JP2021035251A - AC system monitoring system - Google Patents

AC system monitoring system Download PDF

Info

Publication number
JP2021035251A
JP2021035251A JP2019155437A JP2019155437A JP2021035251A JP 2021035251 A JP2021035251 A JP 2021035251A JP 2019155437 A JP2019155437 A JP 2019155437A JP 2019155437 A JP2019155437 A JP 2019155437A JP 2021035251 A JP2021035251 A JP 2021035251A
Authority
JP
Japan
Prior art keywords
abnormality
voltage
unit
determination
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019155437A
Other languages
Japanese (ja)
Other versions
JP7318419B2 (en
Inventor
亨 神通川
Toru Jintsugawa
亨 神通川
梅沢 一喜
Kazuyoshi Umezawa
一喜 梅沢
博 篠原
Hiroshi Shinohara
博 篠原
武彦 小島
Takehiko Kojima
武彦 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2019155437A priority Critical patent/JP7318419B2/en
Publication of JP2021035251A publication Critical patent/JP2021035251A/en
Application granted granted Critical
Publication of JP7318419B2 publication Critical patent/JP7318419B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide an AC system monitoring system that can surely detect voltage oscillation occurring in an AC system.SOLUTION: An AC system monitoring system is provided that includes a monitoring unit (21) monitoring voltage oscillation in an AC system (1), the monitoring unit comprises: a determination signal generation unit (22) that extracts an oscillation component of an AC voltage on the basis of an instantaneous value of the AC voltage measured in the AC system, and generates an abnormality determination signal (SJ) corresponding to the oscillation component of the extracted AC voltage; and an abnormality presence/absence determination unit (23) that determines the presence/absence of an abnormality in the oscillation of the AC voltage on the basis of the generated abnormality determination signal (SJ).SELECTED DRAWING: Figure 1

Description

本発明は、交流系統の監視システムに関する。 The present invention relates to an AC system monitoring system.

並列型機器が連系する交流系統では、送配電線や変圧器、分路リアクトル等は主にインダクタ(L)成分で構成され、電力用コンデンサや高調波フィルタ等は主にキャパシタ(C)成分で構成される。この種の交流系統には分散電源や負荷等の様々な機器が接続されるため、交流系統にLC共振回路が形成されることがある。交流系統に形成されるLC共振回路は、交流電圧に振動を生じさせ、交流電圧の品質を劣化させることがある。 In an AC system in which parallel devices are connected, transmission / distribution lines, transformers, shunt reactors, etc. are mainly composed of inductor (L) components, and power capacitors, harmonic filters, etc. are mainly composed of capacitor (C) components. Consists of. Since various devices such as distributed power sources and loads are connected to this type of AC system, an LC resonance circuit may be formed in the AC system. The LC resonant circuit formed in the AC system may cause vibration in the AC voltage and deteriorate the quality of the AC voltage.

交流系統における交流電圧の振動による品質の劣化を防ぐ技術の1つとして、交流電流或いは無効電力の振動継続を判定した場合に制御パラメータを低下させ、振動を抑制することが知られている(例えば、特許文献1を参照)。 As one of the techniques for preventing the deterioration of quality due to the vibration of the AC voltage in the AC system, it is known that the control parameter is lowered to suppress the vibration when it is determined that the vibration of the AC current or the reactive power continues (for example). , Patent Document 1).

特許第3605516号明細書Japanese Patent No. 36055516

しかしながら、交流電流や無効電力の振動継続を判定する方法では、交流系統において生じた交流電圧の振動を検知し抑制することが困難な場合がある。例えば、当該機器の高調波フィルタと他の機器との間で、他の機器が原因となり電圧振動が生じた場合、当該機器の制御パラメータを変更したとしても、電圧振動を抑制することができない。このため、交流電流や無効電力の振動継続に基づいて振動を抑制する方法では、交流電圧の振動が継続し拡大してしまうこともある。 However, it may be difficult to detect and suppress the vibration of the AC voltage generated in the AC system by the method of determining the vibration continuation of the AC current or the reactive power. For example, when voltage vibration occurs between the harmonic filter of the device and the other device due to the other device, the voltage vibration cannot be suppressed even if the control parameter of the device is changed. Therefore, in the method of suppressing the vibration based on the continuation of the vibration of the AC current or the reactive power, the vibration of the AC voltage may continue and expand.

1つの側面において、本発明は、交流系統で生じた電圧振動を確実に検知することが可能な交流系統の監視システムを提供することを目的とする。 In one aspect, it is an object of the present invention to provide an AC system monitoring system capable of reliably detecting voltage vibrations generated in an AC system.

1つの態様に係る交流系統の監視システムは、交流系統における電圧振動を監視する監視部を含む交流系統の監視システムであって、前記監視部は、前記交流系統において計測した交流電圧の瞬時値に基づいて前記交流電圧の振動成分を抽出し、抽出した前記交流電圧の振動成分と対応する異常判定用信号を生成する判定用信号生成部と、生成した前記異常判定用信号に基づいて前記交流電圧の振動の異常の有無を判定する異常有無判定部とを備える交流系統の制御システムである。 The AC system monitoring system according to one aspect is an AC system monitoring system including a monitoring unit that monitors voltage vibration in the AC system, and the monitoring unit uses an instantaneous value of the AC voltage measured in the AC system. Based on this, the vibration component of the AC voltage is extracted, and the determination signal generation unit that generates the abnormality determination signal corresponding to the extracted vibration component of the AC voltage, and the AC voltage based on the generated abnormality determination signal. This is an AC system control system equipped with an abnormality presence / absence determination unit for determining the presence / absence of abnormality in the vibration of the AC system.

上述の態様によれば、交流系統で生じた電圧振動を確実に検知することが可能な交流系統の監視システムを提供することができる。 According to the above aspect, it is possible to provide an AC system monitoring system capable of reliably detecting voltage vibration generated in the AC system.

第1の実施形態に係る交流系統の監視システムの構成例を説明する図である。It is a figure explaining the configuration example of the AC system monitoring system which concerns on 1st Embodiment. 判定用信号生成部の構成例を説明する図(その1)である。It is a figure (the 1) explaining the structural example of the determination signal generation part. 判定用信号生成部の構成例を説明する図(その2)である。It is a figure (the 2) explaining the structural example of the determination signal generation part. 異常有無判定部の構成例を説明する図である。It is a figure explaining the structural example of the abnormality presence / absence determination part. 第1の実施形態に係る監視部の動作を説明する図である。It is a figure explaining the operation of the monitoring unit which concerns on 1st Embodiment. 判定用信号生成部の第5の構成例における振動成分の抽出方法を説明する図である。It is a figure explaining the method of extracting the vibration component in the 5th configuration example of the determination signal generation part. 第1の実施形態に係る監視部の第1の応用例を説明する図である。It is a figure explaining the 1st application example of the monitoring part which concerns on 1st Embodiment. 第1の応用例において判定用信号生成部で抽出する振動成分と異常有無判定部における判定閾値との例を説明する図である。It is a figure explaining the example of the vibration component extracted by the determination signal generation unit and the determination threshold value in the abnormality presence / absence determination unit in the first application example. 第1の実施形態に係る監視部の第2の応用例を説明する図である。It is a figure explaining the 2nd application example of the monitoring part which concerns on 1st Embodiment. 第2の実施形態に係る交流系統の監視システムにおける監視部の構成例を説明する図である。It is a figure explaining the configuration example of the monitoring part in the monitoring system of the AC system which concerns on 2nd Embodiment. 第2の実施形態に係る判定用信号生成部及び異常有無判定部の構成例を説明する図である。It is a figure explaining the structural example of the determination signal generation unit and the abnormality presence / absence determination unit which concerns on 2nd Embodiment. 評価期間の例を説明する図である。It is a figure explaining an example of an evaluation period.

以下、図面を参照しながら、交流系統の監視システムの実施形態を詳細に説明する。 Hereinafter, embodiments of the AC system monitoring system will be described in detail with reference to the drawings.

[第1の実施形態]
図1は、第1の実施形態に係る交流系統の監視システムの構成例を説明する図である。図1に例示した交流系統1は、送電線4に交流電力を送電する発電設備2及び発電機3を含む。送電線4は、リアクトル5や抵抗6等のインダクタ(L)成分を含む。また、送電線4には、負荷7や力率改善コンデンサ8等が接続されている。
[First Embodiment]
FIG. 1 is a diagram illustrating a configuration example of an AC system monitoring system according to the first embodiment. The AC system 1 illustrated in FIG. 1 includes a power generation facility 2 and a generator 3 for transmitting AC power to a transmission line 4. The transmission line 4 contains an inductor (L) component such as a reactor 5 and a resistor 6. Further, a load 7, a power factor improving capacitor 8, and the like are connected to the transmission line 4.

発電設備2は、交流系統1に連系する並列型機器である、第1の分散電源11A及び第2の分散電源11Bを含む。図1には、第1の分散電源11A及び第2の分散電源11Bの例として、太陽光発電システムを示している。第1の分散電源11A及び第2の分散電源11Bは、それぞれ、ソーラーパネル12と、インバータ装置13と、高調波フィルタ14(リアクトル15及びコンデンサ16)と、変圧器17と、スイッチ18とを含む。第1の分散電源11A及び第2の分散電源11Bは、それぞれ、光電効果によりソーラーパネル12から出力される直流電力をインバータ装置13で交流電力に変換する。変換された交流電力は、高調波フィルタ14、変圧器17、及びスイッチ18を介して出力される。第1の分散電源11A及び第2の分散電源11Bから出力された交流電力は、変圧器19を介して発電設備2の外部(交流系統1の送電線4)に伝送される。第1の分散電源11Aにおけるインバータ装置13、高調波フィルタ14、変圧器17、及びスイッチ18は、例えば、単一の電気装置(パワーコンディショナ)に組み込まれている。同様に、第2の分散電源11Bにおけるインバータ装置13、高調波フィルタ14、変圧器17、及びスイッチ13は、例えば、単一の電気装置に組み込まれている。 The power generation facility 2 includes a first distributed power source 11A and a second distributed power source 11B, which are parallel devices connected to the AC system 1. FIG. 1 shows a photovoltaic power generation system as an example of the first distributed power source 11A and the second distributed power source 11B. The first distributed power source 11A and the second distributed power source 11B include a solar panel 12, an inverter device 13, a harmonic filter 14 (reactor 15 and a capacitor 16), a transformer 17, and a switch 18, respectively. .. The first distributed power source 11A and the second distributed power source 11B each convert the DC power output from the solar panel 12 by the photoelectric effect into AC power by the inverter device 13. The converted AC power is output via the harmonic filter 14, the transformer 17, and the switch 18. The AC power output from the first distributed power source 11A and the second distributed power source 11B is transmitted to the outside of the power generation facility 2 (transmission line 4 of the AC system 1) via the transformer 19. The inverter device 13, the harmonic filter 14, the transformer 17, and the switch 18 in the first distributed power source 11A are incorporated in, for example, a single electric device (power conditioner). Similarly, the inverter device 13, the harmonic filter 14, the transformer 17, and the switch 13 in the second distributed power source 11B are incorporated in, for example, a single electric device.

また、本実施形態に係る交流系統1は、交流電圧の振動を監視する監視システムとしての監視部21と、保護部25とを含む。図1に例示した交流系統1においては、発電設備2内に、監視部21及び保護部25が設けられている。 Further, the AC system 1 according to the present embodiment includes a monitoring unit 21 as a monitoring system for monitoring the vibration of the AC voltage and a protection unit 25. In the AC system 1 illustrated in FIG. 1, a monitoring unit 21 and a protection unit 25 are provided in the power generation facility 2.

監視部21は、交流系統における交流電圧の振動の異常の有無を監視する。監視部21は、交流系統における交流電圧の瞬時値を計測し、該交流電圧の瞬時値に基づいて交流電圧の振動の異常の有無を監視する。図1に例示した監視部21は、第1の分散電源11A及び第2の分散電源11Bを含む発電設備2と交流系統1の送電線4との接続部において電圧計測器24により計測した交流電圧の瞬時値vを取得する。交流電圧の振動に異常がある場合、監視部21は、保護部25に対し交流系統1の保護動作を指示する信号を出力する。交流電圧の振動に異常がある場合、保護部25は、第1の分散電源11A及び第2の分散電源11Bを含む発電設備内の分散電源のうちの1つ以上を解列する。図1に例示した保護部25は、制御バス26を通じて、第1の分散電源11A及び第2の分散電源11Bを含む発電設備2内の分散電源のいずれかのスイッチ18をオフにし、分散電源を解列する。なお、保護部25は、分散電源等の並列型機器を解列する代わりに、並列型機器を停止させてもよい。 The monitoring unit 21 monitors the presence or absence of abnormal vibration of the AC voltage in the AC system. The monitoring unit 21 measures the instantaneous value of the AC voltage in the AC system, and monitors the presence or absence of an abnormality in the vibration of the AC voltage based on the instantaneous value of the AC voltage. The monitoring unit 21 illustrated in FIG. 1 is an AC voltage measured by a voltage measuring instrument 24 at a connection between a power generation facility 2 including a first distributed power source 11A and a second distributed power source 11B and a transmission line 4 of the AC system 1. The instantaneous value v of is acquired. When there is an abnormality in the vibration of the AC voltage, the monitoring unit 21 outputs a signal instructing the protection unit 25 to protect the AC system 1. When there is an abnormality in the vibration of the AC voltage, the protection unit 25 disconnects one or more of the distributed power sources in the power generation facility including the first distributed power source 11A and the second distributed power source 11B. The protection unit 25 illustrated in FIG. 1 turns off the switch 18 of any of the distributed power sources in the power generation facility 2 including the first distributed power source 11A and the second distributed power source 11B through the control bus 26 to turn off the distributed power source. Dissolve. The protection unit 25 may stop the parallel type equipment instead of disassembling the parallel type equipment such as the distributed power source.

