substrate in which a metal is arranged on the surface of the ceramic substrate by an active metal brazing (AMB) method, and the like. Can be adopted.

チップ接続部材3、制御電極用はんだ材4a、及び主電極用はんだ材4bのはんだ材は、鉛フリーはんだ等を用いることができる。例えば、はんだ材として、錫(Sn)‐銀(Ag)‐銅(Cu)系、Sn‐アンチモン(Sb)系、Sn‐Sb‐Ag系、Sn‐Cu系、Sn‐Sb‐Ag‐Cu系、Sn‐Cu‐Ni系、Sn‐Ag系等が採用可能である。 Lead-free solder or the like can be used as the solder material of the chip connecting member 3, the solder material 4a for the control electrode, and the solder material 4b for the main electrode. For example, as a solder material, tin (Sn) -silver (Ag) -copper (Cu) system, Sn-antimon (Sb) system, Sn-Sb-Ag system, Sn-Cu system, Sn-Sb-Ag-Cu system. , Sn-Cu-Ni type, Sn-Ag type and the like can be adopted.

配線基板7には、ポリイミドフィルム基板やエポキシフィルム基板等の樹脂板72、樹脂板72にCu、Al等の導電層がパターニングされた配線層71、73を有するプリント回路基板(PCB)等が用いられる。CuやAl等の導電層の表面に防錆等の目的でNiめっき等の処理を施してもよい。あるいは、接合の目的で錫(Sn)めっき等の処理を施してもよい。配線基板7の第1貫通孔25及び第2貫通孔26の表面には、下地層としてのNi膜にSnめっき層が設けられる。配線基板7の配線層71、73との電気的な接続が必要な場合、第1接続ピン5及び第2接続ピン6を第1貫通孔25及び第2貫通孔26に設けたSnめっき層を介して上面の配線層71、あるいは下面の配線層73に金属学的に接続する。また、配線基板7の配線層71、73との電気的接続が不要であれば、配線基板7の第1貫通孔25及び第2貫通孔26にめっき層を設けずに、第1接続ピン5及び第2接続ピン6を樹脂板72に直接接触させる構造としてもよい。 As the wiring board 7, a resin plate 72 such as a polyimide film substrate or an epoxy film substrate, and a printed circuit board (PCB) or the like having wiring layers 71 and 73 in which conductive layers such as Cu and Al are patterned on the resin plate 72 are used. Be done. The surface of the conductive layer such as Cu or Al may be treated with Ni plating or the like for the purpose of preventing rust. Alternatively, a treatment such as tin (Sn) plating may be performed for the purpose of joining. On the surfaces of the first through hole 25 and the second through hole 26 of the wiring board 7, a Sn plating layer is provided on a Ni film as a base layer. When electrical connection with the wiring layers 71 and 73 of the wiring board 7 is required, a Sn plating layer in which the first connection pin 5 and the second connection pin 6 are provided in the first through hole 25 and the second through hole 26 is provided. It is metallically connected to the wiring layer 71 on the upper surface or the wiring layer 73 on the lower surface. If electrical connection to the wiring layers 71 and 73 of the wiring board 7 is not required, the first connection pin 5 is provided without providing a plating layer in the first through hole 25 and the second through hole 26 of the wiring board 7. The structure may be such that the second connection pin 6 is in direct contact with the resin plate 72.

封止樹脂8は、エポキシ樹脂主剤と硬化剤とを含み、無機充填材やその他の添加物が任意に添加されたエポキシ樹脂組成物で形成される。エポキシ樹脂主剤として、脂肪族エポキシ樹脂、脂環式エポキシ樹脂等を用いることができる。また、主剤として、エポキシ樹脂に代えて、マレイド樹脂、シアネート樹脂等を用いてもよい。あるいは、主剤として、エポキシ樹脂、マレイド樹脂及びシアネート樹脂等の中の二種類以上の樹脂を混合して用いてもよい。 The sealing resin 8 is formed of an epoxy resin composition containing an epoxy resin main agent and a curing agent, to which an inorganic filler and other additives are optionally added. As the epoxy resin main agent, an aliphatic epoxy resin, an alicyclic epoxy resin, or the like can be used. Further, as the main agent, a maleide resin, a cyanate resin or the like may be used instead of the epoxy resin. Alternatively, as the main agent, two or more kinds of resins such as epoxy resin, maleide resin and cyanate resin may be mixed and used.

絶縁回路基板2上面の導電層21にはんだ等の接合材によって接合された外部端子ピン(図示省略)を封止樹脂8の外部に引き出すことにより、外部接続端子として用いることができる。外部接続ピンとして、導電性の優れているCu等の金属材料が採用可能である。 By pulling out an external terminal pin (not shown) bonded to the conductive layer 21 on the upper surface of the insulating circuit board 2 with a bonding material such as solder to the outside of the sealing resin 8, it can be used as an external connection terminal. As the external connection pin, a metal material such as Cu, which has excellent conductivity, can be adopted.

