JP2021041070A - Pulse wave analysis device and pulse wave analysis program - Google Patents

Pulse wave analysis device and pulse wave analysis program Download PDF

Info

Publication number
JP2021041070A
JP2021041070A JP2019167200A JP2019167200A JP2021041070A JP 2021041070 A JP2021041070 A JP 2021041070A JP 2019167200 A JP2019167200 A JP 2019167200A JP 2019167200 A JP2019167200 A JP 2019167200A JP 2021041070 A JP2021041070 A JP 2021041070A
Authority
JP
Japan
Prior art keywords
pulse wave
wave signal
value
signal
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019167200A
Other languages
Japanese (ja)
Other versions
JP7272196B2 (en
Inventor
規之 望月
Noriyuki Mochizuki
規之 望月
吉則 小関
Yoshinori Koseki
吉則 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saxa Inc
Original Assignee
Saxa Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saxa Inc filed Critical Saxa Inc
Priority to JP2019167200A priority Critical patent/JP7272196B2/en
Publication of JP2021041070A publication Critical patent/JP2021041070A/en
Application granted granted Critical
Publication of JP7272196B2 publication Critical patent/JP7272196B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

To reduce the influence of the noise of a portion between the a wave and the e wave of an acceleration pulse wave signal or a portion corresponding to the portion in a speed pulse wave signal or a volume pulse wave signal when acquiring a pulse wave signal for acquiring biological information.SOLUTION: A microcomputer 35 acquires pulse wave data for plural pulses from an A/D converter 34, differentiates twice to acquire acceleration pulse wave data, detects a feature point (peak of the a wave) of the acceleration pulse wave data to record waveform data for one pulse, acquires an appearance frequency value for each data value for each temporal axis position for one pulse after recording the waveform data for plural pulses, acquires an appearance frequency cumulative value for each signal value for each temporal axis position with the cumulation for plural pulses of the appearance frequency value for one pulse, and acquires acceleration pulse wave data for acquiring biological information on the basis of the most frequent value of the appearance frequency cumulative value.SELECTED DRAWING: Figure 2

Description

本発明は、生体から検出した脈波信号から生体の動きによるノイズを除去する機能を備えた脈波解析装置及び脈波解析プログラムに関する。 The present invention relates to a pulse wave analysis device and a pulse wave analysis program having a function of removing noise due to movement of a living body from a pulse wave signal detected from a living body.

従来より、血液中のヘモグロビンの光吸収特性を利用して生体の脈波を検出する光学式の脈波センサを備えた脈波解析装置がある。この脈波解析装置は、血液に吸収されやすい波長の光を発光ダイオードなどの発光素子から生体へ向けて照射し、生体を透過した光または生体内に進入後散乱等によって反射した光をフォトダイオードやフォトトランジスタなどの受光素子で受光して電気信号(容積脈波信号)に変換することにより容積脈波を検出し、この容積脈波信号、又は容積脈波信号を1回微分した速度脈波信号、又は容積脈波信号を2回微分した加速度脈波信号を解析することで、血圧や心拍数などの生体情報を取得する(特許文献1、2、3)。 Conventionally, there is a pulse wave analysis device provided with an optical pulse wave sensor that detects a pulse wave of a living body by utilizing the light absorption characteristic of hemoglobin in blood. This pulse wave analyzer irradiates a living body with light having a wavelength that is easily absorbed by blood from a light emitting element such as a light emitting diode, and emits light that has passed through the living body or light that has entered the living body and is reflected by scattering after entering the living body. A volume pulse wave is detected by receiving light with a light receiving element such as a photodiode or a photodiode and converting it into an electric signal (volume pulse wave signal), and this volume pulse wave signal or a velocity pulse wave obtained by differentiating the volume pulse wave signal once. By analyzing the signal or the acceleration pulse wave signal obtained by differentiating the volume pulse wave signal twice, biological information such as blood pressure and heart rate is acquired (Patent Documents 1, 2, and 3).