監視部21は、判定用信号生成部22と、異常有無判定部23とを含む。判定用信号生成部22は、交流電圧の瞬時値vに基づいて、交流電圧に生じる振動の異常の有無の判定に用いる異常判定用信号を生成する。本実施形態に係る判定用信号生成部22は、0以上であり、交流電圧の瞬時値vに基づいて抽出される交流電圧の振動成分の大きさに応じた値となる異常判定用信号を生成する。異常有無判定部23は、判定用信号生成部で生成した異常判定用信号と、予め定めた閾値とに基づいて、交流電圧の振動の異常の有無を判定する。図1では図示を省略しているが、判定用信号生成部22は異常判定用信号の生成に用いる各種情報を保持する情報保持部を含み、異常有無判定部23は異常の有無の判定に用いる各種情報を保持する情報保持部を含む。 The monitoring unit 21 includes a determination signal generation unit 22 and an abnormality presence / absence determination unit 23. The determination signal generation unit 22 generates an abnormality determination signal used for determining the presence or absence of an abnormality in vibration generated in the AC voltage based on the instantaneous value v of the AC voltage. The determination signal generation unit 22 according to the present embodiment is 0 or more, and generates an abnormality determination signal having a value corresponding to the magnitude of the vibration component of the AC voltage extracted based on the instantaneous value v of the AC voltage. To do. The abnormality determination unit 23 determines whether or not there is an abnormality in the vibration of the AC voltage based on the abnormality determination signal generated by the determination signal generation unit and a predetermined threshold value. Although not shown in FIG. 1, the determination signal generation unit 22 includes an information holding unit that holds various information used for generating an abnormality determination signal, and the abnormality presence / absence determination unit 23 is used for determining the presence / absence of an abnormality. Includes an information holding unit that holds various types of information.

図2は、判定用信号生成部の構成例を説明する図(その1)である。図3は、判定用信号生成部の構成例を説明する図(その2)である。 FIG. 2 is a diagram (No. 1) for explaining a configuration example of the determination signal generation unit. FIG. 3 is a diagram (No. 2) for explaining a configuration example of the determination signal generation unit.

図2の(a)には、判定用信号生成部22の第1の構成例として、ハイパスフィルタにより交流電圧の振動成分を抽出する判定用信号生成部22の一例を示している。第1の構成例の判定用信号生成部22は、ローパスフィルタ31と、減算器32と、二乗算出部33と、移動平均算出部34と、平方根算出部35とを含む。 FIG. 2A shows an example of the determination signal generation unit 22 that extracts the vibration component of the AC voltage by the high-pass filter as the first configuration example of the determination signal generation unit 22. The determination signal generation unit 22 of the first configuration example includes a low-pass filter 31, a subtractor 32, a square calculation unit 33, a moving average calculation unit 34, and a square root calculation unit 35.

ローパスフィルタ31と減算器32とは、ハイパスフィルタとして機能する。ローパスフィルタ31は、判定用信号生成部22の入力信号である交流電圧の瞬時値vに含まれる、遮断周波数よりも高周波の成分を除去する。ここで、ローパスフィルタ31の遮断周波数は、交流系統1における交流電圧の定格周波数(例えば、50Hz又は60Hz)以上とする。減算器32は、入力信号から、ローパスフィルタ31により入力信号の高周波成分が除去された信号を減算する。すなわち、第1の構成例の判定用信号生成部22は、交流電圧の瞬時値vに含まれるローパスフィルタ31の遮断周波数よりも高周波の成分を、交流電圧の振動成分として抽出する。 The low-pass filter 31 and the subtractor 32 function as a high-pass filter. The low-pass filter 31 removes a component having a frequency higher than the cutoff frequency included in the instantaneous value v of the AC voltage which is the input signal of the determination signal generation unit 22. Here, the cutoff frequency of the low-pass filter 31 is set to be equal to or higher than the rated frequency (for example, 50 Hz or 60 Hz) of the AC voltage in the AC system 1. The subtractor 32 subtracts the signal from which the high frequency component of the input signal has been removed by the low-pass filter 31 from the input signal. That is, the determination signal generation unit 22 of the first configuration example extracts a component having a frequency higher than the cutoff frequency of the low-pass filter 31 included in the instantaneous value v of the AC voltage as a vibration component of the AC voltage.

二乗算出部33、移動平均算出部34、及び平方根算出部35は、交流電圧から抽出した振動成分に基づいて異常判定用信号を生成する信号生成部として機能する。二乗算出部33は、ローパスフィルタ31及び減算器32により抽出した交流電圧の振動成分における各計測時刻の値を二乗した値を算出する。移動平均算出部34は、二乗算出部33で算出した各計測時刻の値の二乗値に対する移動平均を算出する。平方根算出部35は、移動平均算出部34で算出した移動平均における各計測時刻の値の平方根を算出する。第1の構成例の判定用信号生成部22は、平方根算出部35で算出した平方根の値を異常判定用信号SJとして異常有無判定部23に出力する。 The square calculation unit 33, the moving average calculation unit 34, and the square root calculation unit 35 function as a signal generation unit that generates an abnormality determination signal based on the vibration component extracted from the AC voltage. The square calculation unit 33 calculates the squared value of each measurement time value in the vibration component of the AC voltage extracted by the low-pass filter 31 and the subtractor 32. The moving average calculation unit 34 calculates the moving average of the values at each measurement time calculated by the square calculation unit 33 with respect to the square value. The square root calculation unit 35 calculates the square root of the value at each measurement time in the moving average calculated by the moving average calculation unit 34. The determination signal generation unit 22 of the first configuration example outputs the value of the square root calculated by the square root calculation unit 35 to the abnormality presence / absence determination unit 23 as the abnormality determination signal SJ.

図2の(b)には、判定用信号生成部22の第2の構成例として、バンドパスフィルタにより交流電圧の振動成分を抽出する判定用信号生成部22の一例を示している。第2の構成例の判定用信号生成部22は、バンドパスフィルタ36と、減算器32と、二乗算出部33と、移動平均算出部34と、平方根算出部35とを含む。 FIG. 2B shows an example of the determination signal generation unit 22 that extracts the vibration component of the AC voltage by the bandpass filter as the second configuration example of the determination signal generation unit 22. The determination signal generation unit 22 of the second configuration example includes a bandpass filter 36, a subtractor 32, a square calculation unit 33, a moving average calculation unit 34, and a square root calculation unit 35.

バンドパスフィルタ36と減算器32とは、交流系統の定格周波数とは異なる周波数帯の振動成分を交流電圧の瞬時値vから抽出するバンドパスフィルタとして機能する。第2の構成例の判定用信号生成部22におけるバンドパスフィルタ36は、判定用信号生成部22の入力信号である交流電圧の定格周波数を中心周波数とし、該中心周波数を含む所定の周波数帯の成分のみを抽出する(通過させる)。減算器32は、入力信号から、バンドパスフィルタ36により抽出した信号成分を減算する。すなわち、第2の構成例の判定用信号生成部22は、交流電圧の瞬時値vに含まれる、定格周波数を含む所定の周波数帯の成分を除去した信号を、交流電圧の振動成分として抽出する。 The bandpass filter 36 and the subtractor 32 function as a bandpass filter that extracts vibration components in a frequency band different from the rated frequency of the AC system from the instantaneous value v of the AC voltage. The bandpass filter 36 in the determination signal generation unit 22 of the second configuration example has the rated frequency of the AC voltage, which is the input signal of the determination signal generation unit 22, as the center frequency, and has a predetermined frequency band including the center frequency. Extract (pass) only the components. The subtractor 32 subtracts the signal component extracted by the bandpass filter 36 from the input signal. That is, the determination signal generation unit 22 of the second configuration example extracts a signal included in the instantaneous value v of the AC voltage from which the component of the predetermined frequency band including the rated frequency is removed as the vibration component of the AC voltage. ..

二乗算出部33、移動平均算出部34、及び平方根算出部35は、第1の構成例と同様、交流電圧から抽出した振動成分に基づいて異常判定用信号SJを生成する信号生成部として機能する。 The square calculation unit 33, the moving average calculation unit 34, and the square root calculation unit 35 function as a signal generation unit that generates an abnormality determination signal SJ based on the vibration component extracted from the AC voltage, as in the first configuration example. ..

図2の(c)には、判定用信号生成部22の第3の構成例として、バンドパスフィルタにより交流電圧の振動成分を抽出する判定用信号生成部22の別の例を示している。第3の構成例の判定用信号生成部22は、バンドパスフィルタ37と、二乗算出部33と、移動平均算出部34と、平方根算出部35とを含む。 FIG. 2C shows another example of the determination signal generation unit 22 that extracts the vibration component of the AC voltage by the bandpass filter as a third configuration example of the determination signal generation unit 22. The determination signal generation unit 22 of the third configuration example includes a bandpass filter 37, a square calculation unit 33, a moving average calculation unit 34, and a square root calculation unit 35.

バンドパスフィルタ37は、交流系統の定格周波数とは異なる周波数帯の振動成分を交流電圧の瞬時値vから抽出するバンドパスフィルタとして機能する。第3の構成例の判定用信号生成部22におけるバンドパスフィルタ37は、判定用信号生成部22の入力信号である交流電圧の定格周波数よりも高周波である所定の周波数を中心周波数とし、該中心周波数を含む所定の周波数帯の成分のみを抽出する(通過させる)。すなわち、第3の構成例の判定用信号生成部22は、交流電圧の瞬時値vに含まれる、定格周波数よりも高周波である所定の周波数帯の成分を、交流電圧の振動成分として抽出する。 The bandpass filter 37 functions as a bandpass filter that extracts vibration components in a frequency band different from the rated frequency of the AC system from the instantaneous value v of the AC voltage. The bandpass filter 37 in the determination signal generation unit 22 of the third configuration example has a predetermined frequency higher than the rated frequency of the AC voltage, which is the input signal of the determination signal generation unit 22, as the center frequency. Only the components of a predetermined frequency band including the frequency are extracted (passed). That is, the determination signal generation unit 22 of the third configuration example extracts a component of a predetermined frequency band, which is higher than the rated frequency, included in the instantaneous value v of the AC voltage as a vibration component of the AC voltage.

二乗算出部33、移動平均算出部34、及び平方根算出部35は、第1の構成例と同様、交流電圧から抽出した振動成分に基づいて異常判定用信号SJを生成する信号生成部として機能する。 The square calculation unit 33, the moving average calculation unit 34, and the square root calculation unit 35 function as a signal generation unit that generates an abnormality determination signal SJ based on the vibration component extracted from the AC voltage, as in the first configuration example. ..

図3の(d)には、判定用信号生成部22の第4の構成例として、バンドパスフィルタにより交流電圧の振動成分を抽出する判定用信号生成部22の更に別の例を示している。第4の構成例の判定用信号生成部22は、バンドパスフィルタ36と、二乗算出部33A,33Bと、移動平均算出部34A,34Bと、平方根算出部35A,35Bと、減算器32とを含む。なお、第4の構成例におけるバンドパスフィルタ36の中心周波数は、交流系統1の交流電圧の定格周波数とする。 FIG. 3D shows yet another example of the determination signal generation unit 22 that extracts the vibration component of the AC voltage by the bandpass filter as the fourth configuration example of the determination signal generation unit 22. .. The determination signal generation unit 22 of the fourth configuration example includes a bandpass filter 36, square calculation units 33A and 33B, moving average calculation units 34A and 34B, square root calculation units 35A and 35B, and a subtractor 32. Including. The center frequency of the bandpass filter 36 in the fourth configuration example is the rated frequency of the AC voltage of the AC system 1.

第4の構成例の判定用信号生成部22は、入力信号(交流電圧の瞬時値v)及び該入力信号におけるバンドパスフィルタ36を通過した成分のそれぞれに対し、二乗算出部33A,33B、移動平均算出部34A,34B、及び平方根算出部35A,35Bによる演算処理を行った後、減算器32により異常判定用信号SJを生成して異常有無判定部23に出力する。 The determination signal generation unit 22 of the fourth configuration example moves the square calculation units 33A and 33B for each of the input signal (instantaneous value v of the AC voltage) and the components of the input signal that have passed through the bandpass filter 36. After performing arithmetic processing by the average calculation units 34A and 34B and the square root calculation units 35A and 35B, the subtractor 32 generates an abnormality determination signal SJ and outputs the abnormality determination signal SJ to the abnormality presence / absence determination unit 23.

図3の(e)には、判定用信号生成部22の第5の構成例として、計測した時刻が異なる2つの交流電圧の瞬時値vの差分に基づいて交流電圧の振動成分を抽出する判定用信号生成部22の例を示している。第5の構成例の判定用信号生成部22は、過去値出力部38と、減算器32と、二乗算出部33と、移動平均算出部34と、平方根算出部35とを含む。 In FIG. 3 (e), as a fifth configuration example of the determination signal generation unit 22, determination to extract the vibration component of the AC voltage based on the difference between the instantaneous values v of the two AC voltages having different measured times. An example of the signal generation unit 22 is shown. The determination signal generation unit 22 of the fifth configuration example includes a past value output unit 38, a subtractor 32, a square calculation unit 33, a moving average calculation unit 34, and a square root calculation unit 35.

過去値出力部38は、例えば、計測演算周期におけるnサンプル分の瞬時値を保持するリングバッファを含み、最新の瞬時値vが判定用信号生成部22に入力された時刻tにおけるリングバッファ内のnサンプル前の瞬時値(過去値)Z−nを出力した後、該過去値Z−nを時刻tの瞬時値v(t)に上書きする。減算器32は、時刻tの瞬時値v(t)から、過去値Z−nを減算する。 The past value output unit 38 includes, for example, a ring buffer that holds instantaneous values for n samples in the measurement calculation cycle, and is in the ring buffer at time t when the latest instantaneous value v is input to the determination signal generation unit 22. n After outputting the instantaneous value (past value) Z −n before the sample, the past value Z −n is overwritten with the instantaneous value v (t) at time t. The subtractor 32 subtracts the past value Z −n from the instantaneous value v (t) at time t.

二乗算出部33、移動平均算出部34、及び平方根算出部35は、第1の構成例と同様、交流電圧から抽出した振動成分に基づいて異常判定用信号SJを生成する信号生成部として機能する。 The square calculation unit 33, the moving average calculation unit 34, and the square root calculation unit 35 function as a signal generation unit that generates an abnormality determination signal SJ based on the vibration component extracted from the AC voltage, as in the first configuration example. ..

