JP2021031544A - Thermally conductive polycarbonate resin composition - Google Patents

Thermally conductive polycarbonate resin composition Download PDF

Info

Publication number
JP2021031544A
JP2021031544A JP2019150928A JP2019150928A JP2021031544A JP 2021031544 A JP2021031544 A JP 2021031544A JP 2019150928 A JP2019150928 A JP 2019150928A JP 2019150928 A JP2019150928 A JP 2019150928A JP 2021031544 A JP2021031544 A JP 2021031544A
Authority
JP
Japan
Prior art keywords
component
weight
parts
group
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019150928A
Other languages
Japanese (ja)
Other versions
JP7311357B2 (en
Inventor
鬼澤 大光
Hiromitsu Kizawa
大光 鬼澤
俊介 奥澤
Shunsuke Okuzawa
俊介 奥澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2019150928A priority Critical patent/JP7311357B2/en
Publication of JP2021031544A publication Critical patent/JP2021031544A/en
Application granted granted Critical
Publication of JP7311357B2 publication Critical patent/JP7311357B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

To provide a polycarbonate resin composition excellent in moldability, thermal conductivity, heat resistance, flame retardancy, rigidity and insulating properties.SOLUTION: The thermally conductive polycarbonate resin composition contains, based on (A) 100 pts.wt. of a polycarbonate resin (component A), (B) 20-60 pts.wt. of glass fibers (component B), (C) 5-60 pts.wt. of talc (component C), (D) 5-30 pts.wt. of a bromine-based flame retardant (component D), (E) 0.1-5 pts.wt. of a fluorine-containing drip inhibitor (component E), (F) 5-50 pts.wt. of a liquid crystal polyester resin (component F), (G) 0.1-5 pts.wt. of an acid-modified olefin resin (component G), and (H) 0.1-5 pts.wt. of a silane coupling agent (component H).SELECTED DRAWING: None

Description

本発明は、熱伝導性ポリカーボネート樹脂組成物およびその成形品に関する。さらに詳しくは、成形加工性、熱伝導性、耐熱性、難燃性、剛性および絶縁性に優れた熱可塑性樹脂組成物およびその成形品に関する。 The present invention relates to a thermally conductive polycarbonate resin composition and a molded product thereof. More specifically, the present invention relates to a thermoplastic resin composition having excellent molding processability, thermal conductivity, heat resistance, flame retardancy, rigidity and insulating property, and a molded product thereof.

ポリカーボネート樹脂は、耐熱性、難燃性に優れ、また機械強度に優れた性質を有することから自動車の内装および外装部品の分野やOA機器の分野、電気電子機器分野などに広く用いられている。近年、発生する熱を効率的に外部へ放熱するため、ポリカーボネート樹脂の熱伝導性を高めつつ、樹脂の成形加工性、耐熱性、難燃性、剛性、絶縁性に優れた熱可塑性樹脂組成物への要求が高まっている。特に熱伝導性と成形加工性の両立は、技術的難易度が高い。 Polycarbonate resin is widely used in the fields of automobile interior and exterior parts, OA equipment, electrical and electronic equipment, etc. because it has excellent heat resistance, flame retardancy, and mechanical strength. In recent years, in order to efficiently dissipate the generated heat to the outside, a thermoplastic resin composition having excellent resin molding processability, heat resistance, flame retardancy, rigidity, and insulating property while improving the thermal conductivity of the polycarbonate resin. The demand for plastics is increasing. In particular, it is technically difficult to achieve both thermal conductivity and moldability.

これらの高分子組成物の熱伝導性を更に向上させる方法として、熱伝導性の高い炭素系材料を高分子材料に充填させた熱伝導性高分子材料が提案されている。例えば、高分子材料に黒鉛化炭素繊維を添加する方法(特許文献1〜3参照)、熱可塑性樹脂にピッチ系炭素繊維と鱗状黒鉛を添加する方法が公知であるが、絶縁性の低下や難燃性の低下など様々な課題があり、特に成形加工性の低下は顕著であった。 As a method for further improving the thermal conductivity of these polymer compositions, a thermally conductive polymer material in which a carbon-based material having high thermal conductivity is filled in the polymer material has been proposed. For example, a method of adding graphitized carbon fibers to a polymer material (see Patent Documents 1 to 3) and a method of adding pitch-based carbon fibers and scaly graphite to a thermoplastic resin are known, but the insulating property is deteriorated and difficult. There were various problems such as a decrease in flammability, and the decrease in molding processability was particularly remarkable.

一方、絶縁性を維持したまま熱伝導率を向上させるためには酸化アルミニウムや窒化ホウ素、窒化アルミニウム、窒化ケイ素、酸化マグネシウム、酸化亜鉛、炭化ケイ素、石英、水酸化アルミニウムなどの金属酸化物、金属窒化物、金属炭化物、金属水酸化物などの充填剤を添加することが知られているが、熱伝導性を向上させると成形加工性の低下が大きく、また、高い難燃性を発現させた熱可塑性樹脂を得ることは困難であった(特許文献4〜7参照)。また、ポリカーボネート樹脂の絶縁性を維持したまま熱伝導性、難燃性など向上させるために特定の窒化ホウ素を使用したり、アミン系シランカップリング剤を添加することが知られているが、成形加工性の低下が著しく、また、熱伝導性、耐熱性、難燃性、剛性が十分とはいえないのが現状である(特許文献8、9参照)。 On the other hand, in order to improve the thermal conductivity while maintaining the insulating property, metal oxides and metals such as aluminum oxide, boron nitride, aluminum nitride, silicon nitride, magnesium oxide, zinc oxide, silicon carbide, quartz and aluminum hydroxide It is known to add fillers such as nitrides, metal carbides, and metal hydroxides, but when the thermal conductivity is improved, the moldability is greatly reduced and high flame retardancy is exhibited. It was difficult to obtain a thermoplastic resin (see Patent Documents 4 to 7). Further, it is known that a specific boron nitride is used or an amine-based silane coupling agent is added in order to improve thermal conductivity, flame retardancy, etc. while maintaining the insulating property of the polycarbonate resin. At present, the workability is significantly reduced, and the thermal conductivity, heat resistance, flame retardancy, and rigidity are not sufficient (see Patent Documents 8 and 9).

特開2002−88250号公報JP-A-2002-88250 特開2002−339171号公報JP-A-2002-339171 特開2003−112915号公報Japanese Unexamined Patent Publication No. 2003-112915 特開2010−195890号公報Japanese Unexamined Patent Publication No. 2010-195890 特開2008−239899号公報Japanese Unexamined Patent Publication No. 2008-239899 特開2008−270709号公報Japanese Unexamined Patent Publication No. 2008-270709 特開2011−12193号公報Japanese Unexamined Patent Publication No. 2011-12193 特開2012−188579号公報Japanese Unexamined Patent Publication No. 2012-188579 特開2013−203770号公報Japanese Unexamined Patent Publication No. 2013-203770

上記に鑑み、本発明の目的は、成形加工性、熱伝導性、耐熱性、難燃性、剛性および絶縁性に優れたポリカーボネート樹脂組成物およびその成形品を提供することにある。 In view of the above, an object of the present invention is to provide a polycarbonate resin composition having excellent molding processability, thermal conductivity, heat resistance, flame retardancy, rigidity and insulating property, and a molded product thereof.

本発明者は上記課題を解決するため鋭意検討を行った結果、ポリカーボネート樹脂、ガラス繊維、タルク、臭素系難燃剤、含フッ素滴下防止剤、液晶ポリエステル樹脂、酸変性オレフィン樹脂およびシランカップリング剤を特性の割合で配合することにより、成形加工性、熱伝導性、耐熱性、難燃性、剛性および絶縁性に優れた熱伝導性ポリカーボネート樹脂組成物およびその成形品を得る方法を見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventor has found polycarbonate resin, glass fiber, talc, brominated flame retardant, fluorine-containing drip inhibitor, liquid crystal polyester resin, acid-modified olefin resin and silane coupling agent. We have found a method for obtaining a thermally conductive polycarbonate resin composition having excellent molding processability, thermal conductivity, heat resistance, flame retardancy, rigidity and insulating property and a molded product thereof by blending them in a ratio of characteristics, and have found the present invention. Has been completed.

本発明によれば、上記課題は(A)ポリカーボネート樹脂(A成分)100重量部に対して、(B)ガラス繊維(B成分)20〜60重量部、(C)タルク(C成分)5〜60重量部、(D)臭素系難燃剤(D成分)5〜30重量部、(E)含フッ素滴下防止剤(E成分)0.1〜5重量部、(F)液晶ポリエステル樹脂(F成分)5〜50重量部、(G)酸変性オレフィン樹脂(G成分)0.1〜5重量部および(H)シランカップリング剤(H成分)0.1〜5重量部を含有することを特徴とする熱伝導性ポリカーボネート樹脂組成物にて達成される。 According to the present invention, the above problems are (A) 100 parts by weight of polycarbonate resin (A component), (B) 20 to 60 parts by weight of glass fiber (B component), and (C) 5 to 5 parts by weight of talc (C component). 60 parts by weight, (D) brominated flame retardant (D component) 5 to 30 parts by weight, (E) fluorine-containing dripping inhibitor (E component) 0.1 to 5 parts by weight, (F) liquid crystal polyester resin (F component) ) 5 to 50 parts by weight, (G) acid-modified olefin resin (G component) 0.1 to 5 parts by weight, and (H) silane coupling agent (H component) 0.1 to 5 parts by weight. It is achieved by the heat conductive polycarbonate resin composition.

以下、本発明の詳細について説明する。
(A成分:ポリカーボネート樹脂)
本発明において使用されるポリカーボネート樹脂は、二価フェノールとカーボネート前駆体とを反応させて得られるものである。反応方法の一例として界面重合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、および環状カーボネート化合物の開環重合法などを挙げることができる。
Hereinafter, the details of the present invention will be described.
(Component A: Polycarbonate resin)
The polycarbonate resin used in the present invention is obtained by reacting a divalent phenol with a carbonate precursor. Examples of the reaction method include an interfacial polymerization method, a molten transesterification method, a solid phase transesterification method of a carbonate prepolymer, and a ring-opening polymerization method of a cyclic carbonate compound.

ここで使用される二価フェノールの代表的な例としては、ハイドロキノン、レゾルシノール、4,4’−ビフェノール、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)プロパン(通称ビスフェノールA)、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、2,2−ビス(4−ヒドロキシフェニル)ペンタン、4,4’−(p−フェニレンジイソプロピリデン)ジフェノール、4,4’−(m−フェニレンジイソプロピリデン)ジフェノール、1,1−ビス(4−ヒドロキシフェニル)−4−イソプロピルシクロヘキサン、ビス(4−ヒドロキシフェニル)オキシド、ビス(4−ヒドロキシフェニル)スルフィド、ビス(4−ヒドロキシフェニル)スルホキシド、ビス(4−ヒドロキシフェニル)スルホン、ビス(4−ヒドロキシフェニル)ケトン、ビス(4−ヒドロキシフェニル)エステル、ビス(4−ヒドロキシ−3−メチルフェニル)スルフィド、9,9−ビス(4−ヒドロキシフェニル)フルオレンおよび9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンなどが挙げられる。好ましい二価フェノールは、ビス(4−ヒドロキシフェニル)アルカンであり、なかでも耐衝撃性の点からビスフェノールAが特に好ましく、汎用されている。 Typical examples of the dihydric phenol used here are hydroquinone, resorcinol, 4,4'-biphenol, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl). ) Propane (commonly known as bisphenol A), 2,2-bis (4-hydroxy-3-methylphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 1,1-bis (4-hydroxyphenyl)- 1-phenylethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2,2-bis (4-hydroxyphenyl) Pentan, 4,4'-(p-phenylenediisopropyridene) diphenol, 4,4'-(m-phenylenediisopropylidene) diphenol, 1,1-bis (4-hydroxyphenyl) -4-isopropylcyclohexane , Bis (4-hydroxyphenyl) oxide, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfoxide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) ketone, bis (4-hydroxyphenyl) ketone Hydroxyphenyl) esters, bis (4-hydroxy-3-methylphenyl) sulfides, 9,9-bis (4-hydroxyphenyl) fluorene and 9,9-bis (4-hydroxy-3-methylphenyl) fluorene. Be done. A preferable divalent phenol is a bis (4-hydroxyphenyl) alkane, and among them, bisphenol A is particularly preferable from the viewpoint of impact resistance, and is widely used.

本発明では、汎用のポリカーボネートであるビスフェノールA系のポリカーボネート以外にも、他の2価フェノール類を用いて製造した特殊なポリカーボネ−トをA成分として使用することが可能である。 In the present invention, in addition to the bisphenol A-based polycarbonate, which is a general-purpose polycarbonate, a special polycarbonate produced by using other divalent phenols can be used as the A component.

例えば、2価フェノール成分の一部又は全部として、4,4’−(m−フェニレンジイソプロピリデン)ジフェノール(以下“BPM”と略称することがある)、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン(以下“Bis−TMC”と略称することがある)、9,9−ビス(4−ヒドロキシフェニル)フルオレン及び9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン(以下“BCF”と略称することがある)を用いたポリカーボネ−ト(単独重合体又は共重合体)は、吸水による寸法変化や形態安定性の要求が特に厳しい用途に適当である。これらのBPA以外の2価フェノールは、該ポリカーボネートを構成する2価フェノール成分全体の5モル%以上、特に10モル%以上、使用するのが好ましい。 For example, 4,4'-(m-phenylenediisopropyridene) diphenol (hereinafter sometimes abbreviated as "BPM"), 1,1-bis (4-hydroxy) as a part or all of the divalent phenol component. Phenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane (hereinafter sometimes abbreviated as "Bis-TMC"), 9,9-bis (4-hydroxyphenyl) Polycarbonates (monopolymers or copolymers) using fluorene and 9,9-bis (4-hydroxy-3-methylphenyl) fluorene (hereinafter sometimes abbreviated as "BCF") have dimensions due to water absorption. Suitable for applications with particularly stringent requirements for change and morphological stability. It is preferable to use these divalent phenols other than BPA in an amount of 5 mol% or more, particularly 10 mol% or more, of the total divalent phenol components constituting the polycarbonate.

殊に、高剛性かつより良好な耐加水分解性が要求される場合には、樹脂組成物を構成するA成分が次の(1)〜(3)の共重合ポリカーボネートであるのが特に好適である。
(1)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPMが20〜80モル%(より好適には40〜75モル%、さらに好適には45〜65モル%)であり、かつBCFが20〜80モル%(より好適には25〜60モル%、さらに好適には35〜55モル%)である共重合ポリカーボネート。
(2)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPAが10〜95モル%(より好適には50〜90モル%、さらに好適には60〜85モル%)であり、かつBCFが5〜90モル%(より好適には10〜50モル%、さらに好適には15〜40モル%)である共重合ポリカーボネート。
(3)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPMが20〜80モル%(より好適には40〜75モル%、さらに好適には45〜65モル%)であり、かつBis−TMCが20〜80モル%(より好適には25〜60モル%、さらに好適には35〜55モル%)である共重合ポリカーボネート。
In particular, when high rigidity and better hydrolysis resistance are required, it is particularly preferable that the component A constituting the resin composition is the following copolymerized polycarbonates (1) to (3). is there.
(1) BPM is 20 to 80 mol% (more preferably 40 to 75 mol%, further preferably 45 to 65 mol%) and BCF in 100 mol% of the divalent phenol component constituting the polycarbonate. Copolymerized polycarbonate in an amount of 20 to 80 mol% (more preferably 25 to 60 mol%, still more preferably 35 to 55 mol%).
(2) BPA is 10 to 95 mol% (more preferably 50 to 90 mol%, further preferably 60 to 85 mol%) and BCF in 100 mol% of the divalent phenol component constituting the polycarbonate. A copolymerized polycarbonate having a content of 5 to 90 mol% (more preferably 10 to 50 mol%, still more preferably 15 to 40 mol%).
(3) BPM is 20 to 80 mol% (more preferably 40 to 75 mol%, further preferably 45 to 65 mol%) and Bis in 100 mol% of the divalent phenol component constituting the polycarbonate. -A copolymerized polycarbonate having a TMC of 20-80 mol% (more preferably 25-60 mol%, even more preferably 35-55 mol%).

これらの特殊なポリカーボネートは、単独で用いてもよく、2種以上を適宜混合して使用してもよい。また、これらを汎用されているビスフェノールA型のポリカーボネートと混合して使用することもできる。 These special polycarbonates may be used alone or in admixture of two or more. Further, these can also be used by mixing them with a widely used bisphenol A type polycarbonate.

これらの特殊なポリカーボネートの製法及び特性については、例えば、特開平6−172508号公報、特開平8−27370号公報、特開2001−55435号公報及び特開2002−117580号公報等に詳しく記載されている。 The production method and characteristics of these special polycarbonates are described in detail in, for example, JP-A-6-172508, JP-A-8-27370, JP-A-2001-55435, JP-A-2002-117580 and the like. ing.

なお、上述した各種のポリカーボネートの中でも、共重合組成等を調整して、吸水率及びTg(ガラス転移温度)を下記の範囲内にしたものは、ポリマー自体の耐加水分解性が良好で、かつ成形後の低反り性においても格段に優れているため、形態安定性が要求される分野では特に好適である。
(i)吸水率が0.05〜0.15%、好ましくは0.06〜0.13%であり、かつTgが120〜180℃であるポリカーボネート、あるいは
(ii)Tgが160〜250℃、好ましくは170〜230℃であり、かつ吸水率が0.10〜0.30%、好ましくは0.13〜0.30%、より好ましくは0.14〜0.27%であるポリカーボネート。
Among the various polycarbonates described above, those in which the copolymerization composition and the like are adjusted so that the water absorption rate and Tg (glass transition temperature) are within the following ranges have good hydrolysis resistance of the polymer itself and. Since it is remarkably excellent in low warpage after molding, it is particularly suitable in fields where morphological stability is required.
(I) Polycarbonate having a water absorption rate of 0.05 to 0.15%, preferably 0.06 to 0.13% and a Tg of 120 to 180 ° C., or (ii) Tg of 160 to 250 ° C. Polycarbonate preferably at 170 to 230 ° C. and having a water absorption rate of 0.10 to 0.30%, preferably 0.13 to 0.30%, more preferably 0.14 to 0.27%.