ところで、これらの生体情報は脈波信号(容積脈波信号、速度脈波信号、加速度脈波信号)から得られる特徴量(ピーク値、ピーク間隔など)を基に取得しているが、脈波信号にはその特性上、自律神経による無意識下の生命活動やゆらぎを含む、人体の動きによるノイズが重畳されてしまうため、安定して取得することが難しい。また、ノイズの周波数には脈波信号の特徴量が持つ周波数成分と重複するものもあり、それらを完全に除去することは難しい。 By the way, these biological information are acquired based on the feature quantities (peak value, peak interval, etc.) obtained from the pulse wave signal (volume pulse wave signal, velocity pulse wave signal, acceleration pulse wave signal), but the pulse wave. Due to its characteristics, it is difficult to obtain the signal stably because noise due to the movement of the human body, including unconscious life activity and fluctuation by the autonomic nerve, is superimposed on the signal. In addition, some noise frequencies overlap with the frequency components of the pulse wave signal features, and it is difficult to completely remove them.

この問題に対処した脈波計測・解析装置として、特許文献4に記載された脈波計測・解析装置がある。この脈波計測・解析装置は、加速度脈波信号に対して、a波(収縮初期陽性波)のピークとe波(拡張初期陽性波)のピークとの間隔であるa−e間隔の頻度分布を求め、頻度の高い加速度脈波信号の平均波形を生体情報を取得するための加速度脈波信号とする。 As a pulse wave measurement / analysis device that addresses this problem, there is a pulse wave measurement / analysis device described in Patent Document 4. This pulse wave measuring / analyzing device is a frequency distribution of the a-e interval, which is the interval between the peak of the a wave (early contraction positive wave) and the peak of the e wave (extended initial positive wave) with respect to the acceleration pulse wave signal. Is obtained, and the average waveform of the frequently used acceleration pulse wave signal is used as the acceleration pulse wave signal for acquiring biological information.

特開2001−61795号公報Japanese Unexamined Patent Publication No. 2001-61795 特開2007−61572号公報Japanese Unexamined Patent Publication No. 2007-61572 特開2000−225097号公報Japanese Unexamined Patent Publication No. 2000-225097 特許第3965435号公報Japanese Patent No. 3965435

しかしながら、生体の動きによるノイズはa波とe波の間の区間にも存在するので、そのノイズを考慮せずにa−e間隔の頻度分布を基に平均化するための波形選別を行う上記の脈波計測・解析装置では、求めた加速度脈波信号の平均波形にノイズの影響が残ることがあり得る。 However, since the noise due to the movement of the living body also exists in the section between the a wave and the e wave, the waveform selection for averaging based on the frequency distribution of the a-e interval is performed without considering the noise. In the pulse wave measuring / analyzing device of the above, the influence of noise may remain on the average waveform of the obtained acceleration pulse wave signal.

本発明は、このような問題を解決するためになされたものであり、その目的は、生体情報を取得するための脈波信号(加速度脈波信号又は速度脈波信号又は容積脈波信号)を取得する際に、加速度脈波信号のa波とe波との間の部分、又は速度脈波信号若しくは容積脈波信号における前記部分に対応する部分のノイズの影響を低減することである。 The present invention has been made to solve such a problem, and an object of the present invention is to obtain a pulse wave signal (acceleration pulse wave signal or velocity pulse wave signal or volumetric pulse wave signal) for acquiring biological information. At the time of acquisition, it is to reduce the influence of noise in the portion between the a wave and the e wave of the acceleration pulse wave signal, or the portion corresponding to the portion in the velocity pulse wave signal or the volumetric pulse wave signal.

本発明は、脈波信号を複数拍分取得する脈波信号取得手段と、前記脈波信号取得手段により取得された複数拍分の脈波信号に対して、1拍分毎の時間軸位置毎の信号値毎の出現頻度値を複数拍分累積し、出現頻度値が最大の信号値である最頻値を取得する最頻値取得手段と、前記最頻値取得手段により取得された最頻値に基づいて、生体情報を取得するための脈波信号を取得する最頻脈波信号取得手段と、を有する脈波解析装置である。
また、本発明は、コンピュータを本発明の脈波解析装置の各手段として機能させるためのプログラムである。
The present invention relates to a pulse wave signal acquisition means for acquiring a plurality of beats of a pulse wave signal and a time axis position for each beat with respect to the pulse wave signals for a plurality of beats acquired by the pulse wave signal acquisition means. The most frequent value acquisition means for accumulating the appearance frequency value for each signal value of the above for a plurality of beats and acquiring the most frequent value having the maximum appearance frequency value, and the most frequent value acquisition means acquired by the most frequent value acquisition means. It is a pulse wave analysis apparatus having the most frequent pulse wave signal acquisition means for acquiring a pulse wave signal for acquiring biological information based on a value.
Further, the present invention is a program for making a computer function as each means of the pulse wave analyzer of the present invention.