なお、本実施形態に係る判定用信号生成部22の構成は、上述した5種類の構成に限らず、本発明の要旨を逸脱しない範囲において適宜変更可能である。例えば、交流電圧の瞬時値から抽出した振動成分に基づいて異常判定用信号SJを生成するための構成は、上述した二乗算出部33、移動平均算出部34、及び平方根算出部35の組み合わせに限らず、適宜変更可能である。判定用信号生成部22は、例えば、抽出した振動成分の絶対値を算出し、該絶対値についての移動平均に基づいて異常判定用信号SJを生成する構成であってもよい。また、判定用信号生成部22は、例えば、移動平均算出部34をローパスフィルタに置き換えた構成であってもよい。更に、上述した構成例に限らず、判定用信号生成部22における、抽出した振動成分に基づいて異常判定用信号SJを生成するための構成は、正負に振動する振動成分を正の値に変換する処理、及び異常判定用信号SJの生成に用いる信号を平滑化する処理を実施可能な構成を含むものであればよい。信号を平滑化する処理を実施することにより、異常判定用信号SJの生成に用いる信号の時間変動が激しい場合であっても適切に異常の有無を判定することが可能な異常判定用信号SJを生成することができる。 The configuration of the determination signal generation unit 22 according to the present embodiment is not limited to the above-mentioned five types of configurations, and can be appropriately changed as long as it does not deviate from the gist of the present invention. For example, the configuration for generating the abnormality determination signal SJ based on the vibration component extracted from the instantaneous value of the AC voltage is limited to the combination of the square calculation unit 33, the moving average calculation unit 34, and the square root calculation unit 35 described above. However, it can be changed as appropriate. The determination signal generation unit 22 may be configured to calculate the absolute value of the extracted vibration component and generate the abnormality determination signal SJ based on the moving average of the absolute value, for example. Further, the determination signal generation unit 22 may have a configuration in which, for example, the moving average calculation unit 34 is replaced with a low-pass filter. Further, not limited to the configuration example described above, the configuration for generating the abnormality determination signal SJ based on the extracted vibration component in the determination signal generation unit 22 converts the positive / negative vibrating vibration component into a positive value. Any configuration may be included as long as it includes a process for performing the process and a process for smoothing the signal used for generating the abnormality determination signal SJ. By performing a signal smoothing process, an abnormality determination signal SJ capable of appropriately determining the presence or absence of an abnormality even when the time variation of the signal used for generating the abnormality determination signal SJ is large is obtained. Can be generated.

図4は、異常有無判定部の構成例を説明する図である。図4の(a)〜(c)には、それぞれ、交流電圧の瞬時値vから抽出した振動成分が大きいほど異常判定用信号SJ(≧0)が大きな値となる場合の異常有無判定部23の構成例を示している。 FIG. 4 is a diagram illustrating a configuration example of the abnormality presence / absence determination unit. In FIGS. 4A to 4C, there is an abnormality determination unit 23 in the case where the abnormality determination signal SJ (≧ 0) becomes larger as the vibration component extracted from the instantaneous value v of the AC voltage becomes larger. The configuration example of is shown.

図4の(a)には、異常有無判定部23の第1の構成例を示している。第1の構成例の異常有無判定部23は、異常判定用信号SJ(≧0)と判定閾値TH1との大小関係により交流電圧の振動が正常な範囲内であるか異常であるかを判定する判定部41を含む。判定部41は、SJ≧TH1である場合に交流電圧の振動が異常であると判定する。判定部41は、交流電圧の振動が正常な範囲内であるか異常であるかの判定結果を保護部25に出力する。判定結果が異常であることを示す場合、保護部25は、所定の並列型機器(例えば、図1の第1の並列型機器11A又は第2の並列型機器11B)を解列する又は停止する等の保護動作を実施する。 FIG. 4A shows a first configuration example of the abnormality presence / absence determination unit 23. The abnormality presence / absence determination unit 23 of the first configuration example determines whether the vibration of the AC voltage is within the normal range or is abnormal depending on the magnitude relationship between the abnormality determination signal SJ (≧ 0) and the determination threshold value TH1. The determination unit 41 is included. The determination unit 41 determines that the vibration of the AC voltage is abnormal when SJ ≧ TH1. The determination unit 41 outputs to the protection unit 25 a determination result of whether the vibration of the AC voltage is within the normal range or abnormal. When the determination result indicates that it is abnormal, the protection unit 25 disconnects or stops a predetermined parallel type device (for example, the first parallel type device 11A or the second parallel type device 11B in FIG. 1). Etc. are carried out.

このように、第1の構成例の異常有無判定部23は、交流電圧の瞬時値vに基づいて抽出した振動成分の大きさに応じた異常判定用信号SJが判定閾値TH1以上となると、交流電圧の振動に異常があると判定する。このため、第1の構成例の異常有無判定部23は、交流系統の交流電圧に生じた振動の異常を早期に検出することができる。 As described above, the abnormality determination unit 23 of the first configuration example receives AC when the abnormality determination signal SJ according to the magnitude of the vibration component extracted based on the instantaneous value v of the AC voltage becomes the determination threshold TH1 or more. Judge that there is an abnormality in the voltage vibration. Therefore, the abnormality presence / absence determination unit 23 of the first configuration example can detect the abnormality of the vibration generated in the AC voltage of the AC system at an early stage.

図4の(b)には、異常有無判定部23の第2の構成例として、積分出力を用いて交流電圧の振動が正常な範囲内であるか異常であるかを判定する異常有無判定部23の一例を示している。第2の構成例の異常有無判定部23は、第1の判定部42と、積分回路43と、第2の判定部44とを含む。第1の判定部44は、異常判定用信号SJ(≧0)が判定閾値TH1以上であるか否かを判定し、SJ≧TH1である場合には1を出力し、SJ<TH1である場合には−1を出力する。積分回路43は、第1の判定部42が出力した値を時間積分して出力する。第2の構成例における積分回路43は、第1の判定部42が1を連続して出力した場合の当該1が連続する期間を示す値を積分出力SKとして出力する。第2の判定部44は、積分回路の出力(積分出力SK)と判定時限TH2との大小関係により交流電圧の振動が正常な範囲内であるか異常であるかを判定する。第2の判定部44は、SK≧TH2である場合に交流電圧の振動が異常であると判定する。第2の判定部44は、交流電圧の振動が正常な範囲内であるか異常であるかの判定結果を保護部25に出力する。判定結果が異常であることを示す場合、保護部25は、所定の並列型機器を解列する又は停止する等の保護動作を実施する。 In FIG. 4B, as a second configuration example of the abnormality presence / absence determination unit 23, the abnormality presence / absence determination unit that determines whether the vibration of the AC voltage is within the normal range or is abnormal using the integrated output. An example of 23 is shown. The abnormality presence / absence determination unit 23 of the second configuration example includes a first determination unit 42, an integrator circuit 43, and a second determination unit 44. The first determination unit 44 determines whether or not the abnormality determination signal SJ (≧ 0) is equal to or higher than the determination threshold value TH1, outputs 1 when SJ ≧ TH1, and outputs 1 when SJ <TH1. Outputs -1 to. The integrator circuit 43 time-integrates the value output by the first determination unit 42 and outputs the value. The integrator circuit 43 in the second configuration example outputs a value indicating a period in which the 1 is continuous when the first determination unit 42 continuously outputs the 1 as an integral output SK. The second determination unit 44 determines whether the vibration of the AC voltage is within the normal range or abnormal depending on the magnitude relationship between the output of the integration circuit (integration output SK) and the determination time TH2. The second determination unit 44 determines that the vibration of the AC voltage is abnormal when SK ≧ TH2. The second determination unit 44 outputs the determination result of whether the vibration of the AC voltage is within the normal range or abnormal to the protection unit 25. When the determination result indicates that it is abnormal, the protection unit 25 performs a protection operation such as disconnecting or stopping a predetermined parallel type device.

このように、第2の構成例の異常有無判定部23は、異常判定用信号SJが閾値TH1以上である期間(積分出力SK)が判定時限TH2以上になると、交流電圧の振動に異常があると判定する。このため、第2の構成例の異常有無判定部23は、例えば、負荷投入、タップ切換、系統切換等の通常運用で生じる瞬間的な電圧の変動でSJ≧TH1となった場合に異常と誤判定することを防ぐことができ、異常の有無をより正確に判定することができる。 As described above, the abnormality presence / absence determination unit 23 of the second configuration example has an abnormality in the vibration of the AC voltage when the period (integrated output SK) in which the abnormality determination signal SJ is the threshold value TH1 or more becomes the determination time TH2 or more. Is determined. Therefore, the abnormality presence / absence determination unit 23 of the second configuration example is erroneously regarded as an abnormality when SJ ≧ TH1 due to momentary voltage fluctuations that occur in normal operation such as load loading, tap switching, and system switching. It is possible to prevent the determination, and it is possible to more accurately determine the presence or absence of an abnormality.

図4の(c)には、異常有無判定部23の第3の構成例として、積分出力を用いて交流電圧の振動が正常な範囲内であるか異常であるかを判定する異常有無判定部23の別の例を示している。第3の構成例の異常有無判定部23は、減算器45と、積分回路43と、判定部46とを含む。減算器45は、異常判定用信号SJ(≧0)から判定閾値TH1を減算した値を出力する。積分回路43は、減算器45が出力した値を時間積分して出力する。第3の構成例における積分回路43は、減算器45が0以上の値を連続して出力した場合の当該値の時間積分を示す値を積分出力SLとして出力する。判定部46は、積分回路43の出力(積分出力SL)と判定基準TH3との大小関係により交流電圧の振動が正常な範囲内であるか異常であるかを判定する。判定部46は、SL≧TH3である場合に交流電圧の振動が異常であると判定する。判定部46は、交流電圧の振動が正常な範囲内であるか異常であるかの判定結果を保護部25に出力する。判定結果が異常であることを示す場合、保護部25は、所定の並列型機器を解列する又は停止する等の保護動作を実施する。 In FIG. 4C, as a third configuration example of the abnormality presence / absence determination unit 23, an abnormality presence / absence determination unit that determines whether the vibration of the AC voltage is within the normal range or is abnormal using the integrated output. 23 another example is shown. The abnormality presence / absence determination unit 23 of the third configuration example includes the subtractor 45, the integrator circuit 43, and the determination unit 46. The subtractor 45 outputs a value obtained by subtracting the determination threshold value TH1 from the abnormality determination signal SJ (≧ 0). The integrator circuit 43 time-integrates the value output by the subtractor 45 and outputs it. The integrator circuit 43 in the third configuration example outputs a value indicating the time integration of the value when the subtractor 45 continuously outputs a value of 0 or more as an integral output SL. The determination unit 46 determines whether the vibration of the AC voltage is within the normal range or abnormal depending on the magnitude relationship between the output of the integration circuit 43 (integration output SL) and the determination reference TH3. The determination unit 46 determines that the vibration of the AC voltage is abnormal when SL ≧ TH3. The determination unit 46 outputs to the protection unit 25 a determination result of whether the vibration of the AC voltage is within the normal range or abnormal. When the determination result indicates that it is abnormal, the protection unit 25 performs a protection operation such as disconnecting or stopping a predetermined parallel type device.

このように、第3の構成例の異常有無判定部23は、異常判定用信号SJが判定閾値TH1以上である期間における両者の差の積算値(積分出力SL)が判定基準TH3以上になると、交流電圧の振動に異常があると判定する。このため、第3の構成例の異常有無判定部23は、例えば、負荷投入、タップ切換、系統切換等の通常運用で生じる瞬間的な変動に対して異常と誤判定することを防ぐことができ、異常の有無をより正確に判定することができる。また、第3の構成例の異常有無判定部23では、異常判定用信号SJから判定閾値TH1を減算した値が大きいほど、短期間で振動に異常があると判定する。このため、第3の構成例の異常有無判定部23を適用することにより、交流電圧の振動が大きい場合に早期に異常を検知することができる。 As described above, the abnormality presence / absence determination unit 23 of the third configuration example determines that the integrated value (integral output SL) of the difference between the two during the period when the abnormality determination signal SJ is the determination threshold value TH1 or more becomes the determination reference TH3 or more. Judge that there is an abnormality in the vibration of the AC voltage. Therefore, the abnormality presence / absence determination unit 23 of the third configuration example can prevent erroneous determination of an abnormality with respect to a momentary fluctuation that occurs in normal operation such as load loading, tap switching, and system switching. , The presence or absence of abnormality can be determined more accurately. Further, the abnormality presence / absence determination unit 23 of the third configuration example determines that the vibration is abnormal in a short period of time as the value obtained by subtracting the determination threshold value TH1 from the abnormality determination signal SJ is larger. Therefore, by applying the abnormality presence / absence determination unit 23 of the third configuration example, it is possible to detect an abnormality at an early stage when the vibration of the AC voltage is large.

図4の(d)には、異常有無判定部23の第4の構成例として、異常判定用信号SJの大きさと該大きさの異常判定用信号SJの継続時間との関係に基づいて交流電圧の振動が正常な範囲内であるか異常であるかを判定する異常有無判定部23の一例を示している。第4の構成例の異常有無判定部23は、継続時間算出部47と、判定時限決定部48と、判定部49とを含む。 In FIG. 4D, as a fourth configuration example of the abnormality presence / absence determination unit 23, the AC voltage is based on the relationship between the magnitude of the abnormality determination signal SJ and the duration of the abnormality determination signal SJ of the magnitude. An example of an abnormality presence / absence determination unit 23 for determining whether the vibration of the above is within a normal range or an abnormality is shown. The abnormality presence / absence determination unit 23 of the fourth configuration example includes a duration calculation unit 47, a determination time limit determination unit 48, and a determination unit 49.

継続時間算出部47は、入力された異常判定用信号SJの大きさに基づいて、同じ大きさ又は同じ大きさとみなす範囲内の異常判定用信号SJの継続時間SHを算出して出力する。判定時限決定部48は、予め定めた異常判定用信号SJの大きさと異常であるか否かの判定閾値とする判定時限TH4との関係を示す判定情報50と、入力された異常判定用信号SJの大きさとに基づいて、継続時間SHに対する判定時限TH4を決定する。判定情報50における異常判定用信号SJの大きさと判定時限TH4との関係は、例えば、図4の(d)に示したように、異常判定用信号SJが大きくなるほど判定時限が短くなるような負の相関関係とする。判定部49は、継続時間算出部47が出力した継続時間SHと、判定時限決定部48が出力した判定時限TH4とに基づいて、振動に異常があるか否かを判定する。判定部49は、SH≧TH4である場合に交流電圧の振動が異常であると判定する。判定部46は、交流電圧の振動が正常な範囲内であるか異常であるかの判定結果を保護部25に出力する。判定結果が異常であることを示す場合、保護部25は、所定の並列型機器を解列する又は停止する等の保護動作を実施する。 The duration calculation unit 47 calculates and outputs the duration SH of the abnormality determination signal SJ within the range of the same magnitude or the same magnitude based on the magnitude of the input abnormality determination signal SJ. The determination time limit determination unit 48 includes determination information 50 indicating the relationship between the size of the predetermined abnormality determination signal SJ and the determination time TH4 which is the determination threshold value for whether or not the abnormality is present, and the input abnormality determination signal SJ. The determination time TH4 for the duration SH is determined based on the magnitude of. The relationship between the magnitude of the abnormality determination signal SJ in the determination information 50 and the determination time TH4 is, for example, as shown in FIG. 4 (d), that the determination time becomes shorter as the abnormality determination signal SJ increases. Correlate with. The determination unit 49 determines whether or not there is an abnormality in the vibration based on the duration SH output by the duration calculation unit 47 and the determination time TH4 output by the determination time determination unit 48. The determination unit 49 determines that the vibration of the AC voltage is abnormal when SH ≧ TH4. The determination unit 46 outputs to the protection unit 25 a determination result of whether the vibration of the AC voltage is within the normal range or abnormal. When the determination result indicates that it is abnormal, the protection unit 25 performs a protection operation such as disconnecting or stopping a predetermined parallel type device.