図1及び図2に示したように、第1接続ピン5及び第2接続ピン6は、それぞれ配線基板7の第1貫通孔25及び第2貫通孔26を介して半導体チップ1の上面に設けられた第1電極パッド15及び第2電極パッド16に電気的に接続される。第1接続ピン5は、図3(a)に示すように、Cuからなる円柱状のピン主部10と、ピン主部10の表面にメッキ処理により設けた、はんだ濡れ性のよい、例えばAg等の第1めっき層35を有する。一方、第2接続ピン6は、図3(b)に示すように、Cuからなる円柱状のピン主部10と、ピン主部10の表面にメッキ処理により設けた、はんだ濡れ性が第1めっき層35より劣る、例えばNi等の第2めっき層36を有する。 As shown in FIGS. 1 and 2, the first connection pin 5 and the second connection pin 6 are provided on the upper surface of the semiconductor chip 1 via the first through hole 25 and the second through hole 26 of the wiring board 7, respectively. It is electrically connected to the first electrode pad 15 and the second electrode pad 16 provided. As shown in FIG. 3A, the first connection pin 5 is provided with a columnar pin main portion 10 made of Cu and the surface of the pin main portion 10 by plating treatment, and has good solder wettability, for example, Ag. It has a first plating layer 35 such as. On the other hand, as shown in FIG. 3B, the second connection pin 6 is provided with a columnar pin main portion 10 made of Cu and the surface of the pin main portion 10 by plating treatment, and has first solder wettability. It has a second plating layer 36, such as Ni, which is inferior to the plating layer 35.

ここで、絶縁回路基板2の導電層21と半導体チップ1との接合、及び半導体チップ1の第1電極パッド15及び第2電極パッド16と第1接続ピン5及び第2接続ピン6との接合方法について説明する。まず、絶縁回路基板2の導電層21の上面にディスペンス塗布法、印刷法等により、クリームはんだ等のはんだペーストを、例えば50μm以上150μm以下程度の厚さで選択的に塗布する。導電層21の上面に塗布したはんだペーストの上に半導体チップ1を搭載する。次に、図2に示した半導体チップ1の第1電極パッド15及び第2電極パッド16それぞれの上にディスペンス塗布法、印刷法等により、クリームはんだ等のはんだペーストを、例えば50μm以上150μm以下程度の厚さで選択的に塗布する。そして、第1電極パッド15及び第2電極パッド16それぞれに塗布したはんだペーストの上に、配線基板7に圧入された第1接続ピン5及び第2接続ピン6をそれぞれ接触させて配置する。その後、真空窒素リフローやギ酸還元リフロー等のリフロー技術によって200℃以上300℃以下程度の温度ではんだを溶融し、図1に示すように、導電層21と半導体チップ1とがチップ接続部材3により接合される。同時に、第1電極パッド15及び第2電極パッド16と第1接続ピン5及び第2接続ピン6とが、それぞれ制御電極用はんだ材4a及び主電極用はんだ材4bにより接合される。 Here, the conductive layer 21 of the insulating circuit board 2 and the semiconductor chip 1 are joined, and the first electrode pad 15 and the second electrode pad 16 of the semiconductor chip 1 are joined to the first connection pin 5 and the second connection pin 6. The method will be described. First, a solder paste such as cream solder is selectively applied to the upper surface of the conductive layer 21 of the insulating circuit board 2 by a dispense coating method, a printing method, or the like to a thickness of, for example, about 50 μm or more and 150 μm or less. The semiconductor chip 1 is mounted on the solder paste applied to the upper surface of the conductive layer 21. Next, a solder paste such as cream solder is applied onto each of the first electrode pad 15 and the second electrode pad 16 of the semiconductor chip 1 shown in FIG. 2 by a dispense coating method, a printing method, or the like, for example, about 50 μm or more and 150 μm or less. Selectively apply with the thickness of. Then, the first connection pin 5 and the second connection pin 6 press-fitted into the wiring board 7 are placed in contact with each other on the solder paste applied to each of the first electrode pad 15 and the second electrode pad 16. After that, the solder is melted at a temperature of about 200 ° C. or higher and 300 ° C. or lower by a reflow technique such as vacuum nitrogen reflow or formic acid reduction reflow, and as shown in FIG. 1, the conductive layer 21 and the semiconductor chip 1 are connected by the chip connecting member 3. Be joined. At the same time, the first electrode pad 15, the second electrode pad 16, and the first connection pin 5 and the second connection pin 6 are joined by the control electrode solder material 4a and the main electrode solder material 4b, respectively.

図4は、上記接合方法で作製した代表実施形態に係る半導体装置の半導体チップ1の周りの拡大断面図である。図4に示すように、第1接続ピン5には制御電極用はんだ材4aの濡れ上がりが発生し、図2に示した2つの第2接続ピン6にも主電極用はんだ材4bの濡れ上がりが発生している。図4では明示してないが、図3(a)及び(b)で示すように、第1接続ピン5のAg等からなる第1めっき層35は、第2接続ピン6のNi等からなる第2めっき層36に比べてはんだの濡れ性がよい。そのため、第1接続ピン5のはんだの濡れ上がりは、2つの第2接続ピン6のそれぞれに比べて大きい。また、半導体チップ1と絶縁回路基板2の導電層21とを接合するチップ接続部材3は、制御電極側の厚さTgと主電極側の厚さTsとの差異は20μm未満とほぼ平坦となる。以下において、図5及び図6を用いて説明するとおり、従来の半導体装置に用いられている第1接続ピン50及び第2接続ピン60の場合は、制御電極側に対して主電極側が持ち上がって半導体チップ1が傾斜してしまう問題がある。これに対し、代表実施形態に係る半導体装置では、半導体チップ1が傾斜することなく実装することができ、熱サイクルの負荷時に、チップ接続部材3にかかる熱応力によるクラックの発生を防止して、信頼性の低下を抑制することが可能となる。 FIG. 4 is an enlarged cross-sectional view of the semiconductor chip 1 of the semiconductor device according to the representative embodiment produced by the above joining method. As shown in FIG. 4, the first connection pin 5 is wetted with the control electrode solder material 4a, and the two second connection pins 6 shown in FIG. 2 are also wetted with the main electrode solder material 4b. Is occurring. Although not explicitly shown in FIG. 4, as shown in FIGS. 3A and 3B, the first plating layer 35 made of Ag or the like of the first connection pin 5 is made of Ni or the like of the second connection pin 6. The wettability of the solder is better than that of the second plating layer 36. Therefore, the wettability of the solder of the first connection pin 5 is larger than that of each of the two second connection pins 6. Further, the chip connecting member 3 for joining the semiconductor chip 1 and the conductive layer 21 of the insulating circuit board 2 has a substantially flat difference of less than 20 μm between the thickness Tg on the control electrode side and the thickness Ts on the main electrode side. .. In the following, as described with reference to FIGS. 5 and 6, in the case of the first connection pin 50 and the second connection pin 60 used in the conventional semiconductor device, the main electrode side is lifted with respect to the control electrode side. There is a problem that the semiconductor chip 1 is tilted. On the other hand, in the semiconductor device according to the representative embodiment, the semiconductor chip 1 can be mounted without being tilted, and cracks due to thermal stress applied to the chip connecting member 3 can be prevented from occurring when a thermal cycle is applied. It is possible to suppress a decrease in reliability.

