JP2021033496A - Delivery schedule assembly device - Google Patents
Delivery schedule assembly device Download PDFInfo
- Publication number
- JP2021033496A JP2021033496A JP2019150950A JP2019150950A JP2021033496A JP 2021033496 A JP2021033496 A JP 2021033496A JP 2019150950 A JP2019150950 A JP 2019150950A JP 2019150950 A JP2019150950 A JP 2019150950A JP 2021033496 A JP2021033496 A JP 2021033496A
- Authority
- JP
- Japan
- Prior art keywords
- delivery
- home
- recipient
- time
- probability level
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012384 transportation and delivery Methods 0.000 title claims abstract description 310
- 238000004590 computer program Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 description 38
- 238000007726 management method Methods 0.000 description 21
- 238000010586 diagram Methods 0.000 description 16
- 230000006399 behavior Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 125000002066 L-histidyl group Chemical group [H]N1C([H])=NC(C([H])([H])[C@](C(=O)[*])([H])N([H])[H])=C1[H] 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
本発明は,宅配業者が配達する宅配物の宛先となる受取人の在宅を予想する技術に関する。 The present invention relates to a technique for predicting the home of a recipient who is a destination of a delivery delivered by a delivery company.
近年,インターネット上の仮想店舗の利用率が上がり,宅配サービスを行っている宅配業者が扱う宅配物の数が増え,宅配物の再配達が,宅配業者において業務効率上の大きな課題になっている。 In recent years, the usage rate of virtual stores on the Internet has increased, the number of parcels handled by parcel delivery companies providing home delivery services has increased, and redelivery of parcel deliveries has become a major issue for business efficiency of parcel delivery companies.
大手の宅配業者では,宅配物の配達希望日時を指定できるようになっているが,仮想店舗が提携している宅配業者の中には,配達希望日時を指定できない宅配業者もある。配達希望日時が指定されていない宅配物は,受取人の都合を考慮せずに配達され,宅配物の配達時に受取人が不在であることが多くなる。 Although major courier companies can specify the desired delivery date and time for deliveries, some courier companies with which virtual stores are affiliated cannot specify the desired delivery date and time. Delivery items for which the desired delivery date and time are not specified are delivered without considering the convenience of the recipient, and the recipient is often absent at the time of delivery of the delivery item.
受取人による宅配物の受取可能な日時を予測する技術として,特許文献1において,宅配物の受取可能な日時を予測するのに必要な受取情報をグループ化する編集演算を実行する手段と,編集演算後の受取情報に基づいて受取人の受取りの実績に対して所定の比重を用いて重み付け演算して加重受取情報を生成し,加重受取情報に基づいて受取予測情報を生成する手段を備える装置が開示されている。 As a technique for predicting the date and time when the delivery can be received by the recipient, in Patent Document 1, a means for executing an editing operation for grouping the receipt information necessary for predicting the date and time when the delivery can be received, and editing. A device provided with a means for generating weighted receipt information by weighting the recipient's receipt performance based on the calculated receipt information using a predetermined weight and generating receipt prediction information based on the weighted receipt information. Is disclosed.
受取人が宅配物の受取可能な日時を予測するには,宅配物の受取人が在宅している日時を予測することが必要になる。特許文献1では,宅配物の受取人が在宅している日時を予測するために,受取人により宅配物の受取りが為された場合の履歴に関する受取履歴情報や,受取人により宅配物の受取りが為されなかった場合の履歴に関する非受取履歴情報などを受取情報に利用し,更には,受取人における宅配物の受取りの傾向に関する受取傾向情報も受取情報に利用できる。 In order to predict the date and time when the recipient can receive the parcel, it is necessary to predict the date and time when the recipient of the parcel is at home. In Patent Document 1, in order to predict the date and time when the recipient of the delivery is at home, the receipt history information regarding the history when the delivery is received by the recipient and the receipt of the delivery by the recipient are performed. Non-receipt history information related to the history when the delivery is not made can be used as the receipt information, and further, receipt tendency information regarding the tendency of the recipient to receive the parcel delivery can be used as the receipt information.
日常の生活パターンにはある程度の規則性があり,受取人が在宅する曜日・時間帯は受取人の生活パターンにある程度依存するが,従来技術では,受取人の生活パターンを受取人の在宅予測に用いていない。 There is a certain degree of regularity in daily life patterns, and the days and times when the recipient stays at home depend to some extent on the recipient's life pattern, but in the prior art, the recipient's life pattern is used to predict the recipient's home. Not used.
そこで,本発明は,受取人の生活パターンを用いて受取人の在宅予測を行い,受取人の在宅予測を宅配物の配達予定組に反映させる装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a device that predicts the recipient's home home using the recipient's life pattern and reflects the recipient's home forecast in the delivery schedule group of the delivery.
上述した課題を解決する第1発明は,曜日・時間帯ごとの在宅確率レベルを記憶した在宅予測テーブルを受取人ごとに生成する在宅予測手段と,受取人の在宅予測を宅配物の配達予定組に反映させる配達予定組手段を備え,前記在宅予測手段は,受取人の前記在宅予測テーブルにおいて,ペイメントカードを利用して受取人が決済した決済日時の該当件数が第1基準件数以上になる曜日・時間帯の在宅確率レベルを「低」に設定し,前記配達予定組手段は,時間指定されていない宅配物の配達を組む際,受取人の前記在宅予測テーブルを参照し,この宅配物の配達日において,在宅確率レベルが「低」に設定されていない時間帯を優先的に用いてこの宅配物の配達時間を決定することを特徴とする配達予定組装置である。第1発明は,実店舗における受取人の購買行動を受取人が不在になる日々の行動の一つとし,受取人が所持するペイメントカードに係る決済日時の該当件数が多い曜日・時間帯の在宅確率レベルを「低」にするように受取人の在宅予測を行い,受取人の在宅予測を宅配物の配達予定組に反映させる発明である。 The first invention that solves the above-mentioned problems is a home prediction means that generates a home prediction table that stores the home probability level for each day and time zone for each recipient, and a delivery schedule group that uses the recipient's home prediction as a delivery schedule. The home prediction means is provided with a delivery schedule grouping means to be reflected in the above, and the home prediction means is a day when the corresponding number of payment dates and times settled by the recipient using the payment card in the recipient's home prediction table is equal to or more than the first reference number. -The home delivery probability level of the time zone is set to "low", and the delivery schedule group means refers to the home delivery prediction table of the recipient when making a delivery of a home delivery whose time is not specified, and this home delivery. It is a delivery schedule assembly device characterized in that the delivery time of this home delivery is determined by preferentially using a time zone in which the home probability level is not set to "low" on the delivery date. In the first invention, the purchase behavior of the recipient in the actual store is regarded as one of the daily behaviors in which the recipient is absent, and the payment date and time related to the payment card possessed by the recipient is at home on days and hours when the number of applicable cases is large. It is an invention in which the recipient's home prediction is performed so that the probability level is "low", and the recipient's home prediction is reflected in the delivery schedule group of the delivery.
更に,第2発明は,第1発明に記載した配達予定組装置において,前記在宅予測手段は,受取人の前記在宅予測テーブルにおいて,受取人の職業で定まる就業日・就業時間に該当する曜日・時間帯の在宅確率レベルを「低」に設定することを特徴とする。第2発明は,受取人の労働を受取人が不在になる日々の行動の一つとし,受取人の職業で定まる就業日・就業時間に対応する曜日・時間帯の在宅確率レベルを「低」にする発明である。 Further, the second invention is the delivery schedule assembly device described in the first invention, in which the home prediction means is the work day / working hours determined by the recipient's occupation in the home prediction table of the recipient. It is characterized by setting the home probability level of the time zone to "low". In the second invention, the work of the beneficiary is regarded as one of the daily activities in which the beneficiary is absent, and the home probability level of the day of the week / time zone corresponding to the working day / working time determined by the beneficiary's occupation is set to "low". It is an invention to make.