ここで、ポリカーボネートの吸水率は、直径45mm、厚み3.0mmの円板状試験片を用い、ISO62−1980に準拠して23℃の水中に24時間浸漬した後の水分率を測定した値である。また、Tg(ガラス転移温度)は、JIS K7121に準拠した示差走査熱量計(DSC)測定により求められる値である。 Here, the water absorption rate of polycarbonate is a value obtained by measuring the water content after immersing in water at 23 ° C. for 24 hours in accordance with ISO62-1980 using a disk-shaped test piece having a diameter of 45 mm and a thickness of 3.0 mm. is there. The Tg (glass transition temperature) is a value obtained by differential scanning calorimetry (DSC) measurement based on JIS K7121.

カーボネート前駆体としてはカルボニルハライド、炭酸ジエステルまたはハロホルメートなどが使用され、具体的にはホスゲン、ジフェニルカーボネートまたは二価フェノールのジハロホルメートなどが挙げられる。 As the carbonate precursor, carbonyl halide, carbonic acid diester or haloformate is used, and specific examples thereof include phosgene, diphenyl carbonate or dihaloformate of divalent phenol.

前記二価フェノールとカーボネート前駆体を界面重合法によってポリカーボネート樹脂を製造するに当っては、必要に応じて触媒、末端停止剤、二価フェノールが酸化するのを防止するための酸化防止剤などを使用してもよい。また本発明のポリカーボネート樹脂は三官能以上の多官能性芳香族化合物を共重合した分岐ポリカーボネート樹脂、芳香族または脂肪族(脂環式を含む)の二官能性カルボン酸を共重合したポリエステルカーボネート樹脂、二官能性アルコール(脂環式を含む)を共重合した共重合ポリカーボネート樹脂、並びにかかる二官能性カルボン酸および二官能性アルコールを共に共重合したポリエステルカーボネート樹脂を含む。また、得られたポリカーボネート樹脂の2種以上を混合した混合物であってもよい。 In producing a polycarbonate resin by interfacial polymerization of the divalent phenol and the carbonate precursor, if necessary, a catalyst, a terminal terminator, an antioxidant for preventing the dihydric phenol from being oxidized, etc. are used. You may use it. The polycarbonate resin of the present invention is a branched polycarbonate resin obtained by copolymerizing a trifunctional or higher polyfunctional aromatic compound, or a polyester carbonate resin obtained by copolymerizing an aromatic or aliphatic (including alicyclic) bifunctional carboxylic acid. , A copolymerized polycarbonate resin copolymerized with a bifunctional alcohol (including an alicyclic type), and a polyester carbonate resin copolymerized with such a bifunctional carboxylic acid and a bifunctional alcohol. Further, it may be a mixture of two or more of the obtained polycarbonate resins.

分岐ポリカーボネート樹脂は、本発明のポリカーボネート樹脂組成物に、ドリップ防止性能などを付与できる。かかる分岐ポリカーボネート樹脂に使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、または4,6−ジメチル−2,4,6−トリス(4−ヒドロキジフェニル)ヘプテン−2、2,4,6−トリメチル−2,4,6−トリス(4−ヒドロキシフェニル)ヘプタン、1,3,5−トリス(4−ヒドロキシフェニル)ベンゼン、1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタン、2,6−ビス(2−ヒドロキシ−5−メチルベンジル)−4−メチルフェノール、4−{4−[1,1−ビス(4−ヒドロキシフェニル)エチル]ベンゼン}−α,α−ジメチルベンジルフェノール等のトリスフェノール、テトラ(4−ヒドロキシフェニル)メタン、ビス(2,4−ジヒドロキシフェニル)ケトン、1,4−ビス(4,4−ジヒドロキシトリフェニルメチル)ベンゼン、またはトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等が挙げられ、中でも1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタンが好ましく、特に1,1,1−トリス(4−ヒドロキシフェニル)エタンが好ましい。 The branched polycarbonate resin can impart drip prevention performance and the like to the polycarbonate resin composition of the present invention. Examples of the trifunctional or higher polyfunctional aromatic compound used in such a branched polycarbonate resin include fluoroglusin, fluorogluside, or 4,6-dimethyl-2,4,6-tris (4-hydrokidiphenyl) hepten-2, 2. , 4,6-trimethyl-2,4,6-tris (4-hydroxyphenyl) heptane, 1,3,5-tris (4-hydroxyphenyl) benzene, 1,1,1-tris (4-hydroxyphenyl) Etan, 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane, 2,6-bis (2-hydroxy-5-methylbenzyl) -4-methylphenol, 4- {4-[ 1,1-bis (4-hydroxyphenyl) ethyl] benzene} -α, trisphenol such as α-dimethylbenzylphenol, tetra (4-hydroxyphenyl) methane, bis (2,4-dihydroxyphenyl) ketone, 1, Examples thereof include 4-bis (4,4-dihydroxytriphenylmethyl) benzene, trimellitic acid, pyromellitic acid, benzophenone tetracarboxylic acid and their acid chlorides, among which 1,1,1-tris (4-hydroxy) Phenyl) ethane and 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane are preferable, and 1,1,1-tris (4-hydroxyphenyl) ethane is particularly preferable.

分岐ポリカーボネートにおける多官能性芳香族化合物から誘導される構成単位は、2価フェノールから誘導される構成単位とかかる多官能性芳香族化合物から誘導される構成単位との合計100モル%中、好ましくは0.01〜1モル%、より好ましくは0.05〜0.9モル%、さらに好ましくは0.05〜0.8モル%である。 The structural unit derived from the polyfunctional aromatic compound in the branched polycarbonate is preferably a total of 100 mol% of the structural unit derived from divalent phenol and the structural unit derived from such a polyfunctional aromatic compound. It is 0.01 to 1 mol%, more preferably 0.05 to 0.9 mol%, still more preferably 0.05 to 0.8 mol%.

また、特に溶融エステル交換法の場合、副反応として分岐構造単位が生ずる場合があるが、かかる分岐構造単位量についても、2価フェノールから誘導される構成単位との合計100モル%中、好ましくは0.001〜1モル%、より好ましくは0.005〜0.9モル%、さらに好ましくは0.01〜0.8モル%であるものが好ましい。なお、かかる分岐構造の割合についてはH−NMR測定により算出することが可能である。 Further, particularly in the case of the molten transesterification method, a branched structural unit may be generated as a side reaction, and the amount of the branched structural unit is preferably 100 mol% in total including the structural unit derived from divalent phenol. It is preferably 0.001 to 1 mol%, more preferably 0.005 to 0.9 mol%, still more preferably 0.01 to 0.8 mol%. The ratio of such a branched structure can be calculated by 1 1 H-NMR measurement.

脂肪族の二官能性のカルボン酸は、α,ω−ジカルボン酸が好ましい。脂肪族の二官能性のカルボン酸としては例えば、セバシン酸(デカン二酸)、ドデカン二酸、テトラデカン二酸、オクタデカン二酸、イコサン二酸などの直鎖飽和脂肪族ジカルボン酸、並びにシクロヘキサンジカルボン酸などの脂環族ジカルボン酸が好ましく挙げられる。二官能性アルコールとしては脂環族ジオールがより好適であり、例えばシクロヘキサンジメタノール、シクロヘキサンジオール、およびトリシクロデカンジメタノールなどが例示される。 The aliphatic bifunctional carboxylic acid is preferably α, ω-dicarboxylic acid. Examples of the aliphatic bifunctional carboxylic acid include linear saturated aliphatic dicarboxylic acids such as sebacic acid (decanedioic acid), dodecanedioic acid, tetradecanedioic acid, octadecanedioic acid, and icosandioic acid, and cyclohexanedicarboxylic acid. The alicyclic dicarboxylic acid such as is preferably mentioned. As the bifunctional alcohol, an alicyclic diol is more preferable, and examples thereof include cyclohexanedimethanol, cyclohexanediol, and tricyclodecanedimethanol.

本発明のポリカーボネート樹脂の製造方法である界面重合法、溶融エステル交換法、カーボネートプレポリマー固相エステル交換法、および環状カーボネート化合物の開環重合法などの反応形式は、各種の文献および特許公報などで良く知られている方法である。 Reaction formats such as the interfacial polymerization method, the molten transesterification method, the carbonate prepolymer solid phase transesterification method, and the ring-opening polymerization method of the cyclic carbonate compound, which are the methods for producing the polycarbonate resin of the present invention, are described in various documents and patent publications. This is a well-known method.

本発明のポリカーボネート樹脂組成物を製造するにあたり、ポリカーボネート樹脂の粘度平均分子量は、12,500〜32,000であることが好ましく、より好ましくは16,000〜28,000、さらに好ましくは18,000〜26,000である。粘度平均分子量が12,500未満のポリカーボネート樹脂では、良好な機械的特性が得られない場合がある。一方、粘度平均分子量が32,000を超えるポリカーボネート樹脂から得られる樹脂組成物は、難燃性に劣る場合がある。 In producing the polycarbonate resin composition of the present invention, the viscosity average molecular weight of the polycarbonate resin is preferably 12,500 to 32,000, more preferably 16,000 to 28,000, and even more preferably 18,000. ~ 26,000. A polycarbonate resin having a viscosity average molecular weight of less than 12,500 may not have good mechanical properties. On the other hand, a resin composition obtained from a polycarbonate resin having a viscosity average molecular weight of more than 32,000 may be inferior in flame retardancy.

本発明でいう粘度平均分子量は、まず、次式にて算出される比粘度(ηSP)を20℃で塩化メチレン100mlにポリカーボネート0.7gを溶解した溶液からオストワルド粘度計を用いて求め、
比粘度(ηSP)=(t−t)/t
[tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
求められた比粘度(ηSP)から次の数式により粘度平均分子量Mを算出する。
ηSP/c=[η]+0.45×[η]c(但し[η]は極限粘度)
[η]=1.23×10−40.83
c=0.7
The viscosity average molecular weight referred to in the present invention is first determined by using an Ostwald viscometer from a solution of 0.7 g of polycarbonate in 100 ml of methylene chloride at 20 ° C. for the specific viscosity (η SP) calculated by the following formula.
Specific viscosity (η SP ) = (t-t 0 ) / t 0
[T 0 is the number of seconds for methylene chloride to fall, t is the number of seconds for the sample solution to fall]
From the obtained specific viscosity (η SP ), the viscosity average molecular weight M is calculated by the following formula.
η SP / c = [η] + 0.45 × [η] 2 c (however, [η] is the ultimate viscosity)
[Η] = 1.23 × 10 -4 M 0.83
c = 0.7

尚、本発明のポリカーボネート樹脂組成物におけるポリカーボネート樹脂の粘度平均分子量の算出は次の要領で行なわれる。すなわち、該組成物を、その20〜30倍重量の塩化メチレンと混合し、組成物中の可溶分を溶解させる。かかる可溶分をセライト濾過により採取する。その後得られた溶液中の溶媒を除去する。溶媒除去後の固体を十分に乾燥し、塩化メチレンに溶解する成分の固体を得る。かかる固体0.7gを塩化メチレン100mlに溶解した溶液から、上記と同様にして20℃における比粘度を求め、該比粘度から上記と同様にして粘度平均分子量Mを算出する。 The viscosity average molecular weight of the polycarbonate resin in the polycarbonate resin composition of the present invention is calculated as follows. That is, the composition is mixed with 20 to 30 times the weight of methylene chloride to dissolve the soluble component in the composition. Such soluble matter is collected by Celite filtration. The solvent in the resulting solution is then removed. The solid after removing the solvent is sufficiently dried to obtain a solid having a component that dissolves in methylene chloride. From a solution prepared by dissolving 0.7 g of such a solid in 100 ml of methylene chloride, the specific viscosity at 20 ° C. is obtained in the same manner as described above, and the viscosity average molecular weight M is calculated from the specific viscosity in the same manner as described above.

本発明のポリカーボネート樹脂としてポリカーボネート−ポリジオルガノシロキサン共重合樹脂を使用することも出来る。ポリカーボネート−ポリジオルガノシロキサン共重合樹脂は下記一般式(1)で表される二価フェノールおよび下記一般式(3)で表されるヒドロキシアリール末端ポリジオルガノシロキサンを共重合させることにより調製される共重合樹脂であることが好ましい。 A polycarbonate-polydiorganosiloxane copolymer resin can also be used as the polycarbonate resin of the present invention. The polycarbonate-polydiorganosiloxane copolymer resin is a copolymer prepared by copolymerizing a dihydric phenol represented by the following general formula (1) and a hydroxyaryl-terminated polydiorganosiloxane represented by the following general formula (3). It is preferably a resin.

Figure 2021031544
Figure 2021031544

[上記一般式(1)において、R及びRは夫々独立して水素原子、ハロゲン原子、炭素原子数1〜18のアルキル基、炭素原子数1〜18のアルコキシ基、炭素原子数6〜20のシクロアルキル基、炭素原子数6〜20のシクロアルコキシ基、炭素原子数2〜10のアルケニル基、炭素原子数6〜14のアリール基、炭素原子数6〜14のアリールオキシ基、炭素原子数7〜20のアラルキル基、炭素原子数7〜20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、それぞれ複数ある場合はそれらは同一でも異なっていても良く、e及びfは夫々1〜4の整数であり、Wは単結合もしくは下記一般式(2)で表される基からなる群より選ばれる少なくとも一つの基である。] [In the above general formula (1), R 1 and R 2 are independently hydrogen atom, halogen atom, alkyl group having 1 to 18 carbon atoms, alkoxy group having 1 to 18 carbon atoms, and 6 to 18 carbon atoms, respectively. 20 cycloalkyl groups, 6 to 20 carbon atoms cycloalkoxy groups, 2 to 10 carbon atoms alkenyl groups, 6 to 14 carbon atoms aryl groups, 6 to 14 carbon atoms aryloxy groups, carbon atoms Represents a group selected from the group consisting of an arylyl group having a number of 7 to 20, an arylyloxy group having a carbon atom number of 7 to 20, a nitro group, an aldehyde group, a cyano group, and a carboxyl group. E and f are each an integer of 1 to 4, and W is at least one group selected from the group consisting of a single bond or a group represented by the following general formula (2). ]

Figure 2021031544
Figure 2021031544

[上記一般式(2)においてR11,R12,R13,R14,R15,R16,R17及びR18は夫々独立して水素原子、炭素原子数1〜18のアルキル基、炭素原子数6〜14のアリール基及び炭素原子数7〜20のアラルキル基からなる群から選ばれる基を表し、R19及びR20は夫々独立して水素原子、ハロゲン原子、炭素原子数1〜18のアルキル基、炭素原子数1〜10のアルコキシ基、炭素原子数6〜20のシクロアルキル基、炭素原子数6〜20のシクロアルコキシ基、炭素原子数2〜10のアルケニル基、炭素原子数6〜14のアリール基、炭素原子数6〜10のアリールオキシ基、炭素原子数7〜20のアラルキル基、炭素原子数7〜20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、複数ある場合はそれらは同一でも異なっていても良く、gは1〜10の整数、hは4〜7の整数である。] [In the above general formula (2), R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 are independently hydrogen atoms, alkyl groups having 1 to 18 carbon atoms, and carbon. Represents a group selected from the group consisting of an aryl group having 6 to 14 atoms and an alkoxy group having 7 to 20 carbon atoms, and R 19 and R 20 are independent hydrogen atoms, halogen atoms, and carbon atoms 1 to 18 respectively. Alkyl group, alkoxy group with 1 to 10 carbon atoms, cycloalkyl group with 6 to 20 carbon atoms, cycloalkoxy group with 6 to 20 carbon atoms, alkoxy group with 2 to 10 carbon atoms, 6 carbon atoms From an aryl group of ~ 14, an aryloxy group having 6 to 10 carbon atoms, an alkoxy group having 7 to 20 carbon atoms, an alkoxy group having 7 to 20 carbon atoms, a nitro group, an aldehyde group, a cyano group and a carboxyl group. Represents a group selected from the group, and if there are a plurality of groups, they may be the same or different, and g is an integer of 1 to 10 and h is an integer of 4 to 7. ]

Figure 2021031544
Figure 2021031544

[上記一般式(3)において、R、R、R、R、R及びRは、各々独立に水素原子、炭素数1〜12のアルキル基又は炭素数6〜12の置換若しくは無置換のアリール基であり、R及びR10は夫々独立して水素原子、ハロゲン原子、炭素原子数1〜10のアルキル基、炭素原子数1〜10のアルコキシ基であり、pは自然数であり、qは0又は自然数であり、p+qは10〜300の自然数である。Xは炭素数2〜8の二価脂肪族基である。] [In the above general formula (3), R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are independently substituted with a hydrogen atom, an alkyl group having 1 to 12 carbon atoms or 6 to 12 carbon atoms, respectively. Alternatively, it is an unsubstituted aryl group, and R 9 and R 10 are independently hydrogen atoms, halogen atoms, alkyl groups having 1 to 10 carbon atoms, and alkoxy groups having 1 to 10 carbon atoms, and p is a natural number. , Q is 0 or a natural number, and p + q is a natural number of 10 to 300. X is a divalent aliphatic group having 2 to 8 carbon atoms. ]