本発明によれば、生体情報を取得するための脈波信号(加速度脈波信号又は速度脈波信号又は容積脈波信号)を取得する際に、加速度脈波信号のa波とe波との間の部分、又は速度脈波信号若しくは容積脈波信号における前記部分に対応する部分のノイズの影響を低減することができる。 According to the present invention, when acquiring a pulse wave signal (acceleration pulse wave signal, velocity pulse wave signal, or volumetric pulse wave signal) for acquiring biological information, the a wave and the e wave of the acceleration pulse wave signal are combined. It is possible to reduce the influence of noise in the intermediate portion, or the portion corresponding to the portion in the velocity pulse wave signal or the volume pulse wave signal.

本発明の実施形態に係る脈波解析装置の構成を示すブロック図である。It is a block diagram which shows the structure of the pulse wave analysis apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る脈波解析装置の要部の動作を示すフローチャートである。It is a flowchart which shows the operation of the main part of the pulse wave analysis apparatus which concerns on embodiment of this invention. 容積脈波信号、速度脈波信号及び加速度脈波信号の波形の2拍分を示す図である。It is a figure which shows 2 beats of the waveform of a volume pulse wave signal, a velocity pulse wave signal, and an acceleration pulse wave signal. 1拍分の加速度脈波データの時間軸位置毎のデータ値毎の出現頻度値の一例を示す図である。It is a figure which shows an example of the appearance frequency value for each data value for each time axis position of the acceleration pulse wave data for one beat. 複数拍分の加速度脈波データの時間軸位置毎のデータ値毎の出現頻度累積値の一例を示す図である。It is a figure which shows an example of the appearance frequency cumulative value for each data value for each time axis position of the acceleration pulse wave data for a plurality of beats. 図5における出現頻度累積値が高い程高濃度となる濃淡画像、及び当該濃淡画像の最高濃度の部分を通るスプライン曲線により取得した最頻加速度脈波を示す図である。It is a figure which shows the shading image which becomes higher density as the cumulative value of appearance frequency in FIG. 5 becomes higher, and the mode acceleration pulse wave acquired by the spline curve passing through the part of the highest density of the shading image.

以下、本発明の実施形態について図面を参照して詳細に説明する。
〈脈波解析装置の構成〉
図1は、本発明の実施形態に係る脈波解析装置の構成を示すブロック図である。この脈波解析装置1は、光電脈波センサ2、信号処理ユニット3、操作部4、及び表示部5からなる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
<Configuration of pulse wave analyzer>
FIG. 1 is a block diagram showing a configuration of a pulse wave analysis device according to an embodiment of the present invention. The pulse wave analysis device 1 includes a photoelectric pulse wave sensor 2, a signal processing unit 3, an operation unit 4, and a display unit 5.

光電脈波センサ2は、血中ヘモグロビンの吸光特性を利用して、容積脈波を光学的に検出するセンサであり、発光素子としてのLED21と、受光素子としてのフォトセンサ22を備えている。 The photoelectric pulse wave sensor 2 is a sensor that optically detects a positive pulse wave by utilizing the absorption characteristic of hemoglobin in blood, and includes an LED 21 as a light emitting element and a photo sensor 22 as a light receiving element.

信号処理ユニット3は、光電脈波センサ2を駆動するとともに、光電脈波センサ2で検知された容積脈波を取得して処理する信号処理ユニットであり、駆動部31、増幅部32、フィルタ33、A/D変換器34、及びマイコン(マイクロコンピュータ)35を備えている。 The signal processing unit 3 is a signal processing unit that drives the photoelectric pulse wave sensor 2 and acquires and processes the volume pulse wave detected by the photoelectric pulse wave sensor 2. The drive unit 31, the amplification unit 32, and the filter 33. , A / D converter 34, and microcomputer (microcomputer) 35.

操作部4は、信号処理ユニット3に各種指示や情報を入力するためのユーザインタフェースであり、表示部5は、信号処理ユニット3で処理された脈波などを表示するユーザインタフェースである。 The operation unit 4 is a user interface for inputting various instructions and information to the signal processing unit 3, and the display unit 5 is a user interface for displaying a pulse wave or the like processed by the signal processing unit 3.