このように、第4の構成例の異常有無判定部23は、ある大きさの異常判定用信号SJが入力されたときの該大きさの継続時間SHが、異常判定用信号SJの大きさに基づいて決定した判定時限TH4以上になると、交流電圧の振動に異常があると判定する。このため、第4の構成例の異常有無判定部23は、第2の構成例の異常有無判定部23と同様、通常運用で生じる瞬間的な変動に対して異常と誤判定することを防ぐことができ、異常の有無をより正確に判定することができる。また、第4の構成例の異常有無判定部23においては、異常判定用信号SJが大きいほど、振動に異常があると判定するまでの判定時限TH4が短くなる。このため、第4の構成例の異常有無判定部23は、第3の構成例の異常有無判定部23と同様、交流電圧の振動が大きい場合に早期に異常を検知することができる。更に、第4の構成例の異常有無判定部23は、異常判定用信号SJの大きさと、該大きさの継続時間SHとに基づいて、交流電圧の振動の異常の有無を判定する。このため、第4の構成例の異常有無判定部23は、積分回路による時間積分等の処理を含む第2の構成例や第3の構成例と比べ、処理負荷が軽減される。 As described above, in the abnormality presence / absence determination unit 23 of the fourth configuration example, the duration SH of the magnitude when the abnormality determination signal SJ of a certain magnitude is input is set to the magnitude of the abnormality determination signal SJ. When the determination time limit TH4 or more determined based on the above is reached, it is determined that there is an abnormality in the vibration of the AC voltage. Therefore, like the abnormality presence / absence determination unit 23 of the second configuration example, the abnormality presence / absence determination unit 23 of the fourth configuration example can prevent erroneous determination of an abnormality with respect to the momentary fluctuation that occurs in normal operation. It is possible to more accurately determine the presence or absence of an abnormality. Further, in the abnormality presence / absence determination unit 23 of the fourth configuration example, the larger the abnormality determination signal SJ, the shorter the determination time TH4 until it is determined that there is an abnormality in the vibration. Therefore, the abnormality presence / absence determination unit 23 of the fourth configuration example can detect the abnormality at an early stage when the vibration of the AC voltage is large, as in the abnormality presence / absence determination unit 23 of the third configuration example. Further, the abnormality presence / absence determination unit 23 of the fourth configuration example determines the presence / absence of abnormality in the vibration of the AC voltage based on the magnitude of the abnormality determination signal SJ and the duration SH of the magnitude. Therefore, the processing load of the abnormality presence / absence determination unit 23 of the fourth configuration example is reduced as compared with the second configuration example and the third configuration example including the processing such as time integration by the integration circuit.

なお、本実施形態に係る異常有無判定部23の構成は、上述した4種類の構成に限らず、本発明の要旨を逸脱しない範囲において適宜変更可能である。 The configuration of the abnormality presence / absence determination unit 23 according to the present embodiment is not limited to the above-mentioned four types of configurations, and can be appropriately changed as long as it does not deviate from the gist of the present invention.

また、本実施形態に係る監視部21における判定用信号生成部22の構成と異常有無判定部23の構成との組み合わせに特別な制限はない。例えば、上述した5種類の構成の判定用信号生成部22は、それぞれ、上述した4種類の構成の異常有無判定部23のいずれとも組み合わせることができる。 Further, there is no particular limitation on the combination of the configuration of the determination signal generation unit 22 and the configuration of the abnormality presence / absence determination unit 23 in the monitoring unit 21 according to the present embodiment. For example, the determination signal generation unit 22 having the above-mentioned five types of configurations can be combined with any of the above-mentioned four types of abnormality presence / absence determination units 23, respectively.

図5は、第1の実施形態に係る監視部の動作の動作を説明する図である。
本実施形態に係る監視部21は、上述のように、交流系統1における交流電圧の瞬時値vを取得(計測)し、該交流電圧の振動の異常の有無を監視する。図5の(a)には、監視部21が取得する交流電圧の瞬時値vの一例を示している。監視部21が取得する交流電圧の瞬時値vは、正弦波であらわされる定格周波数における理想的な交流電圧Vfrに他の周波数帯の成分が含まれており、当該他の周波数帯の成分に応じた振動が生じる。この他の周波数帯の成分、特に定格周波数よりも高周波の成分による振動が継続し、拡大すると、交流系統1の交流電圧の品質が劣化する。しかしながら、上述した特許文献1に開示されているような、交流電流或いは無効電力等の実効値の振動継続を判定する方法では、図5の(a)の実効値Veのように交流電圧の瞬時値vの振動が平滑化された状態で振動継続を判定することとなる。このため、実効値に基づいて振動継続を判定する方法では、ある並列型機器の高調波フィルタと他の機器との間で電圧振動が生じた場合に、振動の異常を検知することが困難な場合がある。このため、本実施形態の監視部21では、図5の(b)及び(c)に示したように、交流電圧の瞬時値vに基づいて振動成分Voscを抽出し、抽出した該振動成分Voscに基づいて異常判定用信号SJを生成する。なお、図5の(b)に例示した振動成分Voscは、交流電圧の瞬時値vに基づいて抽出された振動成分の一例である。また、図5の(c)に例示した異常判定用信号SJは、交流電圧の瞬時値vから抽出した振動成分に基づいて生成される信号の一例である。
FIG. 5 is a diagram illustrating the operation of the operation of the monitoring unit according to the first embodiment.
As described above, the monitoring unit 21 according to the present embodiment acquires (measures) the instantaneous value v of the AC voltage in the AC system 1 and monitors the presence or absence of an abnormality in the vibration of the AC voltage. FIG. 5A shows an example of the instantaneous value v of the AC voltage acquired by the monitoring unit 21. The instantaneous value v of the AC voltage acquired by the monitoring unit 21 includes components of other frequency bands in the ideal AC voltage Vfr at the rated frequency represented by the sine wave, and depends on the components of the other frequency bands. Vibration occurs. If vibrations due to components in other frequency bands, particularly components higher than the rated frequency, continue and expand, the quality of the AC voltage of the AC system 1 deteriorates. However, in the method of determining the vibration continuation of the effective value such as AC current or reactive power as disclosed in Patent Document 1 described above, the instantaneous AC voltage is instantaneous as shown in the effective value Ve of FIG. 5 (a). The vibration continuation is determined in the state where the vibration of the value v is smoothed. Therefore, in the method of determining the vibration continuation based on the effective value, it is difficult to detect the vibration abnormality when the voltage vibration occurs between the harmonic filter of a certain parallel type device and another device. In some cases. Therefore, as shown in FIGS. 5 (b) and 5 (c), the monitoring unit 21 of the present embodiment extracts the vibration component Vosc based on the instantaneous value v of the AC voltage, and extracts the vibration component Vosc. The abnormality determination signal SJ is generated based on the above. The vibration component Vosc illustrated in FIG. 5B is an example of a vibration component extracted based on the instantaneous value v of the AC voltage. Further, the abnormality determination signal SJ illustrated in FIG. 5C is an example of a signal generated based on the vibration component extracted from the instantaneous value v of the AC voltage.

図5の(c)に例示した異常判定用信号SJは、時刻t0までは判定閾値TH1よりも小さく、時刻t0以降は判定閾値TH1以上となる。ここで、異常判定用信号SJが、上記のように二乗算出部33、移動平均算出部34、及び平方根算出部35を利用して生成される信号であるとすると、該異常判定用信号SJは、0以上であって、交流電圧に含まれる振動成分が大きいほど大きな値となる。このため、異常有無判定部23は、上述した第1の構成例のように、移動判定用信号SJが判定閾値TH1以上となったことに基づいて振動に異常があると判定することができる。 The abnormality determination signal SJ illustrated in FIG. 5 (c) is smaller than the determination threshold value TH1 until time t0, and becomes the determination threshold value TH1 or more after time t0. Here, assuming that the abnormality determination signal SJ is a signal generated by using the square calculation unit 33, the moving average calculation unit 34, and the square root calculation unit 35 as described above, the abnormality determination signal SJ is , 0 or more, and the larger the vibration component contained in the AC voltage, the larger the value. Therefore, the abnormality presence / absence determination unit 23 can determine that there is an abnormality in the vibration based on the movement determination signal SJ becoming the determination threshold value TH1 or more, as in the first configuration example described above.

また、異常有無判定部23は、上述した第2の構成例のように、異常判定用信号SJが判定閾値TH1以上である期間SKが判定時限TH2以上となった場合に、振動に異常があると判定してもよい。異常有無判定部23の第2の構成例では、例えば、図5の(c)に例示した異常判定用信号SJにおける判定閾値TH1以上である期間SK(時刻t0から時刻t1までの期間)が判定時限TH2以上である場合に、振動に異常があると判定する。 Further, the abnormality presence / absence determination unit 23 has an abnormality in vibration when the period SK in which the abnormality determination signal SJ is the determination threshold value TH1 or more becomes the determination time limit TH2 or more, as in the second configuration example described above. May be determined. In the second configuration example of the abnormality presence / absence determination unit 23, for example, the period SK (the period from time t0 to time t1) that is equal to or higher than the determination threshold TH1 in the abnormality determination signal SJ illustrated in FIG. 5C is determined. When the time limit TH2 or more, it is determined that there is an abnormality in the vibration.

また、異常有無判定部23は、上述した第3の構成例のように、異常判定用信号SJから判定閾値TH1を減算した値の積算値SLが判定基準TH3以上となった場合に、振動に異常があると判定してもよい。異常有無判定部23の第3の構成例では、例えば、図5の(c)に例示した異常判定用信号SJの時刻t0以降の期間におけるSJ−TH1の積算値SLが判定基準TH3以上となった場合に、振動に異常があると判定する。 Further, the abnormality presence / absence determination unit 23 causes vibration when the integrated value SL of the value obtained by subtracting the determination threshold value TH1 from the abnormality determination signal SJ becomes the determination reference TH3 or more, as in the third configuration example described above. It may be determined that there is an abnormality. In the third configuration example of the abnormality presence / absence determination unit 23, for example, the integrated value SL of the SJ-TH1 in the period after the time t0 of the abnormality determination signal SJ illustrated in FIG. If so, it is determined that there is an abnormality in the vibration.

更に、図示は省略するが、異常有無判定部23は、上述した第4の構成例のように、異常判定用信号SJの大きさと、該大きさの異常判定用信号SJの継続時間と、判定情報50とに基づいて、振動の異常の有無を判定してもよい。 Further, although not shown, the abnormality presence / absence determination unit 23 determines the magnitude of the abnormality determination signal SJ and the duration of the abnormality determination signal SJ of the magnitude, as in the fourth configuration example described above. The presence or absence of an abnormality in vibration may be determined based on the information 50.

図6は、判定用信号生成部の第5の構成例における振動成分の抽出方法を説明する図である。 FIG. 6 is a diagram illustrating a method of extracting a vibration component in the fifth configuration example of the determination signal generation unit.

図3の(e)を参照して上述したように、判定用信号生成部22の第5の構成例は、時刻tにおける交流電圧の瞬時値v(t)とnサンプル前の瞬時値Z−nとの差分に基づいて、交流電圧の振動成分を抽出する。例えば、図6のグラフ図の時刻t0における交流電圧の瞬時値v(t0)が判定用信号生成部22に入力されると、過去値出力部38は、時刻t0よりもnサンプル期間分前の時刻tpに入力された過去値Z−nを出力する。このため、減算器32は、時刻t0の瞬時値v(t0)から時刻tpの過去値Z−nを減算した値(点線で示した傾き)を出力する。図6に示したように、交流電圧の瞬時値vに振動成分が含まれており、理想的な交流電圧Vfrとの差異が大きい場合、減算器32が出力する値と、理想的な交流電圧Vfrにおける対応する期間の値との差が大きくなることがある。また、交流電圧の場合、交流系統1の電圧は概ね定格電圧に維持されるため、波高値の増減が少ない。このため、第5の構成例の判定用信号生成部22のような過去値Z−nとの差分を利用することにより、周波数帯を限定せずに振動成分を抽出する、或いは複数の周波数成分が混ざっている場合でも振動成分を抽出することができる。 As described above with reference to FIG. 3 (e), the fifth configuration example of the determination signal generation unit 22 is the instantaneous value v (t) of the AC voltage at time t and the instantaneous value Z − before n samples. The vibration component of the AC voltage is extracted based on the difference from n. For example, when the instantaneous value v (t0) of the AC voltage at the time t0 in the graph of FIG. 6 is input to the determination signal generation unit 22, the past value output unit 38 is n sample periods before the time t0. The past value Z −n input at the time tp is output. Therefore, the subtractor 32 outputs a value (slope shown by a dotted line) obtained by subtracting the past value Z −n at time tp from the instantaneous value v (t0) at time t0. As shown in FIG. 6, when the instantaneous value v of the AC voltage contains a vibration component and the difference from the ideal AC voltage Vfr is large, the value output by the subtractor 32 and the ideal AC voltage. The difference from the value of the corresponding period in Vfr may be large. Further, in the case of the AC voltage, since the voltage of the AC system 1 is generally maintained at the rated voltage, the increase / decrease in the peak value is small. Therefore, the vibration component can be extracted without limiting the frequency band, or a plurality of frequency components can be extracted by using the difference from the past value Zn such as the determination signal generation unit 22 of the fifth configuration example. The vibration component can be extracted even when is mixed.

このように、本実施形態の監視部21では、交流電圧の瞬時値vに基づいて該交流電圧の振動成分を抽出し、抽出した振動成分に基づいて異常判定用信号SJを生成する。このため、交流電流や無効電力等の実効値では検知が困難な振動成分を抽出し、該振動成分に応じた大きさの異常判定用信号SJを生成することができる。 As described above, the monitoring unit 21 of the present embodiment extracts the vibration component of the AC voltage based on the instantaneous value v of the AC voltage, and generates the abnormality determination signal SJ based on the extracted vibration component. Therefore, it is possible to extract a vibration component that is difficult to detect with an effective value such as an alternating current or an ineffective power, and generate an abnormality determination signal SJ having a size corresponding to the vibration component.