一般式(1)で表される二価フェノール(I)としては、例えば、4,4’−ジヒドロキシビフェニル、ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、2,2−ビス(4−ヒドロキシ−3,3’−ビフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−イソプロピルフェニル)プロパン、2,2−ビス(3−t−ブチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)オクタン、2,2−ビス(3−ブロモ−4−ヒドロキシフェニル)プロパン、2,2−ビス(3,5−ジメチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)プロパン、1,1−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)シクロヘキサン、ビス(4−ヒドロキシフェニル)ジフェニルメタン、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)シクロペンタン、4,4’−ジヒドロキシジフェニルエ−テル、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルエ−テル、4,4’−スルホニルジフェノール、4,4’−ジヒドロキシジフェニルスルホキシド、4,4’−ジヒドロキシジフェニルスルフィド、2,2’−ジメチル−4,4’−スルホニルジフェノール、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルフィド、2,2’−ジフェニル−4,4’−スルホニルジフェノール、4,4’−ジヒドロキシ−3,3’−ジフェニルジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジフェニルジフェニルスルフィド、1,3−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、1,4−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、1,4−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,3−ビス(4−ヒドロキシフェニル)シクロヘキサン、4,8−ビス(4−ヒドロキシフェニル)トリシクロ[5.2.1.02,6]デカン、4,4’−(1,3−アダマンタンジイル)ジフェノール、1,3−ビス(4−ヒドロキシフェニル)−5,7−ジメチルアダマンタン等が挙げられる。 Examples of the divalent phenol (I) represented by the general formula (1) include 4,4'-dihydroxybiphenyl, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, and the like. 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 1,1 -Bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2,2-bis (4-hydroxy-3,3'-biphenyl) propane, 2,2-bis (4-hydroxy-3-isopropyl) Phenyl) propane, 2,2-bis (3-t-butyl-4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) octane, 2 , 2-bis (3-bromo-4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, 2,2-bis (3-cyclohexyl-4-hydroxyphenyl) Propane, 1,1-bis (3-cyclohexyl-4-hydroxyphenyl) cyclohexane, bis (4-hydroxyphenyl) diphenylmethane, 9,9-bis (4-hydroxyphenyl) fluorene, 9,9-bis (4-hydroxy) -3-Methylphenyl) fluorene, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) cyclopentane, 4,4'-dihydroxydiphenyl ether, 4,4' -Dihydroxy-3,3'-dimethyldiphenylether, 4,4'-sulfonyldiphenol, 4,4'-dihydroxydiphenylsulfoxide, 4,4'-dihydroxydiphenylsulfide, 2,2'-dimethyl-4, 4'-sulfonyldiphenol, 4,4'-dihydroxy-3,3'-dimethyldiphenylsulfoxide, 4,4'-dihydroxy-3,3'-dimethyldiphenylsulfide, 2,2'-diphenyl-4,4' -Sulfonyldiphenol, 4,4'-dihydroxy-3,3'-diphenyldiphenylsulfoxide, 4,4'-dihydroxy-3,3'-diphenyldiphenylsulfide, 1,3-bis {2- (4-hydroxyphenyl) ) Propyl} benzene, 1,4-bis {2- (4-hydroxyphenyl) propyl} benzene, 1,4-bis (4-hydro) Xyphenyl) cyclohexane, 1,3-bis (4-hydroxyphenyl) cyclohexane, 4,8-bis (4-hydroxyphenyl) tricyclo [5.2.1.02,6] decane, 4,4'-(1, 3-adamantandiyl) diphenol, 1,3-bis (4-hydroxyphenyl) -5,7-dimethyladamantan and the like can be mentioned.

なかでも、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、4,4’−スルホニルジフェノール、2,2’−ジメチル−4,4’−スルホニルジフェノール、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、1,3−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、1,4−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼンが好ましく、殊に2,2−ビス(4−ヒドロキシフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン(BPZ)、4,4’−スルホニルジフェノール、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンが好ましい。中でも強度に優れ、良好な耐久性を有する2,2−ビス(4−ヒドロキシフェニル)プロパンが最も好適である。また、これらは単独または二種以上組み合わせて用いてもよい。 Among them, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 4,4'-sulfonyldiphenol, 2,2'-dimethyl- 4,4'-sulfonyldiphenol, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 1,3-bis {2- (4-hydroxyphenyl) propyl} benzene, 1,4-bis { 2- (4-Hydroxyphenyl) propyl} benzene is preferred, especially 2,2-bis (4-hydroxyphenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclohexane (BPZ), 4,4'-. Sulfonyldiphenol, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene is preferred. Of these, 2,2-bis (4-hydroxyphenyl) propane, which has excellent strength and good durability, is most preferable. Moreover, these may be used individually or in combination of 2 or more types.

上記一般式(3)で表されるヒドロキシアリール末端ポリジオルガノシロキサンとしては、例えば下記に示すような化合物が好適に用いられる。 As the hydroxyaryl-terminated polydiorganosiloxane represented by the general formula (3), for example, the following compounds are preferably used.

Figure 2021031544
Figure 2021031544

ヒドロキシアリール末端ポリジオルガノシロキサン(II)は、オレフィン性の不飽和炭素−炭素結合を有するフェノール類、好適にはビニルフェノール、2−アリルフェノール、イソプロペニルフェノール、2−メトキシ−4−アリルフェノールを所定の重合度を有するポリシロキサン鎖の末端に、ハイドロシリレーション反応させることにより容易に製造される。なかでも、(2−アリルフェノール)末端ポリジオルガノシロキサン、(2−メトキシ−4−アリルフェノール)末端ポリジオルガノシロキサンが好ましく、殊に(2−アリルフェノール)末端ポリジメチルシロキサン、(2−メトキシ−4−アリルフェノール)末端ポリジメチルシロキサンが好ましい。ヒドロキシアリール末端ポリジオルガノシロキサン(II)は、その分子量分布(Mw/Mn)が3以下であることが好ましい。さらに優れた高温成形時の低アウトガス性と低温衝撃性を発現させるために、かかる分子量分布(Mw/Mn)はより好ましくは2.5以下であり、さらに好ましくは2以下である。かかる好適な範囲の上限を超えると高温成形時のアウトガス発生量が多く、また、低温衝撃性に劣る場合がある。 The hydroxyaryl-terminated polydiorganosiloxane (II) prescribes phenols having an olefinic unsaturated carbon-carbon bond, preferably vinylphenol, 2-allylphenol, isopropenylphenol, and 2-methoxy-4-allylphenol. It is easily produced by subjecting the terminal of a polysiloxane chain having the degree of polymerization of the above to a hydrosilylation reaction. Of these, (2-allylphenol) -terminal polydiorganosiloxane and (2-methoxy-4-allylphenol) -terminal polydiorganosiloxane are preferable, and (2-allylphenol) -terminal polydimethylsiloxane and (2-methoxy-4) are particularly preferable. -Allylphenol) -terminated polydimethylsiloxane is preferred. The hydroxyaryl-terminated polydiorganosiloxane (II) preferably has a molecular weight distribution (Mw / Mn) of 3 or less. The molecular weight distribution (Mw / Mn) is more preferably 2.5 or less, still more preferably 2 or less, in order to exhibit more excellent low outgassing property and low temperature impact property during high temperature molding. If the upper limit of such a suitable range is exceeded, the amount of outgas generated during high-temperature molding is large, and the low-temperature impact resistance may be inferior.

また、高度な耐衝撃性を実現するためにヒドロキシアリール末端ポリジオルガノシロキサン(II)のジオルガノシロキサン重合度(p+q)は10〜300が適切である。かかるジオルガノシロキサン重合度(p+q)は好ましくは10〜200、より好ましくは12〜150、更に好ましくは14〜100である。かかる好適な範囲の下限未満では、ポリカーボネート−ポリジオルガノシロキサン共重合体の特徴である耐衝撃性が有効に発現せず、かかる好適な範囲の上限を超えると外観不良が現れる。 Further, in order to realize high impact resistance, the degree of polymerization (p + q) of the hydroxyaryl-terminated polydiorganosiloxane (II) is preferably 10 to 300. The degree of polymerization of diorganosiloxane (p + q) is preferably 10 to 200, more preferably 12 to 150, and even more preferably 14 to 100. Below the lower limit of the suitable range, the impact resistance characteristic of the polycarbonate-polydiorganosiloxane copolymer is not effectively exhibited, and when the upper limit of the suitable range is exceeded, poor appearance appears.

A成分で使用されるポリカーボネート−ポリジオルガノシロキサン共重合樹脂全重量に占めるポリジオルガノシロキサン含有量は0.1〜50重量%が好ましい。かかるポリジオルガノシロキサン成分含有量はより好ましくは0.5〜30重量%、さらに好ましくは1〜20重量%である。かかる好適な範囲の下限以上では、耐衝撃性や難燃性に優れ、かかる好適な範囲の上限以下では、成形条件の影響を受けにくい安定した外観が得られやすい。かかるポリジオルガノシロキサン重合度、ポリジオルガノシロキサン含有量は、1H−NMR測定により算出することが可能である。 The content of polydiorganosiloxane in the total weight of the polycarbonate-polydiorganosiloxane copolymer used in component A is preferably 0.1 to 50% by weight. The content of the polydiorganosiloxane component is more preferably 0.5 to 30% by weight, still more preferably 1 to 20% by weight. Above the lower limit of the suitable range, impact resistance and flame retardancy are excellent, and below the upper limit of the suitable range, a stable appearance that is not easily affected by molding conditions can be easily obtained. The degree of polymerization of polydiorganosiloxane and the content of polydiorganosiloxane can be calculated by 1H-NMR measurement.

本発明において、ヒドロキシアリール末端ポリジオルガノシロキサン(II)は1種のみを用いてもよく、また、2種以上を用いてもよい。 In the present invention, only one type of hydroxyaryl-terminated polydiorganosiloxane (II) may be used, or two or more types may be used.

また、本発明の妨げにならない範囲で、上記二価フェノール(I)、ヒドロキシアリール末端ポリジオルガノシロキサン(II)以外の他のコモノマーを共重合体の全重量に対して10重量%以下の範囲で併用することもできる。 Further, as long as it does not interfere with the present invention, a comonomer other than the above divalent phenol (I) and hydroxyaryl-terminated polydiorganosiloxane (II) is added in a range of 10% by weight or less based on the total weight of the copolymer. It can also be used together.

本発明においては、あらかじめ水に不溶性の有機溶媒とアルカリ水溶液との混合液中における二価フェノール(I)と炭酸エステル形成性化合物の反応により末端クロロホルメート基を有するオリゴマーを含む混合溶液を調製する。 In the present invention, a mixed solution containing an oligomer having a terminal chloroformate group is prepared in advance by a reaction of a dihydric phenol (I) and a carbonic acid ester-forming compound in a mixed solution of an organic solvent insoluble in water and an alkaline aqueous solution. To do.

二価フェノール(I)のオリゴマーを生成するにあたり、本発明の方法に用いられる二価フェノール(I)の全量を一度にオリゴマーにしてもよく、又は、その一部を後添加モノマーとして後段の界面重縮合反応に反応原料として添加してもよい。後添加モノマーとは、後段の重縮合反応を速やかに進行させるために加えるものであり、必要のない場合には敢えて加える必要はない。 In producing the oligomer of divalent phenol (I), the entire amount of divalent phenol (I) used in the method of the present invention may be made into an oligomer at a time, or a part thereof may be used as a post-added monomer at the subsequent interface. It may be added as a reaction raw material to the polycondensation reaction. The post-added monomer is added to allow the polycondensation reaction in the subsequent stage to proceed rapidly, and it is not necessary to add it when it is not necessary.

このオリゴマー生成反応の方式は特に限定はされないが、通常、酸結合剤の存在下、溶媒中で行う方式が好適である。 The method of this oligomer-forming reaction is not particularly limited, but a method performed in a solvent in the presence of an acid binder is usually preferable.

炭酸エステル形成性化合物の使用割合は、反応の化学量論比(当量)を考慮して適宜調整すればよい。また、ホスゲン等のガス状の炭酸エステル形成性化合物を使用する場合、これを反応系に吹き込む方法が好適に採用できる。 The ratio of the carbonic acid ester-forming compound used may be appropriately adjusted in consideration of the stoichiometric ratio (equivalent) of the reaction. When a gaseous carbonic acid ester-forming compound such as phosgene is used, a method of blowing it into the reaction system can be preferably adopted.

前記酸結合剤としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩、ピリジン等の有機塩基あるいはこれらの混合物などが用いられる。酸結合剤の使用割合も、上記同様に、反応の化学量論比(当量)を考慮して適宜定めればよい。具体的には、オリゴマーの形成に使用する二価フェノール(I)のモル数(通常1モルは2当量に相当)に対して2当量若しくはこれより若干過剰量の酸結合剤を用いることが好ましい。 As the acid binder, for example, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, organic bases such as pyridine, and mixtures thereof are used. Similarly to the above, the ratio of the acid binder used may be appropriately determined in consideration of the stoichiometric ratio (equivalent) of the reaction. Specifically, it is preferable to use 2 equivalents or a slightly excess amount of the acid binder with respect to the number of moles of divalent phenol (I) used for forming the oligomer (usually 1 mol corresponds to 2 equivalents). ..

前記溶媒としては、公知のポリカーボネートの製造に使用されるものなど各種の反応に不活性な溶媒を1種単独であるいは混合溶媒として使用すればよい。代表的な例としては、例えば、キシレン等の炭化水素溶媒、塩化メチレン、クロロベンゼンをはじめとするハロゲン化炭化水素溶媒などが挙げられる。特に塩化メチレン等のハロゲン化炭化水素溶媒が好適に用いられる。 As the solvent, a solvent inert to various reactions such as those used for producing a known polycarbonate may be used alone or as a mixed solvent. Typical examples include hydrocarbon solvents such as xylene and halogenated hydrocarbon solvents such as methylene chloride and chlorobenzene. In particular, a halogenated hydrocarbon solvent such as methylene chloride is preferably used.

オリゴマー生成の反応圧力は特に制限はなく、常圧、加圧、減圧のいずれでもよいが、通常常圧下で反応を行うことが有利である。反応温度は−20〜50℃の範囲から選ばれ、多くの場合、重合に伴い発熱するので、水冷又は氷冷することが望ましい。反応時間は他の条件に左右され一概に規定できないが、通常、0.2〜10時間で行われる。オリゴマー生成反応のpH範囲は、公知の界面反応条件と同様であり、pHは常に10以上に調製される。 The reaction pressure for forming the oligomer is not particularly limited and may be normal pressure, pressurization, or reduced pressure, but it is usually advantageous to carry out the reaction under normal pressure. The reaction temperature is selected from the range of -20 to 50 ° C., and in many cases, heat is generated during polymerization, so it is desirable to cool with water or ice. The reaction time depends on other conditions and cannot be unconditionally defined, but is usually 0.2 to 10 hours. The pH range of the oligomer-forming reaction is the same as the known interfacial reaction conditions, and the pH is always adjusted to 10 or more.

本発明はこのようにして、末端クロロホルメート基を有する二価フェノール(I)のオリゴマーを含む混合溶液を得た後、該混合溶液を攪拌しながら分子量分布(Mw/Mn)が3以下まで高度に精製された一般式(3)で表わされるヒドロキシアリール末端ポリジオルガノシロキサン(II)を二価フェノール(I)に加え、該ヒドロキシアリール末端ポリジオルガノシロキサン(II)と該オリゴマーを界面重縮合させることによりポリカーボネート−ポリジオルガノシロキサン共重合体を得る。 In the present invention, after obtaining a mixed solution containing an oligomer of divalent phenol (I) having a terminal chloroformate group, the molecular weight distribution (Mw / Mn) is up to 3 or less while stirring the mixed solution. The highly purified hydroxyaryl-terminated polydiorganosiloxane (II) represented by the general formula (3) is added to the divalent phenol (I), and the hydroxyaryl-terminated polydiorganosiloxane (II) and the oligomer are polycondensed. Thereby, a polycarbonate-polydiorganosiloxane copolymer is obtained.

Figure 2021031544
Figure 2021031544

(上記一般式(3)において、R、R、R、R、R及びRは、各々独立に水素原子、炭素数1〜12のアルキル基又は炭素数6〜12の置換若しくは無置換のアリール基であり、R及びR10は夫々独立して水素原子、ハロゲン原子、炭素原子数1〜10のアルキル基、炭素原子数1〜10のアルコキシ基であり、pは自然数であり、qは0又は自然数であり、p+qは10〜300の自然数である。Xは炭素数2〜8の二価脂肪族基である。) (In the above general formula (3), R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are independently substituted with a hydrogen atom, an alkyl group having 1 to 12 carbon atoms or 6 to 12 carbon atoms, respectively. Alternatively, it is an unsubstituted aryl group, and R 9 and R 10 are independently hydrogen atoms, halogen atoms, alkyl groups having 1 to 10 carbon atoms, and alkoxy groups having 1 to 10 carbon atoms, and p is a natural number. , Q is 0 or a natural number, p + q is a natural number of 10 to 300. X is a divalent aliphatic group having 2 to 8 carbon atoms.)

界面重縮合反応を行うにあたり、酸結合剤を反応の化学量論比(当量)を考慮して適宜追加してもよい。酸結合剤としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩、ピリジン等の有機塩基あるいはこれらの混合物などが用いられる。具体的には、使用するヒドロキシアリール末端ポリジオルガノシロキサン(II)、又は上記の如く二価フェノール(I)の一部を後添加モノマーとしてこの反応段階に添加する場合には、後添加分の二価フェノール(I)とヒドロキシアリール末端ポリジオルガノシロキサン(II)との合計モル数(通常1モルは2当量に相当)に対して2当量若しくはこれより過剰量のアルカリを用いることが好ましい。 In carrying out the interfacial polycondensation reaction, an acid binder may be added as appropriate in consideration of the stoichiometric ratio (equivalent) of the reaction. As the acid binder, for example, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, organic bases such as pyridine, and mixtures thereof are used. Specifically, when the hydroxyaryl-terminated polydiorganosiloxane (II) to be used or a part of the divalent phenol (I) as described above is added as a post-addition monomer to this reaction step, the post-addition amount is two. It is preferable to use 2 equivalents or an excess amount of alkali with respect to the total number of moles of the valent phenol (I) and the hydroxyaryl-terminated polydiorganosiloxane (II) (usually 1 mol corresponds to 2 equivalents).