従来の半導体装置の半導体チップ1の第1接続ピン(制御電極用接続ピン)50は、図5(a)に示すように、Cuからなる円柱状のピン主部10と、ピン主部10の表面にメッキ処理により設けた、はんだ濡れ性のよいAg等のめっき層35aを有する。同様に、第2接続ピン(主電極用接続ピン)60は、図5(b)に示すように、第1接続ピン50と同様に、Cuからなる円柱状のピン主部10と、ピン主部10の表面にメッキ処理により設けた、はんだ濡れ性のよいAg等のめっき層35aを有する。このように、従来の半導体装置では、第1接続ピン50及び第2接続ピン60には、共にはんだ濡れ性のよいめっき層35aが設けられる。 As shown in FIG. 5A, the first connection pin (connection pin for control electrode) 50 of the semiconductor chip 1 of the conventional semiconductor device is a columnar pin main portion 10 made of Cu and a pin main portion 10. It has a plating layer 35a such as Ag having good solder wettability, which is provided on the surface by a plating treatment. Similarly, as shown in FIG. 5B, the second connection pin (connection pin for main electrode) 60 has a columnar pin main portion 10 made of Cu and a pin main portion, similarly to the first connection pin 50. It has a plating layer 35a such as Ag having good solder wettability, which is provided on the surface of the portion 10 by a plating treatment. As described above, in the conventional semiconductor device, the first connection pin 50 and the second connection pin 60 are both provided with a plating layer 35a having good solder wettability.

上記説明した代表実施形態に係る半導体装置の場合と同様に、従来の半導体装置の場合も絶縁回路基板2の導電層21の上面にディスペンス塗布法、印刷法等により、はんだペーストを、例えば50μm以上150μm以下程度の厚さで選択的に塗布する。導電層21の上面に塗布したはんだペーストの上に半導体チップ1を搭載する。図2に示した半導体チップ1と同様に、第1電極パッド15及び第2電極パッド16それぞれの上にディスペンス塗布法、印刷法等により、はんだペーストを、例えば50μm以上150μm以下程度の厚さで選択的に塗布する。第1電極パッド15は「制御電極パッド」に対応し、第2電極パッド16は「主電極パッド」に対応する。第1電極パッド15及び第2電極パッド16それぞれに塗布したはんだペーストの上に、配線基板7に圧入された第1接続ピン50及び第2接続ピン60をそれぞれ接触させて配置する。従来の半導体装置の場合も、真空窒素リフローやギ酸還元リフロー等のリフロー技術によって200℃以上300℃以下程度の温度ではんだを溶融し、図6に示すように、導電層21と半導体チップ1とがチップ接続部材3aにより接合される。同時に、第1電極パッド15及び第2電極パッド16と第1接続ピン50及び第2接続ピン60とが、それぞれ制御電極用はんだ材40a及び主電極用はんだ材40bにより接合される。 Similar to the case of the semiconductor device according to the representative embodiment described above, in the case of the conventional semiconductor device, the solder paste is applied to the upper surface of the conductive layer 21 of the insulating circuit board 2 by a dispense coating method, a printing method, etc. Selectively apply to a thickness of about 150 μm or less. The semiconductor chip 1 is mounted on the solder paste applied to the upper surface of the conductive layer 21. Similar to the semiconductor chip 1 shown in FIG. 2, a solder paste is applied onto each of the first electrode pad 15 and the second electrode pad 16 by a dispense coating method, a printing method, or the like to a thickness of, for example, about 50 μm or more and 150 μm or less. Apply selectively. The first electrode pad 15 corresponds to the “control electrode pad”, and the second electrode pad 16 corresponds to the “main electrode pad”. The first connection pin 50 and the second connection pin 60 press-fitted into the wiring board 7 are placed in contact with each other on the solder paste applied to each of the first electrode pad 15 and the second electrode pad 16. Also in the case of a conventional semiconductor device, the solder is melted at a temperature of about 200 ° C. or higher and 300 ° C. or lower by reflow technology such as vacuum nitrogen reflow or formic acid reduction reflow, and as shown in FIG. 6, the conductive layer 21 and the semiconductor chip 1 are combined. Is joined by the chip connecting member 3a. At the same time, the first electrode pad 15, the second electrode pad 16, and the first connection pin 50 and the second connection pin 60 are joined by the control electrode solder material 40a and the main electrode solder material 40b, respectively.