また、本実施形態の保護部25は、交流電圧の振動に異常があると判定した場合に、並列型機器を解列又は停止する保護動作を実施する。この際、保護部25は、例えば、異常な振動の一因と考えられるある1つの並列型機器を解列又は停止させ、その後の監視部21からの出力に基づいて振動の異常が解消されたか否かを判定する。振動の異常が解消されていない場合、保護部25は、振動の異常が解消されるまで、解列又は停止させる並列型機器を変更し、その後の監視部21からの出力に基づいて振動の異常が解消されたか否かを判定する処理を続ける。このように、本実施形態に係る交流系統1の監視システムでは、交流電圧の異常な振動を検知した場合に、振動を抑制するのではなく、振動の一因と考えられる並列型機器を解列又は停止する。 Further, the protection unit 25 of the present embodiment performs a protection operation of disconnecting or stopping the parallel type equipment when it is determined that there is an abnormality in the vibration of the AC voltage. At this time, for example, did the protection unit 25 disconnect or stop one parallel type device considered to be one of the causes of the abnormal vibration, and the vibration abnormality was eliminated based on the output from the monitoring unit 21 thereafter? Judge whether or not. If the vibration abnormality is not resolved, the protection unit 25 changes the parallel type device to be disconnected or stopped until the vibration abnormality is resolved, and then the vibration abnormality is based on the output from the monitoring unit 21. Continues the process of determining whether or not is resolved. As described above, in the monitoring system of the AC system 1 according to the present embodiment, when abnormal vibration of the AC voltage is detected, the parallel type equipment considered to be one of the causes of the vibration is disconnected instead of suppressing the vibration. Or stop.

例えば、交流系統に接続されたある1つの並列型機器の高調波フィルタと他の機器との間で他の機器が原因となり振動が生じた場合、当該並列型機器における制御パラメータを変えたとしても、振動を抑制することができないことがある。また、様々な機器が接続された交流系統において振動の原因となった機器を特定することは非常に困難である。更に、積極的に振動を拡大させてはいないかもしれないが、当該並列型機器の高調波フィルタが連系したことにより共振点が形成され、振動の一因となった可能性もある。このため、本実施形態の監視システムのように交流電圧の瞬時値vに基づいて振動の異常を検出し、並列型機器を解列又は停止する保護動作を実施することにより、周辺機器を一斉に解列させる可能性や周辺機器に損傷を与える可能性を排除することで、交流系統の電力品質を確実に担保することができる。 For example, if vibration occurs between the harmonic filter of one parallel device connected to the AC system and another device due to another device, even if the control parameters of the parallel device are changed. , Vibration may not be suppressed. In addition, it is very difficult to identify the device that caused the vibration in the AC system to which various devices are connected. Furthermore, although it may not have actively expanded the vibration, it is possible that a resonance point was formed due to the interconnection of the harmonic filters of the parallel type device, which contributed to the vibration. Therefore, as in the monitoring system of the present embodiment, the peripheral devices are simultaneously detected by detecting the abnormality of vibration based on the instantaneous value v of the AC voltage and performing the protection operation of disconnecting or stopping the parallel devices. By eliminating the possibility of disconnection and damage to peripheral equipment, the power quality of the AC system can be ensured.

なお、本実施形態に係る監視部21における判定用信号生成部22は、例えば、振動成分の抽出条件が異なる複数の抽出方法により同一の交流電圧の瞬時値vから抽出した複数の振動成分のそれぞれに基づいて複数の異常判定用信号を生成してもよい。このような監視部21における異常有無判定部23は、複数の異常判定用信号のそれぞれに基づいて個別に振動の異常の有無を判定した後、複数の判定結果に基づいて最終的な振動の異常の有無を判定する。 The determination signal generation unit 22 in the monitoring unit 21 according to the present embodiment is, for example, each of the plurality of vibration components extracted from the instantaneous value v of the same AC voltage by a plurality of extraction methods having different extraction conditions for the vibration components. A plurality of abnormality determination signals may be generated based on the above. The abnormality presence / absence determination unit 23 in the monitoring unit 21 individually determines the presence / absence of a vibration abnormality based on each of the plurality of abnormality determination signals, and then finally determines the vibration abnormality based on the plurality of determination results. Judge the presence or absence of.

図7は、第1の実施形態に係る監視部の第1の応用例を説明する図である。図8は、第1の応用例において判定用信号生成部で抽出する振動成分と異常有無判定部における判定閾値との例を説明する図である。図7には、判定用信号生成部22の第3の構成例と、異常有無判定部23の第2の構成例とを組み合わせた監視部21の構成に関する応用例を示している。 FIG. 7 is a diagram illustrating a first application example of the monitoring unit according to the first embodiment. FIG. 8 is a diagram illustrating an example of a vibration component extracted by the determination signal generation unit and a determination threshold value in the abnormality presence / absence determination unit in the first application example. FIG. 7 shows an application example relating to the configuration of the monitoring unit 21 in which the third configuration example of the determination signal generation unit 22 and the second configuration example of the abnormality presence / absence determination unit 23 are combined.

図7に例示した判定用信号生成部22は、第3の構成例として上述した判定用信号生成部と対応する信号生成回路を3組含む。3組の信号生成回路は、同一の交流電圧の瞬時値vに基づいて該交流電圧の振動成分を抽出し、異常判定用信号を生成する。ここで、3組の信号生成回路は、振動成分の抽出に用いるバンドパスフィルタ37の中心周波数が異なる。 The determination signal generation unit 22 illustrated in FIG. 7 includes three sets of signal generation circuits corresponding to the determination signal generation unit described above as a third configuration example. The three sets of signal generation circuits extract the vibration component of the AC voltage based on the instantaneous value v of the same AC voltage, and generate an abnormality determination signal. Here, the three sets of signal generation circuits have different center frequencies of the bandpass filters 37 used for extracting the vibration components.

第1の信号生成回路は、中心周波数f1のバンドパスフィルタ37Aにより抽出した、中心周波数f1を含む所定の周波数帯の振動成分に基づいて異常判定用信号SJ1を生成する。第1の信号生成回路では、二乗算出部33A、移動平均算出部34A、及び平方根算出部35Aにより異常判定用信号SJ1を生成する。第2の信号生成回路は、中心周波数f2(>f1)のバンドパスフィルタ37Bにより抽出した、中心周波数f2を含む所定の周波数帯の振動成分に基づいて異常判定用信号SJ2を生成する。第2の信号生成回路では、二乗算出部33B、移動平均算出部34B、及び平方根算出部35Bにより異常判定用信号SJ2を生成する。第3の信号生成回路は、中心周波数f3(>f2)のバンドパスフィルタ37Cにより抽出した、中心周波数f3を含む所定の周波数帯の振動成分に基づいて異常判定用信号SJ3を生成する。第3の信号生成回路では、二乗算出部33C、移動平均算出部34C、及び平方根算出部35Cにより異常判定用信号SJ3を生成する。 The first signal generation circuit generates an abnormality determination signal SJ1 based on the vibration component of a predetermined frequency band including the center frequency f1 extracted by the bandpass filter 37A having the center frequency f1. In the first signal generation circuit, the square calculation unit 33A, the moving average calculation unit 34A, and the square root calculation unit 35A generate the abnormality determination signal SJ1. The second signal generation circuit generates an abnormality determination signal SJ2 based on the vibration component of a predetermined frequency band including the center frequency f2 extracted by the bandpass filter 37B having the center frequency f2 (> f1). In the second signal generation circuit, the square calculation unit 33B, the moving average calculation unit 34B, and the square root calculation unit 35B generate the abnormality determination signal SJ2. The third signal generation circuit generates an abnormality determination signal SJ3 based on the vibration component of a predetermined frequency band including the center frequency f3 extracted by the bandpass filter 37C having the center frequency f3 (> f2). In the third signal generation circuit, the square calculation unit 33C, the moving average calculation unit 34C, and the square root calculation unit 35C generate the abnormality determination signal SJ3.

ここで、3個のバンドパスフィルタ37A,37B,及び37Cは、図8に示すように、中心周波数f1,f2,及びf3の大小関係がf3>f2>f1(>f0)となり、かつ各バンドパスフィルタ37A,37B,及び37Cを通過する周波数帯が重複しないような組み合わせとする。図8の周波数f0は、交流系統1の定格周波数である。 Here, in the three bandpass filters 37A, 37B, and 37C, as shown in FIG. 8, the magnitude relation of the center frequencies f1, f2, and f3 is f3> f2> f1 (> f0), and each band. The combination is such that the frequency bands passing through the pass filters 37A, 37B, and 37C do not overlap. The frequency f0 in FIG. 8 is the rated frequency of the AC system 1.

また、図7に例示した異常有無判定部23は、第2の構成例として上述した異常有無判定部と対応する判定回路を3組含み、更に最終判定部51を含む。3組の判定回路は、それぞれ、判定用信号生成部22で生成した3つの異常判定用信号SJ1,SJ2,及びSJ3のうち、互いに重複しないよう割り当てられた1つの異常判定用信号SJ1,SJ2,又はSJ3に基づいて交流電圧の振動の異常の有無を判定する。第1の判定回路は、第1の判定部42A及び積分回路43Aにより出力される第1の異常判定用信号SJ1に対する積分出力SK1と、判定時限TH2との大小関係に基づいて、振動の異常の有無を判定し、該判定結果を最終判定部51に出力する。第2の判定回路は、第1の判定部42B及び積分回路43Bにより出力される第2の異常判定用信号SJ2に対する積分出力SK2と、判定時限TH2との大小関係に基づいて、振動の異常の有無を判定し、該判定結果を最終判定部51に出力する。第3の判定回路は、第1の判定部42C及び積分回路43Cにより出力される第3の異常判定用信号SJ3に対する積分出力SK3と、判定時限TH2との大小関係に基づいて、振動の異常の有無を判定し、該判定結果を最終判定部51に出力する。ここで、3つの第1の判定部42A,42B,及び42Cは、それぞれ、入力される異常判定用信号SJ1,SJ2,及びSJ3の対応する振動成分の周波数帯に応じて異なる判定閾値TH11,TH12,TH13を用いる。 Further, the abnormality presence / absence determination unit 23 illustrated in FIG. 7 includes three sets of determination circuits corresponding to the above-mentioned abnormality presence / absence determination unit as a second configuration example, and further includes a final determination unit 51. Each of the three sets of determination circuits is one of the three abnormality determination signals SJ1, SJ2 and SJ3 generated by the determination signal generation unit 22, which are assigned so as not to overlap each other. Alternatively, it is determined whether or not there is an abnormality in the vibration of the AC voltage based on SJ3. The first determination circuit is based on the magnitude relationship between the integrated output SK1 for the first abnormality determination signal SJ1 output by the first determination unit 42A and the integration circuit 43A and the determination time TH2, and is based on the magnitude relationship of the vibration abnormality. The presence or absence is determined, and the determination result is output to the final determination unit 51. The second determination circuit is based on the magnitude relationship between the integrated output SK2 for the second abnormality determination signal SJ2 output by the first determination unit 42B and the integration circuit 43B and the determination time TH2, and is based on the magnitude relationship of the vibration abnormality. The presence or absence is determined, and the determination result is output to the final determination unit 51. The third determination circuit is based on the magnitude relationship between the integrated output SK3 for the third abnormality determination signal SJ3 output by the first determination unit 42C and the integration circuit 43C and the determination time TH2, and is based on the magnitude relationship of the vibration abnormality. The presence or absence is determined, and the determination result is output to the final determination unit 51. Here, the three first determination units 42A, 42B, and 42C have different determination thresholds TH11 and TH12 depending on the frequency bands of the corresponding vibration components of the input abnormality determination signals SJ1, SJ2, and SJ3, respectively. , TH13 is used.

最終判定部51は、3組の判定回路のそれぞれの判定結果に基づいて、交流電圧の振動の異常の有無に対する最終判定を行う。最終判定部51は、例えば、3組の判定回路のそれぞれの判定結果を入力とするOR回路とし、3つの判定結果のうち1つ以上が振動に異常があるという判定結果である場合に、振動に異常があるという判定結果を出力する。 The final determination unit 51 makes a final determination regarding the presence or absence of an abnormality in the vibration of the AC voltage based on the determination results of each of the three sets of determination circuits. The final determination unit 51 is, for example, an OR circuit that inputs the determination results of each of the three sets of determination circuits, and vibrations when one or more of the three determination results is a determination result that the vibration is abnormal. Outputs the judgment result that there is an abnormality in.

このように、周波数帯が異なる複数の振動成分のそれぞれに基づいて複数の異常判定用信号を生成し、異常判定用信号のそれぞれに対する異常の有無の判定結果に基づいて最終的な異常の有無の判定を行うことで、様々な振動様相が生じても確実に振動を検知し、保護動作を行うことができる。 In this way, a plurality of abnormality determination signals are generated based on each of the plurality of vibration components having different frequency bands, and the final presence / absence of abnormality is determined based on the determination result of the presence / absence of abnormality for each of the abnormality determination signals. By making a determination, vibration can be reliably detected and a protective operation can be performed even if various vibration aspects occur.

なお、振動成分の抽出条件が異なる複数組の信号生成回路は、上述した判定用信号生成部22の第3の構成例に限らず、第1の構成例、第2の構成例、第4の構成例、及び第5の構成例のいずれか、或いは他の類似した構成であってもよい。例えば、複数組の信号生成回路は、第5の構成例であって過去値出力部が出力する過去値Z−nの値nが異なる複数組の信号生成回路であってもよい。更に、振動成分の抽出条件が異なる複数組の信号生成回路は、振動成分の抽出方法が異なる複数組の信号生成回路の組み合わせ、例えば、第1の構成例と対応する信号生成回路と第5の構成例と対応する信号生成回路との組み合わせ等であってもよい。加えて、複数の異常判定用信号のそれぞれに基づいて個別に異常の有無を判定する複数組の判定回路は、第2の構成例に限らず、第1の構成例、第3の構成例、及び第4の構成例のいずれか、或いは他の類似した構成であってもよい。 The plurality of sets of signal generation circuits having different vibration component extraction conditions are not limited to the third configuration example of the determination signal generation unit 22 described above, but the first configuration example, the second configuration example, and the fourth configuration example. Any of the configuration example and the fifth configuration example, or other similar configurations may be used. For example, the plurality of sets of signal generation circuits may be a plurality of sets of signal generation circuits in which the values n of the past values Z −n output by the past value output unit are different in the fifth configuration example. Further, the plurality of sets of signal generation circuits having different extraction conditions of vibration components are a combination of a plurality of sets of signal generation circuits having different extraction methods of vibration components, for example, a signal generation circuit corresponding to the first configuration example and a fifth set of signal generation circuits. It may be a combination of a configuration example and a corresponding signal generation circuit. In addition, the plurality of sets of determination circuits for individually determining the presence or absence of an abnormality based on each of the plurality of abnormality determination signals are not limited to the second configuration example, but the first configuration example, the third configuration example, and the like. And any of the fourth configuration examples, or other similar configurations.