二価フェノール(I)のオリゴマーとヒドロキシアリール末端ポリジオルガノシロキサン(II)との界面重縮合反応による重縮合は、上記混合液を激しく攪拌することにより行われる。 Polycondensation by the intercondensation polycondensation reaction between the oligomer of divalent phenol (I) and the hydroxyaryl-terminated polydiorganosiloxane (II) is carried out by vigorously stirring the above mixture.

かかる重合反応においては、末端停止剤或いは分子量調節剤が通常使用される。末端停止剤としては一価のフェノール性水酸基を有する化合物が挙げられ、通常のフェノール、p−tert−ブチルフェノール、p−クミルフェノール、トリブロモフェノールなどの他に、長鎖アルキルフェノール、脂肪族カルボン酸クロライド、脂肪族カルボン酸、ヒドロキシ安息香酸アルキルエステル、ヒドロキシフェニルアルキル酸エステル、アルキルエーテルフェノールなどが例示される。その使用量は用いる全ての二価フェノール系化合物100モルに対して、100〜0.5モル、好ましくは50〜2モルの範囲であり、二種以上の化合物を併用することも当然に可能である。 In such a polymerization reaction, a terminal terminator or a molecular weight modifier is usually used. Examples of the terminal terminator include compounds having a monovalent phenolic hydroxyl group, and in addition to ordinary phenols, p-tert-butylphenols, p-cumylphenols, tribromophenols, etc., long-chain alkylphenols and aliphatic carboxylic acids Examples thereof include chloride, aliphatic carboxylic acid, hydroxybenzoic acid alkyl ester, hydroxyphenyl alkyl acid ester, and alkyl ether phenol. The amount used is in the range of 100 to 0.5 mol, preferably 50 to 2 mol, with respect to 100 mol of all the divalent phenolic compounds used, and it is naturally possible to use two or more kinds of compounds in combination. is there.

重縮合反応を促進するために、トリエチルアミンのような第三級アミン又は第四級アンモニウム塩などの触媒を添加してもよい。 A catalyst such as a tertiary amine such as triethylamine or a quaternary ammonium salt may be added to promote the polycondensation reaction.

かかる重合反応の反応時間は、好ましくは30分以上、更に好ましくは50分以上である。所望に応じ、亜硫酸ナトリウム、ハイドロサルファイドなどの酸化防止剤を少量添加してもよい。 The reaction time of such a polymerization reaction is preferably 30 minutes or more, more preferably 50 minutes or more. If desired, a small amount of an antioxidant such as sodium sulfite or hydrosulfide may be added.

分岐化剤を上記の二価フェノール系化合物と併用して分岐化ポリカーボネート−ポリジオルガノシロキサンとすることができる。かかる分岐ポリカーボネート−ポリジオルガノシロキサン共重合樹脂に使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、または4,6−ジメチル−2,4,6−トリス(4−ヒドロキジフェニル)ヘプテン−2、2,4,6−トリメチル−2,4,6−トリス(4−ヒドロキシフェニル)ヘプタン、1,3,5−トリス(4−ヒドロキシフェニル)ベンゼン、1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタン、2,6−ビス(2−ヒドロキシ−5−メチルベンジル)−4−メチルフェノール、4−{4−[1,1−ビス(4−ヒドロキシフェニル)エチル]ベンゼン}−α,α−ジメチルベンジルフェノール等のトリスフェノール、テトラ(4−ヒドロキシフェニル)メタン、ビス(2,4−ジヒドロキシフェニル)ケトン、1,4−ビス(4,4−ジヒドロキシトリフェニルメチル)ベンゼン、またはトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等が挙げられ、中でも1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタンが好ましく、特に1,1,1−トリス(4−ヒドロキシフェニル)エタンが好ましい。分岐ポリカーボネート−ポリジオルガノシロキサン共重合樹脂中の多官能性化合物の割合は、ポリカーボネート−ポリジオルガノシロキサン共重合樹脂全量中、好ましくは0.001〜1モル%、より好ましくは0.005〜0.9モル%、さらに好ましくは0.01〜0.8モル%、特に好ましくは0.05〜0.4モル%である。なお、かかる分岐構造量についてはH−NMR測定により算出することが可能である。 A branching agent can be used in combination with the above divalent phenolic compound to obtain a branched polycarbonate-polydiorganosiloxane. Examples of the trifunctional or higher polyfunctional aromatic compound used in such a branched polycarbonate-polydiorganosiloxane copolymer resin include fluoroglusin, fluorogluside, or 4,6-dimethyl-2,4,6-tris (4-hydrokidiphenyl). ) Hepten-2,2,4,6-trimethyl-2,4,6-tris (4-hydroxyphenyl) heptane, 1,3,5-tris (4-hydroxyphenyl) benzene, 1,1,1-tris (4-Hydroxyphenyl) ethane, 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane, 2,6-bis (2-hydroxy-5-methylbenzyl) -4-methylphenol, 4- {4- [1,1-bis (4-hydroxyphenyl) ethyl] benzene} -α, trisphenol such as α-dimethylbenzylphenol, tetra (4-hydroxyphenyl) methane, bis (2,4-dihydroxy) Examples thereof include phenyl) ketone, 1,4-bis (4,4-dihydroxytriphenylmethyl) benzene, or trimellitic acid, pyromellitic acid, benzophenone tetracarboxylic acid and their acid chlorides, among which 1,1,1 -Tris (4-hydroxyphenyl) ethane and 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane are preferable, and 1,1,1-tris (4-hydroxyphenyl) ethane is particularly preferable. .. The proportion of the polyfunctional compound in the branched polycarbonate-polydiorganosiloxane copolymer resin is preferably 0.001 to 1 mol%, more preferably 0.005 to 0.9, based on the total amount of the polycarbonate-polydiorganosiloxane copolymer resin. It is mol%, more preferably 0.01 to 0.8 mol%, and particularly preferably 0.05 to 0.4 mol%. The amount of the branched structure can be calculated by 1 1 H-NMR measurement.

反応圧力は、減圧、常圧、加圧のいずれでも可能であるが、通常は、常圧若しくは反応系の自圧程度で好適に行い得る。反応温度は−20〜50℃の範囲から選ばれ、多くの場合、重合に伴い発熱するので、水冷又は氷冷することが望ましい。反応時間は反応温度等の他の条件によって異なるので一概に規定はできないが、通常、0.5〜10時間で行われる。 The reaction pressure can be reduced pressure, normal pressure, or pressurized pressure, but usually, normal pressure or the self-pressure of the reaction system can be preferably used. The reaction temperature is selected from the range of -20 to 50 ° C., and in many cases, heat is generated during polymerization, so it is desirable to cool with water or ice. The reaction time varies depending on other conditions such as the reaction temperature and cannot be unconditionally specified, but is usually 0.5 to 10 hours.

場合により、得られたポリカーボネート−ポリジオルガノシロキサン共重合樹脂に適宜物理的処理(混合、分画など)及び/又は化学的処理(ポリマー反応、架橋処理、部分分解処理など)を施して所望の還元粘度[ηSP/c]のポリカーボネート−ポリジオルガノシロキサン共重合樹脂として取得することもできる。 In some cases, the obtained polycarbonate-polydiorganosiloxane copolymer resin is appropriately subjected to physical treatment (mixing, fractionation, etc.) and / or chemical treatment (polymer reaction, cross-linking treatment, partial decomposition treatment, etc.) to reduce the desired amount. It can also be obtained as a polycarbonate-polydiorganosiloxane copolymer resin having a viscosity [η SP / c].

得られた反応生成物(粗生成物)は公知の分離精製法等の各種の後処理を施して、所望の純度(精製度)のポリカーボネート−ポリジオルガノシロキサン共重合樹脂として回収することができる。 The obtained reaction product (crude product) can be recovered as a polycarbonate-polydiorganosiloxane copolymer resin having a desired purity (purification degree) by subjecting various post-treatments such as a known separation and purification method.

ポリカーボネート−ポリジオルガノシロキサン共重合樹脂成形品中のポリジオルガノシロキサンドメインの平均サイズは、1〜40nmの範囲が好ましい。かかる平均サイズはより好ましくは1〜30nm、更に好ましくは5〜25nmである。かかる好適な範囲の下限未満では、耐衝撃性や難燃性が十分に発揮されず、かかる好適な範囲の上限を超えると耐衝撃性が安定して発揮されない場合がある。これにより耐衝撃性および外観に優れたポリカーボネート樹脂組成物が提供される。 The average size of the polydiorganosiloxane domain in the polycarbonate-polydiorganosiloxane copolymer resin molded product is preferably in the range of 1 to 40 nm. The average size is more preferably 1 to 30 nm, still more preferably 5 to 25 nm. If it is less than the lower limit of such a suitable range, impact resistance and flame retardancy may not be sufficiently exhibited, and if it exceeds the upper limit of such a suitable range, impact resistance may not be stably exhibited. This provides a polycarbonate resin composition having excellent impact resistance and appearance.

本発明におけるポリカーボネート−ポリジオルガノシロキサン共重合樹脂成形品のポリジオルガノシロキサンドメインの平均ドメインサイズ、規格化分散は、小角エックス線散乱法(Small Angle X−ray Scattering:SAXS)により評価した。小角エックス線散乱法とは、散乱角(2θ)<10°以内の小角領域で生じる散漫な散乱・回折を測定する方法である。この小角エックス線散乱法では、物質中に1〜100nm程度の大きさの電子密度の異なる領域があると、その電子密度差によりエックス線の散漫散乱が計測される。この散乱角と散乱強度に基づいて測定対象物の粒子径を求める。ポリカーボネートポリマーのマトリックス中にポリジオルガノシロキサンドメインが分散した凝集構造となるポリカーボネート−ポリジオルガノシロキサン共重合樹脂の場合、ポリカーボネートマトリックスとポリジオルガノシロキサンドメインの電子密度差により、エックス線の散漫散乱が生じる。散乱角(2θ)が10°未満の範囲の各散乱角(2θ)における散乱強度Iを測定して、小角エックス線散乱プロファイルを測定し、ポリジオルガノシロキサンドメインが球状ドメインであり、粒径分布のばらつきが存在すると仮定して、仮の粒径と仮の粒径分布モデルから、市販の解析ソフトウェアを用いてシミュレーションを行い、ポリジオルガノシロキサンドメインの平均サイズと粒径分布(規格化分散)を求める。小角エックス線散乱法によれば、透過型電子顕微鏡による観察では正確に測定できない、ポリカーボネートポリマーのマトリックス中に分散したポリジオルガノシロキサンドメインの平均サイズと粒径分布を、精度よく、簡便に、再現性良く測定することができる。平均ドメインサイズとは個々のドメインサイズの数平均を意味する。規格化分散とは、粒径分布の広がりを平均サイズで規格化したパラメータを意味する。具体的には、ポリジオルガノシロキサンドメインサイズの分散を平均ドメインサイズで規格化した値であり、下記式(1)で表される。 The average domain size and standardized dispersion of the polydiorganosiloxane domain of the polycarbonate-polydiorganosiloxane copolymer resin molded product in the present invention were evaluated by the Small Angle X-ray Scattering method (SAXS). The small-angle X-ray scattering method is a method for measuring diffuse scattering / diffraction occurring in a small-angle region within a scattering angle (2θ) <10 °. In this small-angle X-ray scattering method, if there are regions having different electron densities having a size of about 1 to 100 nm in a substance, diffuse scattering of X-rays is measured by the difference in electron densities. The particle size of the object to be measured is obtained based on the scattering angle and the scattering intensity. In the case of a polycarbonate-polydiorganosiloxane copolymer resin having an aggregated structure in which polydiorganosiloxane domains are dispersed in a matrix of a polycarbonate polymer, diffuse scattering of X-rays occurs due to the difference in electron density between the polycarbonate matrix and the polydiorganosiloxane domain. The scattering intensity I at each scattering angle (2θ) in the range where the scattering angle (2θ) is less than 10 ° is measured, the small angle X-ray scattering profile is measured, the polydiorganosiloxane domain is a spherical domain, and the particle size distribution varies. The average size and particle size distribution (standardized dispersion) of the polydiorganosiloxane domain are obtained by performing a simulation using commercially available analysis software from the temporary particle size and the temporary particle size distribution model. According to the small-angle X-ray scattering method, the average size and particle size distribution of polydiorganosiloxane domains dispersed in a matrix of polycarbonate polymer, which cannot be measured accurately by observation with a transmission electron microscope, can be accurately, easily, and reproducibly measured. Can be measured. The average domain size means the number average of individual domain sizes. Normalized dispersion means a parameter in which the spread of the particle size distribution is standardized by the average size. Specifically, it is a value obtained by normalizing the dispersion of the polydiorganosiloxane domain size with the average domain size, and is represented by the following formula (1).

Figure 2021031544
Figure 2021031544

上記式(1)において、δはポリジオルガノシロキサンドメインサイズの標準偏差、Davは平均ドメインサイズである。 In the above formula (1), δ is the standard deviation of the polydiorganosiloxane domain size, and Dav is the average domain size.

本発明に関連して用いる用語「平均ドメインサイズ」、「規格化分散」は、かかる小角エックス線散乱法により、実施例記載の方法で作製した3段型プレートの厚み1.0mm部を測定することにより得られる測定値を示す。また、粒子間相互作用(粒子間干渉)を考慮しない孤立粒子モデルにて解析を行った。 The terms "average domain size" and "normalized dispersion" used in connection with the present invention are to measure a thickness of 1.0 mm of a three-stage plate produced by the method described in Examples by such a small angle X-ray scattering method. The measured value obtained by In addition, the analysis was performed using an isolated particle model that does not consider the interaction between particles (interference between particles).

(B成分:ガラス繊維)
本発明で使用されるガラス繊維はガラス繊維を切断または粉砕したものであり、一般に
合成樹脂用強化材として使用されるものである。該ガラス繊維は、樹脂組成物中の平均繊維長が30〜900μmであり、かつ平均L/Dが10〜300を満足するガラス繊維であることが好ましい。ここでいうLはガラス繊維の平均長さ、Dは丸型断面を有するガラス繊維の場合は平均直径であり、扁平断面ガラス繊維の場合は、断面の長径の平均値を言う。平均繊維長は30〜500μmであることがより好ましく、L/Dは10〜200であることがより好ましい。L/Dが10より小さいと耐熱性が発現しない場合があり、300よりも大きいと成形品の外観や成形性が低下する場合があるため、好ましくない。また、平均繊維長が30μmより小さいと耐熱性が発現しない場合があり、900μmより大きいと成形品の外観や成形性が低下する場合がある。さらに、ガラス繊維の直径は特に制限する必要がないが、3〜50μmの範囲が好ましい。50μmを超えると成形品の外観が損なわれる場合があり、好ましくない。
(B component: glass fiber)
The glass fiber used in the present invention is obtained by cutting or crushing the glass fiber, and is generally used as a reinforcing material for synthetic resins. The glass fiber is preferably a glass fiber having an average fiber length of 30 to 900 μm in the resin composition and an average L / D of 10 to 300. Here, L is the average length of the glass fiber, D is the average diameter in the case of the glass fiber having a round cross section, and is the average value of the major axis in the cross section in the case of the flat cross section glass fiber. The average fiber length is more preferably 30 to 500 μm, and the L / D is more preferably 10 to 200. If the L / D is less than 10, heat resistance may not be exhibited, and if it is more than 300, the appearance and moldability of the molded product may be deteriorated, which is not preferable. Further, if the average fiber length is smaller than 30 μm, heat resistance may not be exhibited, and if it is larger than 900 μm, the appearance and moldability of the molded product may be deteriorated. Further, the diameter of the glass fiber does not need to be particularly limited, but is preferably in the range of 3 to 50 μm. If it exceeds 50 μm, the appearance of the molded product may be impaired, which is not preferable.

ガラス繊維としては、丸型断面を有するガラス繊維および扁平断面ガラス繊維が好ましく、扁平断面を有するガラス繊維がより好ましい。 As the glass fiber, a glass fiber having a round cross section and a glass fiber having a flat cross section are preferable, and a glass fiber having a flat cross section is more preferable.

ガラス繊維のガラス組成は、Aガラス、Cガラス、Tガラス、NCRガラス、HMEガラスおよびEガラス等に代表される各種のガラス組成が適用され、特に限定されない。 The glass composition of the glass fiber is not particularly limited as various glass compositions typified by A glass, C glass, T glass, NCR glass, HME glass, E glass and the like are applied.

B成分の含有量は、A成分100重量部に対して、20〜60重量部であり、好ましくは20〜55重量部、より好ましくは20〜50重量部である。B成分の含有量が20重量部未満である場合、耐熱性および剛性が不足し、難燃性も低下する。一方、60重量部より多くなると、押出加工性が低下する。 The content of the B component is 20 to 60 parts by weight, preferably 20 to 55 parts by weight, and more preferably 20 to 50 parts by weight with respect to 100 parts by weight of the A component. When the content of the B component is less than 20 parts by weight, the heat resistance and rigidity are insufficient, and the flame retardancy is also lowered. On the other hand, if the amount is more than 60 parts by weight, the extrusion processability is lowered.