光電脈波センサ2のLED21は、信号処理ユニット3の駆動部31から出力される駆動電圧に応じて発光する。フォトセンサ22は、LED21から放射され、例えば指先などの人体を透過した透過光、又は人体で反射した反射光の強さに応じた検出信号(容積脈波信号)を出力する。 The LED 21 of the photoelectric pulse wave sensor 2 emits light according to the drive voltage output from the drive unit 31 of the signal processing unit 3. The photosensor 22 outputs a detection signal (volume pulse wave signal) radiated from the LED 21 and transmitted through the human body such as a fingertip, or a detection signal (volume pulse wave signal) according to the intensity of the reflected light reflected by the human body.

信号処理ユニット3の増幅部32は、例えばオペアンプを用いた増幅器により構成されており、容積脈波信号を増幅する。フィルタ33は、増幅部32で増幅された容積脈波信号から、容積脈波を特徴づける周波数成分以外の成分であるノイズを除去するフィルタリングを行う。A/D変換器34は、フィルタ33を通った容積脈波信号をデジタル化(デジタル値に変換)して容積脈波データとする。 The amplification unit 32 of the signal processing unit 3 is composed of, for example, an amplifier using an operational amplifier, and amplifies the volume pulse wave signal. The filter 33 performs filtering for removing noise, which is a component other than the frequency component that characterizes the volume pulse wave, from the volume pulse wave signal amplified by the amplification unit 32. The A / D converter 34 digitizes (converts into a digital value) the volumetric pulse wave signal that has passed through the filter 33 to obtain volumetric pulse wave data.

マイコン35は、CPU35a、RAM35b、及びROM35cを備えている。CPU35aは、容積脈波データに対して各種演算処理(詳細については後述する)を実行する。ROM35cはCPU35aが各種演算処理を実行するときに使用するプログラムやデータを記憶しており、RAM35bはCPU35aが各種演算処理を実行するときにプログラムやデータを一時的に記憶する作業エリアとなる。 The microcomputer 35 includes a CPU 35a, a RAM 35b, and a ROM 35c. The CPU 35a executes various arithmetic processes (details will be described later) on the volume pulse wave data. The ROM 35c stores programs and data used when the CPU 35a executes various arithmetic processes, and the RAM 35b is a work area for temporarily storing programs and data when the CPU 35a executes various arithmetic processes.

〈脈波解析装置の動作〉
図2は、本発明の実施形態に係る脈波解析装置の要部の動作を示すフローチャートである。この動作は信号処理ユニット3内のマイコン35により実行される。すなわち、マイコン35は、脈波信号取得手段、最頻値取得手段、重ね合わせ手段、最頻脈波信号取得手段、波形データ生成手段、及び画像データ生成手段として機能する。
<Operation of pulse wave analyzer>
FIG. 2 is a flowchart showing the operation of a main part of the pulse wave analysis device according to the embodiment of the present invention. This operation is executed by the microcomputer 35 in the signal processing unit 3. That is, the microcomputer 35 functions as a pulse wave signal acquisition means, a mode acquisition means, a superposition means, a most frequent pulse wave signal acquisition means, a waveform data generation means, and an image data generation means.

まずマイコン35は、A/D変換器34から容積脈波データを取得し(ステップS1)、次に容積脈波データに対してフィルタリングを行う(ステップS2)。このフィルタリング処理は、容積脈波データに対してノイズを除去する処理であり、フィルタ33によるフィルタリング処理と併用せず、いずれか一方を実行するように構成してもよい。次にマイコン35は、容積脈波データを2回微分することで加速度脈波データを取得する(ステップS3)。 First, the microcomputer 35 acquires the volumetric pulse wave data from the A / D converter 34 (step S1), and then filters the volumetric pulse wave data (step S2). This filtering process is a process for removing noise from the volume pulse wave data, and may be configured to execute either one without using it in combination with the filtering process by the filter 33. Next, the microcomputer 35 acquires the acceleration pulse wave data by differentiating the volume pulse wave data twice (step S3).

ここで、ステップS3について補足する。図3は、容積脈波信号、速度脈波信号及び加速度脈波信号の波形の2拍分を示す図である。この図の横軸は時間であり、縦軸は各脈波信号の信号値(脈波信号レベル)である。 Here, step S3 is supplemented. FIG. 3 is a diagram showing two beats of waveforms of a volume pulse wave signal, a velocity pulse wave signal, and an acceleration pulse wave signal. The horizontal axis of this figure is time, and the vertical axis is the signal value (pulse wave signal level) of each pulse wave signal.