図6に示すように、第1接続ピン50及び第2接続ピン60にはそれぞれ、制御電極用はんだ材40a及び主電極用はんだ材40bの濡れ上がりが同程度の大きさで発生している。図2に示した代表実施形態に係る半導体装置と同様に、従来の半導体装置でも第2電極パッド16には2つの第2接続ピン60が接合される。そのため、第2電極パッド16に塗布されるはんだの量は、第1電極パッド15よりも多い。更に、図5(a)及び(b)で示すように、第1接続ピン50及び第2接続ピン60は、共にAg等からなるはんだ濡れ性のよいめっき層35aを有する。そのため、リフロー処理の際のはんだの濡れ上がりは、1つの第1接続ピン50に対して2つの第2接続ピン6の方が強くなり、半導体チップ1の主電極側が制御電極側に対して浮き上がるような力が働く。その結果、図6に示すように、半導体チップ1は、制御電極側に対して主電極側が持ち上がって傾斜して搭載されるという問題が発生する。図6に示すように、半導体チップ1と絶縁回路基板2の導電層21とを接合するチップ接続部材3aは、制御電極側の厚さTgと主電極側の厚さTsとの差異は20μm以上、例えば50μm以上150μm以下程度と傾斜する。その結果、従来の半導体装置では、熱サイクルの負荷時に、チップ接続部材3aにかかる熱応力によるクラックが発生して、信頼性が低下してしまう。 As shown in FIG. 6, in the first connection pin 50 and the second connection pin 60, the control electrode solder material 40a and the main electrode solder material 40b are wetted with the same magnitude, respectively. Similar to the semiconductor device according to the representative embodiment shown in FIG. 2, two second connection pins 60 are joined to the second electrode pad 16 in the conventional semiconductor device. Therefore, the amount of solder applied to the second electrode pad 16 is larger than that of the first electrode pad 15. Further, as shown in FIGS. 5A and 5B, the first connection pin 50 and the second connection pin 60 both have a plating layer 35a having good solder wettability, which is made of Ag or the like. Therefore, the wetting of the solder during the reflow process is stronger for the two second connection pins 6 than for the one first connection pin 50, and the main electrode side of the semiconductor chip 1 rises with respect to the control electrode side. Power works like this. As a result, as shown in FIG. 6, the semiconductor chip 1 has a problem that the main electrode side is lifted and tilted with respect to the control electrode side. As shown in FIG. 6, in the chip connecting member 3a for joining the semiconductor chip 1 and the conductive layer 21 of the insulating circuit board 2, the difference between the thickness Tg on the control electrode side and the thickness Ts on the main electrode side is 20 μm or more. For example, the inclination is about 50 μm or more and 150 μm or less. As a result, in the conventional semiconductor device, cracks are generated due to the thermal stress applied to the chip connecting member 3a when the thermal cycle is loaded, and the reliability is lowered.

一方、代表実施形態では、はんだ濡れ性のよいAg等の第1めっき層35を有する1本の第1接続ピン5と、Agよりはんだ濡れ性の劣るNi等の第2めっき層36を有する2本の第2接続ピン6を用いて半導体チップ1の傾斜を防止している。もし、第1電極パッド15と第2電極パッド16の開口面積比が逆転して、はんだペーストの塗布量も逆転する場合は、第1接続ピン5と第2接続ピン6とのはんだ濡れ性の関係も逆転すればよい。例えば、第2接続ピン6がはんだ濡れ性のよいAg等の第1めっき層35を有し、第1接続ピン5がAgよりはんだ濡れ性の劣るNi等の第2めっき層36を有するようにすればよい。上記のように、第1めっき層35として、Agめっき、第2めっき層36として、Niめっきを用いて説明したが、限定されない。例えば、第1めっき層35として、Niよりはんだ濡れ性のよいAuやSn等が使用可能である。また、第2めっき層36として、Ag、Au、Sn等よりはんだ濡れ性が劣る金属等の導電膜が使用可能である。 On the other hand, in a typical embodiment, one first connection pin 5 having a first plating layer 35 such as Ag having good solder wettability and a second plating layer 36 such as Ni having inferior solder wettability to Ag have 2 The second connection pin 6 of the book is used to prevent the semiconductor chip 1 from tilting. If the opening area ratio of the first electrode pad 15 and the second electrode pad 16 is reversed and the amount of solder paste applied is also reversed, the solder wettability of the first connection pin 5 and the second connection pin 6 The relationship should be reversed. For example, the second connection pin 6 has a first plating layer 35 such as Ag having good solder wettability, and the first connection pin 5 has a second plating layer 36 such as Ni having inferior solder wettability to Ag. do it. As described above, Ag plating is used as the first plating layer 35, and Ni plating is used as the second plating layer 36, but the description is not limited. For example, Au, Sn, etc., which have better solder wettability than Ni, can be used as the first plating layer 35. Further, as the second plating layer 36, a conductive film such as a metal having a solder wettability inferior to that of Ag, Au, Sn or the like can be used.