更に,第3発明は,第2発明に記載した配達予定組装置において,前記在宅予測手段は,受取人の前記在宅予測テーブルにおいて,受取人に不在連絡票を発行した不在日時の該当件数が第2基準件数以上になる曜日・時間帯の在宅確率レベルを「低」に設定することを特徴とする。第3発明は,受取人に不在連絡票を発行した不在日時の該当件数が多い曜日・時間帯の在宅確率レベルを「低」にする発明である。 Further, in the third invention, in the delivery schedule assembly device described in the second invention, the number of cases corresponding to the absence date and time when the absence notification form was issued to the recipient in the home prediction table of the recipient is the third. 2 It is characterized by setting the home probability level of the day / time zone when the number of cases exceeds the standard number to "low". The third invention is an invention in which the probability of staying at home is set to "low" on days and hours when the number of cases of absence date and time when the absence notification form is issued to the recipient is large.
更に,第4発明は,第1発明から第3発明のいずれか一つに記載した配達予定組装置において,前記在宅予測手段は,受取人の前記在宅予測テーブルにおいて,在宅確率レベルを「低」に設定していない曜日・時間帯の中から,決済日時の該当件数が第3基準件数以下になる曜日・時間帯の在宅確率レベルを「高」に設定し,前記配達予定組手段は,時間指定されていない宅配物の配達を組む際,受取人の前記在宅予測テーブルを参照し,この宅配物の配達日において,在宅確率レベルが「高」に設定されている時間帯を優先的に用いてこの宅配物の配達時間を決定することを特徴とする。第4発明は,ペイメントカードに係る決済日時の該当件数が少ない曜日・時間帯の在宅確率レベルを「高」にするように受取人の在宅予測を行い,受取人の在宅予測を宅配物の配達予定組に反映させる発明である。 Further, the fourth invention is the delivery schedule assembly device described in any one of the first to third inventions, wherein the home prediction means sets the home probability level to "low" in the home prediction table of the recipient. From the days / hours that are not set to, set the home probability level of the days / hours when the number of applicable cases of the settlement date and time is equal to or less than the third standard number to "High", and the delivery schedule grouping means is the time. When making a delivery of an unspecified delivery item, the recipient's home prediction table is referred to, and the time zone in which the home probability level is set to "high" is preferentially used on the delivery date of this delivery item. It is characterized by determining the delivery time of the delivery of the lever. In the fourth invention, the recipient's home prediction is performed so that the home probability level of the day / time zone when the number of payment dates and times corresponding to the payment card is small is set to "high", and the recipient's home prediction is the delivery of the delivery. It is an invention to be reflected in the schedule group.
更に,第5発明は,第4発明に記載した配達予定組装置において,前記在宅予測手段は,在宅確率レベルを「低」に設定していない曜日・時間帯の中から,受取人に宅配物を配達した配達日時の該当件数が第4基準件数以上になる曜日・時間帯の在宅確率レベルを「高」に設定することを特徴とする。第5発明は,受取人に宅配物を配達した配達日時の該当件数が多い曜日・時間帯の在宅確率レベルを「高」にする発明である。 Further, according to the fifth invention, in the delivery schedule assembly device described in the fourth invention, the home-based prediction means delivers to the recipient from the days of the week and the time zone in which the home-based probability level is not set to "low". It is characterized in that the home probability level of the day of the week / time zone in which the corresponding number of deliveries on the delivery date and time is equal to or more than the fourth standard number is set to "high". The fifth invention is an invention in which the probability of staying at home is set to "high" on days and times when the number of cases of delivery date and time when the delivery is delivered to the recipient is large.
更に,第6発明は,少なくとも,ペイメントカードを利用して受取人が決済した決済日時の該当件数が第1基準件数以上になる曜日・時間帯の在宅確率レベルを「低」に設定することで,曜日・時間帯ごとの在宅確率レベルを記憶した在宅予測テーブルを受取人ごとに生成する在宅予測手段と,時間指定されていない宅配物の配達を組む際,受取人の前記在宅予測テーブルを参照し,この宅配物の配達日において,在宅確率レベルが「低」に設定されていない時間帯を優先的に用いてこの宅配物の配達時間を決定することで,受取人の在宅予測を宅配物の配達予定組に反映させる配達予定組手段として,コンピュータを機能させるコンピュータプログラムである。第6発明は,コンピュータプログラムに係る発明である。 Further, in the sixth invention, at least, the home probability level of the day of the week / time zone in which the corresponding number of payment dates and times settled by the recipient using the payment card is equal to or higher than the first standard number is set to "low". , Refer to the recipient's home prediction table when assembling a home prediction means that generates a home prediction table that stores the home probability level for each day of the week and time zone for each recipient and delivery of home deliveries that do not specify a time. However, on the delivery date of this delivery, the delivery time of this delivery is determined by preferentially using the time zone in which the home probability level is not set to "low", so that the recipient's home prediction can be predicted. It is a computer program that makes a computer function as a delivery schedule group means to be reflected in the delivery schedule group. The sixth invention is an invention relating to a computer program.
上述した配達予定組装置は,本発明の課題を解決できるように,受取人の購買行動など,受取人が不在になる日々の生活パターンから受取人の在宅予測を行い,受取人の在宅予測を宅配物の配達予定組に反映させる。 The above-mentioned delivery schedule group device predicts the recipient's home from the daily life pattern in which the recipient is absent, such as the purchasing behavior of the recipient, so as to solve the problem of the present invention. Reflect in the delivery schedule group of home deliveries.
ここから,本発明に係る実施形態について記載する。本実施形態は,本発明の理解を容易にするためのものであり,本発明は,本実施形態に限定されるものではない。また,特に断りのない限り,図面は,本発明の理解を容易にするために描かれた模式的な図である。 From here, an embodiment according to the present invention will be described. The present embodiment is for facilitating the understanding of the present invention, and the present invention is not limited to the present embodiment. Unless otherwise specified, the drawings are schematic drawings drawn to facilitate understanding of the present invention.
図1は,本実施形態に係る配達予定組装置2を含むシステム構成1を説明する図である。配達予定組装置2は,実店舗30における受取人5の購買行動を受取人5が不在(自宅51に居ない)になる日々の行動の一つとし,受取人5が所持するペイメントカード50の決済履歴を少なくとも用いて受取人5の在宅(自宅51に居る)予測を行い,受取人5の在宅予測を宅配物41の配達予定組に反映させる装置である。このことを実現するために,図1で図示したシステム構成1には,ネットワーク6を介して配達予定組装置2と接続している装置として,ペイメントカード50を用いた決済に係る情報を管理している決済履歴管理装置3と,宅配業者が取り扱う宅配物41の配達に係る情報を管理している宅配管理装置4を含ませている。 FIG. 1 is a diagram illustrating a system configuration 1 including a delivery schedule assembly device 2 according to the present embodiment. The delivery schedule group device 2 regards the purchasing behavior of the payee 5 at the actual store 30 as one of the daily actions when the payee 5 is absent (not at home 51), and the payment card 50 possessed by the payee 5 It is a device that predicts the home of the recipient 5 (at home 51) using at least the payment history, and reflects the home prediction of the recipient 5 in the delivery schedule group of the delivery 41. In order to realize this, in the system configuration 1 illustrated in FIG. 1, information related to payment using the payment card 50 is managed as a device connected to the delivery schedule group device 2 via the network 6. The payment history management device 3 is included, and the delivery management device 4 that manages information related to the delivery of the delivery 41 handled by the delivery company is included.