また、本実施形態に係る監視システムを適用する交流系統1が三相交流等の多相交流である場合には、単相の交流電圧毎に振動の異常の有無を判定し、該判定結果に基づいて最終的な異常の有無の判定をしてもよい。 Further, when the AC system 1 to which the monitoring system according to the present embodiment is applied is a multi-phase AC such as a three-phase AC, the presence or absence of an abnormality in vibration is determined for each single-phase AC voltage, and the determination result is used. Based on this, the presence or absence of a final abnormality may be determined.

図9は、第1の実施形態に係る監視部の第2の応用例を説明する図である。図9には、判定用信号生成部22の第5の構成例と、異常有無判定部23の第2の構成例とを組み合わせた監視部21の構成に関する応用例を示している。 FIG. 9 is a diagram illustrating a second application example of the monitoring unit according to the first embodiment. FIG. 9 shows an application example relating to the configuration of the monitoring unit 21 in which the fifth configuration example of the determination signal generation unit 22 and the second configuration example of the abnormality presence / absence determination unit 23 are combined.

図9に例示した判定用信号生成部22は、第5の構成例として上述した判定用信号生成部と対応する信号生成回路を3組含む。3組の信号生成回路は、過去値出力部38A,38B,及び38Cが出力する過去値Z−nの値nが同一であり、入力する交流電圧の瞬時値が異なる。第1の信号生成回路には、交流電圧の瞬時値として、三相交流における第1の線間電圧Vabの瞬時値v1を入力する。すなわち、第1の信号生成回路は、減算器32Aにより、時刻tにおける第1の線間電圧Vabの瞬時値v1(t)からnサンプル前の第1の線間電圧Vabの瞬時値(過去値)Z1−nを減算して抽出した振動成分に基づいて、異常判定用信号SJ1を生成する。第1の信号生成回路では、二乗算出部33A、移動平均算出部34A、及び平方根算出部35Aにより異常判定用信号SJ1を生成する。第2の信号生成回路には、交流電圧の瞬時値として、三相交流における第2の線間電圧Vbcの瞬時値v2を入力する。すなわち、第2の信号生成回路は、減算器32Bにより、時刻tにおける第2の線間電圧Vbcの瞬時値v2(t)からnサンプル前の第2の線間電圧Vbcの過去値Z2−nを減算して抽出した振動成分に基づいて、異常判定用信号SJ2を生成する。第2の信号生成回路では、二乗算出部33B、移動平均算出部34B、及び平方根算出部35Bにより異常判定用信号SJ2を生成する。第3の信号生成回路には、交流電圧の瞬時値として、三相交流における第3の線間電圧Vcaの瞬時値v3を入力する。すなわち、第3の信号生成回路は、時刻tにおける第3の線間電圧Vcaの瞬時値v3(t)からnサンプル前の第3の線間電圧Vcaの過去値Z3−nを減算して抽出した振動成分に基づいて、異常判定用信号SJ3を生成する。第3の信号生成回路では、二乗算出部33C、移動平均算出部34C、及び平方根算出部35Cにより異常判定用信号SJ3を生成する。 The determination signal generation unit 22 illustrated in FIG. 9 includes three sets of signal generation circuits corresponding to the determination signal generation unit described above as a fifth configuration example. In the three sets of signal generation circuits, the values n of the past values Z −n output by the past value output units 38A, 38B, and 38C are the same, and the instantaneous values of the input AC voltages are different. The instantaneous value v1 of the first line voltage Vab in the three-phase AC is input to the first signal generation circuit as the instantaneous value of the AC voltage. That is, the first signal generation circuit uses the subtractor 32A to perform the instantaneous value (past value) of the first line voltage Vab n samples before the instantaneous value v1 (t) of the first line voltage Vab at time t. ) The abnormality determination signal SJ1 is generated based on the vibration component extracted by subtracting Z1 −n. In the first signal generation circuit, the square calculation unit 33A, the moving average calculation unit 34A, and the square root calculation unit 35A generate the abnormality determination signal SJ1. The instantaneous value v2 of the second line voltage Vbc in the three-phase AC is input to the second signal generation circuit as the instantaneous value of the AC voltage. That is, in the second signal generation circuit, the subtractor 32B causes the past value Z2 −n of the second line voltage Vbc n samples before the instantaneous value v2 (t) of the second line voltage Vbc at time t. The abnormality determination signal SJ2 is generated based on the vibration component extracted by subtracting. In the second signal generation circuit, the square calculation unit 33B, the moving average calculation unit 34B, and the square root calculation unit 35B generate the abnormality determination signal SJ2. The instantaneous value v3 of the third line voltage Vca in the three-phase AC is input to the third signal generation circuit as the instantaneous value of the AC voltage. That is, the third signal generation circuit extracts the instantaneous value v3 (t) of the third line voltage Vca at time t by subtracting the past value Z3 −n of the third line voltage Vca n samples before. An abnormality determination signal SJ3 is generated based on the generated vibration component. In the third signal generation circuit, the square calculation unit 33C, the moving average calculation unit 34C, and the square root calculation unit 35C generate the abnormality determination signal SJ3.

また、図9に例示した異常有無判定部23は、第2の構成例として上述した異常有無判定部と対応する判定回路を3組含み、更に最終判定部51を含む。3組の判定回路は、それぞれ、判定用信号生成部22で生成した3つの異常判定用信号SJ1,SJ2,及びSJ3のうちの1つの異常判定用信号SJ1,SJ2,又はSJ3に基づいて交流電圧の振動の異常の有無を判定する。第1の判定回路は、第1の判定部42A及び積分回路43Aにより出力される第1の異常判定用信号SJ1に対する積分出力SK1と、判定時限TH2との大小関係に基づいて、振動の異常の有無を判定し、該判定結果を最終判定部51に出力する。第2の判定回路は、第1の判定部42B及び積分回路43Bにより出力される第2の異常判定用信号SJ2に対する積分出力SK2と、判定時限TH2との大小関係に基づいて、振動の異常の有無を判定し、該判定結果を最終判定部51に出力する。第3の判定回路は、第1の判定部42C及び積分回路43Cにより出力される第3の異常判定用信号SJ3に対する積分出力SK3と、判定時限TH2との大小関係に基づいて、振動の異常の有無を判定し、該判定結果を最終判定部51に出力する。ここで、3つの第1の判定部42A,42B,及び42Cは、それぞれ、入力される異常判定用信号SJ1,SJ2,及びSJ3に応じて同一の判定閾値TH1を用いる。 Further, the abnormality presence / absence determination unit 23 illustrated in FIG. 9 includes three sets of determination circuits corresponding to the above-mentioned abnormality presence / absence determination unit as a second configuration example, and further includes a final determination unit 51. Each of the three sets of determination circuits has an AC voltage based on one of the three abnormality determination signals SJ1, SJ2 and SJ3 generated by the determination signal generation unit 22 and the abnormality determination signal SJ1, SJ2 or SJ3. Judge the presence or absence of abnormal vibration. The first determination circuit is based on the magnitude relationship between the integrated output SK1 for the first abnormality determination signal SJ1 output by the first determination unit 42A and the integration circuit 43A and the determination time TH2, and is based on the magnitude relationship of the vibration abnormality. The presence or absence is determined, and the determination result is output to the final determination unit 51. The second determination circuit is based on the magnitude relationship between the integrated output SK2 for the second abnormality determination signal SJ2 output by the first determination unit 42B and the integration circuit 43B and the determination time TH2, and is based on the magnitude relationship of the vibration abnormality. The presence or absence is determined, and the determination result is output to the final determination unit 51. The third determination circuit is based on the magnitude relationship between the integrated output SK3 for the third abnormality determination signal SJ3 output by the first determination unit 42C and the integration circuit 43C and the determination time TH2, and is based on the magnitude relationship of the vibration abnormality. The presence or absence is determined, and the determination result is output to the final determination unit 51. Here, the three first determination units 42A, 42B, and 42C use the same determination threshold value TH1 according to the input abnormality determination signals SJ1, SJ2, and SJ3, respectively.

最終判定部51は、3組の判定回路のそれぞれの判定結果に基づいて、交流電圧の振動の異常の有無に対する最終判定を行う。最終判定部51は、例えば、3組の判定回路のそれぞれの判定結果を入力とするOR回路とし、3つの判定結果のうち1つ以上が振動に異常があるという判定結果である場合に振動に異常があるという判定結果を出力する。 The final determination unit 51 makes a final determination regarding the presence or absence of an abnormality in the vibration of the AC voltage based on the determination results of each of the three sets of determination circuits. The final determination unit 51 is, for example, an OR circuit that inputs the determination results of each of the three sets of determination circuits, and when one or more of the three determination results is a determination result that the vibration is abnormal, the vibration is generated. Outputs the judgment result that there is an abnormality.

このように、三相交流に含まれる3つの単相の交流電圧の瞬時値のそれぞれに基づいて3つの異常判定用信号SJ1,SJ2,及びSJ3を生成し、異常判定用信号のそれぞれに対する異常の有無の判定結果に基づいて最終的な異常の有無の判定を行うことで、ある1つの相の交流電圧の振動に異常がある場合にも検知することができる。三相交流においては、例えば、不平衡によりいずれかの相にのみ振動が生じることがあるが、第2の応用例のように相毎に振動の異常の有無を判定した後で最終判定を行うことにより、振動の異常を確実に検知することができる。 In this way, three abnormality determination signals SJ1, SJ2, and SJ3 are generated based on each of the instantaneous values of the three single-phase AC voltages included in the three-phase AC, and the abnormality for each of the abnormality determination signals is generated. By finally determining the presence or absence of an abnormality based on the determination result of the presence or absence, it is possible to detect even when there is an abnormality in the vibration of the AC voltage of a certain phase. In three-phase alternating current, for example, vibration may occur in only one of the phases due to imbalance, but as in the second application example, the final judgment is performed after determining the presence or absence of vibration abnormality for each phase. This makes it possible to reliably detect an abnormality in vibration.

なお、三相交流の交流系統に適用する監視システムにおいても、判定用信号生成部22に設ける複数組の信号生成回路は、第5の構成例に限らず、第1の構成例から第4の構成例のいずれか、或いは他の類似した構成であってもよい。更に、異常有無判定部23に設ける複数の判定回路は、第2の構成例に限らず、第1の構成例、第3の構成例、及び第4の構成例のいずれか、或いは他の類似した構成であってもよい。 Even in the monitoring system applied to the AC system of three-phase AC, the plurality of sets of signal generation circuits provided in the determination signal generation unit 22 are not limited to the fifth configuration example, and the first to fourth configuration examples are described. It may be any of the configuration examples or other similar configurations. Further, the plurality of determination circuits provided in the abnormality presence / absence determination unit 23 are not limited to the second configuration example, but are any one of the first configuration example, the third configuration example, and the fourth configuration example, or other similarities. It may have the same configuration.

[第2の実施形態]
本実施形態では、図1に例示した交流系統1における監視部21の別の構成例について説明する。
[Second Embodiment]
In this embodiment, another configuration example of the monitoring unit 21 in the AC system 1 illustrated in FIG. 1 will be described.

図10は、第2の実施形態に係る交流系統の監視システムにおける監視部の構成例を説明する図である。図11は、第2の実施形態に係る判定用信号生成部及び異常有無判定部の構成例を説明図である。 FIG. 10 is a diagram illustrating a configuration example of a monitoring unit in the AC system monitoring system according to the second embodiment. FIG. 11 is an explanatory diagram of a configuration example of a determination signal generation unit and an abnormality presence / absence determination unit according to the second embodiment.

図10に例示する監視部21は、判定用信号生成部22と、異常有無判定部23と、評価タイミング制御部27とを含む。 The monitoring unit 21 illustrated in FIG. 10 includes a determination signal generation unit 22, an abnormality presence / absence determination unit 23, and an evaluation timing control unit 27.

判定用信号生成部22は、上述した第5の構成例と同じ構成であり、図11に示したように、過去値出力部38と、減算器32と、二乗算出部33と、移動平均算出部34と、平方根算出部35とを含む。判定用信号生成部22は、減算器32において、時刻tの交流電圧の瞬時値v(t)から、過去値出力部38が出力したnサンプル前の瞬時値(過去値)Z−nを減算して交流電圧の振動成分を抽出する。判定用信号生成部22は、二乗算出部33、移動平均算出部34、及び平方根算出部35により、抽出した振動成分に応じた異常判定用信号SJを生成する。 The determination signal generation unit 22 has the same configuration as the fifth configuration example described above, and as shown in FIG. 11, the past value output unit 38, the subtractor 32, the square calculation unit 33, and the moving average calculation. A unit 34 and a square root calculation unit 35 are included. In the subtractor 32, the determination signal generation unit 22 subtracts the instantaneous value (past value) Z −n before n samples output by the past value output unit 38 from the instantaneous value v (t) of the AC voltage at time t. Then, the vibration component of the AC voltage is extracted. The determination signal generation unit 22 generates an abnormality determination signal SJ according to the extracted vibration component by the square calculation unit 33, the moving average calculation unit 34, and the square root calculation unit 35.

異常有無判定部23は、上述した第2の構成例と同じ構成であり、図11に示したように、第1の判定部42と、積分回路43と、第2の判定部44とを含む。異常有無判定部23の第2の判定部44は、第1の判定部42及び積分回路43により出力される、異常判定用信号SJが継続して閾値TH以上である期間を示す積分出力SKが判定時限TH2以上になると、交流電圧の振動に異常があると判定する。 The abnormality presence / absence determination unit 23 has the same configuration as the second configuration example described above, and includes the first determination unit 42, the integrator circuit 43, and the second determination unit 44 as shown in FIG. .. The second determination unit 44 of the abnormality presence / absence determination unit 23 has an integral output SK output by the first determination unit 42 and the integration circuit 43 indicating a period during which the abnormality determination signal SJ is continuously equal to or higher than the threshold value TH. When the determination time limit TH2 or more is reached, it is determined that there is an abnormality in the vibration of the AC voltage.