(C成分:タルク)
本発明で使用されるタルクは、含水ケイ酸マグネシウムと呼ばれ、代表的な化学式は4SiO・3MgO・HOで表される。化学組成は産地によって多少異なるが、概ねSiO64.4%、MgO31.8%、強熱減量(水分)3.8%である。
(C component: talc)
Talc used in this invention is referred to as hydrated magnesium silicate, a typical chemical formula thereof is represented by 4SiO 2 · 3MgO · H 2 O . The chemical composition varies slightly depending on the production area, but is generally SiO 2 64.4%, MgO 31.8%, and ignition loss (moisture) 3.8%.

本発明において使用するタルクの平均粒径は5μm以下のものが好ましい。より好ましくは平均粒径が3μm以下であり、特に好ましくは2μm以下である。下限としては0.05μmを挙げることができる。ここでタルクの平均粒径は、液相沈降法の1つであるX線透過法で測定されたD50(粒子径分布のメジアン径)をいう。かかる測定を行う装置の具体例としてはマイクロメリティックス社製Sedigraph5100などを挙げることができる。 The average particle size of the talc used in the present invention is preferably 5 μm or less. More preferably, the average particle size is 3 μm or less, and particularly preferably 2 μm or less. As the lower limit, 0.05 μm can be mentioned. Here, the average particle size of talc refers to D50 (median diameter of particle size distribution) measured by the X-ray transmission method, which is one of the liquid phase sedimentation methods. Specific examples of the device for performing such measurement include Sedigrap 5100 manufactured by Micromeritix.

タルクは造粒された形態で使用されることが好ましい。造粒方法としては、バインダーを使用する場合と、実質的に使用しない場合がある。バインダーを使用しないものがより好適である。バインダーを使用しない場合の造粒方法としては、脱気圧縮の方法(例えば真空状態で脱気しながらブリケッティングマシーンなどでローラー圧縮する方法など)、および転動造粒や凝集造粒の方法などが挙げられる。 Talc is preferably used in granulated form. As a granulation method, there are cases where a binder is used and cases where a binder is substantially not used. Those that do not use a binder are more preferable. As a granulation method when a binder is not used, a degassing compression method (for example, a method of roller compression with a briquetting machine while degassing in a vacuum state), and a rolling granulation method or a cohesive granulation method. And so on.

C成分の含有量はA成分100重量部に対して、5〜60重量部であり、好ましくは5〜55重量部、より好ましくは10〜50重量部である。C成分の含有量が5重量部未満の場合には剛性、熱伝導性および耐熱性が低く、60重量部を超えると押出加工性が低下する。 The content of the C component is 5 to 60 parts by weight, preferably 5 to 55 parts by weight, and more preferably 10 to 50 parts by weight with respect to 100 parts by weight of the A component. When the content of the C component is less than 5 parts by weight, the rigidity, thermal conductivity and heat resistance are low, and when it exceeds 60 parts by weight, the extrusion processability is lowered.

(D成分:臭素系難燃剤)
本発明において用いる臭素系難燃剤としては、例えば臭素含有率20重量%以上の臭素化ビスフェノールA型ポリカーボネート難燃剤、臭素化ビスフェノールA型エポキシ樹脂およびその末端グリシジル基の一部または全部を封鎖した変性物、臭素化ジフェニルエーテル難燃剤、臭素化イミド難燃剤、臭素化ポリスチレン難燃剤等を挙げることができる。
(D component: brominated flame retardant)
Examples of the brominated flame retardant used in the present invention include a brominated bisphenol A type polycarbonate flame retardant having a bromine content of 20% by weight or more, a brominated bisphenol A type epoxy resin, and a modification in which a part or all of the terminal glycidyl group thereof is blocked. Examples thereof include brominated diphenyl ether flame retardants, brominated imide flame retardants, and brominated polystyrene flame retardants.

具体例としては、デカブロモジフェニルオキサイド、オクタブロモジフェニルオキサイド、テトラブロモジフェニルオキサイド、テトラブロモ無水フタル酸、ヘキサブロモシクロドデカン、ビス(2,4,6−トリブロモフェノキシ)エタン、エチレンビステトラブロモフタルイミド、ヘキサブロモベンゼン、1,1‐スルホニル[3,5‐ジブロモ‐4‐(2,3−ジブロモプロポキシ)]ベンゼン、ポリジブロモフェニレンオキサイド、テトラブロムビスフェノールS、トリス(2,3‐ジブロモプロピル‐1)イソシアヌレート、トリブロモフェノール、トリブロモフェニルアリルエーテル、トリブロモネオペンチルアルコール、ブロム化ポリスチレン、ブロム化ポリエチレン、テトラブロムビスフェノールA、テトラブロムビスフェノールA誘導体、テトラブロムビスフェノールA‐エポキシオリゴマーまたはポリマー、テトラブロムビスフェノールA‐カーボネートオリゴマーまたはポリマー、ブロム化フェノールノボラックエポキシなどのブロム化エポキシ樹脂、テトラブロムビスフェノールA‐ビス(2−ヒドロキシジエチルエーテル)、テトラブロムビスフェノールA‐ビス(2,3‐ジブロモプロピルエーテル)、テトラブロムビスフェノールA‐ビス(アリルエーテル)、テトラブロモシクロオクタン、エチレンビスペンタブロモジフェニル、トリス(トリブロモネオペンチル)ホスフェート、ポリ(ペンタブロモベンジルポリアクリレート)、オクタブロモトリメチルフェニルインダン、ジブロモネオペンチルグリコール、ペンタブロモベンジルポリアクリレート、ジブロモクレジルグリシジルエーテル、N,N′‐エチレン‐ビス‐テトラブロモフタルイミドなどが挙げられる。なかでも、テトラブロムビスフェノールA−エポキシオリゴマー、テトラブロムビスフェノールA−カーボネートオリゴマー、ブロム化エポキシ樹脂等が挙げられる。 Specific examples include decabromodiphenyl oxide, octabromodiphenyl oxide, tetrabromodiphenyl oxide, tetrabromophthalic anhydride, hexabromocyclododecane, bis (2,4,6-tribromophenoxy) ethane, ethylenebistetrabromophthalimide, Hexabromobenzene, 1,1-sulfonyl [3,5-dibromo-4- (2,3-dibromopropoxy)] benzene, polydibromophenylene oxide, tetrabrombisphenol S, tris (2,3-dibromopropyl-1) Isocyanurate, tribromophenol, tribromophenylallyl ether, tribromoneopentyl alcohol, brominated polystyrene, brominated polyethylene, tetrabrombisphenol A, tetrabrombisphenol A derivative, tetrabrombisphenol A-epoxy oligomer or polymer, tetrabrom Bisphenol A-carbonate oligomers or polymers, brominated epoxy resins such as brominated phenol novolac epoxy, tetrabrom bisphenol A-bis (2-hydroxydiethyl ether), tetrabrom bisphenol A-bis (2,3-dibromopropyl ether), Tetrabrombisphenol A-bis (allyl ether), tetrabromocyclooctane, ethylenebispentabromodiphenyl, tris (tribromoneopentyl) phosphate, poly (pentabromobenzylpolyacrylate), octabromotrimethylphenylindane, dibromoneopentyl glycol , Pentabromobenzyl polyacrylate, dibromocredyl glycidyl ether, N, N'-ethylene-bis-tetrabromophthalimide and the like. Among them, tetrabrombisphenol A-epoxy oligomer, tetrabrombisphenol A-carbonate oligomer, brominated epoxy resin and the like can be mentioned.

本発明の臭素系難燃剤としては、臭素化ポリカーボネート(オリゴマーを含む)が特に好適である。臭素化ポリカーボネートは耐熱性に優れ、かつ大幅に難燃性を向上できる。本発明で使用する臭素化ポリカーボネートは、下記一般式(4)で表される構成単位が全構成単位の少なくとも60モル%、好ましくは少なくとも80モル%であり、特に好ましくは実質的に下記一般式(4)で表される構成単位からなる臭素化ポリカーボネート化合物である。 As the brominated flame retardant of the present invention, brominated polycarbonate (including oligomers) is particularly suitable. Brominated polycarbonate has excellent heat resistance and can significantly improve flame retardancy. In the brominated polycarbonate used in the present invention, the structural unit represented by the following general formula (4) is at least 60 mol%, preferably at least 80 mol% of all the structural units, and particularly preferably substantially the following general formula. It is a brominated polycarbonate compound composed of the structural unit represented by (4).

Figure 2021031544
Figure 2021031544

(式(4)中、Xは臭素原子、Rは炭素数1〜4のアルキレン基、炭素数1〜4のアルキリデン基または−SO−である。)
また、かかる式(4)において、好適にはRはメチレン基、エチレン基、イソプロピリデン基、−SO−、特に好ましくはイソプロピリデン基を示す。
(In the formula (4), X is a bromine atom, R is an alkylene group having 1 to 4 carbon atoms, an alkylidene group having 1 to 4 carbon atoms, or -SO 2- ).
Further, in such formula (4), preferably R is a methylene group, an ethylene group, an isopropylidene group, -SO 2 - shows a particularly preferably isopropylidene group.

臭素化ポリカーボネートは、残存するクロロホーメート基末端が少なく、末端塩素量が0.3ppm以下であることが好ましく、より好ましくは0.2ppm以下である。かかる末端塩素量は、試料を塩化メチレンに溶解し、4−(p−ニトロベンジル)ピリジンを加えて末端塩素(末端クロロホーメート)と反応させ、これを紫外可視分光光度計(日立製作所製U−3200)により測定して求めることができる。末端塩素量が0.3ppm以下であると、樹脂組成物の熱安定性がより良好となり、更に高温の成形が可能となり、その結果成形加工性により優れた樹脂組成物が提供される。 The brominated polycarbonate has a small amount of residual chlorohomate group terminals, and the amount of terminal chlorine is preferably 0.3 ppm or less, more preferably 0.2 ppm or less. To determine the amount of terminal chlorine, dissolve the sample in methylene chloride, add 4- (p-nitrobenzyl) pyridine to react with terminal chlorine (terminal chlorohomet), and use this as an ultraviolet visible spectrophotometer (U, manufactured by Hitachi, Ltd.). It can be obtained by measuring according to -3200). When the amount of terminal chlorine is 0.3 ppm or less, the thermal stability of the resin composition becomes better, and molding at a higher temperature becomes possible, and as a result, a resin composition having more excellent molding processability is provided.

また臭素化ポリカーボネートは、残存する水酸基末端が少ないことが好ましい。より具体的には臭素化ポリカーボネートの構成単位1モルに対して、末端水酸基量が0.0005モル以下であることが好ましく、より好ましくは0.0003モル以下である。末端水酸基量は、試料を重クロロホルムに溶解し、H−NMR法により測定して求めることができる。かかる末端水酸基量であると、樹脂組成物の熱安定性が更に向上し好ましい。 Further, the brominated polycarbonate preferably has few remaining hydroxyl group terminals. More specifically, the amount of terminal hydroxyl groups is preferably 0.0005 mol or less, and more preferably 0.0003 mol or less, with respect to 1 mol of the constituent unit of the brominated polycarbonate. The amount of terminal hydroxyl groups can be determined by dissolving the sample in deuterated chloroform and measuring by 1 1 H-NMR method. Such an amount of terminal hydroxyl groups is preferable because the thermal stability of the resin composition is further improved.

臭素化ポリカーボネートの比粘度は、好ましくは0.015〜0.1の範囲、より好ましくは0.015〜0.08の範囲である。臭素化ポリカーボネートの比粘度は、前述した本発明のA成分であるポリカーボネート樹脂の粘度平均分子量を算出するに際し使用した上記比粘度の算出式に従って算出されたものである。 The specific viscosity of the brominated polycarbonate is preferably in the range of 0.015 to 0.1, more preferably in the range of 0.015 to 0.08. The specific viscosity of the brominated polycarbonate was calculated according to the above-mentioned specific viscosity calculation formula used in calculating the viscosity average molecular weight of the polycarbonate resin which is the component A of the present invention.

D成分の含有量は、A成分100重量部に対して、5〜30重量部であり、好ましくは5〜25重量部、より好ましくは5〜20重量部である。含有量が5重量部未満では、難燃性が改善されず、30重量部を超えると押出加工性が低下する。 The content of the D component is 5 to 30 parts by weight, preferably 5 to 25 parts by weight, and more preferably 5 to 20 parts by weight with respect to 100 parts by weight of the A component. If the content is less than 5 parts by weight, the flame retardancy is not improved, and if it exceeds 30 parts by weight, the extrusion processability is lowered.

(E成分:含フッ素滴下防止剤)
本発明の樹脂組成物は、含フッ素滴下防止剤を含有する。かかる含フッ素滴下防止剤を上記難燃剤と併用することにより、より良好な難燃性を得ることができる。かかる含フッ素滴下防止剤としては、フィブリル形成能を有する含フッ素ポリマーを挙げることができ、かかるポリマーとしてはポリテトラフルオロエチレン、テトラフルオロエチレン系共重合体(例えば、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、など)、米国特許第4379910号公報に示されるような部分フッ素化ポリマー、フッ素化ジフェノールから製造されるポリカーボネート樹脂などを挙げることかできるが、好ましくはポリテトラフルオロエチレン(以下PTFEと称することがある)である。
(Component E: Fluorine-containing dripping inhibitor)
The resin composition of the present invention contains a fluorine-containing dripping inhibitor. By using such a fluorine-containing drip inhibitor in combination with the above flame retardant, better flame retardancy can be obtained. Examples of such a fluorine-containing dripping inhibitor include a fluorine-containing polymer having a fibril-forming ability, and examples of such a polymer include polytetrafluoroethylene and a tetrafluoroethylene-based copolymer (for example, both tetrafluoroethylene / hexafluoropropylene). Polymers, etc.), partially fluorinated polymers as shown in US Pat. No. 4,379,910, polycarbonate resins produced from fluorinated diphenols, and the like, but polytetrafluoroethylene (hereinafter referred to as PTFE) is preferable. It may be called).

フィブリル形成能を有するポリテトラフルオロエチレン(フィブリル化PTFE)は極めて高い分子量を有し、せん断力などの外的作用によりPTFE同士を結合して繊維状になる傾向を示すものである。その数平均分子量は、150万〜数千万の範囲である。かかる下限はより好ましくは300万である。かかる数平均分子量は、特開平6−145520号公報に開示されているとおり、380℃でのポリテトラフルオロエチレンの溶融粘度に基づき算出される。即ち、フィブリル化PTFEは、かかる公報に記載された方法で測定される380℃における溶融粘度が10〜1013poiseの範囲であり、好ましくは10〜1012poiseの範囲である。 Polytetrafluoroethylene (fibrillated PTFE) having a fibril-forming ability has an extremely high molecular weight, and exhibits a tendency to bond PTFE to each other to form a fibrous form due to an external action such as shearing force. Its number average molecular weight ranges from 1.5 million to tens of millions. The lower limit is more preferably 3 million. Such a number average molecular weight is calculated based on the melt viscosity of polytetrafluoroethylene at 380 ° C. as disclosed in Japanese Patent Application Laid-Open No. 6-145520. That is, the fibrillated PTFE has a melt viscosity at 380 ° C. measured by the method described in such publication in the range of 10 7 to 10 13 poise, preferably in the range of 10 8 to 10 12 poise.

かかるPTFEは、固体形状の他、水性分散液形態のものも使用可能である。またかかるフィブリル形成能を有するPTFEは樹脂中での分散性を向上させ、更に良好な難燃性および機械的特性を得るために他の樹脂との混合形態のPTFE混合物を使用することも可能である。また、特開平6−145520号公報に開示されているとおり、かかるフィブリル化PTFEを芯とし、低分子量のポリテトラフルオロエチレンを殻とした構造を有するものも好ましく利用される。 As the PTFE, not only a solid form but also an aqueous dispersion form can be used. Further, the PTFE having such a fibril-forming ability improves the dispersibility in the resin, and it is also possible to use a PTFE mixture in a mixed form with another resin in order to obtain better flame retardancy and mechanical properties. is there. Further, as disclosed in Japanese Patent Application Laid-Open No. 6-145520, a structure having such a fibrillated PTFE as a core and a low molecular weight polytetrafluoroethylene as a shell is also preferably used.

フィブリル化PTFEの市販品としては例えば三井・デュポンフロロケミカル(株)のテフロン(登録商標)6J、ダイキン化学工業(株)のポリフロンMPA FA500、F−201Lなどを挙げることができる。フィブリル化PTFEの水性分散液の市販品としては、旭アイシーアイフロロポリマーズ(株)製のフルオンAD−1、AD−936、ダイキン工業(株)製のフルオンD−1、D−2、三井・デュポンフロロケミカル(株)製のテフロン(登録商標)30Jなどを代表として挙げることができる。 Examples of commercially available fibrillated PTFE include Teflon (registered trademark) 6J of Mitsui-DuPont Fluorochemical Co., Ltd., Polyflon MPA FA500 and F-201L of Daikin Chemical Industry Co., Ltd. Commercially available aqueous dispersions of fibrillated PTFE include Fluon AD-1, AD-936 manufactured by Asahi IC Eye Fluoropolymers Co., Ltd., Fluon D-1, D-2 manufactured by Daikin Industries, Ltd., and Mitsui. Teflon (registered trademark) 30J manufactured by DuPont Fluorochemical Co., Ltd. can be mentioned as a representative.