宅配管理装置4は,宅配業者の配送センタ40と接続し,発送人の氏名住所や受取人5の氏名住所などを含む配達依頼情報,受取人5の氏名住所や宅配物41を配達した配達日時を含む配達履歴情報,および,受取人5の氏名住所や不在連絡票を発行した不在日時を含む不在履歴情報を,トラック42により配達する宅配物41に係る情報として記憶する。このような宅配管理装置4としては,宅配業者のデータセンターを利用できる。 The delivery management device 4 is connected to the delivery center 40 of the delivery company, and delivers delivery request information including the name and address of the sender and the name and address of the recipient 5, the name and address of the recipient 5, and the delivery date and time when the delivery 41 is delivered. The delivery history information including the above and the absentee history information including the name and address of the recipient 5 and the absentee date and time when the absentee contact form was issued are stored as the information related to the delivery item 41 delivered by the truck 42. As such a delivery management device 4, a data center of a delivery company can be used.
決済履歴管理装置3は,実店舗30に設置された決済端末と接続し,ペイメントカード50のカード番号に関連付けて,ペイメントカード50を所有している所有者の住所氏名などを含む所有者情報と,ペイメントカード50を利用して決済した日時である決済日時などを含む決済履歴情報を記憶する。 The payment history management device 3 connects to a payment terminal installed in the actual store 30, associates with the card number of the payment card 50, and includes owner information including the address and name of the owner who owns the payment card 50. , Stores payment history information including the payment date and time, which is the date and time of payment using the payment card 50.
例えば,ペイメントカード50の一つであるクレジットカードの決済履歴情報を管理しているクレジットカード会社のサーバを決済履歴管理装置3として利用できる。しかし,宅配物41の再配達件数を減らすために,ペイメントカード50の決済履歴情報を用いて受取人5の在宅予測を行う本発明では,宅配業者が発行しているペイメントカード50(例えば,電子マネーカード)の決済履歴情報や宅配業者が提携しているポイントカードの決済履歴情報を管理している装置を決済履歴管理装置3に利用することが望ましい。 For example, a server of a credit card company that manages payment history information of a credit card, which is one of the payment cards 50, can be used as the payment history management device 3. However, in the present invention in which the home delivery of the recipient 5 is predicted using the payment history information of the payment card 50 in order to reduce the number of redelivery of the delivery 41, the payment card 50 issued by the delivery company (for example, electronic). It is desirable to use a device that manages the payment history information of the money card) and the payment history information of the point card affiliated with the delivery company for the payment history management device 3.
宅配業者のデータセンターを宅配管理装置4に利用し,更に,宅配業者に係るペイメントカード50の決済履歴情報を管理している装置を決済履歴管理装置3に利用することで,宅配業者以外の業者(例えば,クレジットカード会社)と連携することなく配達予定組装置2を実現でき,宅配物41の再配達件数を減らす効果ばかりか,宅配業者に係るペイメントカード50の利用率向上も期待できる。 By using the data center of the courier company for the courier management device 4, and further using the device that manages the payment history information of the payment card 50 related to the courier company for the payment history management device 3, a company other than the courier company The delivery schedule assembly device 2 can be realized without cooperating with (for example, a credit card company), and not only the effect of reducing the number of redelivery cases of the delivery item 41 but also the utilization rate of the payment card 50 related to the delivery company can be expected to be improved.
ペイメントカード50の決済履歴情報を用いて受取人5の在宅予測を行い,受取人5の在宅予測を宅配物41の配達予定組に反映させる配達予定組装置2について説明する。図2は,配達予定組装置2のブロック図である。 A delivery schedule group device 2 will be described in which a home forecast of the recipient 5 is performed using the payment history information of the payment card 50, and the home forecast of the recipient 5 is reflected in the delivery schedule group of the delivery 41. FIG. 2 is a block diagram of the scheduled delivery assembly device 2.
配達予定組装置2は,テーブル生成装置10は,プロセッサ,RAM,ストレージなどを実装したコンピュータを利用して実現される装置である。 The delivery schedule group device 2 is a device realized by using a computer in which the table generation device 10 is equipped with a processor, RAM, storage, and the like.
図2で図示したように,配達予定組装置2は,ストレージに構築するDB(DataBase)として,宅配管理装置4から取得した配達履歴情報に含まれる配達日時を記憶する配達日時DB26,宅配管理装置4から取得した不在履歴情報に含まれる不在日時を記憶する不在日時DB27,および,決済履歴管理装置3から取得した決済履歴情報に含まれる決済日時を記憶する決済日時DB28を備える。更に,配達予定組装置2は,ストレージに構築するDBとして,曜日とその時間帯ごとに,受取人5の在宅確率レベルを示す在宅予測テーブル230を記憶する在宅予測DB23と,受取人5の個人情報を記憶する受取人DB24と,職業(会社員やパートなど)を識別するための職業IDごとに,職業に対応した就業日・就業時間を記憶した職業DB25を備える。 As illustrated in FIG. 2, the delivery schedule group device 2 has a delivery date / time DB 26 for storing the delivery date / time included in the delivery history information acquired from the home delivery management device 4 as a DB (DataBase) to be built in the storage, and a home delivery management device. The absence date / time DB 27 that stores the absence date / time included in the absence history information acquired from 4 and the settlement date / time DB 28 that stores the settlement date / time included in the payment history information acquired from the payment history management device 3 are provided. Further, the delivery schedule group device 2 has a home prediction DB 23 that stores a home prediction table 230 showing the home probability level of the recipient 5 for each day and the time zone as DBs to be built in the storage, and an individual of the recipient 5. A recipient DB 24 for storing information and a profession DB 25 for memorizing working days and working hours corresponding to the profession are provided for each profession ID for identifying a profession (company employee, part-time worker, etc.).
図2で図示したように,配達予定組装置2は,プロセッサがRAMに展開して実行するコンピュータプログラムにより実現される機能として,少なくともペイメントカード50の決済履歴情報を利用して受取人5ごとの在宅予測テーブル230を生成する在宅予測手段20と,受取人5の在宅予測を配達予定組に反映させる配達予定組手段21と,配達日時DB26,不在日時DB27および決済日時DB28を更新する処理を実行するDB更新手段22を備える。 As illustrated in FIG. 2, the delivery schedule assembly device 2 uses at least the payment history information of the payment card 50 as a function realized by a computer program that the processor expands into RAM and executes, for each recipient 5. Execution of the home prediction means 20 that generates the home prediction table 230, the delivery schedule group means 21 that reflects the home prediction of the recipient 5 in the delivery schedule group, and the process of updating the delivery date / time DB26, the absence date / time DB27, and the settlement date / time DB28. The DB update means 22 is provided.
図3は,配達予定組装置2が備えるDBの構造を説明する図で,図3では,在宅予測DB23を除くDBの構造を図示している。 FIG. 3 is a diagram for explaining the structure of the DB included in the scheduled delivery assembly device 2, and FIG. 3 illustrates the structure of the DB excluding the home prediction DB 23.
図3(a)は,受取人DB24の構造を図示している。受取人DB24には,受取人5の個人情報を記憶する一つのデータテーブルが構築される。このデータテーブルのレコードには,一人の受取人5の個人情報として,受取人5を識別するための受取人ID,受取人5の氏名,受取人5の住所,受取人5の年齢(生年月日)および受取人5の職業IDそれぞれが記憶される。 FIG. 3A illustrates the structure of the recipient DB 24. In the recipient DB 24, one data table for storing the personal information of the recipient 5 is constructed. In the record of this data table, as personal information of one recipient 5, the recipient ID for identifying the recipient 5, the name of the recipient 5, the address of the recipient 5, and the age of the recipient 5 (date of birth). The day) and the occupation ID of the recipient 5 are stored.