次にマイコン35は、加速度脈波がピークか否か、すなわちa波(収縮初期陽性波)のピークであるa点、b波(収縮初期陰性波)のピークであるb点、c波(収縮中期再上昇波)のピークであるc点、d波(収縮後期再下降波)のピークであるd点又はe波(拡張初期陽性波)のピークであるe点であるか否かを判断する(ステップS4)。そして、ピークと判断した場合は(ステップS4:Yes)、そのピークが特徴点か否かを判断する(ステップS5)。ここでは、波形の立ち上がりが鋭いことから判断の容易なa点であるか否かを判断する。なお、a波のピークか否かの判断に代えてa波の立ち上がりか否かの判断を行ってもよい。 Next, the microcomputer 35 determines whether or not the acceleration pulse wave is a peak, that is, point a which is the peak of a wave (initial contraction positive wave), point b which is the peak of b wave (initial contraction negative wave), and c wave (contraction). It is determined whether or not it is the c point which is the peak of the mid-term re-rising wave, the d point which is the peak of the d wave (late contraction re-falling wave), or the e point which is the peak of the e wave (extended early positive wave). (Step S4). Then, if it is determined to be a peak (step S4: Yes), it is determined whether or not the peak is a feature point (step S5). Here, it is determined whether or not the point a is easy to determine because the rising edge of the waveform is sharp. Instead of determining whether or not the peak is the a-wave, it may be determined whether or not the a-wave is rising.

そして、特徴点であると判断した場合は(ステップS5:Yes)、この特徴点を開始点(基準点)として1拍の波形の記録を開始し(ステップS6)、波形記録中か否かを判断する(ステップS7)。ステップS4でピークではないと判断した場合(ステップS4:No)、及びステップS5で特徴点ではないと判断した場合は(ステップS5:No)、そのまま波形記録中か否かを判断する。 Then, when it is determined that it is a feature point (step S5: Yes), recording of a waveform of one beat is started with this feature point as a start point (reference point) (step S6), and whether or not the waveform is being recorded is determined. Judgment (step S7). If it is determined in step S4 that it is not a peak (step S4: No), and if it is determined that it is not a feature point in step S5 (step S5: No), it is determined whether or not the waveform is being recorded as it is.

波形記録中と判断した場合は(ステップS7:Yes)、データ長足りか否かを判断する(ステップS8)。ここでは、1拍分の加速度脈波データが記録された時にデータ長足りと判断し(ステップS8:Yes)、波形記録を終了させる(ステップS9)。 If it is determined that the waveform is being recorded (step S7: Yes), it is determined whether or not the data is long enough (step S8). Here, when the acceleration pulse wave data for one beat is recorded, it is determined that the data length is sufficient (step S8: Yes), and the waveform recording is terminated (step S9).

次に今回記録した1拍分の加速度脈波データを過去に記録した加速度脈波データに重ね合わせ(ステップS10)、重ね合わせ数が充分か否か、すなわち重ね合わせ数が所定数(例えば100)に達したか否かを判断する(ステップS11)。この重ね合わせの際、前述した開始点を基準点として時間軸方向の位置合わせを行う。 Next, the acceleration pulse wave data for one beat recorded this time is superimposed on the acceleration pulse wave data recorded in the past (step S10), and whether or not the number of overlaps is sufficient, that is, the number of overlaps is a predetermined number (for example, 100). Is determined (step S11). At the time of this superposition, the alignment in the time axis direction is performed with the above-mentioned start point as a reference point.

重ね合わせ数が充分と判断した場合は(ステップS11:Yes)、加速度脈波データの時間軸方向の各位置における脈波データの最頻値を算出し(ステップS12)、最頻加速度脈波を取得し、表示部5に出力して(ステップS13)、この図に示されているフローを終了させる。 When it is determined that the number of superpositions is sufficient (step S11: Yes), the mode value of the pulse wave data at each position of the acceleration pulse wave data in the time axis direction is calculated (step S12), and the mode of the acceleration pulse wave is calculated. It is acquired, output to the display unit 5 (step S13), and the flow shown in this figure is terminated.