混合形態のフィブリル化PTFEとしては、(1)フィブリル化PTFEの水性分散液と有機重合体の水性分散液または溶液とを混合し共沈殿を行い共凝集混合物を得る方法(特開昭60−258263号公報、特開昭63−154744号公報などに記載された方法)、(2)フィブリル化PTFEの水性分散液と乾燥した有機重合体粒子とを混合する方法(特開平4−272957号公報に記載された方法)、(3)フィブリル化PTFEの水性分散液と有機重合体粒子溶液を均一に混合し、かかる混合物からそれぞれの媒体を同時に除去する方法(特開平06−220210号公報、特開平08−188653号公報などに記載された方法)、(4)フィブリル化PTFEの水性分散液中で有機重合体を形成する単量体を重合する方法(特開平9−95583号公報に記載された方法)、および(5)PTFEの水性分散液と有機重合体分散液を均一に混合後、更に該混合分散液中でビニル系単量体を重合し、その後混合物を得る方法(特開平11−29679号などに記載された方法)により得られたものが使用できる。これらの混合形態のフィブリル化PTFEの市販品としては、三菱レイヨン(株)の「メタブレン A3800」(商品名)、GEスペシャリティーケミカルズ社製 「BLENDEX B449」(商品名)およびPacific Interchem Corporation社製「POLY TS AD001」(商品名)などが例示される。 Examples of the fibrillated PTFE in the mixed form include (1) a method of mixing an aqueous dispersion of fibrillated PTFE and an aqueous dispersion or solution of an organic polymer and co-precipitating to obtain a coaggregating mixture (Japanese Patent Laid-Open No. 60-258263). (A method described in Japanese Patent Application Laid-Open No. 63-154744, etc.), (2) A method of mixing an aqueous dispersion of fibrillated PTFE and dried organic polymer particles (Japanese Patent Laid-Open No. 4-272957). The method described), (3) A method of uniformly mixing an aqueous dispersion of fibrillated PTFE and an organic polymer particle solution and simultaneously removing each medium from such a mixture (Japanese Patent Laid-Open No. 06-220210, Japanese Patent Application Laid-Open No. 06-220210). 08-188653, etc.), (4) A method for polymerizing a monomer that forms an organic polymer in an aqueous dispersion of fibrillated PTFE (Japanese Patent Laid-Open No. 9-95583). Method) and (5) A method in which an aqueous dispersion of PTFE and an organic polymer dispersion are uniformly mixed, and then a vinyl-based monomer is further polymerized in the mixed dispersion to obtain a mixture (Japanese Patent Laid-Open No. 11-). The one obtained by the method described in No. 29679 or the like) can be used. Commercially available products of these mixed forms of fibrillated PTFE include "Metabrene A3800" (trade name) manufactured by Mitsubishi Rayon Co., Ltd., "BLENDEX B449" (trade name) manufactured by GE Specialty Chemicals, and "Blendex B449" (trade name) manufactured by Pacific Interchem Corporation. "POLY TS AD001" (trade name) and the like are exemplified.

上記フィブリル化PTFEは機械的強度を低下させないため、できる限り微分散されることが好ましい。かかる微分散を達成する手段として、上記混合形態のフィブリル化PTFEは有利である。また水性分散液形態のものを溶融混練機に直接供給する方法も微分散には有利である。但し水性分散液形態のものはやや色相が悪化する点に配慮を要する。混合形態におけるフィブリル化PTFEの割合としては、かかる混合物100重量%中、フィブリル化PTFEが10〜80重量%が好ましく、より好ましくは15〜75重量%である。フィブリル化PTFEの割合がかかる範囲にある場合は、フィブリル化PTFEの良好な分散性を達成することができる。 Since the fibrillated PTFE does not reduce the mechanical strength, it is preferably finely dispersed as much as possible. As a means of achieving such fine dispersion, the fibrillated PTFE in the mixed form is advantageous. Further, a method of directly supplying the aqueous dispersion in the form of a melt-kneader to the melt-kneader is also advantageous for fine dispersion. However, it is necessary to consider that the hue of the aqueous dispersion form is slightly deteriorated. The proportion of fibrillated PTFE in the mixed form is preferably 10 to 80% by weight, more preferably 15 to 75% by weight, based on 100% by weight of the mixture. When the proportion of fibrillated PTFE is in such a range, good dispersibility of fibrillated PTFE can be achieved.

E成分の含有量は、A成分100重量部に対して、0.1〜5重量部であり、好ましくは0.2〜3重量部、より好ましくは0.2〜0.8重量部である。含有量が0.1重量部未満では難燃性が低下し、5重量部を超えると押出加工性が低下する。 The content of the E component is 0.1 to 5 parts by weight, preferably 0.2 to 3 parts by weight, and more preferably 0.2 to 0.8 parts by weight with respect to 100 parts by weight of the A component. .. If the content is less than 0.1 parts by weight, the flame retardancy is lowered, and if it exceeds 5 parts by weight, the extrusion processability is lowered.

(F成分:液晶ポリエステル樹脂)
本発明のF成分として使用される液晶ポリエステル樹脂とは、サーモトロピック液晶ポリエステル樹脂であり、溶融状態でポリマー分子鎖が一定方向に配列する性質を有している。かかる配列状態の形態はネマチック型、スメチック型、コレステリック型、およびディスコチック型のいずれの形態であってもよく、また2種以上の形態を呈するものであってもよい。更に液晶ポリエステル樹脂の構造としては主鎖型、側鎖型、および剛直主鎖屈曲側鎖型などのいずれの構造であってもよいが、好ましいのは主鎖型液晶ポリエステル樹脂である。
(F component: liquid crystal polyester resin)
The liquid crystal polyester resin used as the F component of the present invention is a thermotropic liquid crystal polyester resin, and has a property of arranging polymer molecular chains in a certain direction in a molten state. The form of such an arrangement state may be any form of nematic type, smetic type, cholesteric type, and discotic type, and may exhibit two or more kinds of forms. Further, the structure of the liquid crystal polyester resin may be any of a main chain type, a side chain type, a rigid main chain bent side chain type, and the like, but the main chain type liquid crystal polyester resin is preferable.

上記配列状態の形態、すなわち異方性溶融相の性質は、直交偏光子を利用した慣用の偏光検査法により確認することができる。より具体的には、異方性溶融相の確認は、Leitz偏光顕微鏡を使用し、Leitzホットステージにのせた溶融試料を窒素雰囲気下で40倍の倍率で観察することにより実施できる。本発明のポリマーは直交偏光子の間で検査したときにたとえ溶融静止状態であっても偏光は透過し、光学的に異方性を示す。 The form of the arrangement state, that is, the property of the anisotropic molten phase can be confirmed by a conventional polarization inspection method using an orthogonal polarizing element. More specifically, the anisotropic molten phase can be confirmed by observing the molten sample placed on the Leitz hot stage at a magnification of 40 times under a nitrogen atmosphere using a Leitz polarizing microscope. The polymer of the present invention transmits polarized light and is optically anisotropy when inspected between orthogonal polarizers, even in a molten and resting state.

また液晶ポリエステル樹脂の耐熱性はいかなる範囲であってもよいが、ポリカーボネート樹脂の加工温度に近い部分で溶融し液晶相を形成するものが適切である。この点で液晶ポリエステル樹脂の荷重たわみ温度が150〜280℃、好ましくは180〜250℃であるものがより好適である。かかる液晶ポリエステル樹脂はいわゆる耐熱性区分のII型に属するものである。かかる耐熱性を有する場合には耐熱性のより高いI型に比較して成形加工性に優れ、および耐熱性のより低いIII型に比較して良好な難燃性が達成される。 The heat resistance of the liquid crystal polyester resin may be in any range, but the one that melts at a portion close to the processing temperature of the polycarbonate resin to form a liquid crystal phase is suitable. In this respect, it is more preferable that the deflection temperature under load of the liquid crystal polyester resin is 150 to 280 ° C., preferably 180 to 250 ° C. Such a liquid crystal polyester resin belongs to the so-called heat resistance category type II. When it has such heat resistance, it is excellent in molding processability as compared with type I having higher heat resistance, and good flame retardancy is achieved as compared with type III having lower heat resistance.

本発明のF成分として使用される液晶ポリエステル樹脂は、ポリエステル単位およびポリエステルアミド単位を含むものが好ましく、芳香族ポリエステル樹脂及び芳香族ポリエステルアミド樹脂が好ましく、芳香族ポリエステル単位及び芳香族ポリエステルアミド単位を同一分子鎖中に部分的に含む液晶ポリエステル樹脂も好ましい例である。 The liquid crystal polyester resin used as the F component of the present invention preferably contains a polyester unit and a polyesteramide unit, preferably an aromatic polyester resin and an aromatic polyesteramide resin, and contains an aromatic polyester unit and an aromatic polyesteramide unit. A liquid crystal polyester resin partially contained in the same molecular chain is also a preferable example.

特に好ましくは、芳香族ヒドロキシカルボン酸、芳香族ヒドロキシアミン、芳香族ジアミンの群から選ばれた1種または2種以上の化合物由来の単位構成成分として有する全芳香族ポリエステル樹脂、全芳香族ポリエステルアミド樹脂である。より具体的には、1)主として芳香族ヒドロキシカルボン酸及びその誘導体からなる群より選ばれる1種又は2種以上の化合物から合成される液晶ポリエステル樹脂、2)主としてa)芳香族ヒドロキシカルボン酸及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、b)芳香族ジカルボン酸、脂環族ジカルボン酸及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、並びにc)芳香族ジオール、脂環族ジオール、脂肪族ジオール及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、から合成される液晶ポリエステル樹脂、3)主としてa)芳香族ヒドロキシカルボン酸及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、b)芳香族ヒドロキシアミン、芳香族ジアミン及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、並びにc)芳香族ジカルボン酸、脂環族ジカルボン酸及びその誘導体からなる群より選ばれる1種又は2種以上の化合物から合成される液晶ポリエステルアミド樹脂、4)主としてa)芳香族ヒドロキシカルボン酸及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、b)芳香族ヒドロキシアミン、芳香族ジアミン及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、c)芳香族ジカルボン酸、脂環族ジカルボン酸及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、並びにd) 芳香族ジオール、脂環族ジオール、脂肪族ジオール及びその誘導体からなる群より選ばれる1種又は2種以上の化合物から合成される液晶ポリエステルアミド樹脂が挙げられるが、1)主として芳香族ヒドロキシカルボン酸及びその誘導体からなる群より選ばれる1種又は2種以上の化合物から合成される液晶ポリエステル樹脂が好ましい。 Particularly preferably, a total aromatic polyester resin or a total aromatic polyesteramide having as a unit component derived from one or more compounds selected from the group of aromatic hydroxycarboxylic acid, aromatic hydroxyamine, and aromatic diamine. It is a resin. More specifically, 1) a liquid crystal polyester resin synthesized mainly from one or more compounds selected from the group consisting mainly of aromatic hydroxycarboxylic acids and derivatives thereof, 2) mainly a) aromatic hydroxycarboxylic acids and One or more compounds selected from the group consisting of the derivatives, b) One or more compounds selected from the group consisting of aromatic dicarboxylic acids, alicyclic dicarboxylic acids and derivatives thereof, and c) A liquid crystal polyester resin synthesized from one or more compounds selected from the group consisting of aromatic diols, alicyclic diols, aliphatic diols and derivatives thereof, 3) mainly a) aromatic hydroxycarboxylic acids and their derivatives. One or more compounds selected from the group consisting of derivatives, b) one or more compounds selected from the group consisting of aromatic hydroxyamines, aromatic diamines and derivatives thereof, and c) aromatic dicarboxylic acids. Liquid crystal polyesteramide resin synthesized from one or more compounds selected from the group consisting of acids, alicyclic dicarboxylic acids and derivatives thereof, 4) mainly a) from the group consisting of aromatic hydroxycarboxylic acids and derivatives thereof. One or more compounds selected, b) One or more compounds selected from the group consisting of aromatic hydroxyamines, aromatic diamines and derivatives thereof, c) Aromatic dicarboxylic acids, alicyclic dicarboxylic acids One or more compounds selected from the group consisting of acids and derivatives thereof, and d) one or more compounds selected from the group consisting of aromatic diols, alicyclic diols, aliphatic diols and derivatives thereof. Examples thereof include a liquid crystal polyesteramide resin synthesized from a compound. 1) A liquid crystal polyester resin synthesized mainly from one or more compounds selected from the group consisting mainly of aromatic hydroxycarboxylic acids and derivatives thereof is preferable.

更に上記の構成成分に必要に応じ分子量調整剤を併用しても良い。 Further, a molecular weight adjusting agent may be used in combination with the above-mentioned constituent components, if necessary.

本発明のF成分として使用される液晶ポリエステル樹脂の合成に用いられる具体的化合物の好ましい例は、2,6−ナフタレンジカルボン酸、2,6−ジヒドロキシナフタレン、1,4−ジヒドロキシナフタレン及び6−ヒドロキシ−2−ナフトエ酸等のナフタレン化合物、4,4’−ジフェニルジカルボン酸、4,4’−ジヒドロキシビフェニル等のビフェニル化合物、p−ヒドロキシ安息香酸、テレフタル酸、ハイドロキノン、p−アミノフェノール及びp−フェニレンジアミン等のパラ位置換のベンゼン化合物及びそれらの核置換ベンゼン化合物(置換基は塩素、臭素、メチル、フェニル、1−フェニルエチルより選ばれる)、イソフタル酸、レゾルシン等のメタ位置換のベンゼン化合物、並びに下記一般式〔5〕、〔6〕又は〔7〕で表される化合物である。中でも、p−ヒドロキシ安息香酸と6−ヒドロキシ−2−ナフトエ酸が特に好ましく、両者を混合してなる液晶ポリエステル樹脂が好適である。両者の割合は前者が90〜50モル%の範囲が好ましく、80〜65モル%の範囲がより好ましく、後者が10〜50モル%の範囲が好ましく、20〜35モル%の範囲がより好ましい。 Preferred examples of specific compounds used in the synthesis of the liquid crystal polyester resin used as the F component of the present invention are 2,6-naphthalenedicarboxylic acid, 2,6-dihydroxynaphthalene, 1,4-dihydroxynaphthalene and 6-hydroxy. Naphthalene compounds such as -2-naphthoic acid, biphenyl compounds such as 4,4'-diphenyldicarboxylic acid and 4,4'-dihydroxybiphenyl, p-hydroxybenzoic acid, terephthalic acid, hydroquinone, p-aminophenol and p-phenylene. Para-substituted benzene compounds such as diamine and their nuclear-substituted benzene compounds (substituents are selected from chlorine, bromine, methyl, phenyl, 1-phenylethyl), meta-substituted benzene compounds such as isophthalic acid and resorcin, Further, it is a compound represented by the following general formula [5], [6] or [7]. Of these, p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid are particularly preferable, and a liquid crystal polyester resin obtained by mixing both is preferable. The ratio of both is preferably in the range of 90 to 50 mol% for the former, more preferably in the range of 80 to 65 mol%, and more preferably in the range of 10 to 50 mol% for the latter, and more preferably in the range of 20 to 35 mol%.

Figure 2021031544
Figure 2021031544

Figure 2021031544
Figure 2021031544

Figure 2021031544
Figure 2021031544

(但し、Yは炭素数1〜4のアルキレン基およびアルキリデン基、−O−、−SO−、−SO−、−S−、並びに−CO−よりなる群より選ばれる基であり、Zは−(CH−(n=1〜4)、および−O(CHO−(n=1〜4)よりなる群より選ばれる基である。)
又、本発明のB成分として使用される液晶ポリエステル樹脂は、上述の構成成分の他に同一分子鎖中に部分的に異方性溶融相を示さないポリアルキレンテレフタレート由来単位が存在してもよい。この場合のアルキレン基の炭素数は2〜4である。
(However, Y is a group selected from the group consisting of an alkylene group having 1 to 4 carbon atoms and an alkylidene group, -O-, -SO-, -SO 2- , -S-, and -CO-, and Z is a group. A group selected from the group consisting of − (CH 2 ) n − (n = 1-4) and −O (CH 2 ) n O− (n = 1-4).
Further, in the liquid crystal polyester resin used as the B component of the present invention, in addition to the above-mentioned constituent components, a polyalkylene terephthalate-derived unit that does not partially exhibit an anisotropic molten phase may be present in the same molecular chain. .. In this case, the alkylene group has 2 to 4 carbon atoms.

F成分の含有量は、A成分100重量部に対して、5〜50重量部であり、5〜40重量部が好ましく、5〜30重量部がより好ましい。F成分の含有量が5重量部未満の場合、成形加工性が低下する。50重量部を超えた場合は、難燃性、耐熱性および熱伝導性が低下する。 The content of the F component is 5 to 50 parts by weight, preferably 5 to 40 parts by weight, and more preferably 5 to 30 parts by weight with respect to 100 parts by weight of the A component. When the content of the F component is less than 5 parts by weight, the molding processability is lowered. If it exceeds 50 parts by weight, flame retardancy, heat resistance and thermal conductivity are lowered.

(G成分:酸変性オレフィン樹脂)
本発明のG成分として使用される酸変性ポリオレフィン樹脂としては、カルボキシル基および/またはその誘導体基を有するオレフィン系ワックスが好ましく使用される。カルボキシル基誘導体としては、カルボン酸無水物基、カルボン酸の金属塩、カルボン酸のアルキルエステルまたはアリールエステル等が挙げられる。このカルボキシル基および/またはその誘導体基は、このオレフィン系ワックスのどの部分に結合してもよく、またその濃度は特に限定されないが、該オレフィン系ワックス1g当り0.1〜6meq/gの範囲が好ましい。0.1meq/gより少なくなると剛性および耐衝撃性の改良が不十分となる場合があり、6meq/gより多くなると該オレフィン系ワックス自身の熱安定性が悪化する場合があり好ましくない。
(G component: acid-modified olefin resin)
As the acid-modified polyolefin resin used as the G component of the present invention, an olefin wax having a carboxyl group and / or a derivative group thereof is preferably used. Examples of the carboxyl group derivative include a carboxylic acid anhydride group, a metal salt of a carboxylic acid, an alkyl ester of a carboxylic acid, an aryl ester and the like. The carboxyl group and / or its derivative group may be bonded to any portion of the olefin wax, and the concentration thereof is not particularly limited, but the range is 0.1 to 6 meq / g per 1 g of the olefin wax. preferable. If it is less than 0.1 meq / g, the improvement of rigidity and impact resistance may be insufficient, and if it is more than 6 meq / g, the thermal stability of the olefin wax itself may be deteriorated, which is not preferable.