評価タイミング制御部27は、判定用信号生成部22において異常判定用信号SJを生成し、異常有無判定部23において異常の有無を判定する処理を実施するタイミングを制御する。評価タイミング制御部27は、ゼロクロス検出部28と、判定指示部29とを含む。ゼロクロス検出部28は、交流電圧の瞬時値vが0になる時刻(ゼロクロス点)を検出する。判定指示部29は、検出したゼロクロス点に基づいて設定される所定の評価期間内の交流電圧の瞬時値に基づいた交流電圧の振動の異常の有無の判定を判定用信号生成部22及び異常有無判定部23に行わせる。判定指示部29は、所定の評価期間内にのみ、判定用信号生成部22の減算部32、二乗算出部33、移動平均算出部34、及び平方根算出部35を動作させ、判定用信号生成部22に異常判定用信号SJを生成させる。また、判定指示部29は、判定用信号生成部22で生成した異常判定用信号SJを入力として第1の判定部42及び積分回路43により出力される積分出力SKに対してのみ、第2の判定部44による判定を行わせる。 The evaluation timing control unit 27 controls the timing at which the determination signal generation unit 22 generates the abnormality determination signal SJ and the abnormality presence / absence determination unit 23 executes the process of determining the presence / absence of an abnormality. The evaluation timing control unit 27 includes a zero cross detection unit 28 and a determination instruction unit 29. The zero cross detection unit 28 detects the time (zero cross point) at which the instantaneous value v of the AC voltage becomes 0. The determination instruction unit 29 determines whether or not there is an abnormality in the vibration of the AC voltage based on the instantaneous value of the AC voltage within a predetermined evaluation period set based on the detected zero cross point, and the determination signal generation unit 22 and the presence or absence of the abnormality. Let the determination unit 23 do this. The judgment instruction unit 29 operates the subtraction unit 32, the square calculation unit 33, the moving average calculation unit 34, and the square root calculation unit 35 of the judgment signal generation unit 22 only within a predetermined evaluation period, and the judgment signal generation unit 29. 22 is made to generate an abnormality determination signal SJ. Further, the determination instruction unit 29 receives the abnormality determination signal SJ generated by the determination signal generation unit 22 as an input, and the determination instruction unit 29 receives the second determination output SK output by the first determination unit 42 and the integration circuit 43. The determination unit 44 makes a determination.

上述した判定用信号生成部22の第5の構成例では、交流電圧の瞬時値vにおける全区間に対し、時刻tの交流電圧の瞬時値v(t)からnサンプル前の過去値Z−nを減算した値を振動成分とし、該振動成分に基づいて異常判定用信号SJを生成する処理を行っている。しかしながら、第5の構成例の判定用信号生成部22は、本実施形態で説明するように、理想的な交流電圧Vfrにおいてゼロクロス点を通る直線による近似が成立する期間にのみ、異常判定用信号SJを生成し異常の有無を判定してもよい。 In the fifth configuration example of the determination signal generation unit 22 described above, the past value Z −n n samples before the instantaneous value v (t) of the AC voltage at time t is applied to the entire section of the instantaneous value v of the AC voltage. The value obtained by subtracting is used as a vibration component, and a process of generating an abnormality determination signal SJ is performed based on the vibration component. However, as described in the present embodiment, the determination signal generation unit 22 of the fifth configuration example determines the abnormality determination signal only during the period in which the approximation by the straight line passing through the zero cross point is established at the ideal AC voltage Vfr. SJ may be generated and the presence or absence of abnormality may be determined.

図12は、評価期間の例を説明する図である。
図12に示したグラフ図に正弦波であらわされる理想的な交流電圧Vfrは、時刻Txにおいて電圧が0になっており、当該時刻Txがゼロクロス点となる。理想的な交流電圧Vfrのゼロクロス点における接線の傾き(微分係数)は太い点線で示したような傾きとなり、ゼロクロス点Txを中心とする±ΔTの範囲内における交流電圧Vfrの値は、太い点線の傾きで与えられる直線に近似することができる。このような交流電圧Vfrにおける直線近似が可能な期間内のみで、瞬時値v(t)から過去値Z−nを減算して振動成分を抽出することにより、直線近似される傾きとは異なる振動成分を容易にかつ確実に抽出することができる。
FIG. 12 is a diagram illustrating an example of an evaluation period.
The ideal AC voltage Vfr represented by a sine wave in the graph shown in FIG. 12 has a voltage of 0 at the time Tx, and the time Tx is the zero crossing point. The slope (differential coefficient) of the tangent line at the zero cross point of the ideal AC voltage Vfr is the slope shown by the thick dotted line, and the value of the AC voltage Vfr within the range of ± ΔT centered on the zero cross point Tx is the thick dotted line. It can be approximated to a straight line given by the slope of. Vibration different from the slope that is linearly approximated by extracting the vibration component by subtracting the past value Z −n from the instantaneous value v (t) only within the period during which linear approximation is possible at such an AC voltage Vfr. The components can be easily and reliably extracted.

なお、所定の評価期間は、振動のない交流電圧における瞬時値vが0になる時刻(ゼロクロス点)を含み、交流電圧の瞬時値の時間変化に対し直線近似が成立する期間内に設定すればよい。すなわち、ゼロクロス点Txを中心とする±ΔTの期間内で理想的な交流電圧Vfrの瞬時値に対し直線近似が成立する場合、最大評価期間は、ゼロクロス点Txを中心とする±ΔTの期間となる。評価期間は、上記の直線近似が成立する期間内であればよく、例えば、ゼロクロス点Txから+ΔTまでの期間であってもよい。 If the predetermined evaluation period is set within the period in which the linear approximation is established with respect to the time change of the instantaneous value of the AC voltage, including the time when the instantaneous value v in the AC voltage without vibration becomes 0 (zero cross point). Good. That is, when a linear approximation is established for the instantaneous value of the ideal AC voltage Vfr within the period of ± ΔT centered on the zero cross point Tx, the maximum evaluation period is the period of ± ΔT centered on the zero cross point Tx. Become. The evaluation period may be a period within which the above linear approximation is established, and may be, for example, a period from the zero cross point Tx to + ΔT.

以上、本発明に係る交流系統の監視システムの実施形態を説明したが、本発明に係る交流系統の監視システムは、上記の実施形態に限らず、本発明の要旨を逸脱しない範囲において適宜変更可能である。例えば、監視部21は、図1に例示したような発電設備2における送電線4との接続部に限らず、他の位置で計測した交流電圧の瞬時値vに基づいて振動成分を抽出し、異常判定用信号SJを生成してもよい。また、例えば、交流系統1に連系する並列型機器は、図1に例示した太陽光発電システムに限らず、風力発電等の再生可能エネルギーを利用した発電システム、或いはSVC(Static Var Compensator)、STATCOM(STATic synchronous COMpensator)等の調相設備、電力貯蔵用パワーコンディショナを含む蓄電システム、同期発電機等であってもよい。 Although the embodiment of the AC system monitoring system according to the present invention has been described above, the AC system monitoring system according to the present invention is not limited to the above embodiment and can be appropriately changed without departing from the gist of the present invention. Is. For example, the monitoring unit 21 extracts the vibration component based on the instantaneous value v of the AC voltage measured at another position, not limited to the connection unit with the transmission line 4 in the power generation facility 2 as illustrated in FIG. The abnormality determination signal SJ may be generated. Further, for example, the parallel type equipment connected to the AC system 1 is not limited to the photovoltaic power generation system illustrated in FIG. 1, but is a power generation system using renewable energy such as wind power generation, or an SVC (Static Var Compensator). It may be a phase adjustment equipment such as STATCOM (STATic synchronous COMpensator), a power storage system including a power conditioner for power storage, a synchronous generator, or the like.

また、監視部21、及び保護部25の実装形態、並びに保護対象(異常と判定した場合に解列又は停止する機器)は図1に例示したものに限定されない。例えば、監視部21、及び保護部25を並列型機器内部(例えば分散電源11A、或いはインバータ装置13のコントローラ)に実装し、保護対象を実装した並列型機器に限定してもよい。 Further, the mounting form of the monitoring unit 21 and the protection unit 25, and the protection target (device that is disconnected or stopped when it is determined to be abnormal) are not limited to those illustrated in FIG. For example, the monitoring unit 21 and the protection unit 25 may be mounted inside the parallel type device (for example, the distributed power source 11A or the controller of the inverter device 13) and limited to the parallel type device in which the protection target is mounted.

1 交流系統
2 発電設備
3 発電機
4 送電線
5,15 リアクトル
6 抵抗
7 負荷
8 力率改善コンデンサ
11A,11B 分散電源
12 ソーラーパネル
13 インバータ装置
14 高調波フィルタ
16 コンデンサ
17,19 変圧器
18 スイッチ
21 監視部
22 判定用信号生成部
23 異常有無判定部
24 電圧計測器
25 保護部
26 制御バス
27 評価タイミング制御部
28 ゼロクロス検出部
29 判定指示部
31 ローパスフィルタ
32,32A,32B,32C 減算器
33,33A,33B,33C 二乗算出部
34,34A,34B,34C 移動平均算出部
35,35A,35B,35C 平方根算出部
36,37,37A,37B,37C バンドパスフィルタ
38、38A,38B,38C 過去値出力部
41,46,49 判定部
42,42A,42B,42C 判定部
43,43A,43B,43C 積分回路
44,44A,44B,44C 判定部
45 減算器
47 継続時間算出部
48 判定時限決定部
50 判定情報
51 最終判定部
1 AC system 2 Power generation equipment 3 Generator 4 Transmission line 5, 15 Reactor 6 Resistance 7 Load 8 Power factor improvement capacitor 11A, 11B Distributed power supply 12 Solar panel 13 Inverter device 14 Harmonic filter 16 Condenser 17, 19 Transformer 18 Switch 21 Monitoring unit 22 Judgment signal generation unit 23 Abnormality presence / absence judgment unit 24 Voltage measuring instrument 25 Protection unit 26 Control bus 27 Evaluation timing control unit 28 Zero cross detection unit 29 Judgment instruction unit 31 Low-pass filter 32, 32A, 32B, 32C subtractor 33, 33A, 33B, 33C Square calculation unit 34, 34A, 34B, 34C Mobile average calculation unit 35, 35A, 35B, 35C Square root calculation unit 36, 37, 37A, 37B, 37C Bandpass filter 38, 38A, 38B, 38C Past value Output units 41, 46, 49 Judgment units 42, 42A, 42B, 42C Judgment units 43, 43A, 43B, 43C Inverter circuits 44, 44A, 44B, 44C Judgment unit 45 Subtractor 47 Duration calculation unit 48 Judgment time determination unit 50 Judgment information 51 Final judgment unit

Claims (16)