ステップS7で波形記録中でないと判断した場合(ステップS7:No)、ステップデータ長足りでないと判断した場合(ステップS8:No)、及びステップS11で重ね合わせ数が充分でないと判断した場合は(ステップS11:No)、ステップS1に戻り、容積脈波データの取得から繰り返す。 When it is determined in step S7 that the waveform is not being recorded (step S7: No), when it is determined that the step data is not long enough (step S8: No), and when it is determined in step S11 that the number of superpositions is not sufficient (step S7: No). Step S11: No), the process returns to step S1, and the process is repeated from the acquisition of the volume pulse wave data.

〈ステップS10からS12の具体例〉
ここでステップS10からS12について具体的に説明する。
図4は、1拍分の加速度脈波データの時間軸位置毎(時刻毎)のデータ値毎の出現頻度値の一例を示す図である。この出現頻度値は、ステップS6→S7→S8→S9の1回の実行により記録した1拍分の加速度脈波データを用いてステップS10を実行する時に取得される。
<Specific example of steps S10 to S12>
Here, steps S10 to S12 will be specifically described.
FIG. 4 is a diagram showing an example of an appearance frequency value for each data value for each time axis position (every time) of acceleration pulse wave data for one beat. This appearance frequency value is acquired when step S10 is executed using the acceleration pulse wave data for one beat recorded by one execution of steps S6 → S7 → S8 → S9.

この図の横方向は時間、縦方向はデータ値(加速度脈波信号レベル)であり、それぞれ図3における加速度脈波信号の横軸、縦軸に対応する。ただし、図4では、説明の便宜上、両方向の単位を粗く図示し、横方向の時刻が22個の単位時間からなり、縦方向の電圧が25個の単位電圧からなるものとした。この図における「1」、「0」は時刻毎のデータ値毎の出現頻度値のカウント値である。便宜上、時刻毎に出現頻度値が「1」の部分に網点を付加した。 The horizontal direction of this figure is time, and the vertical direction is a data value (acceleration pulse wave signal level), which correspond to the horizontal axis and the vertical axis of the acceleration pulse wave signal in FIG. 3, respectively. However, in FIG. 4, for convenience of explanation, the units in both directions are roughly illustrated, the time in the horizontal direction is composed of 22 unit times, and the voltage in the vertical direction is composed of 25 unit voltages. In this figure, "1" and "0" are count values of appearance frequency values for each data value for each time. For convenience, halftone dots are added to the portion where the appearance frequency value is "1" for each time.

図5は、複数拍分の加速度脈波データの時間軸位置毎のデータ値毎の出現頻度累積値の一例を示す図である。この図は、図4に示されている出現頻度値を100回分加算(累積)した出現頻度累積値であり、横方向は時間、縦方向はデータ値(加速度脈波信号レベル)である。この図において、出現頻度累積値の「##」は「100」を表す。 FIG. 5 is a diagram showing an example of an appearance frequency cumulative value for each data value for each time axis position of acceleration pulse wave data for a plurality of beats. This figure is an appearance frequency cumulative value obtained by adding (accumulating) the appearance frequency value shown in FIG. 4 for 100 times, and is a time in the horizontal direction and a data value (acceleration pulse wave signal level) in the vertical direction. In this figure, "##" of the cumulative value of appearance frequency represents "100".

図6は、図5における出現頻度累積値が高い程高濃度となる濃淡画像、及び当該濃淡画像の最高濃度の部分を通るスプライン曲線により取得した最頻加速度脈波を示す図である。ただし、便宜上、出現頻度累積値は省略した。この濃淡画像、最頻加速度脈波の波形は、マイコン35により生成された画像データ及び波形データを表示部5に出力することで表示される。なお、最頻値となるデータ値が複数になった場合は、例えばその中央のデータ値を採用する。 FIG. 6 is a diagram showing a shading image in which the density increases as the cumulative value of appearance frequency in FIG. 5 increases, and a mode accelerometer wave acquired by a spline curve passing through a portion of the shading image having the highest density. However, for convenience, the cumulative value of appearance frequency is omitted. The shading image and the waveform of the most frequent acceleration pulse wave are displayed by outputting the image data and the waveform data generated by the microcomputer 35 to the display unit 5. When there are a plurality of data values that are the mode values, for example, the data value in the center is adopted.