かかるオレフィン系ワックスの市販品としては、例えばダイヤカルナ−DC30M(三菱化成(株)製)、Licolub CE 2 TP(クラリアント(株)製)、ハイワックス酸処理タイプの2203A、1105A(三井石油化学工業(株)製)、ダウケミカル(株)製EXL3808および酸化パラフィン(日本精蝋(株)製)等が挙げられる。本発明において、オレフィン系ワックスは単独あるいは2種以上の混合物として使用できる。 Commercially available products of such olefin wax include, for example, Diacarna-DC30M (manufactured by Mitsubishi Kasei Co., Ltd.), Licorub CE 2 TP (manufactured by Clariant Co., Ltd.), high wax acid treatment type 2203A, 1105A (Mitsui Petrochemical Industry Co., Ltd.) (Manufactured by Co., Ltd.), EXL3808 manufactured by Dow Chemical Co., Ltd., paraffin oxide (manufactured by Nippon Seiro Co., Ltd.) and the like. In the present invention, the olefin wax can be used alone or as a mixture of two or more kinds.

G成分の含有量は、A成分100重量部に対して、0.1〜5重量部であり、0.1〜4重量部が好ましく、0.1〜3重量部がより好ましい。G成分の含有量が0.1重量部未満の場合難燃性が低下し、5重量部を超えた場合押出加工性が低下する。 The content of the G component is 0.1 to 5 parts by weight, preferably 0.1 to 4 parts by weight, and more preferably 0.1 to 3 parts by weight with respect to 100 parts by weight of the A component. If the content of the G component is less than 0.1 parts by weight, the flame retardancy is lowered, and if it exceeds 5 parts by weight, the extrusion processability is lowered.

(H成分:シランカップリング剤)
本発明のH成分として使用されるシランカップリング剤としては、例えばエポキシ基、アミノ基、イソシアネート基、水酸基、メルカプト基、ウレイド基の中から選ばれた少なくとも1種の官能基を有するアルコキシシラン化合物が挙げられる。その具体例としては、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシ基含有アルコキシシラン化合物、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシランなどのメルカプト基含有アルコキシシラン化合物、γ−ウレイドプロピルトリエトキシシラン、γ−ウレイドプロピルトリメトキシシシラン、γ−(2−ウレイドエチル)アミノプロピルトリメトキシシランなどのウレイド基含有アルコキシシラン化合物、γ−イソシアナトプロピルトリエトキシシラン、γ−イソシアナトプロピルトリメトキシシラン、γ−イソシアナトプロピルメチルジメトキシシラン、γ−イソシアナトプロピルメチルジエトキシシラン、γ−イソシアナトプロピルエチルジメトキシシラン、γ−イソシアナトプロピルエチルジエトキシシラン、γ−イソシアナトプロピルトリクロロシランなどのイソシアナト基含有アルコキシシラン化合物、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシランなどのアミノ基含有アルコキシシラン化合物、γ−ヒドロキシプロピルトリメトキシシラン、γ−ヒドロキシプロピルトリエトキシシランなどの水酸基含有アルコキシシラン化合物などが挙げられ、中でもγ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシ基含有アルコキシシラン化合物、γ−ウレイドプロピルトリエトキシシラン、γ−ウレイドプロピルトリメトキシシシラン、γ−(2−ウレイドエチル)アミノプロピルトリメトキシシランなどのウレイド基含有アルコキシシラン化合物、γ−イソシアナトプロピルトリエトキシシラン、γ−イソシアナトプロピルトリメトキシシラン、γ−イソシアナトプロピルメチルジメトキシシラン、γ−イソシアナトプロピルメチルジエトキシシラン、γ−イソシアナトプロピルエチルジメトキシシラン、γ−イソシアナトプロピルエチルジエトキシシラン、γ−イソシアナトプロピルトリクロロシランなどのイソシアナト基含有アルコキシシラン化合物等が好ましい。特に好ましくは、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシ基含有アルコキシシラン化合物が挙げられる。
(H component: silane coupling agent)
The silane coupling agent used as the H component of the present invention is, for example, an alkoxysilane compound having at least one functional group selected from an epoxy group, an amino group, an isocyanate group, a hydroxyl group, a mercapto group and a ureido group. Can be mentioned. Specific examples thereof include epoxy group-containing alkoxysilane compounds such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxycisilane, and β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. Mercapto group-containing alkoxysilane compounds such as γ-mercaptopropyltrimethoxysilane and γ-mercaptopropyltriethoxysilane, γ-ureidopropyltriethoxysilane, γ-ureidopropyltrimethoxycisilane, γ- (2-ureidoethyl) amino Ureido group-containing alkoxysilane compounds such as propyltrimethoxysilane, γ-isocyanatopropyltriethoxysilane, γ-isocyanatopropyltrimethoxysilane, γ-isocyanatopropylmethyldimethoxysilane, γ-isocyanatopropylmethyldiethoxysilane, Isocyanato group-containing alkoxysilane compounds such as γ-isocyanatopropyl ethyldimethoxysilane, γ-isocyanatopropyl ethyldiethoxysilane, γ-isocyanatopropyltrichlorosilane, γ- (2-aminoethyl) aminopropylmethyldimethoxysilane, γ Amino group-containing alkoxysilane compounds such as-(2-aminoethyl) aminopropyltrimethoxysilane and γ-aminopropyltrimethoxysilane, and hydroxyl group-containing alkoxysilanes such as γ-hydroxypropyltrimethoxysilane and γ-hydroxypropyltriethoxysilane. Examples include compounds, among which epoxy group-containing alkoxysilane compounds such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxycisilane, and β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. , Γ-Ureidopropyltriethoxysilane, γ-ureidopropyltrimethoxycisilane, γ- (2-ureidoethyl) aminopropyltrimethoxysilane and other ureido group-containing alkoxysilane compounds, γ-isocyanatopropyltriethoxysilane, γ -Isocyanatopropyltrimethoxysilane, γ-isocyanatopropylmethyldimethoxysilane, γ-isocyanatopropylmethyldiethoxysilane, γ-isocyanatopropylethyldimethoxysilane, γ-isocyanatopropylethyldiethoxysilane, γ-isocyanato An isocyanato group-containing alkoxysilane compound such as propyltrichlorosilane is preferable. Particularly preferred are epoxy group-containing alkoxysilane compounds such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysisilane, and β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. ..

H成分の含有量は、A成分100重量部に対して、0.1〜5重量部であり、0.1〜4重量部が好ましく、0.1〜3重量部がより好ましい。H成分の含有量が0.1重量部未満の場合難燃性が低下し、5重量部以上では押出加工性が低下する。 The content of the H component is 0.1 to 5 parts by weight, preferably 0.1 to 4 parts by weight, and more preferably 0.1 to 3 parts by weight with respect to 100 parts by weight of the A component. When the content of the H component is less than 0.1 parts by weight, the flame retardancy is lowered, and when it is 5 parts by weight or more, the extrusion processability is lowered.

(その他の添加剤について)
また、本発明の組成物は必要に応じて種々の特開2016−160278号公報に記載の公知の添加剤を添加することができる。
(About other additives)
In addition, various known additives described in JP-A-2016-160278 can be added to the composition of the present invention, if necessary.

(樹脂組成物の製造)
本発明の樹脂組成物の調製には任意の方法が採用される。例えばA成分、B成分、C成分、D成分、E成分、F成分、G成分、H成分および任意に他の成分を予備混合し、その後溶融混練し、ペレット化する方法を挙げることができる。予備混合の手段としては、ナウターミキサー、V型ブレンダー、ヘンシェルミキサー、メカノケミカル装置、押出混合機などを挙げることができる。予備混合においては必要に応じて押出造粒器やブリケッティングマシーンなどにより造粒を行うこともできる。他の方法としては例えば、パウダーの形態を有するものを含む場合、かかるパウダーの一部と配合する添加剤とをブレンドしてパウダーで希釈した添加剤のマスターバッチを製造し、かかるマスターバッチを利用する方法が挙げられる。予備混合後、ベント式二軸押出機に代表される溶融混練機で溶融混練、およびペレタイザー等の機器によりペレット化する。溶融混練機としては他にバンバリーミキサー、混練ロール、恒熱撹拌容器などを挙げることができるが、ベント式二軸押出機が好ましい。
(Manufacturing of resin composition)
Any method is adopted for preparing the resin composition of the present invention. For example, a method of premixing A component, B component, C component, D component, E component, F component, G component, H component and optionally other components, and then melt-kneading and pelletizing can be mentioned. Examples of the premixing means include a Nauter mixer, a V-type blender, a Henschel mixer, a mechanochemical device, and an extrusion mixer. In the premixing, granulation can be performed by an extrusion granulator, a briquetting machine, or the like, if necessary. As another method, for example, when a substance having a powder form is included, a masterbatch of the additive diluted with the powder is produced by blending a part of the powder and the additive to be blended, and the masterbatch is used. There is a way to do it. After pre-mixing, melt-kneading is performed with a melt-kneader typified by a bent twin-screw extruder, and pelletization is performed with equipment such as a pelletizer. Other examples of the melt kneader include a Banbury mixer, a kneading roll, and a constant heat stirring vessel, but a vent type twin-screw extruder is preferable.

他に、各成分を予備混合することなく、それぞれ独立に二軸押出機に代表される溶融混練機に供給する方法も取ることができる。また一部の成分を予備混合した後、残りの成分と独立に溶融混練機に供給する方法が挙げられる。特に無機充填材が配合される場合には、無機充填材は押出機途中の供給口から溶融樹脂中にサイドフィーダーの如き供給装置を用いて供給されることが好ましい。予備混合の手段や造粒に関しては、前記と同様である。なお、配合する成分に液状のものがある場合には、溶融混練機への供給にいわゆる液注装置、または液添装置を使用することができる。 Alternatively, a method of independently supplying each component to a melt kneader typified by a twin-screw extruder can be adopted without premixing each component. Another example is a method in which some components are premixed and then supplied to the melt kneader independently of the remaining components. In particular, when an inorganic filler is blended, it is preferable that the inorganic filler is supplied into the molten resin from a supply port in the middle of the extruder using a supply device such as a side feeder. The means for premixing and granulation are the same as described above. When some of the components to be blended are in liquid form, a so-called liquid injection device or liquid addition device can be used for supplying to the melt kneader.

押出機としては、原料中の水分や、溶融混練樹脂から発生する揮発ガスを脱気できるベントを有するものが好ましく使用できる。ベントからは発生水分や揮発ガスを効率よく押出機外部へ排出するための真空ポンプが好ましく設置される。また押出原料中に混入した異物などを除去するためのスクリーンを押出機ダイス部前のゾーンに設置し、異物を樹脂組成物から取り除くことも可能である。かかるスクリーンとしては金網、スクリーンチェンジャー、焼結金属プレート(ディスクフィルターなど)などを挙げることができる。 As the extruder, one having a vent capable of degassing the moisture in the raw material and the volatile gas generated from the melt-kneaded resin can be preferably used. A vacuum pump is preferably installed from the vent to efficiently discharge the generated water and volatile gas to the outside of the extruder. It is also possible to install a screen for removing foreign substances and the like mixed in the extruded raw material in the zone in front of the die portion of the extruder to remove the foreign substances from the resin composition. Examples of such a screen include a wire mesh, a screen changer, a sintered metal plate (disc filter, etc.) and the like.

溶融混練機としては二軸押出機の他にバンバリーミキサー、混練ロール、単軸押出機、3軸以上の多軸押出機などを挙げることができる。 Examples of the melt kneader include a Banbury mixer, a kneading roll, a single-screw extruder, and a multi-screw extruder having three or more shafts, in addition to the twin-screw extruder.

上記の如く押出された樹脂は、直接切断してペレット化するか、またはストランドを形成した後かかるストランドをペレタイザーで切断してペレット化される。ペレット化に際して外部の埃などの影響を低減する必要がある場合には、押出機周囲の雰囲気を清浄化することが好ましい。更にかかるペレットの製造においては、光学ディスク用ポリカーボネート樹脂において既に提案されている様々な方法を用いて、ペレットの形状分布の狭小化、ミスカット物の低減、運送または輸送時に発生する微小粉の低減、並びにストランドやペレット内部に発生する気泡(真空気泡)の低減を適宜行うことができる。これらの処方により成形のハイサイクル化、およびシルバーの如き不良発生割合の低減を行うことができる。またペレットの形状は、円柱、角柱、および球状など一般的な形状を取り得るが、より好適には円柱である。かかる円柱の直径は好ましくは1〜5mm、より好ましくは1.5〜4mm、さらに好ましくは2〜3.3mmである。一方、円柱の長さは好ましくは1〜30mm、より好ましくは2〜5mm、さらに好ましくは2.5〜3.5mmである。 The resin extruded as described above is directly cut and pelletized, or the strands are cut with a pelletizer after forming the strands and pelletized. When it is necessary to reduce the influence of external dust and the like during pelletization, it is preferable to clean the atmosphere around the extruder. Furthermore, in the production of such pellets, various methods already proposed for polycarbonate resins for optical discs are used to narrow the shape distribution of pellets, reduce miscuts, and reduce fine powder generated during transportation or transportation. , And bubbles (vacuum bubbles) generated inside the strands and pellets can be appropriately reduced. With these formulations, it is possible to increase the cycle of molding and reduce the rate of defects such as silver. The shape of the pellet can be a general shape such as a cylinder, a prism, and a sphere, but more preferably a cylinder. The diameter of such a cylinder is preferably 1 to 5 mm, more preferably 1.5 to 4 mm, still more preferably 2 to 3.3 mm. On the other hand, the length of the cylinder is preferably 1 to 30 mm, more preferably 2 to 5 mm, still more preferably 2.5 to 3.5 mm.

本発明の樹脂組成物は通常上記の如く製造されたペレットを射出成形して成形品を得ることにより各種製品を製造することができる。かかる射出成形においては、通常の成形方法だけでなく、射出圧縮成形、射出プレス成形、ガスアシスト射出成形、発泡成形(超臨界流体を注入する方法を含む)、インサート成形、インモールドコーティング成形、断熱金型成形、急速加熱冷却金型成形、二色成形、多色成形、サンドイッチ成形、および超高速射出成形などを挙げることができる。また成形はコールドランナー方式およびホットランナー方式のいずれも選択することができる。 The resin composition of the present invention can usually produce various products by injection molding the pellets produced as described above to obtain a molded product. In such injection molding, not only ordinary molding methods, but also injection compression molding, injection press molding, gas-assisted injection molding, foam molding (including a method of injecting a supercritical fluid), insert molding, in-mold coating molding, and heat insulation. Mold molding, rapid heating and cooling mold molding, two-color molding, multicolor molding, sandwich molding, ultra-high-speed injection molding and the like can be mentioned. Further, either a cold runner method or a hot runner method can be selected for molding.

また本発明の樹脂組成物は、押出成形により各種異形押出成形品、シート、フィルムなどの形で使用することもできる。またシート、フィルムの成形にはインフレーション法や、カレンダー法、キャスティング法なども使用可能である。更に特定の延伸操作をかけることにより熱収縮チューブとして成形することも可能である。また本発明の樹脂組成物を回転成形やブロー成形などにより成形品とすることも可能である。 Further, the resin composition of the present invention can also be used in the form of various deformed extrusion-molded products, sheets, films and the like by extrusion molding. Inflation method, calendar method, casting method, etc. can also be used for forming sheets and films. Further, it can be molded as a heat-shrinkable tube by applying a specific stretching operation. Further, the resin composition of the present invention can be made into a molded product by rotary molding, blow molding or the like.

本発明の樹脂組成物が利用される成形品は、各種電子・電気機器部品、カメラ部品、OA機器部品、精密機械部品、機械部品、車両部品(特に車両用内外装部品)、その他農業資材、搬送容器、遊戯具および雑貨などの各種用途に有用であり、その奏する産業上の効果は格別である。 Molded products using the resin composition of the present invention include various electronic / electrical equipment parts, camera parts, OA equipment parts, precision mechanical parts, mechanical parts, vehicle parts (particularly interior / exterior parts for vehicles), and other agricultural materials. It is useful for various purposes such as transport containers, play equipment, and miscellaneous goods, and its industrial effect is exceptional.

更に本発明の樹脂組成物からなる成形品には、各種の表面処理を行うことが可能である。ここでいう表面処理とは、蒸着(物理蒸着、化学蒸着など)、メッキ(電気メッキ、無電解メッキ、溶融メッキなど)、塗装、コーティング、印刷などの樹脂成形品の表層上に新たな層を形成させるものであり、通常の熱可塑性樹脂に用いられる方法が適用できる。表面処理としては、具体的には、ハードコート、撥水・撥油コート、紫外線吸収コート、赤外線吸収コート、並びにメタライジング(蒸着など)などの各種の表面処理が例示される。ハードコートは特に好ましくかつ必要とされる表面処理である。加えて、本発明の樹脂組成物は、改良された金属密着性を有することから、蒸着処理およびメッキ処理の適用も好ましい。かようにして金属層が設けられた成形品は、電磁波シールド部品、導電部品、およびアンテナ部品などに利用できる。かかる部品は特にシート状およびフィルム状が好ましい。 Further, the molded product made of the resin composition of the present invention can be subjected to various surface treatments. Surface treatment here means a new layer on the surface layer of resin molded products such as vapor deposition (physical vapor deposition, chemical vapor deposition, etc.), plating (electroplating, electroless plating, hot-dip plating, etc.), painting, coating, printing, etc. It is formed, and the method used for ordinary thermoplastic resins can be applied. Specific examples of the surface treatment include various surface treatments such as hard coat, water / oil repellent coat, ultraviolet absorption coat, infrared absorption coat, and metallizing (evaporation, etc.). Hard coat is a particularly preferred and required surface treatment. In addition, since the resin composition of the present invention has improved metal adhesion, it is also preferable to apply a vapor deposition treatment and a plating treatment. The molded product provided with the metal layer in this way can be used for an electromagnetic wave shielding component, a conductive component, an antenna component, and the like. Such parts are particularly preferably in the form of sheets and films.