なお、半導体チップ1の寸法は、10mm角未満が好ましく、更に、3mm角以上5mm角以下がより好ましい。従来のSiを用いた半導体チップは、10mm角以上、例えば12mm角以上15mm角以下程度の寸法を有している。このように、大面積の従来のSi半導体チップでは、リフロー処理の際のはんだの濡れ上がりは存在するが、半導体チップ下のはんだ材全体の厚さの変動や傾斜は顕著には現れない。代表実施形態に係る半導体装置では、SiC等のワイドバンドギャップ半導体の半導体チップ1が用いられる。SiC半導体チップ1では、電流密度を高めることができ、パワー半導体素子として小型化ができる。そのため、半導体チップ1を10mm角未満の寸法としても、十分にパワー半導体素子としての特性を実現できる。半導体チップ1の寸法を10mm角未満、あるいは3mm角以上5mm角以下と縮小すると、リフロー処理の際のはんだの濡れ上がりに起因する半導体チップ1の持ち上がりが発生する。したがって、第1接続ピン5に比べて第2接続ピン6のはんだ濡れ性を低くして、はんだの濡れ上がりに起因する半導体チップ1の持ち上がりを防止することが重要となる。 The size of the semiconductor chip 1 is preferably less than 10 mm square, more preferably 3 mm square or more and 5 mm square or less. Conventional semiconductor chips using Si have dimensions of 10 mm square or more, for example, 12 mm square or more and 15 mm square or less. As described above, in the conventional Si semiconductor chip having a large area, the solder gets wet during the reflow process, but the fluctuation and inclination of the thickness of the entire solder material under the semiconductor chip do not appear remarkably. In the semiconductor device according to the representative embodiment, the semiconductor chip 1 of a wide bandgap semiconductor such as SiC is used. The SiC semiconductor chip 1 can increase the current density and can be miniaturized as a power semiconductor element. Therefore, even if the size of the semiconductor chip 1 is less than 10 mm square, the characteristics as a power semiconductor element can be sufficiently realized. When the dimensions of the semiconductor chip 1 are reduced to less than 10 mm square, or 3 mm square or more and 5 mm square or less, the semiconductor chip 1 is lifted due to the wetting of the solder during the reflow process. Therefore, it is important to lower the solder wettability of the second connection pin 6 as compared with the first connection pin 5 to prevent the semiconductor chip 1 from being lifted due to the wetting of the solder.

また、代表実施形態に係る半導体装置の配線基板7の接続ピンの挿入方法の一例を、図7及び図8を参照して説明する。なお、以下に述べる接続ピンの挿入方法は一例であり、特許請求の範囲に記載した趣旨の範囲であれば、この変形例を含めて、これ以外の種々の挿入方法により実現可能であることは勿論である。 Further, an example of a method of inserting the connection pin of the wiring board 7 of the semiconductor device according to the representative embodiment will be described with reference to FIGS. 7 and 8. The connection pin insertion method described below is an example, and it may be feasible by various other insertion methods including this modification as long as it is within the scope of claims. Of course.

まず、第1接続ピン5として、はんだ濡れ性のよいAg等をめっきした直径が0.45mm程度の複数の第1接続ピンを準備する。また、第2接続ピン6として、はんだ濡れ性がAgより劣るNi等をめっきした直径が0.50mm程度の複数の第2接続ピンを準備する。更に、配線基板7の所定の位置に、直径が0.46mm程度の第1貫通孔25及び直径が0.51mm程度の第2貫通孔26を開口する。配線基板7をピン挿入装置に配置し、配線基板7の上に複数の第1接続ピンをばら撒き、配線基板7に振動を与える。配線基板7の振動により、図7に示すように、複数の第1接続ピンが第1貫通孔25に挿入されるが、第2貫通孔26では一旦挿入されても抜け落ちる。第1貫通孔25に第1接続ピン5が挿入されたら、配線基板7の上に複数の第2接続ピンをばら撒き、配線基板7に振動を与える。配線基板7の振動により、図8に示すように、複数の第2接続ピンが第2貫通孔26に挿入されるが、第1貫通孔25には挿入されない。このようにして、第2貫通孔26に第2接続ピン6が挿入される。第1接続ピンと第2接続ピンの直径は、逆でもよいが、第2接続ピン6の電流密度が高いため、第2接続ピン6に対応する第2接続ピンの直径を大きくすることが望ましい。また、上記では、細い第1接続ピンを先に挿入したが、直径の大きな第2接続ピンを先に挿入してもよい。 First, as the first connection pin 5, a plurality of first connection pins having a diameter of about 0.45 mm plated with Ag or the like having good solder wettability are prepared. Further, as the second connection pin 6, a plurality of second connection pins having a diameter of about 0.50 mm plated with Ni or the like, which is inferior in solder wettability to Ag, are prepared. Further, a first through hole 25 having a diameter of about 0.46 mm and a second through hole 26 having a diameter of about 0.51 mm are opened at predetermined positions on the wiring board 7. The wiring board 7 is arranged in the pin insertion device, and a plurality of first connection pins are scattered on the wiring board 7 to give vibration to the wiring board 7. As shown in FIG. 7, a plurality of first connection pins are inserted into the first through hole 25 due to the vibration of the wiring board 7, but the second through hole 26 comes off even if it is once inserted. When the first connection pin 5 is inserted into the first through hole 25, a plurality of second connection pins are scattered on the wiring board 7 to give vibration to the wiring board 7. As shown in FIG. 8, a plurality of second connection pins are inserted into the second through hole 26 due to the vibration of the wiring board 7, but are not inserted into the first through hole 25. In this way, the second connection pin 6 is inserted into the second through hole 26. The diameters of the first connection pin and the second connection pin may be reversed, but since the current density of the second connection pin 6 is high, it is desirable to increase the diameter of the second connection pin corresponding to the second connection pin 6. Further, in the above, the thin first connecting pin is inserted first, but the second connecting pin having a large diameter may be inserted first.