交流系統における電圧振動を監視する監視部を含む交流系統の監視システムであって、
前記監視部は、
前記交流系統において計測した交流電圧の瞬時値に基づいて前記交流電圧の振動成分を抽出し、抽出した前記交流電圧の振動成分と対応する異常判定用信号を生成する判定用信号生成部と、
生成した前記異常判定用信号に基づいて前記交流電圧の振動の異常の有無を判定する異常有無判定部と
を備えることを特徴とする交流系統の監視システム。
An AC system monitoring system that includes a monitoring unit that monitors voltage vibrations in the AC system.
The monitoring unit
A determination signal generator that extracts the vibration component of the AC voltage based on the instantaneous value of the AC voltage measured in the AC system and generates an abnormality determination signal corresponding to the extracted vibration component of the AC voltage.
An AC system monitoring system including an abnormality presence / absence determination unit that determines the presence / absence of an abnormality in vibration of the AC voltage based on the generated abnormality determination signal.
前記判定用信号生成部は、計測した時刻が異なる2つの前記瞬時値の差分に基づいて前記交流電圧の振動成分を抽出する
ことを特徴とする請求項1に記載の交流系統の監視システム。
The AC system monitoring system according to claim 1, wherein the determination signal generation unit extracts a vibration component of the AC voltage based on a difference between two instantaneous values having different measured times.
前記監視部は、前記交流電圧の瞬時値がゼロになるゼロクロス点を検出する検出部を更に含み、
前記判定用信号生成部は、前記ゼロクロス点を検出した時刻と正弦波によりあらわされる交流電圧におけるゼロクロス点を通る直線で近似される区間とに基づいて設定される期間内に計測した前記交流電圧の瞬時値に基づいて前記交流電圧の振動成分を抽出し、該抽出した前記交流電圧の振動成分に基づいて前記異常判定用信号を生成する
ことを特徴とする請求項2に記載の交流系統の監視システム。
The monitoring unit further includes a detection unit that detects a zero crossing point at which the instantaneous value of the AC voltage becomes zero.
The determination signal generation unit measures the AC voltage within a period set based on the time when the zero cross point is detected and the section approximated by a straight line passing through the zero cross point in the AC voltage represented by the sine wave. The monitoring of the AC system according to claim 2, wherein the vibration component of the AC voltage is extracted based on the instantaneous value, and the abnormality determination signal is generated based on the extracted vibration component of the AC voltage. system.
前記判定用信号生成部は、ハイパスフィルタ及びバンドパスフィルタのいずれかにより前記交流電圧の振動成分を抽出する
ことを特徴とする請求項1に記載の交流系統の監視システム。
The AC system monitoring system according to claim 1, wherein the determination signal generation unit extracts the vibration component of the AC voltage by either a high-pass filter or a band-pass filter.
前記判定用信号生成部は、抽出した前記交流電圧の振動成分を正の値に変換する処理、及び前記異常判定用信号の生成に用いる信号を平滑化する処理を実施する処理部を含む
ことを特徴とする請求項1に記載の交流系統の監視システム。
The determination signal generation unit includes a processing unit that performs a process of converting the extracted vibration component of the AC voltage into a positive value and a process of smoothing the signal used for generating the abnormality determination signal. The AC system monitoring system according to claim 1, which is characterized.
前記判定用信号生成部の前記処理部は、前記交流電圧の瞬時値に基づいて抽出した前記振動成分の二乗を算出する第1の演算部、算出した前記振動成分の二乗の移動平均を算出する第2の演算部、及び算出した前記移動平均の平方根を算出する平方根算出部を含む
ことを特徴とする請求項5に記載の交流系統の監視システム。
The processing unit of the determination signal generation unit calculates the first calculation unit that calculates the square of the vibration component extracted based on the instantaneous value of the AC voltage, and the calculated moving average of the square of the vibration component. The monitoring system for an AC system according to claim 5, further comprising a second calculation unit and a square root calculation unit for calculating the square root of the calculated moving average.
前記判定用信号生成部は、
前記交流電圧の瞬時値を正の値に変換し、変換した前記正の値を平滑化する第1の処理部と、
前記交流電圧の瞬時値に含まれる所定の周波数成分を抽出し、該周波数成分を正の値に変換し、変換した前記正の値を平滑化する第2の処理部と、
前記第1の処理部の出力から前記第2の処理部の出力を減算して前記異常判定用信号を生成する減算部と
を含むことを特徴とする請求項1に記載の交流系統の監視システム。
The determination signal generation unit
A first processing unit that converts the instantaneous value of the AC voltage into a positive value and smoothes the converted positive value.
A second processing unit that extracts a predetermined frequency component included in the instantaneous value of the AC voltage, converts the frequency component into a positive value, and smoothes the converted positive value.
The AC system monitoring system according to claim 1, further comprising a subtraction unit that subtracts the output of the second processing unit from the output of the first processing unit to generate the abnormality determination signal. ..
前記第1の処理部は、前記交流電圧の瞬時値の二乗を算出し、該瞬時値の二乗の移動平均を算出し、該移動平均の平方根を算出するように構成され、
前記第2の処理部は、前記交流電圧の瞬時値から抽出した前記周波数成分の二乗を算出し、該周波数成分の二乗の移動平均を算出し、該移動平均の平方根を算出するように構成される
ことを特徴とする請求項7に記載の交流系統の監視システム。
The first processing unit is configured to calculate the square of the instantaneous value of the AC voltage, calculate the moving average of the square of the instantaneous value, and calculate the square root of the moving average.
The second processing unit is configured to calculate the square of the frequency component extracted from the instantaneous value of the AC voltage, calculate the moving average of the square of the frequency component, and calculate the square root of the moving average. The AC system monitoring system according to claim 7, wherein the system is characterized by the above.
前記判定用信号生成部は、0以上であり、かつ前記交流電圧の振動成分が大きいほど大きな値となる前記異常判定用信号を生成し、
前記異常有無判定部は、前記異常判定用信号が閾値以上である場合に、前記交流電圧の振動に異常があると判定する
ことを特徴とする請求項1に記載の交流系統の監視システム。
The determination signal generation unit generates the abnormality determination signal, which is 0 or more and has a larger value as the vibration component of the AC voltage is larger.
The monitoring system for an AC system according to claim 1, wherein the abnormality determination unit determines that there is an abnormality in the vibration of the AC voltage when the abnormality determination signal is equal to or higher than a threshold value.
前記判定用信号生成部は、0以上であり、かつ前記交流電圧の振動成分が大きいほど大きな値となる前記異常判定用信号を生成し、
前記異常有無判定部は、前記異常判定用信号が第1の閾値以上である期間を算出し、算出した前記期間が第2の閾値以上となった場合に、前記交流電圧の振動に異常があると判定する
ことを特徴とする請求項1に記載の交流系統の監視システム。
The determination signal generation unit generates the abnormality determination signal, which is 0 or more and has a larger value as the vibration component of the AC voltage is larger.
The abnormality determination unit calculates a period during which the abnormality determination signal is equal to or greater than the first threshold value, and when the calculated period becomes equal to or greater than the second threshold value, there is an abnormality in the vibration of the AC voltage. The AC system monitoring system according to claim 1, further comprising determining that.
前記判定用信号生成部は、0以上であり、かつ前記交流電圧の振動成分が大きいほど大きな値となる前記異常判定用信号を生成し、
前記異常有無判定部は、前記異常判定用信号から第1の閾値を減算した値の時間積分を算出し、算出した前記時間積分の値が第2の閾値以上となった場合に、前記交流電圧の振動に異常があると判定する
ことを特徴とする請求項1に記載の交流系統の監視システム。
The determination signal generation unit generates the abnormality determination signal, which is 0 or more and has a larger value as the vibration component of the AC voltage is larger.
The abnormality presence / absence determination unit calculates the time integration of the value obtained by subtracting the first threshold value from the abnormality determination signal, and when the calculated value of the time integration becomes equal to or greater than the second threshold value, the AC voltage. The AC system monitoring system according to claim 1, wherein it is determined that there is an abnormality in the vibration of the AC system.
前記判定用信号生成部は、0以上であり、かつ前記交流電圧の振動成分が大きいほど大きな値となる前記異常判定用信号を生成し、
前記異常有無判定部は、予め定めた前記異常判定用信号の大きさと前記交流電圧の振動の異常の有無の判定時限との関係と、前記判定用信号生成部で生成した前記異常判定用信号の大きさ及び該大きさの前記異常判定用信号の継続時間とに基づいて、前記交流電圧の振動の異常の有無を判定する
ことを特徴とする請求項1に記載の交流系統の監視システム。
The determination signal generation unit generates the abnormality determination signal, which is 0 or more and has a larger value as the vibration component of the AC voltage is larger.
The abnormality determination unit determines the relationship between the predetermined magnitude of the abnormality determination signal and the determination time limit for the presence or absence of an abnormality in the vibration of the AC voltage, and the abnormality determination signal generated by the determination signal generation unit. The monitoring system for an AC system according to claim 1, wherein the presence or absence of an abnormality in vibration of the AC voltage is determined based on the magnitude and the duration of the abnormality determination signal of the magnitude.
前記交流系統の制御システムは、前記異常有無判定部の判定結果に基づいて、前記交流系統に接続される並列型機器を保護する保護部を更に備え、
前記保護部は、前記並列型機器の解列を行う
ことを特徴とする請求項1に記載の交流系統の監視システム。
The AC system control system further includes a protection unit that protects parallel devices connected to the AC system based on the determination result of the abnormality presence / absence determination unit.
The AC system monitoring system according to claim 1, wherein the protection unit arranges the parallel devices.
前記保護部は、前記並列型機器の解列を行った後で前記異常有無判定部から振動の異常が継続していることを示す情報を受信した場合に、別の並列型機器を解列する
ことを特徴とする請求項13に記載の交流系統の監視システム。
When the protection unit receives information indicating that the vibration abnormality continues from the abnormality presence / absence determination unit after disconnecting the parallel type device, the protection unit disconnects another parallel type device. 13. The AC system monitoring system according to claim 13.
前記判定用信号生成部は、同一の交流電圧の瞬時値に基づいて抽出方法又は抽出条件が異なる複数の振動成分を抽出し、抽出した該複数の振動成分のそれぞれに基づいて複数の異常判定用信号を生成し、
前記異常有無判定部は、前記複数の異常判定用信号のそれぞれに基づいて振動の異常の有無を判定し、該複数の判定の判定結果に基づいて振動の異常の有無を判定する
ことを特徴とする請求項1に記載の交流系統監視システム。
The determination signal generation unit extracts a plurality of vibration components having different extraction methods or extraction conditions based on the instantaneous value of the same AC voltage, and uses each of the extracted plurality of vibration components for a plurality of abnormality determinations. Generate a signal,
The abnormality presence / absence determination unit is characterized in that it determines the presence / absence of vibration abnormality based on each of the plurality of abnormality determination signals, and determines the presence / absence of vibration abnormality based on the determination results of the plurality of determinations. The AC system monitoring system according to claim 1.
前記判定用信号生成部は、位相が異なる複数の交流電圧の瞬時値のそれぞれに基づいて複数の振動成分を抽出し、抽出した該複数の振動成分のそれぞれに基づいて複数の異常判定用信号を生成し、
前記異常有無判定部は、前記複数の異常判定用信号のそれぞれに基づいて振動の異常の有無を判定し、該複数の判定の判定結果に基づいて振動の異常の有無を判定する
ことを特徴とする請求項1に記載の交流系統監視システム。
The determination signal generation unit extracts a plurality of vibration components based on each of the instantaneous values of a plurality of AC voltages having different phases, and outputs a plurality of abnormality determination signals based on each of the extracted plurality of vibration components. Generate and
The abnormality presence / absence determination unit is characterized in that it determines the presence / absence of vibration abnormality based on each of the plurality of abnormality determination signals, and determines the presence / absence of vibration abnormality based on the determination results of the plurality of determinations. The AC system monitoring system according to claim 1.
JP2019155437A 2019-08-28 2019-08-28 AC system monitoring system Active JP7318419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019155437A JP7318419B2 (en) 2019-08-28 2019-08-28 AC system monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019155437A JP7318419B2 (en) 2019-08-28 2019-08-28 AC system monitoring system

Publications (2)

Publication Number Publication Date
JP2021035251A true JP2021035251A (en) 2021-03-01
JP7318419B2 JP7318419B2 (en) 2023-08-01

Family

ID=74676238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019155437A Active JP7318419B2 (en) 2019-08-28 2019-08-28 AC system monitoring system

Country Status (1)

Country Link
JP (1) JP7318419B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230082342A (en) * 2021-12-01 2023-06-08 한국전력공사 Method and system for setting volt-var curve of output-control-device included in distributed power supply capable of adaptive adjustment

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50128558A (en) * 1974-03-06 1975-10-09
JPS51130848A (en) * 1975-05-08 1976-11-13 Mitsubishi Electric Corp System protector
JPS5956815A (en) * 1982-09-25 1984-04-02 三菱電機株式会社 Overvoltage protecting relaying device
JPH05207640A (en) * 1992-01-22 1993-08-13 Nissin Electric Co Ltd Digital relay for protection of higher harmonic filter facility
JPH06284578A (en) * 1993-03-25 1994-10-07 Toshiba Corp Stabilizing apparatus for power system
JPH08265977A (en) * 1995-03-24 1996-10-11 Toshiba Corp Power system stabilizer
JP2000092713A (en) * 1998-09-14 2000-03-31 Toshiba Corp Controller for stationary reactive power compensator
JP2003092829A (en) * 2001-09-18 2003-03-28 Hitachi Ltd Electric apparatus system
JP2004153957A (en) * 2002-10-31 2004-05-27 Hitachi Ltd Power conversion apparatus
JP2006050732A (en) * 2004-08-03 2006-02-16 Chubu Electric Power Co Inc Monitoring apparatus and method
JP2006067722A (en) * 2004-08-27 2006-03-09 Toshiba Mitsubishi-Electric Industrial System Corp Reactive power compensator
JP2007288842A (en) * 2006-04-12 2007-11-01 Nokodai Tlo Kk Power converter, interconnection management equipment, system interconnection distributed power generation system, and stopping method of system interconnection operation by plurality of power converters
JP2012139067A (en) * 2010-12-27 2012-07-19 Mitsubishi Electric Corp Power fluctuation detection device and power fluctuation detection method
WO2017145316A1 (en) * 2016-02-25 2017-08-31 株式会社 東芝 Grid linkage facility
JP2019505799A (en) * 2016-01-26 2019-02-28 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH Vibration in the power network

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50128558A (en) * 1974-03-06 1975-10-09
JPS51130848A (en) * 1975-05-08 1976-11-13 Mitsubishi Electric Corp System protector
JPS5956815A (en) * 1982-09-25 1984-04-02 三菱電機株式会社 Overvoltage protecting relaying device
JPH05207640A (en) * 1992-01-22 1993-08-13 Nissin Electric Co Ltd Digital relay for protection of higher harmonic filter facility
JPH06284578A (en) * 1993-03-25 1994-10-07 Toshiba Corp Stabilizing apparatus for power system
JPH08265977A (en) * 1995-03-24 1996-10-11 Toshiba Corp Power system stabilizer
JP2000092713A (en) * 1998-09-14 2000-03-31 Toshiba Corp Controller for stationary reactive power compensator
JP2003092829A (en) * 2001-09-18 2003-03-28 Hitachi Ltd Electric apparatus system
JP2004153957A (en) * 2002-10-31 2004-05-27 Hitachi Ltd Power conversion apparatus
JP2006050732A (en) * 2004-08-03 2006-02-16 Chubu Electric Power Co Inc Monitoring apparatus and method
JP2006067722A (en) * 2004-08-27 2006-03-09 Toshiba Mitsubishi-Electric Industrial System Corp Reactive power compensator
JP2007288842A (en) * 2006-04-12 2007-11-01 Nokodai Tlo Kk Power converter, interconnection management equipment, system interconnection distributed power generation system, and stopping method of system interconnection operation by plurality of power converters
JP2012139067A (en) * 2010-12-27 2012-07-19 Mitsubishi Electric Corp Power fluctuation detection device and power fluctuation detection method
JP2019505799A (en) * 2016-01-26 2019-02-28 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH Vibration in the power network
WO2017145316A1 (en) * 2016-02-25 2017-08-31 株式会社 東芝 Grid linkage facility

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230082342A (en) * 2021-12-01 2023-06-08 한국전력공사 Method and system for setting volt-var curve of output-control-device included in distributed power supply capable of adaptive adjustment
KR102596530B1 (en) * 2021-12-01 2023-10-31 한국전력공사 Method and system for setting volt-var curve of output-control-device included in distributed power supply capable of adaptive adjustment

Also Published As

Publication number Publication date
JP7318419B2 (en) 2023-08-01

Similar Documents

Publication Publication Date Title
US9488686B2 (en) Filter capacitor degradation identification using computed current
JP5612738B2 (en) Capacity estimation device for inverter DC link capacitor
EP2953246B1 (en) Filter capacitor degradation identification using measured and expected voltage
AU2010212454B2 (en) System and method for monitoring power filters and detecting power filter failure in a wind turbine electrical generator
CA2702210C (en) Transformer through-fault current monitor
EP2733805B1 (en) Systems and methods of discriminating DC arcs and load switching noise
JP5989136B2 (en) Method and apparatus for protecting a power transformer from large electromagnetic fluctuations
KR101118375B1 (en) Apparatus for swift determination of fault in electric power system
RU2649324C2 (en) Differential protection method for current converter and relay protection device
JP7318419B2 (en) AC system monitoring system
CA3014464A1 (en) Systems and methods for detecting and evaluating oscillations in an electrical power grid
EP2779340A2 (en) Home run arc detection at the photovoltaic string level using multiple current sensors
AU2016228081B2 (en) Method and apparatus to solve PFC capacitor reduction of line AFLC ripple without passive filters
JP6515733B2 (en) Digital protection relay
JP6567230B1 (en) Arc ground fault detection method
EP3232207A1 (en) Method and system for measuring imbalances in an electrical grid
JP5221238B2 (en) Reactive power compensator ground fault detector
Ajeigbe et al. Characterisation of harmonic distortions produced by small domestic back-up generators
JP5926419B1 (en) Phase loss detector
CN112600526A (en) Compensation device for leakage current
JP6515588B2 (en) Resonance suppression device and resonance suppression method
JP2021004855A (en) Ground fault detection method and device
JP2016046972A (en) Protective relay device
AU2021436898B2 (en) Power conversion device and control device
AU2021436071B2 (en) Power conversion device and control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230703

R150 Certificate of patent or registration of utility model

Ref document number: 7318419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150