図3(b)は,配達日時DB26の構造を図示している。配達日時DB26には,受取人DB24に記憶されている受取人IDごとに,受取人IDで識別される受取人5の配達日時を記憶するデータテーブルが構築される。このデータテーブルのレコードには,受取人IDで識別される受取人5の配達履歴情報に含まれる配達日時が記憶される。 FIG. 3B illustrates the structure of the delivery date / time DB 26. In the delivery date / time DB 26, a data table for storing the delivery date / time of the recipient 5 identified by the recipient ID is constructed for each recipient ID stored in the recipient DB 24. In the record of this data table, the delivery date and time included in the delivery history information of the recipient 5 identified by the recipient ID is stored.
図3(c)は,不在日時DB27の構造を図示している。不在日時DB27には,受取人DB24に記憶されている受取人IDごとに,受取人IDで識別される受取人5の不在日時を記憶するデータテーブルが構築される。このデータテーブルのレコードには,受取人IDで識別される受取人5の不在履歴情報に含まれる不在日時が記憶される。 FIG. 3C illustrates the structure of the absence date / time DB 27. In the absence date / time DB 27, a data table for storing the absence date / time of the recipient 5 identified by the recipient ID is constructed for each recipient ID stored in the recipient DB 24. In the record of this data table, the absence date and time included in the absence history information of the recipient 5 identified by the recipient ID is stored.
図3(d)は,決済日時DB28の構造を図示している。決済日時DB28には,受取人DB24に記憶されている受取人IDごとに,決済日時を記憶するデータテーブルが構築される。このデータテーブルのレコードには,受取人IDで識別される受取人5の決済履歴情報に含まれる決済日時が記憶される。 FIG. 3D illustrates the structure of the settlement date and time DB 28. In the settlement date and time DB 28, a data table for storing the settlement date and time is constructed for each recipient ID stored in the recipient DB 24. In the record of this data table, the settlement date and time included in the settlement history information of the recipient 5 identified by the recipient ID is stored.
図3(e)は,職業DB25の構造を図示している。上述したように,職業DB25の一つのレコードには,職業の識別に用いる職業ID,および,職業IDに対応する職業に係る就業日・就業時間が記憶される。 FIG. 3 (e) illustrates the structure of the occupation DB 25. As described above, one record of the occupation DB 25 stores the occupation ID used for identifying the occupation and the working days and working hours related to the occupation corresponding to the occupation ID.
図4は,配達予定組装置2が備える在宅予測DB23に記憶する在宅予測テーブル230を説明する図である。在宅予測DB23には,受取人DB24に記憶されている受取人IDごとに,受取人IDで識別される受取人5の在宅予測テーブル230が記憶される。 FIG. 4 is a diagram illustrating a home prediction table 230 stored in the home prediction DB 23 included in the delivery schedule assembly device 2. In the home prediction DB 23, the home prediction table 230 of the recipient 5 identified by the recipient ID is stored for each recipient ID stored in the recipient DB 24.
図4で図示した在宅予測テーブル230は,曜日(日曜日から土曜日)を行とし,宅配業者の営業時間に含まれる時間帯(ここでは,8時から21時までの1時間刻み)を列とするデータテーブルの構造をなし,在宅予測テーブル230に対応する受取人5の在宅確率レベルが曜日・時間帯(曜日とその時間帯)ごとに記憶される。本実施形態では,在宅確率レベルを「低」,「中」および「高」の三段階で表し,図4では,それぞれの段階を色分けして図示している。 In the home prediction table 230 illustrated in FIG. 4, the day of the week (Sunday to Saturday) is used as a row, and the time zone included in the business hours of the courier company (here, in 1-hour increments from 8:00 to 21:00) is used as a column. It has a data table structure, and the home probability level of the recipient 5 corresponding to the home prediction table 230 is stored for each day of the week / time zone (day of the week and its time zone). In the present embodiment, the home probability level is represented by three stages of “low”, “medium”, and “high”, and in FIG. 4, each stage is color-coded.
宅配物41の再配達件数を減らすことを考えると,受取人5の在宅確率レベルが低い曜日・時間帯を避けて宅配物41を配達することが望ましい。受取人5がペイメントカード50を使用したことは,受取人5が自宅51に不在であることを意味するため,決済履歴情報に含まれる決済日時に該当する件数が多い曜日・時間帯は,受取人5の在宅確率レベルが低い曜日・時間帯と予測できる。そこで,本実施形態では,所定期間(例えば,1年間)における決済日時の該当件数が第1基準件数以上(例えば,20件以上)になる曜日・時間帯の在宅確率レベルを「低」としている。 Considering reducing the number of redelivery cases of the delivery item 41, it is desirable to deliver the delivery item 41 avoiding the days and times when the recipient 5 has a low probability of staying at home. Since the fact that the payee 5 uses the payment card 50 means that the payee 5 is absent from his / her home 51, he / she receives the day / time when the number of cases corresponding to the payment date / time included in the payment history information is large. It can be predicted that the day / time zone when the probability level of being at home for person 5 is low. Therefore, in the present embodiment, the home probability level of the day / time zone in which the number of corresponding settlement dates and times in a predetermined period (for example, one year) is equal to or more than the first reference number (for example, 20 or more) is set to "low". ..
しかし,受取人5が何らかの職業に従事している場合,受取人5が働いている曜日・時間帯に該当する決済日時の件数は必然的に少なくなる。よって,受取人5が働いている曜日・時間帯は受取人5が宅配物41を受け取ることができないにもかかわらず,この曜日・時間帯に係る在宅確率レベルは「低」にならない。そこで,本実施形態では,受取人5の労働を受取人5が不在になる日々の行動の一つとし,受取人5の職業で定まる就業日・就業時間に対応する曜日・時間帯の在宅確率レベルを「低」としている。 However, when the recipient 5 is engaged in some occupation, the number of settlement dates and times corresponding to the day of the week and the time zone in which the recipient 5 is working is inevitably reduced. Therefore, even though the recipient 5 cannot receive the delivery 41 on the day / time when the recipient 5 is working, the home probability level related to this day / time is not "low". Therefore, in the present embodiment, the work of the beneficiary 5 is regarded as one of the daily actions in which the beneficiary 5 is absent, and the probability of staying at home on the day of the week / time zone corresponding to the working day / working time determined by the occupation of the beneficiary 5. The level is "low".
なお,不在履歴情報に含まれる不在日時に該当する曜日・時間帯は,受取人5の生活パターンにおいて,受取人5が不在であった実績のある曜日・時間帯になるため,不在履歴情報に含まれる不在日時の該当件数が第2基準件数以上(例えば,1件以上)になる曜日・時間帯の在宅確率レベルを「低」とすることが好適である。 Note that the day / time zone corresponding to the absence date / time included in the absence history information is the day / time zone in which the recipient 5 has been absent in the life pattern of the recipient 5, so that the absence history information includes the day / time zone. It is preferable to set the home probability level of the day / time zone when the number of corresponding cases of the included absence date and time is equal to or more than the second standard number (for example, one or more) to be “low”.
受取人5の在宅確率レベルが低い曜日・時間帯を避けて宅配物41を配達することで,宅配物41の再配達件数を減らせるが,受取人5の在宅確率レベルが高い曜日・時間帯に宅配物41を配達すると,宅配物41の再配達件数をより減らすことができる。 By delivering the delivery 41 while avoiding the days and times when the recipient 5 has a low home probability level, the number of redelivery cases of the delivery 41 can be reduced, but the days and times when the recipient 5 has a high home probability level can be reduced. When the delivery 41 is delivered to the customer, the number of redelivery of the delivery 41 can be further reduced.