本発明の樹脂組成物が利用される成形品の具体例としては、生活資材・建材・インテリア用品やOA機器・家電製品の内部部品やハウジングなどへの応用に好適なものである。これらの製品としては例えば、パソコン、ノートパソコン、CRTディスプレー、プリンター、携帯端末、携帯電話、コピー機、ファックス、記録媒体(CD、CD−ROM、DVD、PD、FDDなど)ドライブ、パラボラアンテナ、電動工具、VTR、テレビ、アイロン、ヘアードライヤー、炊飯器、電子レンジ、音響機器、オーディオ・レーザーディスク(登録商標)・コンパクトディスクなどの音声機器、照明機器、冷蔵庫、エアコン、タイプライター、ワードプロセッサー、スーツケースや清掃用具などの生活資材などを挙げることができ、これらの筐体などの各種部品に本発明の熱可塑性樹脂組成物から形成された樹脂製品を使用することができる。またその他の樹脂製品としては、ディフレクター部品、カーナビケーション部品、カーステレオ部品、充電インフラ部品、自動車内外装部品などの車両用部品を挙げることができる。 Specific examples of molded products in which the resin composition of the present invention is used are suitable for application to internal parts and housings of living materials, building materials, interior goods, OA equipment, home appliances, and the like. These products include, for example, personal computers, laptop computers, CRT displays, printers, mobile terminals, mobile phones, copiers, fax machines, recording medium (CD, CD-ROM, DVD, PD, FDD, etc.) drives, parabolic antennas, electric motors. Tools, VTRs, TVs, irons, hair dryers, rice cookers, microwave ovens, audio equipment, audio equipment such as audio / laser discs (registered trademarks) / compact discs, lighting equipment, refrigerators, air conditioners, typewriters, word processors, suitcases And living materials such as cleaning tools, and resin products formed from the thermoplastic resin composition of the present invention can be used for various parts such as these housings. Examples of other resin products include vehicle parts such as deflector parts, car navigation parts, car stereo parts, charging infrastructure parts, and automobile interior / exterior parts.

本発明のポリカーボネート樹脂組成物は、成形加工性、熱伝導性、耐熱性、難燃性、剛性および絶縁性に優れているため、屋外/屋内に限らず、自動車用途、インフラ設備用途、住宅設備用途、建材用途、生活資材用途、OA・EE用途、屋外機器用途、その他の各種分野において幅広く有用である。したがって本発明の奏する産業上の効果は極めて大である。 Since the polycarbonate resin composition of the present invention is excellent in molding processability, thermal conductivity, heat resistance, flame retardancy, rigidity and insulation, it is not limited to outdoor / indoor use, but also for automobile use, infrastructure equipment use, and housing equipment. It is widely useful in various fields such as applications, building materials, living materials, OA / EE, outdoor equipment, and so on. Therefore, the industrial effect of the present invention is extremely large.

本発明者が現在最良と考える発明の形態は、上記の各要件の好ましい範囲を集約したものとなるが、例えば、その代表例を下記の実施例中に記載する。もちろん本発明はこれらの形態に限定されるものではない。 The form of the invention that the present inventor considers to be the best at present is a collection of preferable ranges of each of the above requirements. For example, a representative example thereof will be described in the following examples. Of course, the present invention is not limited to these forms.

以下に実施例をあげて本発明を更に説明する。なお、評価は下記の方法によって実施した。
(熱伝導性ポリカーボネート樹脂組成物の評価)
(i)熱伝導率
下記の方法で得られた引張りダンベル片(ISO規格ISO527−1および2準拠)の中央部分を所定の大きさ(100mm×10mm×3mmt)に切削し、レーザーフラッシュ装置(NETZSCH社製キセノンレーザーフラッシュアナライザLFA447型)を使用して、サンプルの流動方向の熱拡散率を測定し、熱伝導率を算出した。
(ii)荷重たわみ温度
下記の方法で得られたISO曲げ試験片を用いISO75−1および2に従い、1.80MPaの荷重で荷重たわみ温度を測定した。
(iii)曲げ弾性率
下記の方法で得られたISO曲げ試験片を用い、ISO178に従い、曲げ弾性率の測定を実施した。
(iv)難燃性
下記の方法で得られたUL試験片を用いて、UL94に従い、厚み2.8mmにおけるV試験(垂直難燃試験)を実施した。
(v)押出加工性
押出時の安定性に関して以下の基準で評価を実施した。
押出時にシュートアップが発生せず、ストランドも安定している。:〇
押出時にシュートアップが発生しないが、ストランドが不安定で、ペレット化が困難である。:△
押出時にシュートアップが発生して、ペレット化ができない。:×
(vi)絶縁性
IEC60250に従い表面抵抗率を測定し、以下の基準で評価を実施した。
表面抵抗率が1×1015以上:〇
表面抵抗率が1×1015未満:×
(vii)成形加工性
流路厚み3mmt、流路幅8mmtのスパイラルフロー金型を使用し、シリンダー温度300℃、金型温度90℃、射出圧力100MPaの場合の流動長を測定した。
The present invention will be further described below with reference to examples. The evaluation was carried out by the following method.
(Evaluation of Thermally Conductive Polycarbonate Resin Composition)
(I) Thermal conductivity The central part of the tensile dumbbell piece (ISO standard ISO527-1 and 2 compliant) obtained by the following method is cut to a predetermined size (100 mm × 10 mm × 3 mmt), and a laser flash device (NETZSCH) is used. The thermal diffusivity in the flow direction of the sample was measured using a Xenon laser flash analyzer (LFA447 type) manufactured by the same company, and the thermal conductivity was calculated.
(Ii) Deflection temperature under load Using the ISO bending test piece obtained by the following method, the deflection temperature under load was measured under a load of 1.80 MPa according to ISO75-1 and ISO2.
(Iii) Bending elastic modulus Using an ISO bending test piece obtained by the following method, the bending elastic modulus was measured according to ISO178.
(Iv) Flame Retardance Using the UL test piece obtained by the following method, a V test (vertical flame retardancy test) at a thickness of 2.8 mm was carried out according to UL94.
(V) Extrusion workability The stability during extrusion was evaluated according to the following criteria.
No shoot-up occurs during extrusion and the strands are stable. : 〇 Shoot-up does not occur during extrusion, but the strands are unstable and pelletization is difficult. : △
Shoot-up occurs during extrusion and pelletization is not possible. : ×
(Vi) Insulation The surface resistivity was measured according to IEC60250, and the evaluation was carried out according to the following criteria.
Surface resistivity is 1 × 10 15 or more: 〇 Surface resistivity is 1 × 10 less than 15: ×
(Vii) Moldability Using a spiral flow mold having a flow path thickness of 3 mmt and a flow path width of 8 mmt, the flow length was measured when the cylinder temperature was 300 ° C., the mold temperature was 90 ° C., and the injection pressure was 100 MPa.

[実施例1〜14、比較例1〜14]
表1および表2に示す組成で、B成分のガラス繊維を除く成分からなる混合物を押出機の第1供給口から供給した。かかる混合物はV型ブレンダーで混合して得た。B成分のガラス繊維は、第2供給口からサイドフィーダーを用いて供給した。押出は径30mmφのベント式二軸押出機((株)日本製鋼所TEX30α―38.5BW−3V)を使用し、スクリュー回転数230rpm、吐出量25kg/h、ベントの真空度3kPaで溶融混錬し、ペレットを得た。なお、押出温度については、第1供給口からダイス部分まで300℃で実施した。得られたペレットの一部は、120℃で6時間熱風循環式乾燥機にて乾燥した後、射出成型機を用いて、シリンダー温度300℃、金型温度90℃にて評価用の引張ダンベル片(ISO527−1および2準拠)、ISO曲げ試験片(ISO178およびISO179準拠)およびUL試験片を成形した。
[Examples 1 to 14, Comparative Examples 1 to 14]
A mixture consisting of the components shown in Tables 1 and 2 excluding the glass fiber of the component B was supplied from the first supply port of the extruder. Such a mixture was obtained by mixing with a V-type blender. The glass fiber of the component B was supplied from the second supply port using a side feeder. For extrusion, a vent type twin-screw extruder with a diameter of 30 mmφ (Japan Steel Works, Ltd. TEX30α-38.5BW-3V) is used, and melt kneading is performed at a screw rotation speed of 230 rpm, a discharge rate of 25 kg / h, and a vent vacuum degree of 3 kPa. And obtained pellets. The extrusion temperature was 300 ° C. from the first supply port to the die portion. A part of the obtained pellets is dried at 120 ° C. for 6 hours in a hot air circulation type dryer, and then a tensile dumbbell piece for evaluation is used at a cylinder temperature of 300 ° C. and a mold temperature of 90 ° C. using an injection molding machine. (ISO 527-1 and 2 compliant), ISO bending test pieces (ISO 178 and ISO 179 compliant) and UL test pieces were molded.

なお、表1、表2中の記号表記の各成分は以下の通りである。
(A成分)
A−1:芳香族ポリカーボネート樹脂(ビスフェノールAとホスゲンから常法によって作られた粘度平均分子量19,700のポリカーボネート樹脂粉末、帝人(株)製 パンライトL−1225WX(製品名))
A−2:芳香族ポリカーボネート樹脂(ビスフェノールAとホスゲンから常法によって作られた粘度平均分子量22,200のポリカーボネート樹脂ペレット、帝人(株)製 パンライトL−1225Y(製品名))
(B成分)
B−1:ガラス繊維(日東紡績(株)製 CSG 3PE−455(商品名)、繊維径13μm、カット長3mm、ウレタン系集束剤)
(C成分)
C−1:タルク(株式会社勝光山鉱業所製 ビクトリライトTK‐RC(商品名))
(D成分)
D−1:臭素系難燃剤(帝人(株)製 ファイヤガードFG8500(商品名))
(E成分)
E−1:含フッ素滴下防止剤(ダイキン工業(株)製 ポリフロンMPA FA500H(商品名))
(F成分)
F−1:液晶ポリエステル樹脂(ポリプラスチックス(株)製:ベクトラ A−950(商品名))
(G成分)
G−1:酸変性オレフィン樹脂(三菱ケミカル社製 ダイヤカルナ30(商品名))
(H成分)
H−1:シランカップリング剤(信越化学工業社製 KBM−3103(商品名))
The components of the symbolic notation in Tables 1 and 2 are as follows.
(Component A)
A-1: Aromatic polycarbonate resin (polycarbonate resin powder with a viscosity average molecular weight of 19,700 made from bisphenol A and phosgene by a conventional method, Panlite L-1225WX (product name) manufactured by Teijin Limited)
A-2: Aromatic polycarbonate resin (polycarbonate resin pellets with a viscosity average molecular weight of 22,200 made from bisphenol A and phosgene by a conventional method, Panlite L-1225Y manufactured by Teijin Limited (product name))
(B component)
B-1: Glass fiber (CSG 3PE-455 (trade name) manufactured by Nitto Boseki Co., Ltd., fiber diameter 13 μm, cut length 3 mm, urethane-based sizing agent)
(C component)
C-1: Talc (Victory Light TK-RC (trade name) manufactured by Katsumitsuyama Mining Co., Ltd.)
(D component)
D-1: Brominated flame retardant (Fireguard FG8500 (trade name) manufactured by Teijin Limited)
(E component)
E-1: Fluorine-containing dripping inhibitor (Polyflon MPA FA500H (trade name) manufactured by Daikin Industries, Ltd.)
(F component)
F-1: Liquid crystal polyester resin (manufactured by Polyplastics Co., Ltd .: Vectra A-950 (trade name))
(G component)
G-1: Acid-modified olefin resin (Diacarna 30 (trade name) manufactured by Mitsubishi Chemical Corporation)
(H component)
H-1: Silane coupling agent (KBM-3103 (trade name) manufactured by Shin-Etsu Chemical Co., Ltd.)

Figure 2021031544
Figure 2021031544

Figure 2021031544
Figure 2021031544

Claims (2)

(A)ポリカーボネート樹脂(A成分)100重量部に対して、(B)ガラス繊維(B成分)20〜60重量部、(C)タルク(C成分)5〜60重量部、(D)臭素系難燃剤(D成分)5〜30重量部、(E)含フッ素滴下防止剤(E成分)0.1〜5重量部、(F)液晶ポリエステル樹脂(F成分)5〜50重量部、(G)酸変性オレフィン樹脂(G成分)0.1〜5重量部および(H)シランカップリング剤(H成分)0.1〜5重量部を含有することを特徴とする熱伝導性ポリカーボネート樹脂組成物。 (A) Polycarbonate resin (A component) 100 parts by weight, (B) glass fiber (B component) 20 to 60 parts by weight, (C) talc (C component) 5 to 60 parts by weight, (D) bromine-based 5 to 30 parts by weight of flame retardant (D component), (E) 0.1 to 5 parts by weight of fluorine-containing dripping inhibitor (E component), (F) 5 to 50 parts by weight of liquid crystal polyester resin (F component), (G) A thermally conductive polycarbonate resin composition containing 0.1 to 5 parts by weight of an acid-modified olefin resin (G component) and 0.1 to 5 parts by weight of a (H) silane coupling agent (H component). .. 請求項1に記載の熱伝導性ポリカーボネート樹脂組成物からなる成形品。 A molded product comprising the thermally conductive polycarbonate resin composition according to claim 1.
JP2019150928A 2019-08-21 2019-08-21 Thermally conductive polycarbonate resin composition Active JP7311357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019150928A JP7311357B2 (en) 2019-08-21 2019-08-21 Thermally conductive polycarbonate resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019150928A JP7311357B2 (en) 2019-08-21 2019-08-21 Thermally conductive polycarbonate resin composition

Publications (2)

Publication Number Publication Date
JP2021031544A true JP2021031544A (en) 2021-03-01
JP7311357B2 JP7311357B2 (en) 2023-07-19

Family

ID=74675477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019150928A Active JP7311357B2 (en) 2019-08-21 2019-08-21 Thermally conductive polycarbonate resin composition

Country Status (1)

Country Link
JP (1) JP7311357B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125254A (en) * 1991-11-01 1993-05-21 Monsant Kasei Kk Thermoplastic resin composition
JP2000159999A (en) * 1998-11-30 2000-06-13 Toray Ind Inc Fiber-reinforced resin composition for case body and case body
JP2002060634A (en) * 2000-08-21 2002-02-26 Teijin Chem Ltd Vibration-damping thermoplastic resin composition
JP2005154582A (en) * 2003-11-26 2005-06-16 Teijin Chem Ltd Flame-retardant aromatic polycarbonate resin composition
JP2005320473A (en) * 2004-05-11 2005-11-17 Teijin Chem Ltd Flame-retardant thermoplastic resin composition
JP2007031611A (en) * 2005-07-28 2007-02-08 Teijin Chem Ltd Thermoplastic resin composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125254A (en) * 1991-11-01 1993-05-21 Monsant Kasei Kk Thermoplastic resin composition
JP2000159999A (en) * 1998-11-30 2000-06-13 Toray Ind Inc Fiber-reinforced resin composition for case body and case body
JP2002060634A (en) * 2000-08-21 2002-02-26 Teijin Chem Ltd Vibration-damping thermoplastic resin composition
JP2005154582A (en) * 2003-11-26 2005-06-16 Teijin Chem Ltd Flame-retardant aromatic polycarbonate resin composition
JP2005320473A (en) * 2004-05-11 2005-11-17 Teijin Chem Ltd Flame-retardant thermoplastic resin composition
JP2007031611A (en) * 2005-07-28 2007-02-08 Teijin Chem Ltd Thermoplastic resin composition

Also Published As

Publication number Publication date
JP7311357B2 (en) 2023-07-19

Similar Documents

Publication Publication Date Title
KR101931669B1 (en) Flame retardant polycarbonate compositions, methods of manufacture thereof and articles comprising the same
KR101723699B1 (en) Polycarbonate/polydiorganosiloxane copolymer
US9127155B2 (en) Phosphorus free flame retardant composition
JP5466445B2 (en) Transparent flame retardant aromatic polycarbonate resin composition and molded article thereof
JP7023410B2 (en) Impeller and its resin composition
JP2013001801A (en) Flame-retardant polycarbonate resin composition
WO2009060986A1 (en) Resin composition
JP7111602B2 (en) Thermally conductive polycarbonate resin composition
JP5973282B2 (en) Polycarbonate resin composition and molded body
JP7303058B2 (en) Thermally conductive polycarbonate resin composition
JP6073700B2 (en) Reinforced polycarbonate resin composition
JP6480120B2 (en) Thermally conductive polycarbonate resin composition and molded article
JP6495683B2 (en) Insulating heat conductive polycarbonate resin composition
JP2016029142A (en) Thermally conductive polycarbonate resin composition and molding
JP5298529B2 (en) Aromatic polycarbonate resin composition and molded article thereof
JP7311357B2 (en) Thermally conductive polycarbonate resin composition
JP6133650B2 (en) Flame retardant polycarbonate resin composition
JP2021066831A (en) Polycarbonate resin composition
JP6250409B2 (en) Thermally conductive polycarbonate resin composition and molded product
JP7311355B2 (en) Polycarbonate resin composition
JP7311356B2 (en) Polycarbonate resin composition
JP2024124629A (en) Polycarbonate resin composition and molded article made thereof
JP2024075019A (en) Thermoplastic resin composition and molded article comprising the same
JP2024080311A (en) Polycarbonate resin composition and molded article comprising the same
JP2024126088A (en) Polycarbonate resin composition and molded article made thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230706

R150 Certificate of patent or registration of utility model

Ref document number: 7311357

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150