実施例として、代表実施形態に係る半導体装置を試作し、半導体チップ1の傾斜及びパワーサイクルの評価を実施した。図1に示した絶縁回路基板2には、絶縁板22として厚さ0.32mm程度のSi34セラミック基板、及び導電層21、23として厚さ0.3mmのCu等の導電性板を用いた。窒素(N2)雰囲気リフロー炉を用いたはんだ付けにより、絶縁回路基板2上に半導体チップ1及び外部端子ピンを、並びに、半導体チップ1上に配線基板7に挿入された接続ピンを接合して配設した。配設された部材を金型に設置した。脂肪族エポキシ樹脂主剤、硬化剤、及び無機充填剤を、所定の質量比で混合し、真空脱泡を行った。その後、樹脂を金型に注入し、100℃、1時間で一時硬化した後、150℃、3時間で二次硬化を行って半導体装置を作製した。実施例1として、第1接続ピン5は、直径0.45μmでAgめっき、第2接続ピン6は、直径0.45μmでNiめっきとした。実施例2として、第1接続ピン5は、直径0.45μmでAgめっき、第2接続ピン6は、直径0.50μmでNiめっきとした。また、比較例1として、従来同様に、第1接続ピン5は、直径0.45μmでAgめっき、第2接続ピン6は、直径0.45μmでAgめっきとした。 As an example, a semiconductor device according to a representative embodiment was prototyped, and the inclination and power cycle of the semiconductor chip 1 were evaluated. Shown in FIG. 1 the insulating circuit board 2, Si 3 N 4 ceramic substrate having a thickness of about 0.32mm as the insulating plate 22, and a conductive plate such as Cu having a thickness of 0.3mm as the conductive layers 21 and 23 Using. By soldering using a nitrogen (N 2 ) atmosphere reflow furnace, the semiconductor chip 1 and the external terminal pin are joined on the insulating circuit board 2, and the connection pin inserted in the wiring board 7 is joined on the semiconductor chip 1. Arranged. The arranged members were installed in the mold. The aliphatic epoxy resin main agent, the curing agent, and the inorganic filler were mixed at a predetermined mass ratio, and vacuum defoaming was performed. Then, the resin was injected into a mold, temporarily cured at 100 ° C. for 1 hour, and then secondarily cured at 150 ° C. for 3 hours to prepare a semiconductor device. In Example 1, the first connection pin 5 was Ag-plated with a diameter of 0.45 μm, and the second connection pin 6 was Ni-plated with a diameter of 0.45 μm. In Example 2, the first connection pin 5 was Ag-plated with a diameter of 0.45 μm, and the second connection pin 6 was Ni-plated with a diameter of 0.50 μm. Further, as Comparative Example 1, the first connection pin 5 was Ag-plated with a diameter of 0.45 μm and the second connection pin 6 was Ag-plated with a diameter of 0.45 μm as in the conventional case.

作製した実施例1、2及び比較例1の半導体装置に対して、熱サイクル試験を実施した。熱サイクル試験は、最大接合部温度Tjmax=175℃、Tjmin=75℃(温度差ΔT=100℃)で行い、20万サイクル後の接合部とケース間の熱抵抗[K/W]上昇率を確認した。また、熱サイクル試験前の初期での半導体チップの傾斜も確認した。図7は、熱サイクル試験による評価結果を示す表である。図7の表に示すように、半導体チップ1の傾斜は、実施例1及び実施例2ともに20μm未満であり、ほぼ平坦であることが確認できた。20万サイクル後の熱抵抗上昇率は、実施例1で8%程度、実施例2で7%程度と熱抵抗の増加を抑制できることが確認できた。一方、比較例1では、半導体チップ1の傾斜が100μm以上120μm以下程度と大きいことがわかる。20万サイクル後の熱抵抗上昇率は、20%程度と大きく、図6に示したように、チップ接続部材3aが傾いて部分的に薄くなってしまうため、チップ接続部材3aにクラックが入りやすく、熱抵抗の上昇を招いてしまう。 A thermal cycle test was carried out on the semiconductor devices of Examples 1 and 2 and Comparative Example 1 produced. The thermal cycle test is performed at the maximum joint temperature Tjmax = 175 ° C. and Tjmin = 75 ° C. (temperature difference ΔT = 100 ° C.) to determine the rate of increase in thermal resistance [K / W] between the joint and the case after 200,000 cycles. confirmed. We also confirmed the inclination of the semiconductor chip at the initial stage before the thermal cycle test. FIG. 7 is a table showing the evaluation results by the thermal cycle test. As shown in the table of FIG. 7, the inclination of the semiconductor chip 1 was less than 20 μm in both Example 1 and Example 2, and it was confirmed that the semiconductor chip 1 was substantially flat. It was confirmed that the rate of increase in thermal resistance after 200,000 cycles was about 8% in Example 1 and about 7% in Example 2, and the increase in thermal resistance could be suppressed. On the other hand, in Comparative Example 1, it can be seen that the inclination of the semiconductor chip 1 is as large as about 100 μm or more and 120 μm or less. The rate of increase in thermal resistance after 200,000 cycles is as large as about 20%, and as shown in FIG. 6, the chip connecting member 3a is tilted and partially thinned, so that the chip connecting member 3a is likely to crack. , Invites an increase in thermal resistance.