本実施形態では,在宅確率レベルを「高」とする曜日・時間帯を,在宅確率レベルを「低」に設定していない曜日・時間帯の中で,決済日時の該当件数が第3基準件数以下(例えば,0件以下)になる曜日・時間帯にしている。なお,配達履歴情報に含まれる配達日時に該当する曜日・時間帯は,受取人5の生活パターンにおいて,受取人5が在宅していた実績のある曜日・時間帯になるため,上記の曜日・時間帯に加えて,配達履歴情報に含まれる配達日時の該当件数が第4基準件数以上(例えば,1件)になる曜日・時間帯の在宅確率レベルを「高」とすることが好適である。 In the present embodiment, the number of cases corresponding to the settlement date and time is the third reference number among the days and time zones in which the home probability level is set to "high" and the days and time zones in which the home probability level is not set to "low". The days and times are set to the following (for example, 0 or less). Note that the day / time zone corresponding to the delivery date / time included in the delivery history information is the day / time zone in which the recipient 5 has been at home in the life pattern of the recipient 5, and therefore the above day / time zone. In addition to the time zone, it is preferable to set the home probability level of the day / time zone when the number of corresponding delivery date and time included in the delivery history information is equal to or greater than the fourth standard number (for example, 1 case) to be "high". ..
在宅確率レベルを「中」に設定する曜日・時間帯は,在宅確率レベルを「低」とする曜日・時間帯と在宅確率レベルを「高」とする曜日・時間帯を除く,曜日・時間帯になる。 The day / time zone for setting the home probability level to "medium" is the day / time zone excluding the day / time zone for which the home probability level is "low" and the day / time zone for which the home probability level is set to "high". become.
ここから,配達予定組装置2の動作について説明する。図5は,配達予定組装置2が備えるDB更新手段22の動作を説明する図で,図6は,配達予定組装置2が備える配達予定組手段21の動作を説明する図,図7は,在宅確率レベルを「低」に設定する処理を説明する図,図8は,在宅確率レベルを「高」に設定する処理を説明する図,図9は,在宅確率レベルを「中」に設定する処理を説明する図である。 From here, the operation of the scheduled delivery group device 2 will be described. FIG. 5 is a diagram for explaining the operation of the DB update means 22 included in the delivery schedule assembly device 2, FIG. 6 is a diagram for explaining the operation of the delivery schedule assembly means 21 included in the delivery schedule assembly device 2, and FIG. 7 is a diagram for explaining the operation of the delivery schedule assembly means 21 included in the delivery schedule assembly device 2. The figure explaining the process of setting the home probability level to "low", FIG. 8 is a figure explaining the process of setting the home probability level to "high", and FIG. 9 is a figure explaining the process of setting the home probability level to "medium". It is a figure explaining the process.
まず,図5を参照しながら,配達予定組装置2が備えるDB更新手段22の動作について説明する。配達予定組装置2が備えるDB更新手段22は,事前に定められたDB更新期間(例えば,1週間)ごとに,配達日時DB26,不在日時DB27および決済日時DB28を更新する処理を実行する。図5(a)は,配達日時DB26を更新する処理を説明する図,図5(b)は,不在日時DB27を更新する処理を説明する図,および,図5(c)は,決済日時DB28を更新する処理を説明する図である。 First, the operation of the DB update means 22 included in the scheduled delivery group device 2 will be described with reference to FIG. The DB update means 22 included in the delivery schedule group device 2 executes a process of updating the delivery date / time DB 26, the absence date / time DB 27, and the settlement date / time DB 28 every predetermined DB update period (for example, one week). FIG. 5 (a) is a diagram for explaining the process of updating the delivery date / time DB 26, FIG. 5 (b) is a diagram for explaining the process of updating the absence date / time DB 27, and FIG. 5 (c) is a diagram for explaining the settlement date / time DB 28. It is a figure explaining the process of updating.
図5(a)で図示したように,配達日時DB26を更新する際,配達予定組装置2が備えるDB更新手段22は,所定期間より日時が前になる配達日時を格納したレコードすべてを配達日時DB26から削除する処理を実行することで,所定期間より日時が前になる配達日時を配達日時DB26から削除する(S1)。次に,配達予定組装置2が備えるDB更新手段22は,配達日時がDB更新期間内の配達履歴情報を宅配管理装置4から取得し,この配達履歴情報に含まれる配達日時を配達日時DB26に登録する処理を実行して(S2),配達日時DB26の更新を終了する。配達履歴情報に含まれる配達日時を配達日時DB26に登録する際,配達予定組装置2が備えるDB更新手段22は,受取人DB24を参照し,配達履歴情報に含まれる受取人5の氏名住所に対応する受取人IDを特定し,この受取人IDに対応する配達日時DB26のデータテーブルに,配達履歴情報に含まれる配達日時を登録する。 As illustrated in FIG. 5A, when updating the delivery date / time DB 26, the DB update means 22 included in the scheduled delivery group device 2 delivers all the records storing the delivery date / time earlier than the predetermined period. By executing the process of deleting from the DB 26, the delivery date and time whose date and time is earlier than the predetermined period is deleted from the delivery date and time DB 26 (S1). Next, the DB update means 22 included in the delivery schedule group device 2 acquires the delivery history information whose delivery date and time is within the DB update period from the home delivery management device 4, and sets the delivery date and time included in the delivery history information in the delivery date and time DB 26. The process of registering is executed (S2), and the update of the delivery date / time DB 26 is completed. When registering the delivery date and time included in the delivery history information in the delivery date and time DB 26, the DB update means 22 included in the delivery schedule group device 2 refers to the recipient DB 24 and sets the name and address of the recipient 5 included in the delivery history information. The corresponding recipient ID is specified, and the delivery date and time included in the delivery history information is registered in the data table of the delivery date and time DB 26 corresponding to this recipient ID.
図5(b)で図示したように,不在日時DB27を更新する際,配達予定組装置2が備えるDB更新手段22は,所定期間より日時が前になる不在日時を格納したレコードすべてを不在日時DB27から削除する処理を実行することで,所定期間より日時が前になる不在日時を不在日時DB27から削除する(S3)。次に,配達予定組装置2が備えるDB更新手段22は,不在日時がDB更新期間内の不在履歴情報を宅配管理装置4から取得し,この不在履歴情報を不在日時DB27に登録する処理を実行して(S4),不在日時DB27の更新を終了する。不在履歴情報に含まれる不在日時を不在日時DB27に登録する際,配達予定組装置2が備えるDB更新手段22は,受取人DB24を参照し,不在履歴情報に含まれる受取人5の氏名住所に対応する受取人IDを特定し,この受取人IDに対応する不在日時DB27のデータテーブルに,不在履歴情報に含まれる不在日時を登録する。 As illustrated in FIG. 5B, when updating the absence date / time DB 27, the DB update means 22 included in the scheduled delivery group device 2 records all the records storing the absence date / time whose date / time is earlier than the predetermined period. By executing the process of deleting from the DB 27, the absent date and time whose date and time is earlier than the predetermined period is deleted from the absent date and time DB 27 (S3). Next, the DB update means 22 included in the delivery schedule group device 2 acquires the absence history information whose absence date and time is within the DB update period from the home delivery management device 4, and executes a process of registering the absence history information in the absence date and time DB 27. Then (S4), the update of the absence date / time DB27 is completed. When registering the absence date and time included in the absence history information in the absence date and time DB 27, the DB update means 22 included in the scheduled delivery group device 2 refers to the recipient DB 24 and sets the name and address of the recipient 5 included in the absence history information. The corresponding recipient ID is specified, and the absence date and time included in the absence history information is registered in the data table of the absence date and time DB 27 corresponding to this recipient ID.