以上詳細に説明したように、本発明の実施形態に係る脈波解析装置1によれば、加速度脈波信号の平均波形ではなく、加速度脈波信号の最も頻度の高い値を利用するので、生体の動きに基づく周波数変動や振幅変動の影響を受けにくくなるという効果がある。また、生体情報を取得するための脈波信号を取得する際にまるめ誤差が入らないという効果がある。 As described in detail above, according to the pulse wave analysis device 1 according to the embodiment of the present invention, the most frequent value of the acceleration pulse wave signal is used instead of the average waveform of the acceleration pulse wave signal. It has the effect of being less susceptible to frequency fluctuations and amplitude fluctuations based on the movement of. In addition, there is an effect that a rounding error does not occur when acquiring a pulse wave signal for acquiring biological information.

なお、以上説明した実施形態は、加速度脈波信号の最頻値を利用することで最頻加速度脈波信号を取得しているが、本発明は、容積脈波信号又は速度脈波信号の最頻値を利用することで最頻容積脈波信号又は最頻速度脈波信号を取得することもできる。また、光電脈波センサに代えて圧電脈波センサを用いることもできる。 In the embodiment described above, the mode of the acceleration pulse wave signal is used to obtain the mode of the acceleration pulse wave signal, but the present invention is the most of the volume pulse wave signal or the velocity pulse wave signal. By using the mode, it is also possible to acquire the mode volume pulse wave signal or the mode frequency pulse wave signal. Further, a piezoelectric pulse wave sensor can be used instead of the photoelectric pulse wave sensor.

1…脈波解析装置、2…光電脈波センサ、3…信号処理ユニット、35…マイコン、21…LED、22…フォトセンサ。
1 ... pulse wave analyzer, 2 ... photoelectric pulse wave sensor, 3 ... signal processing unit, 35 ... microcomputer, 21 ... LED, 22 ... photo sensor.

Claims (4)

脈波信号を複数拍分取得する脈波信号取得手段と、
前記脈波信号取得手段により取得された複数拍分の脈波信号に対して、1拍分毎の時間軸位置毎の信号値毎の出現頻度値を複数拍分累積し、出現頻度値が最大の信号値である最頻値を取得する最頻値取得手段と、
前記最頻値取得手段により取得された最頻値に基づいて、生体情報を取得するための脈波信号を取得する最頻脈波信号取得手段と、
を有する脈波解析装置。
A pulse wave signal acquisition means for acquiring a pulse wave signal for a plurality of beats,
With respect to the pulse wave signals for a plurality of beats acquired by the pulse wave signal acquisition means, the appearance frequency value for each signal value for each time axis position for each beat is accumulated for a plurality of beats, and the appearance frequency value is the maximum. The mode acquisition means for acquiring the mode value, which is the signal value of
Based on the mode acquired by the mode acquisition means, the mode acquisition means for acquiring the pulse wave signal for acquiring biometric information and the mode acquisition means.
A pulse wave analyzer having.
請求項1に記載された脈波解析装置において、
前記最頻値取得手段は、脈波信号の特徴点を開始点として、1拍毎の脈波信号の時間軸位置を合わせる重ね合わせ手段を有する脈波解析装置。
In the pulse wave analyzer according to claim 1,
The mode acquisition means is a pulse wave analysis device having a superimposing means for aligning the time axis position of the pulse wave signal for each beat with a feature point of the pulse wave signal as a starting point.
請求項1又は2に記載された脈波解析装置において、
前記最頻値取得手段により取得された最頻値が高い程高濃度の濃淡画像を表示するための画像データを生成する画像データ生成手段と、前記画像データ生成手段により生成された画像データの最高濃度の部分を通る曲線として、生体情報を取得するための脈波信号の波形データを生成する波形データ生成手段と、を有する脈波解析装置。
In the pulse wave analyzer according to claim 1 or 2.
The image data generation means for generating image data for displaying a high-density grayscale image as the most frequent value acquired by the most frequent value acquisition means is higher, and the highest image data generated by the image data generation means. A pulse wave analyzer comprising a waveform data generation means for generating waveform data of a pulse wave signal for acquiring biological information as a curve passing through a concentration portion.
コンピュータを請求項1乃至3のいずれかに記載された脈波解析装置の各手段として機能させるためのプログラム。
A program for operating a computer as each means of the pulse wave analyzer according to any one of claims 1 to 3.
JP2019167200A 2019-09-13 2019-09-13 Pulse wave analysis device and pulse wave analysis program Active JP7272196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019167200A JP7272196B2 (en) 2019-09-13 2019-09-13 Pulse wave analysis device and pulse wave analysis program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019167200A JP7272196B2 (en) 2019-09-13 2019-09-13 Pulse wave analysis device and pulse wave analysis program