代表実施形態では、第1接続ピン5のAg等からなる第1めっき層35は、第2接続ピン6のNi等からなる第2めっき層36に比べてはんだの濡れ性がよい。そのため、第1接続ピン5のはんだの濡れ上がりは、2つの第2接続ピン6のそれぞれに比べて大きい。第2接続ピン6のはんだの濡れ上がりが低減されているので、リフロー時のはんだの濡れ上がりに起因する半導体チップ1の持ち上がりを防止することができる。その結果、半導体チップ1と絶縁回路基板2の導電層21とを接合するチップ接続部材3は、図4に示した制御電極側の厚さTgと主電極側の厚さTsとの差異は20μm未満とほぼ平坦となる。そのため、代表実施形態に係る半導体装置では、半導体チップ1が傾斜することなく実装することができ、熱サイクルの負荷時に、チップ接続部材3にかかる熱応力によるクラックの発生を防止して、信頼性の低下を抑制することが可能となる。 In a typical embodiment, the first plating layer 35 made of Ag or the like of the first connection pin 5 has better solder wettability than the second plating layer 36 made of Ni or the like of the second connection pin 6. Therefore, the wettability of the solder of the first connection pin 5 is larger than that of each of the two second connection pins 6. Since the wetting of the solder of the second connection pin 6 is reduced, it is possible to prevent the semiconductor chip 1 from being lifted due to the wetting of the solder during reflow. As a result, in the chip connecting member 3 for joining the semiconductor chip 1 and the conductive layer 21 of the insulating circuit board 2, the difference between the thickness Tg on the control electrode side and the thickness Ts on the main electrode side shown in FIG. 4 is 20 μm. If it is less than, it becomes almost flat. Therefore, in the semiconductor device according to the representative embodiment, the semiconductor chip 1 can be mounted without being tilted, and cracks due to thermal stress applied to the chip connecting member 3 are prevented from being generated when a thermal cycle is applied, so that reliability is achieved. It becomes possible to suppress the decrease of.

(その他の実施形態)
上記のように、本発明は一つの代表実施形態によって記載したが、この開示の一部をなす論述及び図面は本発明を限定するものであると理解すべきではない。上記の代表実施形態の開示の趣旨を理解すれば、当業者には様々な代替実施形態、実施例及び運用技術が本発明に含まれ得ることが明らかとなろう。又、上記の代表実施形態及び各変形例において説明される各構成を任意に応用した構成等、本発明はここでは記載していない様々な実施形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の例示的説明から妥当な、特許請求の範囲に係る発明特定事項によってのみ定められるものである。
(Other embodiments)
As mentioned above, the invention has been described in one representative embodiment, but the statements and drawings that form part of this disclosure should not be understood to limit the invention. Understanding the gist of disclosure of the above representative embodiments will make it clear to those skilled in the art that various alternative embodiments, examples and operational techniques may be included in the present invention. Further, it goes without saying that the present invention includes various embodiments not described here, such as a configuration in which each configuration described in the above representative embodiment and each modification is arbitrarily applied. Therefore, the technical scope of the present invention is defined only by the matters specifying the invention relating to the claims, which are appropriate from the above exemplary description.

1…半導体チップ
2…絶縁回路基板
3…チップ接続部材
4a…第1はんだ材
4b…第2はんだ材
5…第1接続ピン(制御電極用接続ピン)
6…第2接続ピン(主電極用接続ピン)
7…配線基板
8…封止樹脂
9…保護膜
10…ピン主部
15…第1電極パッド(制御電極パッド)
16…第2電極パッド(主電極パッド)
21、23…導電層
22…絶縁板
25…第1貫通孔
26…第2貫通孔
35…第1めっき層
36…第2めっき層
71、73…配線層
72…樹脂板
1 ... Semiconductor chip 2 ... Insulated circuit board 3 ... Chip connecting member 4a ... First solder material 4b ... Second solder material 5 ... First connection pin (connection pin for control electrode)
6 ... 2nd connection pin (connection pin for main electrode)
7 ... Wiring board 8 ... Encapsulating resin 9 ... Protective film 10 ... Pin main part 15 ... First electrode pad (control electrode pad)
16 ... Second electrode pad (main electrode pad)
21, 23 ... Conductive layer 22 ... Insulating plate 25 ... First through hole 26 ... Second through hole 35 ... First plating layer 36 ... Second plating layer 71, 73 ... Wiring layer 72 ... Resin plate

Claims (8)