図5(c)で図示したように,決済日時DB28を更新する際,配達予定組装置2が備えるDB更新手段22は,所定期間より日時が前になる決済日時を格納したレコードすべてを決済日時DB28から削除する処理を実行することで,所定期間より日時が前になる決済日時を決済日時DB28から削除する(S5)。次に,配達予定組装置2が備えるDB更新手段22は,決済日時がDB更新期間内の決済履歴情報を決済履歴管理装置3から取得し,この決済履歴情報に含まれる決済日時を決済日時DB28に登録する処理を行い(S6),決済日時DB28の更新を終了する。配達予定組装置2が備えるDB更新手段22は,決済日時がDB更新期間内の決済履歴情報に加えて所有者情報を決済履歴管理装置3から取得し,受取人DB24を参照し,所有者情報に含まれる受取人5の氏名住所に対応する受取人IDを特定し,この受取人IDに対応する決済日時DB28のデータテーブルに,所有者情報に対応する決済履歴情報に含まれる決済日時を登録する。 As illustrated in FIG. 5C, when updating the settlement date / time DB 28, the DB update means 22 included in the scheduled delivery group device 2 sets all the records storing the settlement date / time earlier than the predetermined period as the settlement date / time. By executing the process of deleting from the DB 28, the settlement date and time whose date and time is earlier than the predetermined period is deleted from the settlement date and time DB 28 (S5). Next, the DB update means 22 included in the delivery schedule group device 2 acquires the settlement history information whose settlement date and time is within the DB update period from the settlement history management device 3, and sets the settlement date and time included in the settlement history information as the settlement date and time DB 28. The process of registering in is performed (S6), and the update of the settlement date / time DB 28 is completed. The DB update means 22 included in the delivery schedule group device 2 acquires the owner information from the payment history management device 3 in addition to the payment history information whose payment date and time is within the DB update period, refers to the recipient DB 24, and refers to the owner information. The recipient ID corresponding to the name and address of the recipient 5 included in is specified, and the settlement date and time included in the settlement history information corresponding to the owner information is registered in the data table of the settlement date and time DB 28 corresponding to this recipient ID. To do.
次に,図6を参照しながら,配達予定組装置2が備える在宅予測手段20の動作について説明する。図6は,配達予定組装置2が備える在宅予測手段20の動作を説明する図である。配達予定組装置2が備える在宅予測手段20は,DB更新期間(例えば,1カ月)ごとに,受取人DB24に登録されている在宅予測テーブル230を更新する処理を実行する。 Next, the operation of the home prediction means 20 included in the scheduled delivery group device 2 will be described with reference to FIG. FIG. 6 is a diagram illustrating the operation of the home prediction means 20 included in the delivery schedule assembly device 2. The home prediction means 20 included in the delivery schedule group device 2 executes a process of updating the home prediction table 230 registered in the recipient DB 24 every DB update period (for example, one month).
受取人DB24に登録されている在宅予測テーブル230を更新する処理において,配達予定組装置2が備える在宅予測手段20は,受取人DB24のレコードに格納された受取人IDごとに,在宅確率レベルを「低」に設定する処理(S10)と,在宅確率レベルを「高」に設定する処理(S11)と,在宅確率レベルを「中」に設定する処理(S12)を順に実行する。 In the process of updating the home prediction table 230 registered in the recipient DB 24, the home prediction means 20 included in the delivery schedule group device 2 sets the home probability level for each recipient ID stored in the record of the recipient DB 24. The process of setting the home probability level to "low" (S10), the process of setting the home probability level to "high" (S11), and the process of setting the home probability level to "medium" (S12) are executed in order.
図7は,在宅確率レベルを「低」に設定する処理(S10)を説明する図である。在宅確率レベルを「低」に設定する処理(S10)において,配達予定組装置2が備える在宅予測手段20は,処理の対象とする受取人DB24のレコードから職業IDを取得した後(S100),この職業IDに対応する就業日・就業時間を職業DB25から取得する(S101)。 FIG. 7 is a diagram illustrating a process (S10) of setting the home probability level to “low”. In the process of setting the home probability level to "low" (S10), the home prediction means 20 included in the delivery schedule group device 2 acquires the occupation ID from the record of the recipient DB 24 to be processed (S100). The working days and working hours corresponding to this occupation ID are acquired from the occupation DB 25 (S101).
次に,配達予定組装置2が備える在宅予測手段20は,処理の対象とする受取人DB24のレコードに格納された受取人IDに対応する在宅予測テーブル230において,職業DB25から取得した就業日・就業時間に対応する曜日・時間帯の在宅確率レベルを「低」に設定する(S102)。 Next, the home prediction means 20 included in the delivery schedule group device 2 is the work day obtained from the occupation DB 25 in the home prediction table 230 corresponding to the recipient ID stored in the record of the recipient DB 24 to be processed. Set the home probability level of the day of the week / time zone corresponding to the working hours to “low” (S102).
次に,配達予定組装置2が備える在宅予測手段20は,決済日時DB28を参照し,処理の対象とする受取人DB24のレコードに格納された受取人IDに対応するデータテーブルに記憶されている決済日時を対象にして,在宅予測テーブル230に含まれる曜日・時間帯ごとに,曜日・時間帯に該当する決済日時の件数を集計し(S103),決済件数の該当件数が第1基準件数以上になる曜日・時間帯の在宅確率レベルを「低」に設定する(S104)。 Next, the home prediction means 20 included in the delivery schedule group device 2 refers to the settlement date / time DB 28 and is stored in the data table corresponding to the recipient ID stored in the record of the recipient DB 24 to be processed. For the settlement date and time, the number of settlement dates and times corresponding to the day of the week and time zone is totaled for each day of the week and time zone included in the home forecast table 230 (S103), and the number of settlements is equal to or greater than the first reference number. Set the home probability level for the day of the week and the time zone to be "low" (S104).
次に,配達予定組装置2が備える在宅予測手段20は,受取人DB24のレコードに格納された受取人IDに対応する不在日時DB27を参照し,曜日・時間帯ごとに不在日時の該当件数を集計した後,不在日時の該当件数が第2基準件数以上になる曜日・時間帯の在宅確率レベルを「低」に設定して(S105),在宅確率レベルを「低」に設定する処理(S10)は終了する。 Next, the home prediction means 20 included in the delivery schedule group device 2 refers to the absence date / time DB 27 corresponding to the recipient ID stored in the record of the recipient DB 24, and determines the number of corresponding cases of absence date / time for each day of the week / time zone. After totaling, the process of setting the home probability level to "low" (S105) and the home probability level to "low" (S10) for the days and times when the number of hits on the absence date and time is equal to or greater than the second reference number. ) Ends.
図8は,在宅確率レベルを「高」に設定する処理(S11)を説明する図である。在宅確率レベルを「高」に設定する処理(S11)において,配達予定組装置2が備える在宅予測手段20は,決済日時の該当件数が第3基準件数以下になる曜日・時間帯を特定し(S110),特定した曜日・時間帯の中から,在宅確率レベルを「低」に設定してない曜日・時間帯の在宅確率レベルを「高」に設定する(S111)。 FIG. 8 is a diagram illustrating a process (S11) of setting the home probability level to “high”. In the process of setting the home-based probability level to "high" (S11), the home-based prediction means 20 included in the delivery schedule group device 2 specifies the day of the week and the time zone in which the corresponding number of settlement dates and times is equal to or less than the third reference number ( S110), from the specified day / time zone, the home probability level is set to “high” for the day / time zone for which the home probability level is not set to “low” (S111).
次に,配達予定組装置2が備える在宅予測手段20は,受取人DB24のレコードに格納された受取人IDに対応する配達日時DB26を参照し,曜日・時間帯ごとに配達日時の該当件数を集計した後,配達日時の該当件数が第4基準件数以上で,かつ,在宅確率レベルを「低」に設定してない曜日・時間帯の在宅確率レベルを「高」に設定して(S112),在宅確率レベルを「高」に設定する処理(S11)は終了する。 Next, the home prediction means 20 included in the delivery schedule group device 2 refers to the delivery date / time DB 26 corresponding to the recipient ID stored in the record of the recipient DB 24, and determines the corresponding number of delivery dates / times for each day of the week / time zone. After totaling, the number of cases corresponding to the delivery date and time is equal to or more than the fourth standard number, and the home probability level is not set to "low". The home probability level for the day of the week / time zone is set to "high" (S112). , The process of setting the home probability level to "high" (S11) ends.