Publications (2)

Publication Number Publication Date
JP2021041070A true JP2021041070A (en) 2021-03-18
JP7272196B2 JP7272196B2 (en) 2023-05-12

Family

ID=74864613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019167200A Active JP7272196B2 (en) 2019-09-13 2019-09-13 Pulse wave analysis device and pulse wave analysis program

Country Status (1)

Country Link
JP (1) JP7272196B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114190903A (en) * 2021-12-02 2022-03-18 萤雪科技(佛山)有限公司 Medical information code, generation method and system, and signal wave display method and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012071018A (en) * 2010-09-29 2012-04-12 Denso Corp Pulse wave analyzer and blood pressure estimator
JP2013017494A (en) * 2011-07-07 2013-01-31 Hitachi Medical Corp Biological light measuring device and waveform analysis method
JP2017127460A (en) * 2016-01-20 2017-07-27 富士フイルム株式会社 Endoscope connector, endoscope, and endoscope system
WO2019146025A1 (en) * 2018-01-24 2019-08-01 富士通株式会社 Pulse wave calculation device, pulse wave calculation method and pulse wave calculation program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012071018A (en) * 2010-09-29 2012-04-12 Denso Corp Pulse wave analyzer and blood pressure estimator
JP2013017494A (en) * 2011-07-07 2013-01-31 Hitachi Medical Corp Biological light measuring device and waveform analysis method
JP2017127460A (en) * 2016-01-20 2017-07-27 富士フイルム株式会社 Endoscope connector, endoscope, and endoscope system
WO2019146025A1 (en) * 2018-01-24 2019-08-01 富士通株式会社 Pulse wave calculation device, pulse wave calculation method and pulse wave calculation program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114190903A (en) * 2021-12-02 2022-03-18 萤雪科技(佛山)有限公司 Medical information code, generation method and system, and signal wave display method and system

Also Published As

Publication number Publication date
JP7272196B2 (en) 2023-05-12

Similar Documents

Publication Publication Date Title
US10413249B2 (en) Digital signal processing device and denoising method of heart rate detection module
US7727158B2 (en) Pulse wave data analyzing method, system, and program product
EP1757224B1 (en) Apparatus and method for measuring oxygen saturation in blood
JP4352315B2 (en) Signal processing method / apparatus and pulse photometer using the same
KR101406130B1 (en) Pulse period computation device and bio-sensor provided with same
US6845263B2 (en) Heart-sound detecting apparatus and pulse-wave-propagation-velocity-relating-information obtaining system using the heart-sound detecting apparatus
JP6090424B2 (en) Pulse wave propagation time measurement device
US20070118028A1 (en) Pulse wave analyzing device
EP0885592A1 (en) A system and method for evaluating the autonomic nervous system of a living subject
JP2004261366A (en) Biological state detecting device, sensor, and method of detecting biological state
CN101683260B (en) Rhythmicity physiological signal optimization method and device
WO2011048729A1 (en) Pulse wave detection device and pulse wave detection method
JP6187589B2 (en) Trunk muscle contraction detector
JP4613261B2 (en) Biological information signal processing device, biological information signal processing method, and biological information measuring device
JP2021041070A (en) Pulse wave analysis device and pulse wave analysis program
JP2012161556A (en) Pulse wave measurement device and program
WO2016006250A1 (en) Biological information measurement device
JP5582051B2 (en) Pulse wave measuring device and program
JP2013106837A (en) Heart rate detection method, heart rate detector, and mental stress measuring apparatus
JP2006204432A (en) Biological information measuring apparatus
JPH09215664A (en) Evaluator of autonomic nerve function
JP2002017694A (en) Pulse rate sensor
JP2022160608A (en) Biological signal processing device and control method of the same
KR101033035B1 (en) Health diagnostic controlling method of pulse wave analysis apparatus
JP6880581B2 (en) Optical measuring device, optical measuring method, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230410

R150 Certificate of patent or registration of utility model

Ref document number: 7272196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150