絶縁回路基板と、
該絶縁回路基板の上面に設けられた導電層の上に配置されたチップ接続部材と、
該チップ接続部材により裏面が接合され、一端側に第1電極パッドと他端側に前記第1電極パッドよりも大電流が流れる第2電極パッドとを有する半導体チップと、
前記絶縁回路基板に対面する配線基板に設けられた第1貫通孔に圧入され、前記第1電極パッドの上に配置された第1はんだ材に一端が接合された第1接続ピンと、
前記配線基板に設けられた第2貫通孔に圧入され、前記第2電極パッドの上に配置された第2はんだ材に一端が接合された第2接続ピンと
を備え、
前記第1接続ピンの表面に設けられた第1めっき層は、前記第2接続ピンの表面に設けられた第2めっき層よりはんだの濡れ性が高いことを特徴とする半導体装置。
Insulated circuit board and
A chip connecting member arranged on a conductive layer provided on the upper surface of the insulating circuit board, and
A semiconductor chip having a back surface joined by the chip connecting member and having a first electrode pad on one end side and a second electrode pad on the other end side through which a larger current than the first electrode pad flows.
A first connection pin that is press-fitted into a first through hole provided in a wiring board facing the insulating circuit board and one end of which is joined to a first solder material arranged on the first electrode pad.
It is provided with a second connection pin that is press-fitted into a second through hole provided in the wiring board and has one end bonded to a second solder material arranged on the second electrode pad.
A semiconductor device characterized in that the first plating layer provided on the surface of the first connection pin has higher solder wettability than the second plating layer provided on the surface of the second connection pin.
前記一端側と前記他端側とにおける前記チップ接続部材の膜厚の差が、20μm未満であることを特徴とする請求項1に記載の半導体装置。 The semiconductor device according to claim 1, wherein the difference in film thickness of the chip connecting member between the one end side and the other end side is less than 20 μm. 前記第1接続ピンの第1めっき層が銀又は金からなり、前記第2接続ピンの第2めっき層がニッケルからなることを特徴とする請求項1又は2に記載の半導体装置。 The semiconductor device according to claim 1 or 2, wherein the first plating layer of the first connection pin is made of silver or gold, and the second plating layer of the second connection pin is made of nickel. 少なくとも前記第2接続ピンが複数であり、前記第1接続ピンより多いことを特徴とする請求項1〜3のいずれか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 3, wherein the number of the second connection pins is at least a plurality and the number is larger than that of the first connection pins. 前記第2電極パッドの表面積が、前記第1電極パッドの表面積よりも大きいことを特徴とする請求項1〜4のいずれか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 4, wherein the surface area of the second electrode pad is larger than the surface area of the first electrode pad. 前記第1はんだ材の量は、前記第2はんだ材よりも多いことを特徴とする請求項1〜5のいずれか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 5, wherein the amount of the first solder material is larger than that of the second solder material. 前記半導体チップが、10mm×10mm未満の寸法であることを特徴とする請求項1〜6のいずれか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 6, wherein the semiconductor chip has a size of less than 10 mm × 10 mm. 前記第1接続ピンと前記第2接続ピンとの直径が異なることを特徴とする請求項1〜7のいずれか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 7, wherein the first connection pin and the second connection pin have different diameters.
JP2019166581A 2019-09-12 2019-09-12 semiconductor equipment Active JP7404726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019166581A JP7404726B2 (en) 2019-09-12 2019-09-12 semiconductor equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019166581A JP7404726B2 (en) 2019-09-12 2019-09-12 semiconductor equipment

Publications (2)

Publication Number Publication Date
JP2021044456A true JP2021044456A (en) 2021-03-18
JP7404726B2 JP7404726B2 (en) 2023-12-26

Family

ID=74861767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019166581A Active JP7404726B2 (en) 2019-09-12 2019-09-12 semiconductor equipment

Country Status (1)

Country Link
JP (1) JP7404726B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010574A (en) * 2008-06-30 2010-01-14 Nichicon Corp Semiconductor device and its manufacturing method
WO2014203798A1 (en) * 2013-06-19 2014-12-24 富士電機株式会社 Semiconductor device
JP2015029157A (en) * 2014-11-13 2015-02-12 富士電機株式会社 Semiconductor device manufacturing method and semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010574A (en) * 2008-06-30 2010-01-14 Nichicon Corp Semiconductor device and its manufacturing method
WO2014203798A1 (en) * 2013-06-19 2014-12-24 富士電機株式会社 Semiconductor device
JP2015029157A (en) * 2014-11-13 2015-02-12 富士電機株式会社 Semiconductor device manufacturing method and semiconductor device

Also Published As

Publication number Publication date
JP7404726B2 (en) 2023-12-26

Similar Documents

Publication Publication Date Title
JP6755386B2 (en) Manufacturing method of power semiconductor module and power semiconductor module
US8395248B2 (en) Semiconductor device and manufacturing method therefor
JP2019110317A (en) Power semiconductor device
CN109698179B (en) Semiconductor device and method for manufacturing semiconductor device
JP3841007B2 (en) Semiconductor device
US8432024B2 (en) Integrated circuit including bond wire directly bonded to pad
JP7404726B2 (en) semiconductor equipment
US10236244B2 (en) Semiconductor device and production method therefor
JP7476540B2 (en) Semiconductor Device
US11127714B2 (en) Printed board and semiconductor device
WO2019207996A1 (en) Semiconductor device and manufacturing method thereof
US11756923B2 (en) High density and durable semiconductor device interconnect
US20240120307A1 (en) Semiconductor device
JP7494613B2 (en) Semiconductor Device
US11587861B2 (en) Semiconductor device and manufacturing method thereof
CN220821553U (en) Semiconductor packaging structure
KR102459361B1 (en) Power module package
US20240006287A1 (en) Semiconductor device
US11450623B2 (en) Semiconductor device
US20230028808A1 (en) Semiconductor device
CN115050656A (en) Gallium nitride power device integrated with freewheeling diode and packaging method
KR20230173334A (en) Ceramic substrate and manufacturing method thereof
WO2020201005A1 (en) Semiconductor module and method for manufacturing it
CN111952272A (en) Semiconductor package and method of forming the same
JP5151837B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231127

R150 Certificate of patent or registration of utility model

Ref document number: 7404726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150