図9は,在宅確率レベルを「中」に設定する処理を説明する図である。在宅確率レベルを「中」に設定する処理(S12)において,配達予定組装置2が備える在宅予測手段20は,受取人DB24のレコードに格納された受取人IDに対応する在宅予測テーブル230に含まれる曜日・時間帯の中から,在宅確率レベルが「高」および「低」のいずれにも設定していない曜日・時間帯の在宅確率レベルを「中」に設定して(S120),在宅確率レベルを「中」に設定する処理(S12)は終了する。 FIG. 9 is a diagram illustrating a process of setting the home probability level to “medium”. In the process (S12) of setting the home probability level to "medium", the home prediction means 20 included in the delivery schedule group device 2 is included in the home prediction table 230 corresponding to the recipient ID stored in the record of the recipient DB 24. The home probability level is set to "medium" for the day / time zone for which the home probability level is not set to either "high" or "low" (S120). The process of setting the level to "medium" (S12) ends.
次に,受取人5の在宅予測を配達予定組に反映させる配達予定組装置2の配達予定組手段21の動作について説明する。受取人5の在宅予測を配達予定組に反映させる点を除き,宅配物41の配達予定を組む手法は,従来技術を利用できるため,ここでは,受取人5の在宅予測を配達予定組に反映させる点についてのみ説明する。 Next, the operation of the delivery schedule group means 21 of the delivery schedule group device 2 that reflects the home prediction of the recipient 5 in the delivery schedule group will be described. Except for the fact that the home forecast of the recipient 5 is reflected in the delivery schedule group, the method of creating the delivery schedule of the delivery 41 can use the conventional technique. Therefore, here, the home forecast of the recipient 5 is reflected in the delivery schedule group. Only the points to be made will be described.
図10は,配達予定組装置2の配達予定組手段21の動作を説明する図である。翌日が配達日になる宅配物41の配達依頼情報が宅配管理装置4から送信されると,配達予定組装置2の配達予定組手段21は,宅配物41の配達予定を組む処理を実行する。 FIG. 10 is a diagram illustrating the operation of the delivery schedule assembly means 21 of the delivery schedule assembly device 2. When the delivery request information of the home delivery 41 whose delivery date is the next day is transmitted from the home delivery management device 4, the delivery schedule group means 21 of the delivery schedule group device 2 executes a process of creating a delivery schedule of the delivery 41.
宅配物41の配達予定を組む処理において,配達予定組装置2の配達予定組手段21は,まず,宅配管理装置4から送信された配達依頼情報の中から,時間指定がある配達依頼情報を抽出し(S20),宅配物41の配達日において,時間指定がある配達依頼情報に係る宅配物41の配達時間を,配達依頼情報で時間指定された時間帯に決定する(S21)。 In the process of creating the delivery schedule of the delivery item 41, the delivery schedule grouping means 21 of the delivery schedule group device 2 first extracts the delivery request information with a time designation from the delivery request information transmitted from the delivery management device 4. (S20), on the delivery date of the delivery item 41, the delivery time of the delivery item 41 related to the delivery request information having a time designation is determined in the time zone specified by the delivery request information (S21).
次に,配達予定組装置2の配達予定組手段21は,宅配管理装置4から送信された配達依頼情報の中から,時間指定がない配達依頼情報を抽出し(S22),時間指定がない配達依頼情報ごとに繰り返すループ処理(S23)を実行する。 Next, the delivery schedule group means 21 of the delivery schedule group device 2 extracts the delivery request information without time designation from the delivery request information transmitted from the delivery management device 4 (S22), and delivers without time designation. The loop process (S23) that is repeated for each request information is executed.
ループ処理(S23)において,配達予定組装置2の配達予定組手段21は,時間指定がない配達依頼情報に含まれる受取人5の住所氏名と受取人DB24を利用して,この受取人5の受取人IDを特定した後,在宅予測DB23の中から,この受取人IDに対応する在宅予測テーブル230を受取人5の在宅予測テーブル230として特定する(S24)。 In the loop processing (S23), the delivery schedule grouping means 21 of the delivery schedule grouping device 2 uses the address and name of the recipient 5 and the recipient DB 24 included in the delivery request information without specifying the time, and the delivery schedule grouping means 21 of the recipient 5. After specifying the recipient ID, the home prediction table 230 corresponding to the recipient ID is specified as the home prediction table 230 of the recipient 5 from the home prediction DB 23 (S24).
次に,配達予定組装置2の配達予定組手段21は,受取人5の在宅予測テーブル230を参照し,宅配物41の配達日において,在宅確率レベルが「高」に設定されている時間帯を抽出し,宅配物41の配達時間をこの時間帯に組めるか確認する(S25)。在宅確率レベルが「高」に設定されている時間帯に宅配物41の配達時間を組める場合,配達予定組装置2の配達予定組手段21は,宅配物41の配達時間を在宅確率レベルが「高い」に設定されている時間帯に決定して(S26),ループ処理(S23)は終了する。 Next, the delivery schedule group means 21 of the delivery schedule group device 2 refers to the home prediction table 230 of the recipient 5, and is a time zone in which the home probability level is set to “high” on the delivery date of the delivery 41. Is extracted, and it is confirmed whether the delivery time of the delivery 41 can be set in this time zone (S25). When the delivery time of the delivery 41 can be set in the time zone when the home probability level is set to "high", the delivery schedule group means 21 of the delivery schedule group device 2 sets the delivery time of the delivery 41 to the home probability level ". The time zone set to "high" is determined (S26), and the loop processing (S23) ends.
宅配物41の配達時間を在宅確率レベルが「高」の時間帯に組めない場合,配達予定組装置2の配達予定組手段21は,受取人5の在宅予測テーブル230を参照し,宅配物41の配達日において,在宅確率レベルが「中」の時間帯を抽出し,宅配物41の配達時間をこの時間帯に組めるか確認する(S27)。在宅確率レベルが「中」に設定されている時間帯に宅配物41の配達時間を組める場合,配達予定組装置2の配達予定組手段21は,宅配物41の配達時間を在宅確率レベルが「中」に設定されている時間帯に決定して(S28),ループ処理(S23)は終了する。 When the delivery time of the delivery 41 cannot be set in the time zone when the probability level of being at home is “high”, the delivery schedule group means 21 of the delivery schedule group device 2 refers to the home prediction table 230 of the recipient 5 and delivers the delivery 41. On the delivery date of, the time zone in which the home probability level is “medium” is extracted, and it is confirmed whether the delivery time of the delivery 41 can be set in this time zone (S27). When the delivery time of the delivery 41 can be set in the time zone when the home probability level is set to "medium", the delivery schedule group means 21 of the delivery schedule group device 2 sets the delivery time of the delivery 41 to the home probability level ". The time zone set to "Medium" is determined (S28), and the loop processing (S23) ends.
宅配物41の配達時間を在宅確率レベルが「中」の時間帯に組めない場合,配達予定組装置2の配達予定組手段21は,受取人5の在宅予測テーブル230を参照し,宅配物41の配達日において,宅配物41の配達時間を在宅確率レベルが「低」に設定されている時間帯に決定して(S29),ループ処理(S23)は終了する。 When the delivery time of the delivery 41 cannot be set in the time zone when the probability level of being at home is "medium", the delivery schedule group means 21 of the delivery schedule group device 2 refers to the home prediction table 230 of the recipient 5 and delivers the delivery 41. On the delivery date of, the delivery time of the delivery item 41 is determined in the time zone in which the home probability level is set to "low" (S29), and the loop processing (S23) ends.
このように,配達予定組装置2の配達予定組手段21が宅配物41の配達予定を組むことで, 在宅確率レベルが「低」に設定されていない時間帯を優先的に用いて,この宅配物41の配達時間を決定でき,更に,在宅確率レベルが「高」に設定されている時間帯を優先的に用いて,この宅配物41の配達時間を決定できる。 In this way, the delivery schedule grouping means 21 of the delivery schedule group device 2 sets the delivery schedule of the home delivery 41, so that the time zone in which the home probability level is not set to "low" is preferentially used for this home delivery. The delivery time of the delivery item 41 can be determined, and the delivery time of the delivery item 41 can be determined by preferentially using the time zone in which the home probability level is set to "high".
1 システム構成
2 配達予定組装置
20 在宅予測手段
21 配達予定組手段
22 DB更新手段
23 在宅予測DB
230 在宅予測テーブル
24 受取人DB
25 職業DB
26 配達日時DB
27 不在日時DB
28 決済日時DB
3 決済履歴管理装置
4 宅配管理装置
41 宅配物
5 受取人
50 ペイメントカード
1 System configuration 2 Delivery schedule group device 20 Home prediction means 21 Delivery schedule group means 22 DB update means 23 Home prediction DB
230 Home Forecast Table 24 Recipient DB
25 Occupation DB
26 Delivery date and time DB
27 Absence date and time DB
28 Settlement date and time DB
3 Payment history management device 4 Delivery management device 41 Delivery delivery 5 Recipient 50 Payment card
Claims (6)
前記在宅予測手段は,受取人の前記在宅予測テーブルにおいて,ペイメントカードを利用して受取人が決済した決済日時の該当件数が第1基準件数以上になる曜日・時間帯の在宅確率レベルを「低」に設定し,
前記配達予定組手段は,時間指定されていない宅配物の配達を組む際,受取人の前記在宅予測テーブルを参照し,この宅配物の配達日において,在宅確率レベルが「低」に設定されていない時間帯を優先的に用いてこの宅配物の配達時間を決定する,
ことを特徴とする配達予定組装置。 It is equipped with a home prediction means that generates a home prediction table that stores the home probability level for each day of the week and time zone for each recipient, and a delivery schedule group means that reflects the recipient's home prediction in the delivery schedule group of the delivery.
In the home prediction table of the recipient, the home prediction means sets the home probability level of the day / time zone when the number of corresponding payment dates and times settled by the recipient using the payment card is equal to or higher than the first reference number. Set to
The delivery schedule grouping means refers to the recipient's home prediction table when making a delivery of a parcel delivery service at an unspecified time, and the home delivery probability level is set to "low" on the delivery date of the parcel delivery service. Determining the delivery time of this parcel by preferentially using no time zone,
A delivery schedule assembly device characterized by that.
At least, by setting the home probability level of the day of the week / time zone when the number of payments settled by the recipient using the payment card is equal to or greater than the first standard number to "low", each day of the week / time zone When assembling a home prediction means that generates a home prediction table that stores the home probability level for each recipient and a delivery of a home delivery that does not specify a time, the delivery of this home delivery is referred to by the recipient's home prediction table. By preferentially determining the delivery time of this delivery by using the time zone in which the home probability level is not set to "low" on the day of the week, the recipient's home prediction is reflected in the delivery schedule group of the delivery. A computer program that makes a computer function as a means of delivery schedule.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019150950A JP7383931B2 (en) | 2019-08-21 | 2019-08-21 | Delivery scheduling device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019150950A JP7383931B2 (en) | 2019-08-21 | 2019-08-21 | Delivery scheduling device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021033496A true JP2021033496A (en) | 2021-03-01 |
JP7383931B2 JP7383931B2 (en) | 2023-11-21 |
Family
ID=74677417
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019150950A Active JP7383931B2 (en) | 2019-08-21 | 2019-08-21 | Delivery scheduling device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7383931B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022185642A1 (en) | 2021-03-03 | 2022-09-09 | アサヒグループホールディングス株式会社 | Low-alcohol beverage |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015122055A (en) * | 2013-11-21 | 2015-07-02 | パナソニックIpマネジメント株式会社 | Stay-home probability calculation method, server apparatus, and stay-home probability calculation system |
JP2015212186A (en) * | 2014-05-01 | 2015-11-26 | ソフトバンク株式会社 | Server device, program, and delivery system |
JP2016118920A (en) * | 2014-12-19 | 2016-06-30 | 株式会社東芝 | Delivery object sorting system |
JP2019040487A (en) * | 2017-08-28 | 2019-03-14 | シャープ株式会社 | Network system, information processing method, and server |
JP2019082895A (en) * | 2017-10-31 | 2019-05-30 | 株式会社Nttドコモ | Device to determine time to visit |
-
2019
- 2019-08-21 JP JP2019150950A patent/JP7383931B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015122055A (en) * | 2013-11-21 | 2015-07-02 | パナソニックIpマネジメント株式会社 | Stay-home probability calculation method, server apparatus, and stay-home probability calculation system |
JP2015212186A (en) * | 2014-05-01 | 2015-11-26 | ソフトバンク株式会社 | Server device, program, and delivery system |
JP2016118920A (en) * | 2014-12-19 | 2016-06-30 | 株式会社東芝 | Delivery object sorting system |
JP2019040487A (en) * | 2017-08-28 | 2019-03-14 | シャープ株式会社 | Network system, information processing method, and server |
JP2019082895A (en) * | 2017-10-31 | 2019-05-30 | 株式会社Nttドコモ | Device to determine time to visit |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022185642A1 (en) | 2021-03-03 | 2022-09-09 | アサヒグループホールディングス株式会社 | Low-alcohol beverage |
Also Published As
Publication number | Publication date |
---|---|
JP7383931B2 (en) | 2023-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7657453B2 (en) | System, computer-readable medium and method for filtering exceptions generated by forecasting and replenishment engine | |
JP5025850B2 (en) | Cross application timesheet | |
US20070284439A1 (en) | Systems and methods for automatically distributing gifts to recipients on behalf of customers | |
US20180341919A1 (en) | System and method for invitation mechanisms to facilitate associate delivery of products en route from work | |
US20060173693A1 (en) | Computerized trading system and methods useful therefor | |
US11943388B2 (en) | System and method for developing and utilizing a contactability profile | |
JP2012104079A (en) | Recruitment management system | |
US20040093226A1 (en) | Distributed method and system for managing volunteers and other individuals engaged in fundraising campaign | |
US20020198772A1 (en) | Encouraging house card use through price guarantees | |
Shoghi | Debt collection industry: machine learning approach | |
JP2021033496A (en) | Delivery schedule assembly device | |
JP6587556B2 (en) | Information processing apparatus and information processing method | |
US7693759B2 (en) | On demand accrual system and method | |
US20120209752A1 (en) | Networked exchange | |
WO2017021998A1 (en) | Electronic managerial decision request form updating method and system | |
US20120078654A1 (en) | Computerized method to alert and remind patients or clients of their appointments | |
JP6554504B2 (en) | Call center operation support system and call center operation support method | |
KR20170131952A (en) | Individual billing davice, method, and computer program for excuting individual billing methods, and server for releasing the computer program | |
US20020198783A1 (en) | Business method for credit card email alerts | |
GB2352848A (en) | Computer system for goods procurement including consolidating orders | |
JP2007094998A (en) | System for distributing telephony work and its program | |
JP4486595B2 (en) | Program for generating user-adaptive business application data, recording medium recording the program, user-adaptive business application data generation system and method | |
US20120010892A1 (en) | System and method for handling complex calculations in social services | |
US20210224339A1 (en) | Insight engine | |
US11823223B2 (en) | Triggering and throttling access to reward card supplier interfaces |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220628 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230428 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230530 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230726 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231010 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231023 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7383931 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |