JP7311356B2 - Polycarbonate resin composition - Google Patents

Polycarbonate resin composition Download PDF

Info

Publication number
JP7311356B2
JP7311356B2 JP2019150927A JP2019150927A JP7311356B2 JP 7311356 B2 JP7311356 B2 JP 7311356B2 JP 2019150927 A JP2019150927 A JP 2019150927A JP 2019150927 A JP2019150927 A JP 2019150927A JP 7311356 B2 JP7311356 B2 JP 7311356B2
Authority
JP
Japan
Prior art keywords
component
weight
group
parts
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019150927A
Other languages
Japanese (ja)
Other versions
JP2020152886A (en
Inventor
俊介 奥澤
雅嗣 古木
清治 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Publication of JP2020152886A publication Critical patent/JP2020152886A/en
Application granted granted Critical
Publication of JP7311356B2 publication Critical patent/JP7311356B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、特定比率のポリカーボネート系樹脂および液晶ポリエステル樹脂からなる成分、難燃剤、ドリップ防止剤、ガラス繊維および/または炭素繊維、フェノキシ樹脂および/またはエポキシ樹脂並びにリン系安定剤よりなる樹脂組成物およびそれからなる成形品に関するものである。更に詳しくは、高い引張り強度、寸法精度および難燃性に優れ、殊に薄肉成形品で強度が必要とされる部材に適したポリカーボネート樹脂組成物に関する。 The present invention provides a resin composition comprising a component comprising a polycarbonate resin and a liquid crystal polyester resin in a specific ratio, a flame retardant, an anti-drip agent, glass fiber and/or carbon fiber, a phenoxy resin and/or epoxy resin, and a phosphorus stabilizer. and molded articles made thereof. More particularly, the present invention relates to a polycarbonate resin composition which is excellent in high tensile strength, dimensional accuracy and flame retardancy, and which is particularly suitable for thin-walled molded articles requiring strength.

ポリカーボネート樹脂は、耐熱性、耐衝撃性、寸法安定性などに優れた樹脂であり、電気・電子部品分野、機構部品分野、自動車部品分野、OA機器部品分野など幅広く使用されている。近年、製品の高性能化・軽薄短小化が進んでいることから、樹脂材料に対しては薄肉製品を設計した場合でも高い強度を有すること及び製品の安全性を保つことができる薄肉難燃性が強く求められている。 Polycarbonate resin is a resin excellent in heat resistance, impact resistance, dimensional stability, etc., and is widely used in the fields of electric/electronic parts, mechanical parts, automobile parts, OA equipment parts, and the like. In recent years, products have become more high-performance, lighter, thinner, shorter, and smaller. Therefore, even when thin-walled products are designed for resin materials, it is necessary to have high strength and thin-walled flame-retardant properties that can maintain the safety of products. is strongly desired.

従来、ポリカーボネート樹脂の引張り強度などの機械物性を改良するためには、ガラス繊維とともにリン系添加剤およびポリエチレンワックスを混合する方法(特許文献1参照)、あるいは、繊維状充填剤と樹脂との密着改良剤を添加する方法(特許文献2参照)が用いられてきたが成形品厚みが薄い場合、十分な特性を得ることができていない。 Conventionally, in order to improve mechanical properties such as tensile strength of polycarbonate resin, a method of mixing phosphorus-based additives and polyethylene wax together with glass fiber (see Patent Document 1), or adhesion of fibrous filler and resin Although a method of adding a modifier (see Patent Document 2) has been used, sufficient properties cannot be obtained when the thickness of the molded product is thin.

また、熱可塑性樹脂に液晶性を示すポリマーを配合し、液晶性ポリマーを組成物中で繊維化させることにより、剛性と流動性を同時に改良する方法は多く提案されている。芳香族ポリカーボネート樹脂においても、液晶性ポリマーを配合する試みは多くなされており、更に剛性を高めるために繊維状無機強化材を配合した例が報告されている(特許文献3、特許文献4参照)。また下記に示すとおり、難燃性を付与するためリン系難燃剤あるいは金属塩系難燃剤を配合した試みも既に行われている(特許文献5~8参照)。 Further, many methods have been proposed for simultaneously improving rigidity and fluidity by blending a polymer exhibiting liquid crystallinity with a thermoplastic resin and fiberizing the liquid crystal polymer in the composition. Also in aromatic polycarbonate resins, many attempts have been made to blend liquid crystalline polymers, and examples of blending fibrous inorganic reinforcing materials to further increase rigidity have been reported (see Patent Documents 3 and 4). . Also, as shown below, attempts have already been made to add a phosphorus-based flame retardant or a metal salt-based flame retardant to impart flame retardancy (see Patent Documents 5 to 8).

特許文献5には、ポリカーボネート樹脂、液晶ポリマー、難燃剤(リン系難燃剤を含む
)、およびポリテトラフルオロエチレンからなる樹脂組成物が記載されているが、繊維状
無機強化材の使用が開示されておらず、かかる技術的課題の解決方法を十分に開示するも
のとは言えなかった。
Patent Document 5 describes a resin composition comprising a polycarbonate resin, a liquid crystal polymer, a flame retardant (including a phosphorus-based flame retardant), and polytetrafluoroethylene, but discloses the use of a fibrous inorganic reinforcing material. Therefore, it cannot be said that the method for solving such technical problems is sufficiently disclosed.

特許文献6には、ポリカーボネート樹脂、液晶ポリマー、金属塩系難燃剤、繊維状無機
強化材からなる樹脂組成物が記載されているが、ポリテトラフルオロエチレンの使用が開
示されておらず、また実施例で示されている難燃性の効果がUL規格-94でV-2であ
ることから、かかる技術的課題の解決方法を十分に開示するものとは言えない。
Patent Document 6 describes a resin composition comprising a polycarbonate resin, a liquid crystal polymer, a metal salt-based flame retardant, and a fibrous inorganic reinforcing material, but does not disclose the use of polytetrafluoroethylene, nor is it implemented. Since the flame-retardant effect shown in the examples is V-2 in UL Standard-94, it cannot be said to sufficiently disclose a method for solving such a technical problem.

特許文献7および特許文献8には、ポリカーボネート樹脂、液晶ポリマー、難燃剤(リン系難燃剤を含む)、およびポリテトラフルオロエチレンと有機系重合粒子とからなるポリテトラフルオロエチレン含有混合粉体からなる樹脂組成物が記載されているが、強度とノンハロゲン難燃化を両立するに至っていない。また、これらの技術では薄肉成形品の引張り強度を改良する液晶ポリマーと繊維状無機強化材の使用が開示されておらず、かかる技術的課題の十分な解決方法を開示しているとは言えない。 Patent Documents 7 and 8 disclose polycarbonate resin, liquid crystal polymer, flame retardant (including phosphorus-based flame retardant), and polytetrafluoroethylene-containing mixed powder composed of polytetrafluoroethylene and organic polymer particles. Although a resin composition is described, it has not yet achieved both strength and non-halogen flame retardancy. In addition, these techniques do not disclose the use of a liquid crystal polymer and a fibrous inorganic reinforcing material to improve the tensile strength of thin-walled molded products, and cannot be said to disclose a sufficient solution to such technical problems. .

特開昭57-94039号公報JP-A-57-94039 特開2009-292953号公報JP 2009-292953 A 特開平07-258531号公報JP-A-07-258531 特開2012-188578号公報JP 2012-188578 A 特開平07-331051号公報JP-A-07-331051 特開2003-82219号公報JP-A-2003-82219 特開2003-113314号公報JP 2003-113314 A 特開2008-163315号公報JP 2008-163315 A

上記に鑑み、本発明の目的は、引張り強度、寸法精度および難燃性に優れ、殊に薄肉成形品で強度が必要とされる部材に適したポリカーボネート樹脂組成物を提供することにある。 SUMMARY OF THE INVENTION In view of the above, an object of the present invention is to provide a polycarbonate resin composition which is excellent in tensile strength, dimensional accuracy and flame retardancy, and which is particularly suitable for thin-walled molded articles requiring strength.

本発明者は上記課題を解決すべく鋭意検討を行った結果、特定比率のポリカーボネート系樹脂および液晶ポリエステル樹脂からなる成分、難燃剤、ドリップ防止剤、ガラス繊維および/または炭素繊維、フェノキシ樹脂および/またはエポキシ樹脂並びにリン系安定剤を配合することにより引張り強度、寸法精度および難燃性に優れたポリカーボネート樹脂組成物が得られることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that a component consisting of a polycarbonate resin and a liquid crystal polyester resin in a specific ratio, a flame retardant, an anti-drip agent, glass fibers and / or carbon fibers, a phenoxy resin and / Alternatively, the inventors have found that a polycarbonate resin composition excellent in tensile strength, dimensional accuracy and flame retardancy can be obtained by blending an epoxy resin and a phosphorus-based stabilizer, thereby completing the present invention.

本発明によれば、上記課題は、(A)ポリカーボネート系樹脂(A成分)および(B)液晶ポリエステル樹脂(B成分)からなる成分100重量部に対し、(C)難燃剤(C成分)0.01~40重量部、(D)ドリップ防止剤(D成分)0.1~3重量部、(E)ガラス繊維および/または炭素繊維(E成分)25~150重量部、(F)フェノキシ樹脂および/またはエポキシ樹脂(F成分)0.1~8重量部並びに(G)リン系安定剤(G成分)0.01~3重量部を含有し、A成分とB成分との重量比[(A)/(B)]が98/2~60/40であるポリカーボネート樹脂組成物にて達成される。 According to the present invention, the above problem is solved by adding (C) a flame retardant (C component) to 100 parts by weight of a component consisting of (A) a polycarbonate resin (component A) and (B) a liquid crystal polyester resin (component B). .01 to 40 parts by weight, (D) anti-drip agent (component D) 0.1 to 3 parts by weight, (E) glass fiber and/or carbon fiber (component E) 25 to 150 parts by weight, (F) phenoxy resin ( A)/(B)] is achieved with a polycarbonate resin composition having a ratio of 98/2 to 60/40.

以下、本発明の詳細について説明する。
(A成分:ポリカーボネート系樹脂)
本発明でA成分として用いられるポリカーボネート系樹脂は、二価フェノールとカーボネート前駆体とを反応させて得られるものである。反応方法の一例として界面重合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、および環状カーボネート化合物の開環重合法などを挙げることができる。
The details of the present invention will be described below.
(A component: polycarbonate resin)
The polycarbonate resin used as component A in the present invention is obtained by reacting a dihydric phenol and a carbonate precursor. Examples of reaction methods include an interfacial polymerization method, a melt transesterification method, a solid-phase transesterification method of a carbonate prepolymer, and a ring-opening polymerization method of a cyclic carbonate compound.

ここで使用される二価フェノールの代表的な例としては、ハイドロキノン、レゾルシノール、4,4’-ビフェノール、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)プロパン(通称ビスフェノールA)、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、4,4’-(p-フェニレンジイソプロピリデン)ジフェノール、4,4’-(m-フェニレンジイソプロピリデン)ジフェノール、1,1-ビス(4-ヒドロキシフェニル)-4-イソプロピルシクロヘキサン、ビス(4-ヒドロキシフェニル)オキシド、ビス(4-ヒドロキシフェニル)スルフィド、ビス(4-ヒドロキシフェニル)スルホキシド、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)ケトン、ビス(4-ヒドロキシフェニル)エステル、ビス(4-ヒドロキシ-3-メチルフェニル)スルフィド、9,9-ビス(4-ヒドロキシフェニル)フルオレンおよび9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレンなどが挙げられる。好ましい二価フェノールは、ビス(4-ヒドロキシフェニル)アルカンであり、なかでも耐衝撃性の点からビスフェノールAが特に好ましく、汎用されている。 Representative examples of dihydric phenols used herein include hydroquinone, resorcinol, 4,4′-biphenol, 1,1-bis(4-hydroxyphenyl)ethane, 2,2-bis(4-hydroxyphenyl ) propane (commonly known as bisphenol A), 2,2-bis(4-hydroxy-3-methylphenyl)propane, 2,2-bis(4-hydroxyphenyl)butane, 1,1-bis(4-hydroxyphenyl)- 1-phenylethane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, 2,2-bis(4-hydroxyphenyl) Pentane, 4,4'-(p-phenylenediisopropylidene)diphenol, 4,4'-(m-phenylenediisopropylidene)diphenol, 1,1-bis(4-hydroxyphenyl)-4-isopropylcyclohexane , bis(4-hydroxyphenyl) oxide, bis(4-hydroxyphenyl) sulfide, bis(4-hydroxyphenyl) sulfoxide, bis(4-hydroxyphenyl) sulfone, bis(4-hydroxyphenyl) ketone, bis(4- hydroxyphenyl) ester, bis(4-hydroxy-3-methylphenyl)sulfide, 9,9-bis(4-hydroxyphenyl)fluorene and 9,9-bis(4-hydroxy-3-methylphenyl)fluorene. be done. Preferred dihydric phenols are bis(4-hydroxyphenyl)alkanes, of which bisphenol A is particularly preferred from the standpoint of impact resistance and is widely used.

本発明では、汎用のポリカーボネートであるビスフェノールA系のポリカーボネート以外にも、他の2価フェノール類を用いて製造した特殊なポリカーボネ-トをA成分として使用することが可能である。 In the present invention, in addition to bisphenol A-based polycarbonates, which are general-purpose polycarbonates, special polycarbonates produced using other dihydric phenols can be used as component A.

例えば、2価フェノール成分の一部又は全部として、4,4’-(m-フェニレンジイソプロピリデン)ジフェノール(以下“BPM”と略称することがある)、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン(以下“Bis-TMC”と略称することがある)、9,9-ビス(4-ヒドロキシフェニル)フルオレン及び9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン(以下“BCF”と略称することがある)を用いたポリカーボネ-ト(単独重合体又は共重合体)は、吸水による寸法変化や形態安定性の要求が特に厳しい用途に適当である。これらのBPA以外の2価フェノールは、該ポリカーボネートを構成する2価フェノール成分全体の5モル%以上、特に10モル%以上、使用するのが好ましい。 For example, as part or all of the dihydric phenol component, 4,4′-(m-phenylenediisopropylidene)diphenol (hereinafter sometimes abbreviated as “BPM”), 1,1-bis(4-hydroxy phenyl)cyclohexane, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane (hereinafter sometimes abbreviated as "Bis-TMC"), 9,9-bis(4-hydroxyphenyl) Polycarbonate (homopolymer or copolymer) using fluorene and 9,9-bis(4-hydroxy-3-methylphenyl)fluorene (hereinafter sometimes abbreviated as “BCF”) has dimensions due to water absorption. Suitable for applications with particularly stringent demands on change and morphological stability. These dihydric phenols other than BPA are preferably used in an amount of 5 mol % or more, particularly 10 mol % or more, of the total dihydric phenol components constituting the polycarbonate.

殊に、高剛性かつより良好な耐加水分解性が要求される場合には、樹脂組成物を構成するA成分が次の(1)~(3)の共重合ポリカーボネートであるのが特に好適である。
(1)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPMが20~80モル%(より好適には40~75モル%、さらに好適には45~65モル%)であり、かつBCFが20~80モル%(より好適には25~60モル%、さらに好適には35~55モル%)である共重合ポリカーボネート。
(2)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPAが10~95モル%(より好適には50~90モル%、さらに好適には60~85モル%)であり、かつBCFが5~90モル%(より好適には10~50モル%、さらに好適には15~40モル%)である共重合ポリカーボネート。
(3)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPMが20~80モル%(より好適には40~75モル%、さらに好適には45~65モル%)であり、かつBis-TMCが20~80モル%(より好適には25~60モル%、さらに好適には35~55モル%)である共重合ポリカーボネート。
In particular, when high rigidity and better hydrolysis resistance are required, it is particularly preferable that component A constituting the resin composition is the following copolymerized polycarbonate (1) to (3). be.
(1) BPM is 20 to 80 mol% (more preferably 40 to 75 mol%, still more preferably 45 to 65 mol%) in 100 mol% of the dihydric phenol component constituting the polycarbonate, and BCF is 20 to 80 mol % (more preferably 25 to 60 mol %, still more preferably 35 to 55 mol %).
(2) BPA is 10 to 95 mol% (more preferably 50 to 90 mol%, still more preferably 60 to 85 mol%) in 100 mol% of the dihydric phenol component constituting the polycarbonate, and BCF is 5 to 90 mol % (more preferably 10 to 50 mol %, still more preferably 15 to 40 mol %).
(3) BPM is 20 to 80 mol% (more preferably 40 to 75 mol%, still more preferably 45 to 65 mol%) in 100 mol% of the dihydric phenol component constituting the polycarbonate, and Bis - A copolymerized polycarbonate in which the TMC is 20-80 mol% (more preferably 25-60 mol%, still more preferably 35-55 mol%).

これらの特殊なポリカーボネートは、単独で用いてもよく、2種以上を適宜混合して使用してもよい。また、これらを汎用されているビスフェノールA型のポリカーボネートと混合して使用することもできる。 These special polycarbonates may be used alone or in combination of two or more. Moreover, these can also be used by mixing with a widely used bisphenol A type polycarbonate.

これらの特殊なポリカーボネートの製法及び特性については、例えば、特開平6-172508号公報、特開平8-27370号公報、特開2001-55435号公報及び特開2002-117580号公報等に詳しく記載されている。 The manufacturing method and characteristics of these special polycarbonates are described in detail in, for example, JP-A-6-172508, JP-A-8-27370, JP-A-2001-55435 and JP-A-2002-117580. ing.

なお、上述した各種のポリカーボネートの中でも、共重合組成等を調整して、吸水率及びTg(ガラス転移温度)を下記の範囲内にしたものは、ポリマー自体の耐加水分解性が良好で、かつ成形後の低反り性においても格段に優れているため、形態安定性が要求される分野では特に好適である。
(i)吸水率が0.05~0.15%、好ましくは0.06~0.13%であり、かつTgが120~180℃であるポリカーボネート、あるいは
(ii)Tgが160~250℃、好ましくは170~230℃であり、かつ吸水率が0.10~0.30%、好ましくは0.13~0.30%、より好ましくは0.14~0.27%であるポリカーボネート。
Among the various polycarbonates described above, those having a water absorption rate and Tg (glass transition temperature) within the following range by adjusting the copolymer composition etc. have good hydrolysis resistance of the polymer itself, and Since it is remarkably excellent in low warpage properties after molding, it is particularly suitable in fields where shape stability is required.
(i) a polycarbonate having a water absorption of 0.05-0.15%, preferably 0.06-0.13% and a Tg of 120-180°C, or (ii) a Tg of 160-250°C, A polycarbonate having a temperature of preferably 170 to 230° C. and a water absorption of 0.10 to 0.30%, preferably 0.13 to 0.30%, more preferably 0.14 to 0.27%.

ここで、ポリカーボネートの吸水率は、直径45mm、厚み3.0mmの円板状試験片を用い、ISO62-1980に準拠して23℃の水中に24時間浸漬した後の水分率を測定した値である。また、Tg(ガラス転移温度)は、JIS K7121に準拠した示差走査熱量計(DSC)測定により求められる値である。 Here, the water absorption rate of polycarbonate is a value obtained by measuring the water content after immersing a disk-shaped test piece with a diameter of 45 mm and a thickness of 3.0 mm in water at 23 ° C. for 24 hours in accordance with ISO62-1980. be. Further, Tg (glass transition temperature) is a value determined by differential scanning calorimeter (DSC) measurement in accordance with JIS K7121.

カーボネート前駆体としてはカルボニルハライド、炭酸ジエステルまたはハロホルメートなどが使用され、具体的にはホスゲン、ジフェニルカーボネートまたは二価フェノールのジハロホルメートなどが挙げられる。 Carbonate precursors include carbonyl halides, diesters of carbonic acid and haloformates, and specific examples include phosgene, diphenyl carbonate and dihaloformates of dihydric phenols.

前記二価フェノールとカーボネート前駆体を界面重合法によって芳香族ポリカーボネート樹脂を製造するに当っては、必要に応じて触媒、末端停止剤、二価フェノールが酸化するのを防止するための酸化防止剤などを使用してもよい。また本発明の芳香族ポリカーボネート樹脂は三官能以上の多官能性芳香族化合物を共重合した分岐ポリカーボネート樹脂、芳香族または脂肪族(脂環式を含む)の二官能性カルボン酸を共重合したポリエステルカーボネート樹脂、二官能性アルコール(脂環式を含む)を共重合した共重合ポリカーボネート樹脂、並びにかかる二官能性カルボン酸および二官能性アルコールを共に共重合したポリエステルカーボネート樹脂を含む。また、得られた芳香族ポリカーボネート樹脂の2種以上を混合した混合物であってもよい。 In producing the aromatic polycarbonate resin by interfacial polymerization of the dihydric phenol and the carbonate precursor, if necessary, a catalyst, a terminal terminator, and an antioxidant for preventing oxidation of the dihydric phenol. etc. may be used. In addition, the aromatic polycarbonate resin of the present invention is a branched polycarbonate resin obtained by copolymerizing a trifunctional or higher polyfunctional aromatic compound, a polyester obtained by copolymerizing an aromatic or aliphatic (including alicyclic) bifunctional carboxylic acid It includes carbonate resins, copolymerized polycarbonate resins copolymerized with difunctional alcohols (including alicyclic alcohols), and polyester carbonate resins copolymerized with such difunctional carboxylic acids and difunctional alcohols. Moreover, the mixture which mixed 2 or more types of obtained aromatic polycarbonate resin may be sufficient.

分岐ポリカーボネート樹脂は、本発明の樹脂組成物に、ドリップ防止性能などを付与できる。かかる分岐ポリカーボネート樹脂に使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、または4,6-ジメチル-2,4,6-トリス(4-ヒドロキジフェニル)ヘプテン-2、2,4,6-トリメチル-2,4,6-トリス(4-ヒドロキシフェニル)ヘプタン、1,3,5-トリス(4-ヒドロキシフェニル)ベンゼン、1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタン、2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール、4-{4-[1,1-ビス(4-ヒドロキシフェニル)エチル]ベンゼン}-α,α-ジメチルベンジルフェノール等のトリスフェノール、テトラ(4-ヒドロキシフェニル)メタン、ビス(2,4-ジヒドロキシフェニル)ケトン、1,4-ビス(4,4-ジヒドロキシトリフェニルメチル)ベンゼン、またはトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等が挙げられ、中でも1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタンが好ましく、特に1,1,1-トリス(4-ヒドロキシフェニル)エタンが好ましい。 The branched polycarbonate resin can impart anti-drip performance and the like to the resin composition of the present invention. Examples of trifunctional or higher polyfunctional aromatic compounds used in such branched polycarbonate resins include phloroglucine, phloroglucide, or 4,6-dimethyl-2,4,6-tris(4-hydroxydiphenyl)heptene-2,2 ,4,6-trimethyl-2,4,6-tris(4-hydroxyphenyl)heptane, 1,3,5-tris(4-hydroxyphenyl)benzene, 1,1,1-tris(4-hydroxyphenyl) ethane, 1,1,1-tris(3,5-dimethyl-4-hydroxyphenyl)ethane, 2,6-bis(2-hydroxy-5-methylbenzyl)-4-methylphenol, 4-{4-[ trisphenols such as 1,1-bis(4-hydroxyphenyl)ethyl]benzene}-α,α-dimethylbenzylphenol, tetra(4-hydroxyphenyl)methane, bis(2,4-dihydroxyphenyl)ketone, 1, 4-bis(4,4-dihydroxytriphenylmethyl)benzene, or trimellitic acid, pyromellitic acid, benzophenonetetracarboxylic acid and acid chlorides thereof, among others, 1,1,1-tris(4-hydroxy Phenyl)ethane and 1,1,1-tris(3,5-dimethyl-4-hydroxyphenyl)ethane are preferred, and 1,1,1-tris(4-hydroxyphenyl)ethane is particularly preferred.

分岐ポリカーボネートにおける多官能性芳香族化合物から誘導される構成単位は、2価フェノールから誘導される構成単位とかかる多官能性芳香族化合物から誘導される構成単位との合計100モル%中、好ましくは0.01~1モル%、より好ましくは0.05~0.9モル%、さらに好ましくは0.05~0.8モル%である。 Structural units derived from a polyfunctional aromatic compound in the branched polycarbonate are preferably 0.01 to 1 mol %, more preferably 0.05 to 0.9 mol %, still more preferably 0.05 to 0.8 mol %.

また、特に溶融エステル交換法の場合、副反応として分岐構造単位が生ずる場合があるが、かかる分岐構造単位量についても、2価フェノールから誘導される構成単位との合計100モル%中、好ましくは0.001~1モル%、より好ましくは0.005~0.9モル%、さらに好ましくは0.01~0.8モル%であるものが好ましい。なお、かかる分岐構造の割合については1H-NMR測定により算出することが可能である。 In addition, particularly in the case of the melt transesterification method, branched structural units may occur as a side reaction. It is preferably 0.001 to 1 mol %, more preferably 0.005 to 0.9 mol %, still more preferably 0.01 to 0.8 mol %. The ratio of such branched structures can be calculated by 1H-NMR measurement.

脂肪族の二官能性のカルボン酸は、α,ω-ジカルボン酸が好ましい。脂肪族の二官能性のカルボン酸としては例えば、セバシン酸(デカン二酸)、ドデカン二酸、テトラデカン二酸、オクタデカン二酸、イコサン二酸などの直鎖飽和脂肪族ジカルボン酸、並びにシクロヘキサンジカルボン酸などの脂環族ジカルボン酸が好ましく挙げられる。二官能性アルコールとしては脂環族ジオールがより好適であり、例えばシクロヘキサンジメタノール、シクロヘキサンジオール、およびトリシクロデカンジメタノールなどが例示される。 Aliphatic bifunctional carboxylic acids are preferably α,ω-dicarboxylic acids. Examples of aliphatic bifunctional carboxylic acids include linear saturated aliphatic dicarboxylic acids such as sebacic acid (decanedioic acid), dodecanedioic acid, tetradecanedioic acid, octadecanedioic acid, icosanedioic acid, and cyclohexanedicarboxylic acid. Alicyclic dicarboxylic acids such as are preferably exemplified. Alicyclic diols are more suitable as bifunctional alcohols, and examples thereof include cyclohexanedimethanol, cyclohexanediol, and tricyclodecanedimethanol.

ポリカーボネート系樹脂の製造方法である界面重合法、溶融エステル交換法、カーボネートプレポリマー固相エステル交換法、および環状カーボネート化合物の開環重合法などの反応形式は、各種の文献および特許公報などで良く知られている方法である。 Reaction formats such as the interfacial polymerization method, the melt transesterification method, the carbonate prepolymer solid-phase transesterification method, and the ring-opening polymerization method of a cyclic carbonate compound, which are methods for producing polycarbonate resins, can be found in various literatures and patent publications. It is a known method.

本発明のポリカーボネート樹脂組成物を製造するにあたり、ポリカーボネート系樹脂の粘度平均分子量(M)は、特に限定されないが、好ましくは1×10~5×10であり、より好ましくは1.4×10~3×10、さらに好ましくは1.4×10~2.4×10であり、特に好ましくは1.7×10~2.1×10である。粘度平均分子量が1×10未満のポリカーボネート系樹脂では、良好な機械的特性、特に高い引張強度が得られない場合がある。一方、粘度平均分子量が5×10を超える芳香族ポリカーボネート系樹脂から得られる樹脂組成物は、射出成形時の流動性に劣る点で汎用性に劣る場合がある。 In producing the polycarbonate resin composition of the present invention, the viscosity average molecular weight (M) of the polycarbonate resin is not particularly limited, but is preferably 1×10 4 to 5×10 4 , more preferably 1.4×. 10 4 to 3×10 4 , more preferably 1.4×10 4 to 2.4×10 4 , particularly preferably 1.7×10 4 to 2.1×10 4 . Polycarbonate resins having a viscosity-average molecular weight of less than 1×10 4 may not provide good mechanical properties, especially high tensile strength. On the other hand, a resin composition obtained from an aromatic polycarbonate resin having a viscosity-average molecular weight exceeding 5×10 4 may be inferior in versatility due to poor fluidity during injection molding.

なお、前記ポリカーボネート系樹脂は、その粘度平均分子量が前記範囲外のものを混合して得られたものであってもよい。殊に、前記範囲(5×10)を超える粘度平均分子量を有するポリカーボネート系樹脂は、樹脂のエントロピー弾性が向上する。その結果、強化樹脂材料を構造部材に成形する際に使用されることのあるガスアシスト成形、および発泡成形において、良好な成形加工性を発現する。かかる成形加工性の改善は前記分岐ポリカーボネートよりもさらに良好である。より好適な態様としては、A成分が粘度平均分子量7×10~3×10のポリカーボネート系樹脂(A-1-1成分)、および粘度平均分子量1×10~3×10の芳香族ポリカーボネート樹脂(A-1-2成分)からなり、その粘度平均分子量が1.6×10~3.5×10であるポリカーボネート系樹脂(A-1成分)(以下、“高分子量成分含有ポリカーボネート系樹脂”と称することがある)も使用できる。 The polycarbonate-based resin may be obtained by mixing resins having a viscosity-average molecular weight outside the above range. In particular, a polycarbonate-based resin having a viscosity-average molecular weight exceeding the above range (5×10 4 ) improves the entropy elasticity of the resin. As a result, good moldability is exhibited in gas-assisted molding and foam molding, which are sometimes used when molding reinforced resin materials into structural members. Such improvement in moldability is even better than that of the branched polycarbonate. In a more preferred embodiment, component A is a polycarbonate resin (Component A-1-1) having a viscosity average molecular weight of 7×10 4 to 3×10 5 and an aromatic component having a viscosity average molecular weight of 1×10 4 to 3×10 4 Polycarbonate resin (A-1 component) ( hereinafter referred to as "high molecular weight component Polycarbonate-based resin") can also be used.

かかる高分子量成分含有ポリカーボネート系樹脂(A-1成分)において、A-1-1成分の分子量は7×10~2×10が好ましく、より好ましくは8×10~2×10、さらに好ましくは1×10~2×10、特に好ましくは1×10~1.6×10である。またA-1-2成分の分子量は1×10~2.5×10が好ましく、より好ましくは1.1×10~2.4×10、さらに好ましくは1.2×10~2.4×10、特に好ましくは1.2×10~2.3×10である。 In such a high-molecular-weight component-containing polycarbonate resin (component A-1), the molecular weight of component A-1-1 is preferably 7×10 4 to 2×10 5 , more preferably 8×10 4 to 2×10 5 , More preferably 1×10 5 to 2×10 5 , particularly preferably 1×10 5 to 1.6×10 5 . The molecular weight of component A-1-2 is preferably 1×10 4 to 2.5×10 4 , more preferably 1.1×10 4 to 2.4×10 4 , still more preferably 1.2×10 4 . to 2.4×10 4 , particularly preferably 1.2×10 4 to 2.3×10 4 .

高分子量成分含有ポリカーボネート系樹脂(A-1成分)は前記A-1-1成分とA-1-2成分を種々の割合で混合し、所定の分子量範囲を満足するよう調整して得ることができる。好ましくは、A-1成分100重量%中、A-1-1成分が2~40重量%の場合であり、より好ましくはA-1-1成分が3~30重量%であり、さらに好ましくはA-1-1成分が4~20重量%であり、特に好ましくはA-1-1成分が5~20重量%である。 The high-molecular-weight component-containing polycarbonate resin (component A-1) can be obtained by mixing the components A-1-1 and A-1-2 in various proportions and adjusting the mixture to satisfy a predetermined molecular weight range. can. Preferably, in 100% by weight of A-1 component, A-1-1 component is 2 to 40% by weight, more preferably A-1-1 component is 3 to 30% by weight, still more preferably The content of component A-1-1 is 4 to 20% by weight, and the content of component A-1-1 is particularly preferably 5 to 20% by weight.

また、A-1成分の調製方法としては、(1)A-1-1成分とA-1-2成分とを、それぞれ独立に重合しこれらを混合する方法、(2)特開平5-306336号公報に示される方法に代表される、GPC法による分子量分布チャートにおいて複数のポリマーピークを示す芳香族ポリカーボネート樹脂を同一系内において製造する方法を用い、かかる芳香族ポリカーボネート樹脂を本発明のA-1成分の条件を満足するよう製造する方法、および(3)かかる製造方法((2)の製造法)により得られた芳香族ポリカーボネート樹脂と、別途製造されたA-1-1成分および/またはA-1-2成分とを混合する方法などを挙げることができる。 In addition, as a method for preparing the A-1 component, (1) a method in which the A-1-1 component and the A-1-2 component are polymerized independently and then mixed, and (2) JP-A-5-306336. Using a method for producing an aromatic polycarbonate resin showing multiple polymer peaks in a molecular weight distribution chart by GPC method in the same system, represented by the method shown in JP-A-2003-120002, such an aromatic polycarbonate resin is produced by the A- of the present invention. A method of manufacturing to satisfy the conditions of one component, and (3) an aromatic polycarbonate resin obtained by such a manufacturing method (manufacturing method of (2)), separately manufactured A-1-1 component and / or A method of mixing with the A-1-2 component can be mentioned.

本発明でいう粘度平均分子量は、まず、次式にて算出される比粘度(ηSP)を20℃で塩化メチレン100mlにポリカーボネート0.7gを溶解した溶液からオストワルド粘度計を用いて求め、
比粘度(ηSP)=(t-t)/t
[tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
求められた比粘度(ηSP)から次の数式により粘度平均分子量Mを算出する。
ηSP/c=[η]+0.45×[η]c(但し[η]は極限粘度)
[η]=1.23×10-40.83
c=0.7
The viscosity-average molecular weight referred to in the present invention is obtained by using an Ostwald viscometer from a solution obtained by dissolving 0.7 g of polycarbonate in 100 ml of methylene chloride at 20° C. to determine the specific viscosity (η SP ) calculated by the following formula.
Specific viscosity (η SP ) = (tt 0 )/t 0
[t 0 is the number of seconds the methylene chloride falls, t is the number of seconds the sample solution falls]
The viscosity-average molecular weight M is calculated from the determined specific viscosity (η SP ) by the following formula.
η SP /c=[η]+0.45×[η] 2 c (where [η] is the intrinsic viscosity)
[η]=1.23×10 −4 M 0.83
c=0.7

尚、ポリカーボネート系樹脂の粘度平均分子量の算出は次の要領で行なわれる。すなわち、該組成物を、その20~30倍重量の塩化メチレンと混合し、組成物中の可溶分を溶解させる。かかる可溶分をセライト濾過により採取する。その後得られた溶液中の溶媒を除去する。溶媒除去後の固体を十分に乾燥し、塩化メチレンに溶解する成分の固体を得る。かかる固体0.7gを塩化メチレン100mlに溶解した溶液から、上記と同様にして20℃における比粘度を求め、該比粘度から上記と同様にして粘度平均分子量Mを算出する。 Calculation of the viscosity-average molecular weight of the polycarbonate-based resin is performed in the following manner. That is, the composition is mixed with 20 to 30 times its weight of methylene chloride to dissolve the soluble matter in the composition. Such soluble matter is collected by celite filtration. The solvent in the resulting solution is then removed. After removing the solvent, the solid is sufficiently dried to obtain a solid of the component soluble in methylene chloride. From a solution obtained by dissolving 0.7 g of this solid in 100 ml of methylene chloride, the specific viscosity at 20° C. is obtained in the same manner as described above, and the viscosity average molecular weight M is calculated from the specific viscosity in the same manner as described above.

ポリカーボネート系樹脂(A成分)としてポリカーボネート-ポリジオルガノシロキサン共重合樹脂を使用することも出来る。ポリカーボネート-ポリジオルガノシロキサン共重合樹脂とは下記一般式(1)で表される構成単位を誘導する二価フェノールおよび下記一般式(3)で表される構成単位を誘導するヒドロキシアリール末端ポリジオルガノシロキサンを共重合させることにより調製される共重合樹脂である。 A polycarbonate-polydiorganosiloxane copolymer resin can also be used as the polycarbonate-based resin (component A). A polycarbonate-polydiorganosiloxane copolymer resin is a dihydric phenol deriving a structural unit represented by the following general formula (1) and a hydroxyaryl-terminated polydiorganosiloxane deriving a structural unit represented by the following general formula (3). is a copolymer resin prepared by copolymerizing the

Figure 0007311356000001
Figure 0007311356000001

[上記一般式(1)において、R及びRは夫々独立して水素原子、ハロゲン原子、炭素原子数1~18のアルキル基、炭素原子数1~18のアルコキシ基、炭素原子数6~20のシクロアルキル基、炭素原子数6~20のシクロアルコキシ基、炭素原子数2~10のアルケニル基、炭素原子数6~14のアリール基、炭素原子数6~14のアリールオキシ基、炭素原子数7~20のアラルキル基、炭素原子数7~20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、それぞれ複数ある場合はそれらは同一でも異なっていても良く、e及びfは夫々1~4の整数であり、Wは単結合もしくは下記一般式(2)で表される基からなる群より選ばれる少なくとも一つの基である。] [In the above general formula (1), R 1 and R 2 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, cycloalkyl group having 20 carbon atoms, cycloalkoxy group having 6 to 20 carbon atoms, alkenyl group having 2 to 10 carbon atoms, aryl group having 6 to 14 carbon atoms, aryloxy group having 6 to 14 carbon atoms, carbon atom represents a group selected from the group consisting of an aralkyl group having 7 to 20 carbon atoms, an aralkyloxy group having 7 to 20 carbon atoms, a nitro group, an aldehyde group, a cyano group and a carboxyl group; e and f are each an integer of 1 to 4, and W is at least one group selected from the group consisting of a single bond or a group represented by the following general formula (2). ]

Figure 0007311356000002
Figure 0007311356000002

[上記一般式(2)においてR11,R12,R13,R14,R15,R16,R17及びR18は夫々独立して水素原子、炭素原子数1~18のアルキル基、炭素原子数6~14のアリール基及び炭素原子数7~20のアラルキル基からなる群から選ばれる基を表し、R19及びR20は夫々独立して水素原子、ハロゲン原子、炭素原子数1~18のアルキル基、炭素原子数1~10のアルコキシ基、炭素原子数6~20のシクロアルキル基、炭素原子数6~20のシクロアルコキシ基、炭素原子数2~10のアルケニル基、炭素原子数6~14のアリール基、炭素原子数6~10のアリールオキシ基、炭素原子数7~20のアラルキル基、炭素原子数7~20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、複数ある場合はそれらは同一でも異なっていても良く、gは1~10の整数、hは4~7の整数である。] [In the above general formula (2), R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 are each independently a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, a carbon represents a group selected from the group consisting of an aryl group having 6 to 14 atoms and an aralkyl group having 7 to 20 carbon atoms; R 19 and R 20 each independently represents a hydrogen atom, a halogen atom, or a an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a cycloalkyl group having 6 to 20 carbon atoms, a cycloalkoxy group having 6 to 20 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, and 6 carbon atoms. an aryl group of up to 14, an aryloxy group of 6 to 10 carbon atoms, an aralkyl group of 7 to 20 carbon atoms, an aralkyloxy group of 7 to 20 carbon atoms, a nitro group, an aldehyde group, a cyano group and a carboxyl group represents a group selected from the group consisting of; when there are more than one, they may be the same or different; g is an integer of 1-10; h is an integer of 4-7; ]

Figure 0007311356000003
Figure 0007311356000003

[上記一般式(3)において、R、R、R、R、R及びRは、各々独立に水素原子、炭素数1~12のアルキル基又は炭素数6~12の置換若しくは無置換のアリール基であり、R及びR10は夫々独立して水素原子、ハロゲン原子、炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基であり、pは自然数であり、qは0又は自然数であり、p+qは10~300の自然数である。Xは炭素数2~8の二価脂肪族基である。] [In the general formula (3), R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or a substituted group having 6 to 12 carbon atoms. or an unsubstituted aryl group, R 9 and R 10 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and p is a natural number. , q is 0 or a natural number, and p+q is a natural number from 10 to 300. X is a divalent aliphatic group having 2 to 8 carbon atoms. ]

一般式(1)で表される構成単位を誘導する二価フェノール(I)としては、例えば、4,4’-ジヒドロキシビフェニル、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシ-3,3’-ビフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-イソプロピルフェニル)プロパン、2,2-ビス(3-t-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、2,2-ビス(3-ブロモ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、1,1-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)シクロヘキサン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、4,4’-ジヒドロキシジフェニルエ-テル、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルエ-テル、4,4’-スルホニルジフェノール、4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシジフェニルスルフィド、2,2’-ジメチル-4,4’-スルホニルジフェノール、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィド、2,2’-ジフェニル-4,4’-スルホニルジフェノール、4,4’-ジヒドロキシ-3,3’-ジフェニルジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジフェニルジフェニルスルフィド、1,3-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼン、1,4-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼン、1,4-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,3-ビス(4-ヒドロキシフェニル)シクロヘキサン、4,8-ビス(4-ヒドロキシフェニル)トリシクロ[5.2.1.02,6]デカン、4,4’-(1,3-アダマンタンジイル)ジフェノール、1,3-ビス(4-ヒドロキシフェニル)-5,7-ジメチルアダマンタン等が挙げられる。なかでも、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、4,4’-スルホニルジフェノール、2,2’-ジメチル-4,4’-スルホニルジフェノール、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、1,3-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼン、1,4-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼンが好ましく、殊に2,2-ビス(4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン(BPZ)、4,4’-スルホニルジフェノール、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレンが好ましい。中でも強度に優れ、良好な耐久性を有する2,2-ビス(4-ヒドロキシフェニル)プロパンが最も好適である。また、これらは単独または二種以上組み合わせて用いてもよい。 Examples of the dihydric phenol (I) from which the structural unit represented by the general formula (1) is derived include 4,4′-dihydroxybiphenyl, bis(4-hydroxyphenyl)methane, 1,1-bis(4- hydroxyphenyl)ethane, 1,1-bis(4-hydroxyphenyl)-1-phenylethane, 2,2-bis(4-hydroxyphenyl)propane, 2,2-bis(4-hydroxy-3-methylphenyl) Propane, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, 2,2-bis(4-hydroxy-3,3′-biphenyl)propane, 2,2-bis(4- hydroxy-3-isopropylphenyl)propane, 2,2-bis(3-t-butyl-4-hydroxyphenyl)propane, 2,2-bis(4-hydroxyphenyl)butane, 2,2-bis(4-hydroxy phenyl) octane, 2,2-bis(3-bromo-4-hydroxyphenyl)propane, 2,2-bis(3,5-dimethyl-4-hydroxyphenyl)propane, 2,2-bis(3-cyclohexyl- 4-hydroxyphenyl)propane, 1,1-bis(3-cyclohexyl-4-hydroxyphenyl)cyclohexane, bis(4-hydroxyphenyl)diphenylmethane, 9,9-bis(4-hydroxyphenyl)fluorene, 9,9- Bis(4-hydroxy-3-methylphenyl)fluorene, 1,1-bis(4-hydroxyphenyl)cyclohexane, 1,1-bis(4-hydroxyphenyl)cyclopentane, 4,4'-dihydroxydiphenyl ether , 4,4′-dihydroxy-3,3′-dimethyldiphenyl ether, 4,4′-sulfonyldiphenol, 4,4′-dihydroxydiphenyl sulfoxide, 4,4′-dihydroxydiphenyl sulfide, 2,2′ -dimethyl-4,4'-sulfonyldiphenol, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfoxide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfide, 2,2'-diphenyl -4,4'-sulfonyldiphenol, 4,4'-dihydroxy-3,3'-diphenyldiphenyl sulfoxide, 4,4'-dihydroxy-3,3'-diphenyldiphenyl sulfide, 1,3-bis{2- (4-hydroxyphenyl)propyl}benzene, 1,4-bis{2-(4-hydroxyphenyl)propyl}benzene, 1,4-bis(4-hydroxyphenyl)cyclohexane, 1,3-bis(4-hydroxy phenyl)cyclohexane, 4,8-bis(4-hydroxyphenyl)tricyclo[5.2.1.02,6]decane, 4,4′-(1,3-adamantanediyl)diphenol, 1,3-bis (4-hydroxyphenyl)-5,7-dimethyladamantane and the like. Among others, 1,1-bis(4-hydroxyphenyl)-1-phenylethane, 2,2-bis(4-hydroxyphenyl)propane, 2,2-bis(4-hydroxy-3-methylphenyl)propane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, 4,4'-sulfonyldiphenol, 2,2'-dimethyl- 4,4′-sulfonyldiphenol, 9,9-bis(4-hydroxy-3-methylphenyl)fluorene, 1,3-bis{2-(4-hydroxyphenyl)propyl}benzene, 1,4-bis{ 2-(4-Hydroxyphenyl)propyl}benzene is preferred, especially 2,2-bis(4-hydroxyphenyl)propane, 1,1-bis(4-hydroxyphenyl)cyclohexane (BPZ), 4,4′- Sulfonyldiphenol, 9,9-bis(4-hydroxy-3-methylphenyl)fluorene are preferred. Among them, 2,2-bis(4-hydroxyphenyl)propane, which has excellent strength and good durability, is most preferable. Moreover, these may be used alone or in combination of two or more.

上記一般式(3)で表される構成単位を誘導するヒドロキシアリール末端ポリジオルガノシロキサンとしては、例えば下記に示すような化合物が好適に用いられる。 As the hydroxyaryl-terminated polydiorganosiloxane from which the structural unit represented by the general formula (3) is derived, for example, the following compounds are preferably used.

Figure 0007311356000004
Figure 0007311356000004

ヒドロキシアリール末端ポリジオルガノシロキサン(II)は、オレフィン性の不飽和炭素-炭素結合を有するフェノール類、好適にはビニルフェノール、2-アリルフェノール、イソプロペニルフェノール、2-メトキシ-4-アリルフェノールを所定の重合度を有するポリシロキサン鎖の末端に、ハイドロシリレーション反応させることにより容易に製造される。なかでも、(2-アリルフェノール)末端ポリジオルガノシロキサン、(2-メトキシ-4-アリルフェノール)末端ポリジオルガノシロキサンが好ましく、殊に(2-アリルフェノール)末端ポリジメチルシロキサン、(2-メトキシ-4-アリルフェノール)末端ポリジメチルシロキサンが好ましい。ヒドロキシアリール末端ポリジオルガノシロキサン(II)は、その分子量分布(Mw/Mn)が3以下であることが好ましい。さらに優れた高温成形時の低アウトガス性と低温衝撃性を発現させるために、かかる分子量分布(Mw/Mn)はより好ましくは2.5以下であり、さらに好ましくは2以下である。かかる好適な範囲の上限を超えると高温成形時のアウトガス発生量が多く、また、低温衝撃性に劣る場合がある。 Hydroxyaryl-terminated polydiorganosiloxane (II) is selected from phenols having olefinically unsaturated carbon-carbon bonds, preferably vinylphenol, 2-allylphenol, isopropenylphenol, 2-methoxy-4-allylphenol. It is easily produced by subjecting the end of a polysiloxane chain having a degree of polymerization to a hydrosilylation reaction. Among them, (2-allylphenol)-terminated polydiorganosiloxane and (2-methoxy-4-allylphenol)-terminated polydiorganosiloxane are preferred, and (2-allylphenol)-terminated polydimethylsiloxane, (2-methoxy-4 -allylphenol) terminated polydimethylsiloxane is preferred. The hydroxyaryl-terminated polydiorganosiloxane (II) preferably has a molecular weight distribution (Mw/Mn) of 3 or less. The molecular weight distribution (Mw/Mn) is more preferably 2.5 or less, still more preferably 2 or less, in order to achieve even better low-outgassing properties and low-temperature impact resistance during high-temperature molding. If the upper limit of the preferred range is exceeded, a large amount of outgas is generated during high-temperature molding, and the low-temperature impact resistance may be poor.

また、高度な耐衝撃性を実現するためにヒドロキシアリール末端ポリジオルガノシロキサン(II)のジオルガノシロキサン重合度(p+q)は10~300が適切である。かかるジオルガノシロキサン重合度(p+q)は好ましくは10~200、より好ましくは12~150、更に好ましくは14~100である。かかる好適な範囲の下限未満では、ポリカーボネート-ポリジオルガノシロキサン共重合体の特徴である耐衝撃性が有効に発現せず、かかる好適な範囲の上限を超えると外観不良が現れる。 Moreover, the diorganosiloxane polymerization degree (p+q) of the hydroxyaryl-terminated polydiorganosiloxane (II) is suitably 10 to 300 in order to achieve high impact resistance. Such a diorganosiloxane polymerization degree (p+q) is preferably 10-200, more preferably 12-150, still more preferably 14-100. Below the lower limit of the preferred range, impact resistance characteristic of the polycarbonate-polydiorganosiloxane copolymer is not effectively exhibited, and above the upper limit of the preferred range, poor appearance appears.

A成分で使用されるポリカーボネート-ポリジオルガノシロキサン共重合樹脂全重量に占めるポリジオルガノシロキサン含有量は0.1~50重量%が好ましい。かかるポリジオルガノシロキサン成分含有量はより好ましくは0.5~30重量%、さらに好ましくは1~20重量%である。かかる好適な範囲の下限以上では、耐衝撃性や難燃性に優れ、かかる好適な範囲の上限以下では、成形条件の影響を受けにくい安定した外観が得られやすい。かかるポリジオルガノシロキサン重合度、ポリジオルガノシロキサン含有量は、1H-NMR測定により算出することが可能である。 The polydiorganosiloxane content in the total weight of the polycarbonate-polydiorganosiloxane copolymer resin used as component A is preferably 0.1 to 50% by weight. The content of such polydiorganosiloxane component is more preferably 0.5 to 30% by weight, more preferably 1 to 20% by weight. Above the lower limit of the preferred range, the impact resistance and flame retardancy are excellent, and below the upper limit of the preferred range, a stable appearance that is less susceptible to molding conditions is likely to be obtained. Such polydiorganosiloxane polymerization degree and polydiorganosiloxane content can be calculated by 1H-NMR measurement.

本発明において、ヒドロキシアリール末端ポリジオルガノシロキサン(II)は1種のみを用いてもよく、また、2種以上を用いてもよい。 In the present invention, only one type of hydroxyaryl-terminated polydiorganosiloxane (II) may be used, or two or more types may be used.

また、本発明の妨げにならない範囲で、上記二価フェノール(I)、ヒドロキシアリール末端ポリジオルガノシロキサン(II)以外の他のコモノマーを共重合体の全重量に対して10重量%以下の範囲で併用することもできる。 In addition, other comonomers than the dihydric phenol (I) and the hydroxyaryl-terminated polydiorganosiloxane (II) are added in an amount of 10% by weight or less based on the total weight of the copolymer, as long as they do not interfere with the present invention. They can also be used in combination.

本発明においては、あらかじめ水に不溶性の有機溶媒とアルカリ水溶液との混合液中における二価フェノール(I)と炭酸エステル形成性化合物の反応により末端クロロホルメート基を有するオリゴマーを含む混合溶液を調製する。 In the present invention, a mixed solution containing an oligomer having a terminal chloroformate group is prepared in advance by reacting a dihydric phenol (I) and a carbonate-forming compound in a mixed solution of a water-insoluble organic solvent and an alkaline aqueous solution. do.

二価フェノール(I)のオリゴマーを生成するにあたり、本発明の方法に用いられる二価フェノール(I)の全量を一度にオリゴマーにしてもよく、又は、その一部を後添加モノマーとして後段の界面重縮合反応に反応原料として添加してもよい。後添加モノマーとは、後段の重縮合反応を速やかに進行させるために加えるものであり、必要のない場合には敢えて加える必要はない。 In producing the oligomer of dihydric phenol (I), the whole amount of dihydric phenol (I) used in the method of the present invention may be converted into an oligomer at one time, or part of it may be used as a post-addition monomer to form an interface in the latter stage. It may be added as a reaction raw material to the polycondensation reaction. The post-addition monomer is added in order to facilitate the subsequent polycondensation reaction, and it is not necessary to add it unless necessary.

このオリゴマー生成反応の方式は特に限定はされないが、通常、酸結合剤の存在下、溶媒中で行う方式が好適である。 The system of this oligomer-forming reaction is not particularly limited, but a system in which the reaction is carried out in a solvent in the presence of an acid binder is usually preferred.

炭酸エステル形成性化合物の使用割合は、反応の化学量論比(当量)を考慮して適宜調整すればよい。また、ホスゲン等のガス状の炭酸エステル形成性化合物を使用する場合、これを反応系に吹き込む方法が好適に採用できる。 The proportion of the carbonate-forming compound to be used may be appropriately adjusted in consideration of the stoichiometric ratio (equivalents) of the reaction. When a gaseous carbonate-forming compound such as phosgene is used, a method of blowing it into the reaction system can be preferably employed.

前記酸結合剤としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩、ピリジン等の有機塩基あるいはこれらの混合物などが用いられる。酸結合剤の使用割合も、上記同様に、反応の化学量論比(当量)を考慮して適宜定めればよい。具体的には、オリゴマーの形成に使用する二価フェノール(I)のモル数(通常1モルは2当量に相当)に対して2当量若しくはこれより若干過剰量の酸結合剤を用いることが好ましい。 Examples of the acid binder include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, organic bases such as pyridine, and mixtures thereof. The ratio of the acid binder to be used may also be appropriately determined in consideration of the stoichiometric ratio (equivalents) of the reaction in the same manner as described above. Specifically, it is preferable to use 2 equivalents or a slightly excess amount of the acid binder with respect to the number of moles of the dihydric phenol (I) used to form the oligomer (usually 1 mol corresponds to 2 equivalents). .

前記溶媒としては、公知のポリカーボネートの製造に使用されるものなど各種の反応に不活性な溶媒を1種単独であるいは混合溶媒として使用すればよい。代表的な例としては、例えば、キシレン等の炭化水素溶媒、塩化メチレン、クロロベンゼンをはじめとするハロゲン化炭化水素溶媒などが挙げられる。特に塩化メチレン等のハロゲン化炭化水素溶媒が好適に用いられる。 As the solvent, a solvent inert to various reactions, such as those used in the production of known polycarbonates, may be used singly or as a mixed solvent. Typical examples include hydrocarbon solvents such as xylene, halogenated hydrocarbon solvents such as methylene chloride and chlorobenzene, and the like. In particular, halogenated hydrocarbon solvents such as methylene chloride are preferably used.

オリゴマー生成の反応圧力は特に制限はなく、常圧、加圧、減圧のいずれでもよいが、通常常圧下で反応を行うことが有利である。反応温度は-20~50℃の範囲から選ばれ、多くの場合、重合に伴い発熱するので、水冷又は氷冷することが望ましい。反応時間は他の条件に左右され一概に規定できないが、通常、0.2~10時間で行われる。オリゴマー生成反応のpH範囲は、公知の界面反応条件と同様であり、pHは常に10以上に調製される。 The reaction pressure for oligomer production is not particularly limited and may be normal pressure, increased pressure or reduced pressure, but it is usually advantageous to carry out the reaction under normal pressure. The reaction temperature is selected from the range of −20 to 50° C. In many cases, heat is generated with polymerization, so water cooling or ice cooling is desirable. Although the reaction time depends on other conditions and cannot be defined unconditionally, it is usually carried out in 0.2 to 10 hours. The pH range of the oligomer-forming reaction is the same as the well-known interfacial reaction conditions, and the pH is always adjusted to 10 or higher.

本発明はこのようにして、末端クロロホルメート基を有する二価フェノール(I)のオリゴマーを含む混合溶液を得た後、該混合溶液を攪拌しながら分子量分布(Mw/Mn)が3以下まで高度に精製された一般式(4)で表わされるヒドロキシアリール末端ポリジオルガノシロキサン(II)を二価フェノール(I)に加え、該ヒドロキシアリール末端ポリジオルガノシロキサン(II)と該オリゴマーを界面重縮合させることによりポリカーボネート-ポリジオルガノシロキサン共重合体を得る。 In the present invention, after obtaining a mixed solution containing an oligomer of dihydric phenol (I) having a terminal chloroformate group, the mixed solution is stirred until the molecular weight distribution (Mw/Mn) is 3 or less. A highly purified hydroxyaryl-terminated polydiorganosiloxane (II) represented by the general formula (4) is added to the dihydric phenol (I), and the hydroxyaryl-terminated polydiorganosiloxane (II) and the oligomer are subjected to interfacial polycondensation. A polycarbonate-polydiorganosiloxane copolymer is thus obtained.

Figure 0007311356000005
Figure 0007311356000005

(上記一般式(4)において、R、R、R、R、R及びRは、各々独立に水素原子、炭素数1~12のアルキル基又は炭素数6~12の置換若しくは無置換のアリール基であり、R及びR10は夫々独立して水素原子、ハロゲン原子、炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基であり、pは自然数であり、qは0又は自然数であり、p+qは10~300の自然数である。Xは炭素数2~8の二価脂肪族基である。) (In general formula (4) above, R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or a substituted group having 6 to 12 carbon atoms. or an unsubstituted aryl group, R 9 and R 10 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and p is a natural number. , q is 0 or a natural number, and p+q is a natural number of 10 to 300. X is a divalent aliphatic group having 2 to 8 carbon atoms.)

界面重縮合反応を行うにあたり、酸結合剤を反応の化学量論比(当量)を考慮して適宜追加してもよい。酸結合剤としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩、ピリジン等の有機塩基あるいはこれらの混合物などが用いられる。具体的には、使用するヒドロキシアリール末端ポリジオルガノシロキサン(II)、又は上記の如く二価フェノール(I)の一部を後添加モノマーとしてこの反応段階に添加する場合には、後添加分の二価フェノール(I)とヒドロキシアリール末端ポリジオルガノシロキサン(II)との合計モル数(通常1モルは2当量に相当)に対して2当量若しくはこれより過剰量のアルカリを用いることが好ましい。 In carrying out the interfacial polycondensation reaction, an acid binder may be added as appropriate in consideration of the stoichiometric ratio (equivalents) of the reaction. Examples of the acid binder include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, organic bases such as pyridine, and mixtures thereof. Specifically, if a portion of the hydroxyaryl-terminated polydiorganosiloxane (II) used or, as noted above, the dihydric phenol (I) is added to this reaction step as a post-add monomer, two of the post-add monomers It is preferable to use 2 equivalents or more of the alkali with respect to the total number of moles of the phenol (I) and the hydroxyaryl-terminated polydiorganosiloxane (II) (usually 1 mol corresponds to 2 equivalents).

二価フェノール(I)のオリゴマーとヒドロキシアリール末端ポリジオルガノシロキサン(II)との界面重縮合反応による重縮合は、上記混合液を激しく攪拌することにより行われる。 Interfacial polycondensation reaction between the oligomer of dihydric phenol (I) and the hydroxyaryl-terminated polydiorganosiloxane (II) is carried out by vigorously stirring the mixture.

かかる重合反応においては、末端停止剤或いは分子量調節剤が通常使用される。末端停止剤としては一価のフェノール性水酸基を有する化合物が挙げられ、通常のフェノール、p-tert-ブチルフェノール、p-クミルフェノール、トリブロモフェノールなどの他に、長鎖アルキルフェノール、脂肪族カルボン酸クロライド、脂肪族カルボン酸、ヒドロキシ安息香酸アルキルエステル、ヒドロキシフェニルアルキル酸エステル、アルキルエーテルフェノールなどが例示される。その使用量は用いる全ての二価フェノール系化合物100モルに対して、100~0.5モル、好ましくは50~2モルの範囲であり、二種以上の化合物を併用することも当然に可能である。 Terminal terminator or molecular weight modifier is usually used in such polymerization reaction. Examples of terminal terminating agents include compounds having a monovalent phenolic hydroxyl group, such as usual phenol, p-tert-butylphenol, p-cumylphenol, tribromophenol, long-chain alkylphenols and aliphatic carboxylic acids. Examples include chlorides, aliphatic carboxylic acids, hydroxybenzoic acid alkyl esters, hydroxyphenyl alkyl acid esters, and alkyl ether phenols. The amount used is in the range of 100 to 0.5 mol, preferably 50 to 2 mol, per 100 mol of all dihydric phenol compounds used, and it is of course possible to use two or more kinds of compounds together. be.

重縮合反応を促進するために、トリエチルアミンのような第三級アミン又は第四級アンモニウム塩などの触媒を添加してもよい。 A catalyst such as a tertiary amine such as triethylamine or a quaternary ammonium salt may be added to facilitate the polycondensation reaction.

かかる重合反応の反応時間は、好ましくは30分以上、更に好ましくは50分以上である。所望に応じ、亜硫酸ナトリウム、ハイドロサルファイドなどの酸化防止剤を少量添加してもよい。 The reaction time for such a polymerization reaction is preferably 30 minutes or longer, more preferably 50 minutes or longer. If desired, a small amount of antioxidant such as sodium sulfite, hydrosulfide, etc. may be added.

分岐化剤を上記の二価フェノール系化合物と併用して分岐化ポリカーボネート-ポリジオルガノシロキサンとすることができる。かかる分岐ポリカーボネート-ポリジオルガノシロキサン共重合樹脂に使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、または4,6-ジメチル-2,4,6-トリス(4-ヒドロキジフェニル)ヘプテン-2、2,4,6-トリメチル-2,4,6-トリス(4-ヒドロキシフェニル)ヘプタン、1,3,5-トリス(4-ヒドロキシフェニル)ベンゼン、1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタン、2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール、4-{4-[1,1-ビス(4-ヒドロキシフェニル)エチル]ベンゼン}-α,α-ジメチルベンジルフェノール等のトリスフェノール、テトラ(4-ヒドロキシフェニル)メタン、ビス(2,4-ジヒドロキシフェニル)ケトン、1,4-ビス(4,4-ジヒドロキシトリフェニルメチル)ベンゼン、またはトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等が挙げられ、中でも1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタンが好ましく、特に1,1,1-トリス(4-ヒドロキシフェニル)エタンが好ましい。分岐ポリカーボネート-ポリジオルガノシロキサン共重合樹脂中の多官能性化合物の割合は、芳香族ポリカーボネート-ポリジオルガノシロキサン共重合樹脂全量中、好ましくは0.001~1モル%、より好ましくは0.005~0.9モル%、さらに好ましくは0.01~0.8モル%、特に好ましくは0.05~0.4モル%である。なお、かかる分岐構造量については1H-NMR測定により算出することが可能である。 A branching agent can be used in combination with the above dihydric phenolic compound to form a branched polycarbonate-polydiorganosiloxane. Examples of trifunctional or higher polyfunctional aromatic compounds used in such branched polycarbonate-polydiorganosiloxane copolymer resins include phloroglucine, phloroglucide, or 4,6-dimethyl-2,4,6-tris(4-hydroxydiphenyl ) heptene-2, 2,4,6-trimethyl-2,4,6-tris(4-hydroxyphenyl)heptane, 1,3,5-tris(4-hydroxyphenyl)benzene, 1,1,1-tris (4-hydroxyphenyl)ethane, 1,1,1-tris(3,5-dimethyl-4-hydroxyphenyl)ethane, 2,6-bis(2-hydroxy-5-methylbenzyl)-4-methylphenol, trisphenols such as 4-{4-[1,1-bis(4-hydroxyphenyl)ethyl]benzene}-α,α-dimethylbenzylphenol, tetra(4-hydroxyphenyl)methane, bis(2,4-dihydroxy phenyl)ketone, 1,4-bis(4,4-dihydroxytriphenylmethyl)benzene, or trimellitic acid, pyromellitic acid, benzophenonetetracarboxylic acid and their acid chlorides, among others, 1,1,1 -tris(4-hydroxyphenyl)ethane and 1,1,1-tris(3,5-dimethyl-4-hydroxyphenyl)ethane are preferred, and 1,1,1-tris(4-hydroxyphenyl)ethane is particularly preferred. . The ratio of the polyfunctional compound in the branched polycarbonate-polydiorganosiloxane copolymer resin is preferably 0.001 to 1 mol %, more preferably 0.005 to 0, based on the total amount of the aromatic polycarbonate-polydiorganosiloxane copolymer resin. 0.9 mol %, more preferably 0.01 to 0.8 mol %, particularly preferably 0.05 to 0.4 mol %. Incidentally, such a branched structure amount can be calculated by 1H-NMR measurement.

反応圧力は、減圧、常圧、加圧のいずれでも可能であるが、通常は、常圧若しくは反応系の自圧程度で好適に行い得る。反応温度は-20~50℃の範囲から選ばれ、多くの場合、重合に伴い発熱するので、水冷又は氷冷することが望ましい。反応時間は反応温度等の他の条件によって異なるので一概に規定はできないが、通常、0.5~10時間で行われる。 The reaction pressure can be any of reduced pressure, normal pressure, and increased pressure, but usually normal pressure or the self-pressure of the reaction system is suitable. The reaction temperature is selected from the range of −20 to 50° C. In many cases, heat is generated with polymerization, so water cooling or ice cooling is desirable. The reaction time varies depending on other conditions such as the reaction temperature and cannot be generally defined, but is usually 0.5 to 10 hours.

場合により、得られたポリカーボネート-ポリジオルガノシロキサン共重合樹脂に適宜物理的処理(混合、分画など)及び/又は化学的処理(ポリマー反応、架橋処理、部分分解処理など)を施して所望の還元粘度[ηSP/c]のポリカーボネート-ポリジオルガノシロキサン共重合樹脂として取得することもできる。 In some cases, the obtained polycarbonate-polydiorganosiloxane copolymer resin is appropriately subjected to physical treatment (mixing, fractionation, etc.) and/or chemical treatment (polymer reaction, cross-linking treatment, partial decomposition treatment, etc.) to achieve the desired reduction. It can also be obtained as a polycarbonate-polydiorganosiloxane copolymer resin with a viscosity of [η SP /c].

得られた反応生成物(粗生成物)は公知の分離精製法等の各種の後処理を施して、所望の純度(精製度)のポリカーボネート-ポリジオルガノシロキサン共重合樹脂として回収することができる。 ポリカーボネート-ポリジオルガノシロキサン共重合樹脂成形品中のポリジオルガノシロキサンドメインの平均サイズは、1~40nmの範囲が好ましい。かかる平均サイズはより好ましくは1~30nm、更に好ましくは5~25nmである。かかる好適な範囲の下限未満では、耐衝撃性や難燃性が十分に発揮されず、かかる好適な範囲の上限を超えると耐衝撃性が安定して発揮されない場合がある。 The resulting reaction product (crude product) is subjected to various post-treatments such as known separation and purification methods, and can be recovered as a polycarbonate-polydiorganosiloxane copolymer resin of desired purity (purity). The average size of the polydiorganosiloxane domains in the polycarbonate-polydiorganosiloxane copolymer resin molding is preferably in the range of 1 to 40 nm. Such average size is more preferably 1-30 nm, more preferably 5-25 nm. Below the lower limit of the preferred range, sufficient impact resistance and flame retardancy may not be exhibited, and above the upper limit of the preferred range, impact resistance may not be exhibited stably.

本発明におけるポリカーボネート-ポリジオルガノシロキサン共重合樹脂成形品のポリジオルガノシロキサンドメインの平均ドメインサイズ、規格化分散は、小角エックス線散乱法(Small Angle X-ray Scattering:SAXS)により評価した。小角エックス線散乱法とは、散乱角(2θ)<10°以内の小角領域で生じる散漫な散乱・回折を測定する方法である。この小角エックス線散乱法では、物質中に1~100nm程度の大きさの電子密度の異なる領域があると、その電子密度差によりエックス線の散漫散乱が計測される。この散乱角と散乱強度に基づいて測定対象物の粒子径を求める。ポリカーボネートポリマーのマトリックス中にポリジオルガノシロキサンドメインが分散した凝集構造となるポリカーボネート-ポリジオルガノシロキサン共重合樹脂の場合、ポリカーボネートマトリックスとポリジオルガノシロキサンドメインの電子密度差により、エックス線の散漫散乱が生じる。散乱角(2θ)が10°未満の範囲の各散乱角(2θ)における散乱強度I を測定して、小角エックス線散乱プロファイルを測定し、ポリジオルガノシロキサンドメインが球状ドメインであり、粒径分布のばらつきが存在すると仮定して、仮の粒径と仮の粒径分布モデルから、市販の解析ソフトウェアを用いてシミュレーションを行い、ポリジオルガノシロキサンドメインの平均サイズと粒径分布(規格化分散)を求める。小角エックス線散乱法によれば、透過型電子顕微鏡による観察では正確に測定できない、ポリカーボネートポリマーのマトリックス中に分散したポリジオルガノシロキサンドメインの平均サイズと粒径分布を、精度よく、簡便に、再現性良く測定することができる。平均ドメインサイズとは個々のドメインサイズの数平均を意味する。規格化分散とは、粒径分布の広がりを平均サイズで規格化したパラメータを意味する。具体的には、ポリジオルガノシロキサンドメインサイズの分散を平均ドメインサイズで規格化した値であり、下記式(1)で表される。 The average domain size and normalized dispersion of the polydiorganosiloxane domains of the polycarbonate-polydiorganosiloxane copolymer resin molded article in the present invention were evaluated by small angle X-ray scattering (SAXS). The small-angle X-ray scattering method is a method of measuring diffuse scattering/diffraction occurring in a small-angle region within a scattering angle (2θ)<10°. In this small-angle X-ray scattering method, if there are regions with different electron densities on the order of 1 to 100 nm in a substance, diffuse scattering of X-rays is measured from the difference in electron densities. Based on this scattering angle and scattering intensity, the particle diameter of the object to be measured is obtained. In the case of a polycarbonate-polydiorganosiloxane copolymer resin having an aggregate structure in which polydiorganosiloxane domains are dispersed in a polycarbonate polymer matrix, diffuse scattering of X-rays occurs due to the electron density difference between the polycarbonate matrix and the polydiorganosiloxane domains. The scattering intensity I at each scattering angle (2θ) in the range of less than 10° scattering angle (2θ) is measured to measure the small-angle X-ray scattering profile, and the polydiorganosiloxane domain is a spherical domain and the particle size distribution varies. Assuming the presence of , the average size and particle size distribution (normalized dispersion) of the polydiorganosiloxane domains are obtained by performing a simulation using commercially available analysis software from the provisional particle size and the provisional particle size distribution model. The small-angle X-ray scattering method enables accurate, simple, and reproducible analysis of the average size and particle size distribution of polydiorganosiloxane domains dispersed in a polycarbonate polymer matrix, which cannot be accurately measured by transmission electron microscopy. can be measured. Average domain size means the number average of individual domain sizes. The normalized dispersion means a parameter obtained by normalizing the spread of the particle size distribution by the average size. Specifically, it is a value obtained by normalizing the polydiorganosiloxane domain size distribution by the average domain size, and is represented by the following formula (1).

Figure 0007311356000006
Figure 0007311356000006

上記式(1)において、δはポリジオルガノシロキサンドメインサイズの標準偏差、Davは平均ドメインサイズである。 In the above formula (1), δ is the standard deviation of the polydiorganosiloxane domain size, and Dav is the average domain size.

本発明に関連して用いる用語「平均ドメインサイズ」、「規格化分散」は、かかる小角エックス線散乱法により、実施例記載の方法で作製した3段型プレートの厚み1.0mm部を測定することにより得られる測定値を示す。また、粒子間相互作用(粒子間干渉)を考慮しない孤立粒子モデルにて解析を行った。 The terms "average domain size" and "normalized dispersion" used in connection with the present invention refer to measurement of a 1.0 mm thick portion of a three-tiered plate produced by the method described in Examples by the small-angle X-ray scattering method. Measured values obtained by In addition, the analysis was performed using an isolated particle model that does not consider the interaction between particles (interference between particles).

(B成分:液晶ポリエステル樹脂)
本発明でB成分として用いられる液晶ポリエステル樹脂とは、サーモトロピック液晶ポリエステル樹脂であり、溶融状態でポリマー分子鎖が一定方向に配列する性質を有している。かかる配列状態の形態はネマチック型、スメチック型、コレステリック型、およびディスコチック型のいずれの形態であってもよく、また2種以上の形態を呈するものであってもよい。更に液晶ポリエステル樹脂の構造としては主鎖型、側鎖型、および剛直主鎖屈曲側鎖型などのいずれの構造であってもよいが、好ましいのは主鎖型液晶ポリエステル樹脂である。
(B component: liquid crystal polyester resin)
The liquid crystalline polyester resin used as component B in the present invention is a thermotropic liquid crystalline polyester resin, and has the property that polymer molecular chains are aligned in a certain direction in a molten state. The form of such arrangement may be nematic, smectic, cholesteric or discotic, or may exhibit two or more forms. Further, the structure of the liquid crystalline polyester resin may be any of main chain type, side chain type, rigid main chain bent side chain type, etc., but the main chain type liquid crystalline polyester resin is preferred.

上記配列状態の形態、すなわち異方性溶融相の性質は、直交偏光子を利用した慣用の偏
光検査法により確認することができる。より具体的には、異方性溶融相の確認は、Leitz偏光顕微鏡を使用し、Leitzホットステージにのせた溶融試料を窒素雰囲気下で40倍の倍率で観察することにより実施できる。本発明のポリマーは直交偏光子の間で検査したときにたとえ溶融静止状態であっても偏光は透過し、光学的に異方性を示す。
The morphology of the alignment state, that is, the nature of the anisotropic melt phase can be confirmed by a conventional polarization inspection method using crossed polarizers. More specifically, confirmation of the anisotropic molten phase can be carried out by using a Leitz polarizing microscope and observing the molten sample placed on a Leitz hot stage under a nitrogen atmosphere at a magnification of 40 times. The polymers of the present invention are optically anisotropic and transmit polarized light even in the molten quiescent state when examined between crossed polarizers.

また液晶ポリエステル樹脂の耐熱性はいかなる範囲であってもよいが、ポリカーボネート樹脂の加工温度に近い部分で溶融し液晶相を形成するものが適切である。液晶ポリエステルの荷重たわみ温度(ISO75-1/2 荷重1.8Mpa条件)が150~280℃、好ましくは150~250℃であるものがより好適である。かかる液晶ポリエステルはいわゆる耐熱性区分のII型に属するものである。かかる耐熱性を有する場合には耐熱性のより高いI型に比較して成形加工性に優れ、および耐熱性のより低いIII型に比較して良好な難燃性が達成される。 The heat resistance of the liquid crystalline polyester resin may be within any range, but it is suitable that it melts at a portion close to the processing temperature of the polycarbonate resin to form a liquid crystal phase. A liquid crystalline polyester having a deflection temperature under load (ISO75-1/2 under load of 1.8 Mpa) of 150 to 280°C, preferably 150 to 250°C is more suitable. Such liquid crystalline polyesters belong to the so-called type II heat-resistant class. When it has such heat resistance, it is excellent in moldability as compared with Type I, which has higher heat resistance, and it achieves better flame retardancy than Type III, which has lower heat resistance.

本発明で用いられる液晶ポリエステル樹脂は、ポリエステル単位およびポリエステルアミド単位を含むものが好ましく、芳香族ポリエステル樹脂及び芳香族ポリエステルアミド樹脂が好ましく、芳香族ポリエステル単位及び芳香族ポリエステルアミド単位を同一分子鎖中に部分的に含む液晶ポリエステル樹脂も好ましい例である。 The liquid crystalline polyester resin used in the present invention preferably contains a polyester unit and a polyesteramide unit, and is preferably an aromatic polyester resin or an aromatic polyesteramide resin. A liquid crystalline polyester resin partially contained in is also a preferred example.

特に好ましくは、芳香族ヒドロキシカルボン酸、芳香族ヒドロキシアミン、芳香族ジアミンの群から選ばれた1種または2種以上の化合物由来の単位構成成分として有する全芳香族ポリエステル樹脂、全芳香族ポリエステルアミド樹脂である。より具体的には、1)主として芳香族ヒドロキシカルボン酸及びその誘導体からなる群より選ばれる1種又は2種以上の化合物から合成される液晶ポリエステル樹脂、2)主としてa)芳香族ヒドロキシカルボン酸及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、b)芳香族ジカルボン酸、脂環族ジカルボン酸及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、並びにc)芳香族ジオール、脂環族ジオール、脂肪族ジオール及びその誘導体からなる群より選ばれる1種又は2種以上の化合物から合成される液晶ポリエステル樹脂、3)主としてa)芳香族ヒドロキシカルボン酸及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、b)芳香族ヒドロキシアミン、芳香族ジアミン及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、並びにc)芳香族ジカルボン酸、脂環族ジカルボン酸及びその誘導体からなる群より選ばれる1種又は2種以上の化合物から合成される液晶ポリエステルアミド樹脂、4)主としてa)芳香族ヒドロキシカルボン酸及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、b)芳香族ヒドロキシアミン、芳香族ジアミン及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、c)芳香族ジカルボン酸、脂環族ジカルボン酸及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、並びにd) 芳香族ジオール、脂環族ジオール、脂肪族ジオール及びその誘導体からなる群より選ばれる1種又は2種以上の化合物から合成される液晶ポリエステルアミド樹脂が挙げられるが、1)主として芳香族ヒドロキシカルボン酸及びその誘導体からなる群より選ばれる1種又は2種以上の化合物から合成される液晶ポリエステル樹脂が好ましい。 Particularly preferably, wholly aromatic polyester resins and wholly aromatic polyester amides having as unit constituents derived from one or more compounds selected from the group consisting of aromatic hydroxycarboxylic acids, aromatic hydroxyamines and aromatic diamines Resin. More specifically, 1) a liquid crystalline polyester resin synthesized from one or more compounds selected mainly from the group consisting of aromatic hydroxycarboxylic acids and derivatives thereof, 2) mainly a) aromatic hydroxycarboxylic acids and one or more compounds selected from the group consisting of derivatives thereof, b) one or more compounds selected from the group consisting of aromatic dicarboxylic acids, alicyclic dicarboxylic acids and derivatives thereof, and c) Liquid crystalline polyester resins synthesized from one or more compounds selected from the group consisting of aromatic diols, alicyclic diols, aliphatic diols and their derivatives, 3) mainly a) aromatic hydroxycarboxylic acids and their derivatives one or more compounds selected from the group consisting of b) one or more compounds selected from the group consisting of aromatic hydroxylamines, aromatic diamines and derivatives thereof, and c) aromatic dicarboxylic acids , a liquid crystal polyesteramide resin synthesized from one or more compounds selected from the group consisting of alicyclic dicarboxylic acids and derivatives thereof; 4) mainly selected from the group consisting of a) aromatic hydroxycarboxylic acids and derivatives thereof; b) one or more compounds selected from the group consisting of aromatic hydroxylamines, aromatic diamines and derivatives thereof, c) aromatic dicarboxylic acids, alicyclic dicarboxylic acids and derivatives thereof, and d) one or more compounds selected from the group consisting of aromatic diols, alicyclic diols, aliphatic diols and derivatives thereof. 1) Liquid crystalline polyester resins synthesized from one or more compounds selected mainly from the group consisting of aromatic hydroxycarboxylic acids and their derivatives are preferred.

更に上記の構成成分に必要に応じ分子量調整剤を併用しても良い。 Furthermore, a molecular weight modifier may be used in combination with the above constituents, if necessary.

本発明のポリカーボネート樹脂組成物で使用される液晶ポリエステル樹脂の合成に用いられる具体的化合物の好ましい例は、2,6-ナフタレンジカルボン酸、2,6-ジヒドロキシナフタレン、1,4-ジヒドロキシナフタレン及び6-ヒドロキシ-2-ナフトエ酸等のナフタレン化合物、4,4’-ジフェニルジカルボン酸、4,4’-ジヒドロキシビフェニル等のビフェニル化合物、p-ヒドロキシ安息香酸、テレフタル酸、ハイドロキノン、p-アミノフェノール及びp-フェニレンジアミン等のパラ位置換のベンゼン化合物及びそれらの核置換ベンゼン化合物(置換基は塩素、臭素、メチル、フェニル、1-フェニルエチルより選ばれる)、イソフタル酸、レゾルシン等のメタ位置換のベンゼン化合物、並びに下記一般式(5)、(6)又は(7)で表される化合物である。中でも、p-ヒドロキシ安息香酸と6-ヒドロキシ-2-ナフトエ酸が特に好ましく、両者を混合してなる液晶ポリエステル樹脂が好適である。両者の割合は前者が90~50モル%の範囲が好ましく、80~65モル%の範囲がより好ましく、後者が10~50モル%の範囲が好ましく、20~35モル%の範囲がより好ましい。 Preferable examples of specific compounds used for synthesizing the liquid crystalline polyester resin used in the polycarbonate resin composition of the present invention are 2,6-naphthalenedicarboxylic acid, 2,6-dihydroxynaphthalene, 1,4-dihydroxynaphthalene and 6 -Naphthalene compounds such as hydroxy-2-naphthoic acid, 4,4'-diphenyldicarboxylic acid, biphenyl compounds such as 4,4'-dihydroxybiphenyl, p-hydroxybenzoic acid, terephthalic acid, hydroquinone, p-aminophenol and p - para-substituted benzene compounds such as phenylenediamine and their nucleus-substituted benzene compounds (where the substituent is selected from chlorine, bromine, methyl, phenyl and 1-phenylethyl), isophthalic acid, meta-substituted benzene such as resorcinol compounds and compounds represented by the following general formulas (5), (6) or (7). Among them, p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid are particularly preferred, and a liquid crystalline polyester resin obtained by mixing the two is preferred. The ratio of the former is preferably 90 to 50 mol %, more preferably 80 to 65 mol %, and the latter is preferably 10 to 50 mol %, more preferably 20 to 35 mol %.

Figure 0007311356000007
Figure 0007311356000007

Figure 0007311356000008
Figure 0007311356000008

Figure 0007311356000009
Figure 0007311356000009

(但し、Xは炭素数1~4のアルキレン基およびアルキリデン基、-O-、-SO-、-SO-、-S-、並びに-CO-よりなる群より選ばれる基であり、Yは-(CH)n-(n=1~4)、および-O(CH)nO-(n=1~4)よりなる群より選ばれる基である。) (where X is a group selected from the group consisting of alkylene groups and alkylidene groups having 1 to 4 carbon atoms, -O-, -SO-, -SO 2 -, -S-, and -CO-, and Y is A group selected from the group consisting of -(CH 2 )n- (n = 1 to 4) and -O(CH 2 )nO- (n = 1 to 4).)

又、本発明に使用される液晶ポリエステル樹脂は、上述の構成成分の他に同一分子鎖中に部分的に異方性溶融相を示さないポリアルキレンテレフタレート由来単位が存在してもよい。この場合のアルキレン基の炭素数は2~4である。 In the liquid crystalline polyester resin used in the present invention, in addition to the constituent components described above, polyalkylene terephthalate-derived units that do not partially exhibit an anisotropic melting phase may be present in the same molecular chain. In this case, the alkylene group has 2 to 4 carbon atoms.

本発明で使用される液晶ポリエステル樹脂の基本的な製造方法は、特に制限がなく、公知の液晶ポリエステル樹脂の重縮合法に準じて製造できる。上記の液晶ポリエステル樹脂はまた、60℃でペンタフルオロフェノールに0.1重量%濃度で溶解したときに、少なくとも約2.0dl/g、たとえば約2.0~10.0dl/gの対数粘度(IV値)を一般に示す。 The basic method for producing the liquid crystalline polyester resin used in the present invention is not particularly limited, and can be produced according to a known polycondensation method for liquid crystalline polyester resins. The above liquid crystalline polyester resin also has a logarithmic viscosity ( IV value).

以上のような特徴から液晶ポリエステル樹脂は射出成形時に微細なフィブリル状となり、冷却固化の過程で形状が保持されてマトリックスに対して補強効果を発現する。そのため、液晶ポリエステル樹脂による引張り強度の付与が可能となる。液晶ポリエステル樹脂による樹脂組成物の粘度低下によっても射出速度や樹脂圧力を低減することができる効果がある。 Due to the characteristics described above, the liquid crystalline polyester resin forms fine fibrils during injection molding, retains its shape during the cooling and solidification process, and exerts a reinforcing effect on the matrix. Therefore, it is possible to impart tensile strength by the liquid crystal polyester resin. The reduction in the viscosity of the resin composition due to the liquid crystal polyester resin also has the effect of reducing the injection speed and resin pressure.

本発明に使用される(A)芳香族ポリカーボネート系樹脂と(B)液晶ポリエステル樹脂との重量比[(A)/(B)]は、98/2~60/40、好ましくは95/5~80/20、更に好ましくは95/5~85/15の範囲である。液晶ポリエステル樹脂の割合が、この範囲より大きいと引張り強度および難燃性が低下する。また割合がこの範囲より小さいときには、液晶ポリエステル樹脂配合による引張り強度向上効果が得られない。 The weight ratio [(A)/(B)] of (A) aromatic polycarbonate resin and (B) liquid crystal polyester resin used in the present invention is 98/2 to 60/40, preferably 95/5 to 80/20, more preferably in the range of 95/5 to 85/15. If the proportion of the liquid crystalline polyester resin exceeds this range, the tensile strength and flame retardancy are lowered. If the ratio is smaller than this range, the effect of improving the tensile strength by blending the liquid crystal polyester resin cannot be obtained.

(C成分:難燃剤)
C成分の難燃剤は、難燃性ポリカーボネート樹脂の難燃剤として知られる各種の化合物が配合されてよい。かかる化合物の配合は難燃性の向上をもたらすが、それ以外にも各化合物の性質に基づき、例えば帯電防止性、流動性、剛性、および熱安定性の向上などがもたらされる。かかる難燃剤としては、(i)有機リン系難燃剤(例えば、モノホスフェート化合物、ホスフェートオリゴマー化合物、ホスホネートオリゴマー化合物、ホスホニトリルオリゴマー化合物、およびホスホン酸アミド化合物など)、(ii)有機金属塩系難燃剤(例えば有機スルホン酸アルカリ(土類)金属塩、ホウ酸金属塩系難燃剤、および錫酸金属塩系難燃剤など)、(iii)シリコーン化合物からなるシリコーン系難燃剤(iv)スルホン酸アルカリ(土類)金属塩以外の有機金属塩等が挙げられ、その中でも有機リン系難燃剤が好ましい。
(Component C: flame retardant)
Various compounds known as flame retardants for flame-retardant polycarbonate resins may be blended with the flame retardant of the C component. Incorporation of such compounds provides improved flame retardancy, but also provides, depending on the properties of each compound, improved antistatic properties, fluidity, stiffness, and thermal stability, for example. Such flame retardants include (i) organophosphorus flame retardants (e.g., monophosphate compounds, phosphate oligomeric compounds, phosphonate oligomeric compounds, phosphonitrile oligomeric compounds, phosphonic acid amide compounds, etc.), (ii) organometallic salt flame retardants. Retardants (e.g., organic sulfonate alkali (earth) metal salts, borate metal salt-based flame retardants, stannate metal salt-based flame retardants, etc.), (iii) silicone-based flame retardants composed of silicone compounds, (iv) alkali sulfonates Organic metal salts other than (earth) metal salts and the like can be mentioned, and among them, organic phosphorous flame retardants are preferred.

(i)有機リン系難燃剤
本発明の有機リン系難燃剤としては、ホスフェート化合物、特にアリールホスフェート化合物が好適である。かかるホスフェート化合物は概して色相に優れるためである。またホスフェート化合物は可塑化効果があるため本発明の樹脂組成物の成形加工性を高められる点で有利である。なお、ここでいう有機リン系難燃剤としてのホスフェート化合物は分子量300以上のホスフェート化合物であることが好ましい。分子量が300未満であると、ホスフェート化合物の沸点と樹脂組成物の燃焼温度との差異が大きくなり、燃焼時にホスフェート化合物の揮発が多くなる場合があるため、難燃剤としての効果が低下するので好ましくない。かかるホスフェート化合物は、従来難燃剤として公知の各種ホスフェート化合物が使用できるが、より好適には特に下記一般式(8)で表される1種または2種以上のホスフェート化合物を挙げることができる。
(i) Organic Phosphorus Flame Retardant As the organic phosphorus flame retardant of the present invention, phosphate compounds, particularly aryl phosphate compounds are suitable. This is because such phosphate compounds are generally excellent in hue. Phosphate compounds have a plasticizing effect, and are therefore advantageous in that they can enhance the moldability of the resin composition of the present invention. It should be noted that the phosphate compound as the organophosphorus flame retardant referred to herein is preferably a phosphate compound having a molecular weight of 300 or more. If the molecular weight is less than 300, the difference between the boiling point of the phosphate compound and the combustion temperature of the resin composition increases, and the phosphate compound may volatilize more during combustion, resulting in a lower effect as a flame retardant, which is preferable. do not have. As such a phosphate compound, various phosphate compounds conventionally known as flame retardants can be used, and more preferably, one or more phosphate compounds represented by the following general formula (8) can be mentioned.

Figure 0007311356000010
Figure 0007311356000010

(式(8)中のXは、ハイドロキノン、レゾルシノール、ビス(4-ヒドロキシジフェニル)メタン、ビスフェノールA、ジヒドロキシジフェニル、ジヒドロキシナフタレン、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)ケトンおよびビス(4-ヒドロキシフェニル)サルファイドからなる群より選ばれるジヒドロキシ化合物より誘導される二価フェノール残基であり、nは0~5の整数であり、またはn数の異なるリン酸エステルの混合物の場合はそれらの平均値であり、R、R、R、およびRはそれぞれ独立したフェノール、クレゾール、キシレノール、イソプロピルフェノール、ブチルフェノールおよびp-クミルフェノールからなる群より選ばれるアリール基より誘導される一価フェノール残基である。) (X in formula (8) is hydroquinone, resorcinol, bis(4-hydroxydiphenyl)methane, bisphenol A, dihydroxydiphenyl, dihydroxynaphthalene, bis(4-hydroxyphenyl)sulfone, bis(4-hydroxyphenyl)ketone and A dihydric phenol residue derived from a dihydroxy compound selected from the group consisting of bis(4-hydroxyphenyl) sulfides, where n is an integer from 0 to 5, or in the case of a mixture of n different phosphate esters is their average value, and R 1 , R 2 , R 3 and R 4 are each independently derived from an aryl group selected from the group consisting of phenol, cresol, xylenol, isopropylphenol, butylphenol and p-cumylphenol. is a monohydric phenol residue.)

上記一般式(8)のホスフェート化合物は、異なるn数を有する化合物の混合物であってもよく、かかる混合物の場合、平均のn数は好ましくは0.5~1.5、より好ましくは0.8~1.2、更に好ましくは0.95~1.15、特に好ましくは1~1.14の範囲である。 The phosphate compound of general formula (8) above may be a mixture of compounds having different n numbers, and in such mixtures, the average n number is preferably 0.5 to 1.5, more preferably 0.5 to 1.5. 8 to 1.2, more preferably 0.95 to 1.15, particularly preferably 1 to 1.14.

上記一般式(8)中のXを誘導する二価フェノールの好適な具体例としては、レゾルシノール、ビスフェノールA、およびジヒドロキシジフェニルであり、中でも好ましくはレゾルシノール、ビスフェノールAである。 Suitable specific examples of the dihydric phenol from which X in the general formula (8) is derived are resorcinol, bisphenol A and dihydroxydiphenyl, with resorcinol and bisphenol A being preferred.

上記一般式(8)中のR、R、R、およびRを誘導する一価フェノールの好適な具体例としては、フェノール、クレゾール、キシレノール、2,6-ジメチルフェノールで、中でも好ましくはフェノール、および2,6-ジメチルフェノールである。 Preferable specific examples of the monohydric phenol from which R 1 , R 2 , R 3 and R 4 in the general formula (8) are derived are phenol, cresol, xylenol and 2,6-dimethylphenol. is phenol, and 2,6-dimethylphenol.

上記一般式(8)のホスフェート化合物の具体例としては、トリフェニルホスフェートおよびトリ(2,6-キシリル)ホスフェートなどのモノホスフェート化合物、並びにレゾルシノールビスジ(2,6-キシリル)ホスフェート)を主体とするホスフェートオリゴマー、4,4-ジヒドロキシジフェニルビス(ジフェニルホスフェート)を主体とするホスフェートオリゴマー、およびビスフェノールAビス(ジフェニルホスフェート)を主体とするリン酸エステルオリゴマーが好適で、中でもレゾルシノールビスジ(2,6-キシリル)ホスフェート)を主体とするホスフェートオリゴマー、4,4-ジヒドロキシジフェニルビス(ジフェニルホスフェート)を主体とするホスフェートオリゴマー、およびビスフェノールAビス(ジフェニルホスフェート)を主体とするリン酸エステルオリゴマーが好ましい。 Specific examples of the phosphate compound of the general formula (8) include monophosphate compounds such as triphenyl phosphate and tri(2,6-xylyl)phosphate, and resorcinol bisdi(2,6-xylyl)phosphate). phosphate oligomers based on 4,4-dihydroxydiphenyl bis(diphenyl phosphate), and phosphate ester oligomers based on bisphenol A bis(diphenyl phosphate), among which resorcinol bis di(2,6 Phosphate oligomers based on 4,4-dihydroxydiphenylbis(diphenylphosphate), and phosphate oligomers based on bisphenol A bis(diphenylphosphate) are preferred.

有機リン系難燃剤の含有量は、A成分とB成分との合計100重量部に対し、0.01~40重量部、好ましくは3~20重量部、より好ましくは4~10重量部である。この範囲より大きいと、押出加工性不十分となる。一方、この範囲より小さいと難燃化が不十分であり、引張り強度も低下する。 The content of the organic phosphorus flame retardant is 0.01 to 40 parts by weight, preferably 3 to 20 parts by weight, and more preferably 4 to 10 parts by weight with respect to the total of 100 parts by weight of the components A and B. . If it exceeds this range, the extrusion workability will be insufficient. On the other hand, if it is less than this range, the flame retardancy is insufficient and the tensile strength also decreases.

(ii)有機金属塩系難燃剤
本発明における有機金属塩化合物は炭素原子数1~50、好ましくは1~40の有機スルホン酸アルカリ(土類)金属塩であることが好ましい。この有機スルホン酸アルカリ(土類)金属塩には、炭素原子数1~10、好ましくは2~8のパーフルオロアルキルスルホン酸とアルカリ金属またはアルカリ土類金属との金属塩の如きフッ素置換アルキルスルホン酸の金属塩、並びに炭素原子数7~50、好ましくは7~40の芳香族スルホン酸とアルカリ金属またはアルカリ土類金属塩との金属塩が含まれる。
(ii) Organic Metal Salt Flame Retardant The organic metal salt compound in the present invention is preferably an organic sulfonic acid alkali (earth) metal salt having 1 to 50 carbon atoms, preferably 1 to 40 carbon atoms. The organic sulfonic acid alkali (earth) metal salts include fluorine-substituted alkyl sulfones such as metal salts of perfluoroalkyl sulfonic acids having 1 to 10 carbon atoms, preferably 2 to 8 carbon atoms, and alkali metals or alkaline earth metals. Included are metal salts of acids and metal salts of aromatic sulfonic acids having 7 to 50, preferably 7 to 40 carbon atoms and alkali metal or alkaline earth metal salts.

本発明の金属塩を構成するアルカリ金属としてはリチウム、ナトリウム、カリウム、ルビジウムおよびセシウムが挙げられ、アルカリ土類金属としては、ベリリウム、マグネシウム、カルシウム、ストロンチウムおよびバリウムが挙げられる。より好適にはアルカリ金属である。かかるアルカリ金属の中でも、透明性の要求がより高い場合にはイオン半径のより大きいルビジウムおよびセシウムが好適である一方、これらは汎用的でなくまた精製もし難いことから、結果的にコストの点で不利となる場合がある。一方、リチウムおよびナトリウムなどのより小さいイオン半径の金属は逆に難燃性の点で不利な場合がある。これらを勘案してスルホン酸アルカリ金属塩中のアルカリ金属を使い分けることができるが、いずれの点においても特性のバランスに優れたスルホン酸カリウム塩が最も好適である。かかるカリウム塩と他のアルカリ金属からなるスルホン酸アルカリ金属塩とを併用することもできる。 Alkali metals constituting the metal salt of the present invention include lithium, sodium, potassium, rubidium and cesium, and alkaline earth metals include beryllium, magnesium, calcium, strontium and barium. Alkali metals are more preferred. Among such alkali metals, rubidium and cesium, which have larger ionic radii, are suitable when the demand for transparency is higher. It may be disadvantageous. On the other hand, metals with smaller ionic radii, such as lithium and sodium, may be disadvantageous in terms of flame retardancy. Although the alkali metal in the alkali metal sulfonate can be properly used in consideration of these factors, the potassium sulfonate is most preferable because of its well-balanced properties in all respects. Such potassium salts and alkali metal sulfonate salts of other alkali metals can also be used in combination.

パーフルオロアルキルスルホン酸アルカリ金属塩の具体例としては、トリフルオロメタンスルホン酸カリウム、パーフルオロブタンスルホン酸カリウム、パーフルオロヘキサンスルホン酸カリウム、パーフルオロオクタンスルホン酸カリウム、ペンタフルオロエタンスルホン酸ナトリウム、パーフルオロブタンスルホン酸ナトリウム、パーフルオロオクタンスルホン酸ナトリウム、トリフルオロメタンスルホン酸リチウム、パーフルオロブタンスルホン酸リチウム、パーフルオロヘプタンスルホン酸リチウム、トリフルオロメタンスルホン酸セシウム、パーフルオロブタンスルホン酸セシウム、パーフルオロオクタンスルホン酸セシウム、パーフルオロヘキサンスルホン酸セシウム、パーフルオロブタンスルホン酸ルビジウム、およびパーフルオロヘキサンスルホン酸ルビジウム等が挙げられ、これらは1種もしくは2種以上を併用して使用することができる。ここでパーフルオロアルキル基の炭素数は、1~18の範囲が好ましく、1~10の範囲がより好ましく、更に好ましくは1~8の範囲である。これらの中で特にパーフルオロブタンスルホン酸カリウムが好ましい。 Specific examples of perfluoroalkylsulfonic acid alkali metal salts include potassium trifluoromethanesulfonate, potassium perfluorobutanesulfonate, potassium perfluorohexanesulfonate, potassium perfluorooctanesulfonate, sodium pentafluoroethanesulfonate, perfluoro Sodium butanesulfonate, sodium perfluorooctanesulfonate, lithium trifluoromethanesulfonate, lithium perfluorobutanesulfonate, lithium perfluoroheptanesulfonate, cesium trifluoromethanesulfonate, cesium perfluorobutanesulfonate, perfluorooctanesulfonic acid Cesium, cesium perfluorohexanesulfonate, rubidium perfluorobutanesulfonate, rubidium perfluorohexanesulfonate, and the like can be mentioned, and these can be used alone or in combination of two or more. The perfluoroalkyl group preferably has 1 to 18 carbon atoms, more preferably 1 to 10 carbon atoms, and still more preferably 1 to 8 carbon atoms. Among these, potassium perfluorobutanesulfonate is particularly preferred.

アルカリ金属からなるパーフルオロアルキルスルホン酸アルカリ(土類)金属塩中には、通常少なからず弗化物イオン(F-)が混入する。かかる弗化物イオンの存在は難燃性を低下させる要因となり得るので、できる限り低減されることが好ましい。かかる弗化物イオンの割合はイオンクロマトグラフィー法により測定できる。弗化物イオンの含有量は、100ppm以下が好ましく、40ppm以下が更に好ましく、10ppm以下が特に好ましい。また製造効率的に0.2ppm以上であることが好適である。かかる弗化物イオン量の低減されたパーフルオロアルキルスルホン酸アルカリ(土類)金属塩は、製造方法は公知の製造方法を用い、かつ含フッ素有機金属塩を製造する際の原料中に含有される弗化物イオンの量を低減する方法、反応により得られた弗化水素などを反応時に発生するガスや加熱によって除去する方法、並びに含フッ素有機金属塩を製造に再結晶および再沈殿等の精製方法を用いて弗化物イオンの量を低減する方法などによって製造することができる。特にパーフルオロアルキルスルホン酸アルカリ(土類)金属塩は比較的水に溶けやすいこことから、イオン交換水、特に電気抵抗値が18MΩ・cm以上、すなわち電気伝導度が約0.55μS/cm以下を満足する水を用い、かつ常温よりも高い温度で溶解させて洗浄を行い、その後冷却させて再結晶化させる工程により製造することが好ましい。 The alkali (earth) metal salt of perfluoroalkylsulfonate, which is an alkali metal, usually contains not a small amount of fluoride ions (F-). Since the presence of such fluoride ions can be a factor in deteriorating flame retardancy, it is preferable to reduce them as much as possible. The proportion of such fluoride ions can be measured by ion chromatography. The content of fluoride ions is preferably 100 ppm or less, more preferably 40 ppm or less, and particularly preferably 10 ppm or less. In addition, it is preferable that the concentration is 0.2 ppm or more in terms of production efficiency. Such an alkali (earth) metal perfluoroalkylsulfonate having a reduced amount of fluoride ions is produced by a known production method and is contained in raw materials for producing a fluorine-containing organic metal salt. A method of reducing the amount of fluoride ions, a method of removing hydrogen fluoride and the like obtained by the reaction by gas generated during the reaction or by heating, and a purification method such as recrystallization and reprecipitation for the production of fluorine-containing organometallic salts. can be produced by a method of reducing the amount of fluoride ions using In particular, alkali (earth) metal salts of perfluoroalkylsulfonic acid are relatively soluble in water. It is preferable to use water that satisfies the above, dissolve at a temperature higher than room temperature, wash, then cool and recrystallize.

芳香族スルホン酸アルカリ(土類)金属塩の具体例としては、例えばジフェニルサルファイド-4,4’-ジスルホン酸ジナトリウム、ジフェニルサルファイド-4,4’-ジスルホン酸ジカリウム、5-スルホイソフタル酸カリウム、5-スルホイソフタル酸ナトリウム、ポリエチレンテレフタル酸ポリスルホン酸ポリナトリウム、1-メトキシナフタレン-4-スルホン酸カルシウム、4-ドデシルフェニルエーテルジスルホン酸ジナトリウム、ポリ(2,6-ジメチルフェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(1,3-フェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(1,4-フェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(2,6-ジフェニルフェニレンオキシド)ポリスルホン酸ポリカリウム、ポリ(2-フルオロ-6-ブチルフェニレンオキシド)ポリスルホン酸リチウム、ベンゼンスルホネートのスルホン酸カリウム、ベンゼンスルホン酸ナトリウム、ベンゼンスルホン酸ストロンチウム、ベンゼンスルホン酸マグネシウム、p-ベンゼンジスルホン酸ジカリウム、ナフタレン-2,6-ジスルホン酸ジカリウム、ビフェニル-3,3’-ジスルホン酸カルシウム、ジフェニルスルホン-3-スルホン酸ナトリウム、ジフェニルスルホン-3-スルホン酸カリウム、ジフェニルスルホン-3,3’-ジスルホン酸ジカリウム、ジフェニルスルホン-3,4’-ジスルホン酸ジカリウムな、α,α,α-トリフルオロアセトフェノン-4-スルホン酸ナトリウム、ベンゾフェノン-3,3’-ジスルホン酸ジカリウム、チオフェン-2,5-ジスルホン酸ジナトリウム、チオフェン-2,5-ジスルホン酸ジカリウム、チオフェン-2,5-ジスルホン酸カルシウム、ベンゾチオフェンスルホン酸ナトリウム、ジフェニルスルホキサイド-4-スルホン酸カリウム、ナフタレンスルホン酸ナトリウムのホルマリン縮合物、およびアントラセンスルホン酸ナトリウムのホルマリン縮合物などを挙げることができる。これら芳香族スルホン酸アルカリ(土類)金属塩では、特にカリウム塩が好適である。これらの芳香族スルホン酸アルカリ(土類)金属塩の中でも、ジフェニルスルホン-3-スルホン酸カリウム、およびジフェニルスルホン-3,3’-ジスルホン酸ジカリウムが好適であり、特にこれらの混合物(前者と後者の重量比が15/85~30/70)が好適である。 Specific examples of the alkali (earth) metal aromatic sulfonate include disodium diphenylsulfide-4,4′-disulfonate, dipotassium diphenylsulfide-4,4′-disulfonate, potassium 5-sulfoisophthalate, Sodium 5-sulfoisophthalate, polysodium polyethylene terephthalate polysulfonate, calcium 1-methoxynaphthalene-4-sulfonate, disodium 4-dodecylphenyl ether disulfonate, poly(2,6-dimethylphenylene oxide) polysodium polysulfonate , poly(1,3-phenylene oxide) polysodium polysulfonate, poly(1,4-phenylene oxide) polysodium polysulfonate, poly(2,6-diphenylphenylene oxide) polypotassium polysulfonate, poly(2-fluoro- 6-Butylphenylene oxide) lithium polysulfonate, potassium benzenesulfonate sulfonate, sodium benzenesulfonate, strontium benzenesulfonate, magnesium benzenesulfonate, dipotassium p-benzenedisulfonate, dipotassium p-benzenedisulfonate, dipotassium naphthalene-2,6-disulfonate, biphenyl -3,3'-calcium disulfonate, sodium diphenylsulfone-3-sulfonate, potassium diphenylsulfone-3-sulfonate, dipotassium diphenylsulfone-3,3'-disulfonate, diphenylsulfone-3,4'-disulfonic acid dipotassium α,α,α-trifluoroacetophenone-4-sulfonate sodium, benzophenone-3,3′-dipotassium sulfonate, disodium thiophene-2,5-disulfonate, dipotassium thiophene-2,5-disulfonate , calcium thiophene-2,5-disulfonate, sodium benzothiophene sulfonate, potassium diphenyl sulfoxide-4-sulfonate, formalin condensate of sodium naphthalene sulfonate, and formalin condensate of sodium anthracene sulfonate. can be done. Of these alkali (earth) metal salts of aromatic sulfonates, potassium salts are particularly preferred. Among these alkali (earth) metal salts of aromatic sulfonates, potassium diphenylsulfone-3-sulfonate and dipotassium diphenylsulfone-3,3'-disulfonate are preferred, and mixtures thereof (the former and the latter weight ratio of 15/85 to 30/70).

スルホン酸アルカリ(土類)金属塩以外の有機金属塩としては、硫酸エステルのアルカリ(土類)金属塩および芳香族スルホンアミドのアルカリ(土類)金属塩などが好適に例示される。硫酸エステルのアルカリ(土類)金属塩としては、特に一価および/または多価アルコール類の硫酸エステルのアルカリ(土類)金属塩を挙げることができ、かかる一価および/または多価アルコール類の硫酸エステルとしては、メチル硫酸エステル、エチル硫酸エステル、ラウリル硫酸エステル、ヘキサデシル硫酸エステル、ポリオキシエチレンアルキルフェニルエーテルの硫酸エステル、ペンタエリスリトールのモノ、ジ、トリ、テトラ硫酸エステル、ラウリン酸モノグリセライドの硫酸エステル、パルミチン酸モノグリセライドの硫酸エステル、およびステアリン酸モノグリセライドの硫酸エステルなどを挙げることができる。これらの硫酸エステルのアルカリ(土類)金属塩として好ましくはラウリル硫酸エステルのアルカリ(土類)金属塩が挙げられる。 Preferred examples of organic metal salts other than alkali (earth) metal sulfonates include alkali (earth) metal salts of sulfate esters and alkali (earth) metal salts of aromatic sulfonamides. As alkali (earth) metal salts of sulfate esters, mention may be made in particular of alkali (earth) metal salts of sulfate esters of monohydric and/or polyhydric alcohols, such monohydric and/or polyhydric alcohols Sulfuric acid esters include methyl sulfate, ethyl sulfate, lauryl sulfate, hexadecyl sulfate, polyoxyethylene alkylphenyl ether sulfate, pentaerythritol mono-, di-, tri-, tetra-sulfate, lauric acid monoglyceride sulfate esters, palmitate monoglyceride sulfates, stearate monoglyceride sulfates, and the like. The alkali (earth) metal salts of these sulfate esters are preferably alkali (earth) metal salts of lauryl sulfate.

芳香族スルホンアミドのアルカリ(土類)金属塩としては、例えばサッカリン、N-(p-トリルスルホニル)-p-トルエンスルホイミド、N-(N’-ベンジルアミノカルボニル)スルファニルイミド、およびN-(フェニルカルボキシル)スルファニルイミドのアルカリ(土類)金属塩などが挙げられる。 Alkali (earth) metal salts of aromatic sulfonamides include, for example, saccharin, N-(p-tolylsulfonyl)-p-toluenesulfimide, N-(N'-benzylaminocarbonyl)sulfanilimide, and N-( and alkali (earth) metal salts of phenylcarboxyl)sulfanilimide.

有機金属塩系難燃剤の含有量は、A成分とB成との合計100重量部に対し、0.01~40重量部、好ましくは0.01~10重量部、より好ましくは0.05~5重量部である。この範囲より大きいと難燃性性が低下するうえ、コストアップになる。一方、この範囲より小さいと難燃化が不十分である。 The content of the organometallic salt-based flame retardant is 0.01 to 40 parts by weight, preferably 0.01 to 10 parts by weight, more preferably 0.05 to 100 parts by weight, based on the total of 100 parts by weight of component A and component B. 5 parts by weight. If it exceeds this range, the flame retardancy is lowered and the cost is increased. On the other hand, if it is smaller than this range, flame retardancy is insufficient.

(iii)シリコーン系難燃剤
本発明のシリコーン系難燃剤として使用されるシリコーン化合物は、燃焼時の化学反応によって難燃性を向上させるものである。該化合物としては従来芳香族ポリカーボート樹脂の難燃剤として提案された各種の化合物を使用することができる。シリコーン化合物はその燃焼時にそれ自体が結合してまたは樹脂に由来する成分と結合してストラクチャーを形成することにより、または該ストラクチャー形成時の還元反応により、ポリカーボネート樹脂に難燃効果を付与するものと考えられている。したがってかかる反応における活性の高い基を含んでいることが好ましく、より具体的にはアルコキシ基およびハイドロジェン(即ちSi-H基)から選択された少なくとも1種の基を所定量含んでいることが好ましい。かかる基(アルコキシ基、Si-H基)の含有割合としては、0.1~1.2mol/100gの範囲が好ましく、0.12~1mol/100gの範囲がより好ましく、0.15~0.6mol/100gの範囲が更に好ましい。かかる割合はアルカリ分解法より、シリコーン化合物の単位重量当たりに発生した水素またはアルコールの量を測定することにより求められる。尚、アルコキシ基は炭素数1~4のアルコキシ基が好ましく、特にメトキシ基が好適である。
(iii) Silicone Flame Retardant The silicone compound used as the silicone flame retardant of the present invention improves flame retardancy through a chemical reaction during combustion. As the compound, various compounds that have been proposed as flame retardants for aromatic polycarbonate resins can be used. The silicone compound imparts a flame-retardant effect to the polycarbonate resin by forming a structure by combining with itself or by combining with a component derived from the resin during combustion, or by a reduction reaction during the formation of the structure. It is considered. Therefore, it preferably contains a group that is highly active in such reactions, and more specifically, it preferably contains a predetermined amount of at least one group selected from alkoxy groups and hydrogen (that is, Si—H groups). preferable. The content ratio of such groups (alkoxy group, Si—H group) is preferably in the range of 0.1 to 1.2 mol/100 g, more preferably in the range of 0.12 to 1 mol/100 g, and more preferably 0.15 to 0.15 mol/100 g. A range of 6 mol/100 g is more preferred. Such a ratio can be obtained by measuring the amount of hydrogen or alcohol generated per unit weight of the silicone compound by the alkaline decomposition method. As the alkoxy group, an alkoxy group having 1 to 4 carbon atoms is preferable, and a methoxy group is particularly preferable.

一般的にシリコーン化合物の構造は、以下に示す4種類のシロキサン単位を任意に組み合わせることによって構成される。すなわち、M単位:(CHSiO1/2、H(CHSiO1/2、H(CH)SiO1/2、(CH(CH=CH)SiO1/2、(CH(C)SiO1/2、(CH)(C)(CH=CH)SiO1/2等の1官能性シロキサン単位、D単位:(CHSiO、H(CH)SiO、HSiO、H(C)SiO、(CH)(CH=CH)SiO、(CH5)SiO等の2官能性シロキサン単位、T単位:(CH)SiO3/2、(C)SiO3/2、HSiO3/2、(CH=CH)SiO3/2、(C)SiO3/2等の3官能性シロキサン単位、Q単位:SiOで示される4官能性シロキサン単位である。 Generally, the structure of a silicone compound is constructed by arbitrarily combining the four types of siloxane units shown below. That is, M units: ( CH3 )3SiO1 / 2 , H( CH3 ) 2SiO1/ 2 , H2 ( CH3 )SiO1 /2 , ( CH3 ) 2 ( CH2 =CH) SiO1 /2 , ( CH3 ) 2 ( C6H5 )SiO1 / 2, ( CH3 )( C6H5 )( CH2 =CH)SiO1 / 2 , and other monofunctional siloxane units, D units: (CH 3 ) 2 SiO, H(CH 3 ) SiO, H 2 SiO, H(C 6 H 5 ) SiO, (CH 3 )(CH 2 =CH) SiO, (C 6 H5) 2 SiO, etc. siloxane unit, T unit: ( CH3 )SiO3 /2 , ( C3H7 )SiO3 / 2 , HSiO3 /2 , ( CH2 =CH)SiO3 /2 , (C6H5 ) SiO Trifunctional siloxane units such as 3/2 , Q units: tetrafunctional siloxane units represented by SiO 2 .

シリコーン系難燃剤に使用されるシリコーン化合物の構造は、具体的には、示性式としてDn、Tp、MmDn、MmTp、MmQq、MmDnTp、MmDnQq、MmTpQq、MmDnTpQq、DnTp、DnQq、DnTpQqが挙げられる。この中で好ましいシリコーン化合物の構造は、MmDn、MmTp、MmDnTp、MmDnQqであり、さらに好ましい構造は、MmDnまたはMmDnTpである。 Specifically, the structures of silicone compounds used in silicone-based flame retardants include Dn, Tp, MmDn, MmTp, MmQq, MmDnTp, MmDnQq, MmTpQq, MmDnTpQq, DnTp, DnQq, and DnTpQq. Among these, preferred structures of the silicone compounds are MmDn, MmTp, MmDnTp and MmDnQq, and more preferred structures are MmDn or MmDnTp.

ここで、前記示性式中の係数m、n、p、qは各シロキサン単位の重合度を表す1以上の整数であり、各示性式における係数の合計がシリコーン化合物の平均重合度となる。この平均重合度は好ましくは3~150の範囲、より好ましくは3~80の範囲、更に好ましくは3~60の範囲、特に好ましくは4~40の範囲である。かかる好適な範囲であるほど難燃性において優れるようになる。更に後述するように芳香族基を所定量含むシリコーン化合物においては透明性や色相にも優れる。その結果良好な反射光が得られる。 Here, the coefficients m, n, p, and q in the formula are integers of 1 or more representing the degree of polymerization of each siloxane unit, and the sum of the coefficients in each formula is the average degree of polymerization of the silicone compound. . The average degree of polymerization is preferably in the range of 3-150, more preferably in the range of 3-80, still more preferably in the range of 3-60, and most preferably in the range of 4-40. It comes to be excellent in flame retardance, so that it is such a suitable range. Furthermore, as described later, silicone compounds containing a predetermined amount of aromatic groups are excellent in transparency and hue. As a result, good reflected light can be obtained.

またm、n、p、qのいずれかが2以上の数値である場合、その係数の付いたシロキサン単位は、結合する水素原子や有機残基が異なる2種以上のシロキサン単位とすることができる。 When any of m, n, p, and q is a numerical value of 2 or more, the siloxane unit with that coefficient can be two or more siloxane units having different bonding hydrogen atoms and organic residues. .

シリコーン化合物は、直鎖状であっても分岐構造を持つものであってもよい。またシリコン原子に結合する有機残基は炭素数1~30、より好ましくは1~20の有機残基であることが好ましい。かかる有機残基としては、具体的には、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、およびデシル基などのアルキル基、シクロヘキシル基の如きシクロアルキル基、フェニル基の如きアリール基、並びにトリル基の如きアラルキル基を挙げることがでる。さらに好ましくは炭素数1~8のアルキル基、アルケニル基またはアリール基である。アルキル基としては、特にはメチル基、エチル基、およびプロピル基等の炭素数1~4のアルキル基が好ましい。 The silicone compound may be linear or branched. Also, the organic residue that bonds to the silicon atom preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms. Specific examples of such organic residues include alkyl groups such as methyl group, ethyl group, propyl group, butyl group, hexyl group and decyl group, cycloalkyl groups such as cyclohexyl group, aryl groups such as phenyl group, and aralkyl groups such as tolyl groups. More preferably, it is an alkyl group, alkenyl group or aryl group having 1 to 8 carbon atoms. As the alkyl group, an alkyl group having 1 to 4 carbon atoms such as methyl group, ethyl group and propyl group is particularly preferred.

さらにシリコーン系難燃剤として使用されるシリコーン化合物はアリール基を含有することが好ましい。一方、二酸化チタン顔料の有機表面処理剤としてのシラン化合物およびシロキサン化合物は、アリール基を含有しない方が好ましい効果が得られる点で、シリコーン系難燃剤とはその好適な態様において明確に区別される。より好適なシリコーン系難燃剤は、下記一般式(9)で示される芳香族基が含まれる割合(芳香族基量)が10~70重量%(より好適には15~60重量%)のシリコーン化合物である。 Furthermore, the silicone compound used as the silicone-based flame retardant preferably contains an aryl group. On the other hand, silane compounds and siloxane compounds used as organic surface treatment agents for titanium dioxide pigments are clearly distinguished from silicone-based flame retardants in their preferred aspects in that they exhibit favorable effects when they do not contain aryl groups. . A more preferable silicone-based flame retardant is a silicone containing 10 to 70% by weight (more preferably 15 to 60% by weight) of an aromatic group represented by the following general formula (9) (amount of aromatic group). is a compound.

Figure 0007311356000011
Figure 0007311356000011

(式(9)中、Xはそれぞれ独立にOH基、炭素数1~20の一価の有機残基を示す。nは0~5の整数を表わす。さらに式(9)中においてnが2以上の場合はそれぞれ互いに異なる種類のXを取ることができる。)
シリコーン系難燃剤として使用されるシリコーン化合物は、前記Si-H基およびアルコキシ基以外にも反応基を含有していてもよく、かかる反応基としては例えば、アミノ基、カルボキシル基、エポキシ基、ビニル基、メルカプト基、およびメタクリロキシ基などが例示される。
(In formula (9), each X independently represents an OH group and a monovalent organic residue having 1 to 20 carbon atoms. n represents an integer of 0 to 5. Furthermore, in formula (9), n is 2. In each of the above cases, different types of X can be taken.)
Silicone compounds used as silicone flame retardants may contain reactive groups other than the Si—H groups and alkoxy groups. Examples of such reactive groups include amino groups, carboxyl groups, epoxy groups, vinyl groups, mercapto groups, and methacryloxy groups.

Si-H基を有するシリコーン化合物としては、下記一般式(10)および(11)で示される構成単位の少なくとも一種以上を含むシリコーン化合物が好適に例示される。 Preferred examples of silicone compounds having an Si—H group include silicone compounds containing at least one or more structural units represented by the following general formulas (10) and (11).

Figure 0007311356000012
Figure 0007311356000012

Figure 0007311356000013
Figure 0007311356000013

(式(10)および式(11)中、Z~Zはそれぞれ独立に水素原子、炭素数1~20の一価の有機残基、または下記一般式(12)で示される化合物を示す。α1~α3はそれぞれ独立に0または1を表わす。m1は0もしくは1以上の整数を表わす。さらに式(10)中においてm1が2以上の場合の繰返し単位はそれぞれ互いに異なる複数の繰返し単位を取ることができる。) (In formulas (10) and (11), Z 1 to Z 3 each independently represent a hydrogen atom, a monovalent organic residue having 1 to 20 carbon atoms, or a compound represented by the following general formula (12). α1 to α3 each independently represent 0 or 1. m1 represents an integer of 0 or 1. Further, in the formula (10), when m1 is 2 or more, each repeating unit may be a plurality of different repeating units. can be taken.)

Figure 0007311356000014
Figure 0007311356000014

(式(12)中、Z~Zはそれぞれ独立に水素原子、炭素数1~20の一価の有機残基を示す。α4~α8はそれぞれ独立に0または1を表わす。m2は0もしくは1以上の整数を表わす。さらに式(12)中においてm2が2以上の場合の繰返し単位はそれぞれ互いに異なる複数の繰返し単位を取ることができる。)
シリコーン系難燃剤に使用されるシリコーン化合物において、アルコキシ基を有するシ
リコーン化合物としては、例えば一般式(13)および一般式(14)に示される化合物から選択される少なくとも1種の化合物があげられる。
(In formula (12), Z 4 to Z 8 each independently represent a hydrogen atom or a monovalent organic residue having 1 to 20 carbon atoms, α4 to α8 each independently represent 0 or 1, m2 is 0 Alternatively, it represents an integer of 1 or more.In addition, in formula (12), when m2 is 2 or more, the repeating unit can be a plurality of mutually different repeating units.)
In the silicone compound used for the silicone flame retardant, examples of the silicone compound having an alkoxy group include at least one compound selected from compounds represented by general formulas (13) and (14).

Figure 0007311356000015
Figure 0007311356000015

(式(13)中、βはビニル基、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、並びに炭素数6~12のアリール基およびアラルキル基を示す。γ、γ、γ、γ、γ、およびγは炭素数1~6のアルキル基およびシクロアルキル基、並びに炭素数6~12のアリール基およびアラルキル基を示し、少なくとも1つの基がアリール基またはアラルキル基である。δ、δ、およびδは炭素数1~4のアルコキシ基を示す。) (In formula (13), β 1 represents a vinyl group, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and an aryl group and an aralkyl group having 6 to 12 carbon atoms. γ 1 , γ 2 , γ 3 , γ 4 , γ 5 and γ 6 represent alkyl and cycloalkyl groups having 1 to 6 carbon atoms and aryl and aralkyl groups having 6 to 12 carbon atoms, at least one of which is aryl or an aralkyl group, and δ 1 , δ 2 and δ 3 each represent an alkoxy group having 1 to 4 carbon atoms.)

Figure 0007311356000016
Figure 0007311356000016

(式(14)中、βおよびβはビニル基、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、並びに炭素数6~12のアリール基およびアラルキル基を示す。γ、γ、γ、γ10、γ11、γ12、γ13およびγ14は炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、並びに炭素数6~12のアリール基およびアラルキル基を示し、少なくとも1つの基がアリール基またはアラルキルである。δ、δ、δ、およびδは炭素数1~4のアルコキシ基を示す。)
シリコーン系難燃剤の配合量は、A成分とB成分との合計100重量部に対し、0.01~40重量部、好ましくは0.5~10重量部、より好ましくは1~5重量部である。この範囲より大きいと難燃性性が低下するうえ、コストアップになる。一方、この範囲より小さいと難燃化が不十分である。
(In formula (14), β 2 and β 3 represent a vinyl group, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an aryl group and an aralkyl group having 6 to 12 carbon atoms. γ 7 , γ 8 , γ 9 , γ 10 , γ 11 , γ 12 , γ 13 and γ 14 are alkyl groups having 1 to 6 carbon atoms, cycloalkyl groups having 3 to 6 carbon atoms, and cycloalkyl groups having 6 to 12 carbon atoms. represents an aryl group and an aralkyl group, at least one of which is an aryl group or an aralkyl group, and δ 4 , δ 5 , δ 6 and δ 7 represent an alkoxy group having 1 to 4 carbon atoms.)
The amount of the silicone-based flame retardant compounded is 0.01 to 40 parts by weight, preferably 0.5 to 10 parts by weight, more preferably 1 to 5 parts by weight, per 100 parts by weight of the total amount of components A and B. be. If it exceeds this range, the flame retardancy is lowered and the cost is increased. On the other hand, if it is smaller than this range, flame retardancy is insufficient.

(D成分:ドリップ防止剤)
本発明でD成分として用いられるドリップ防止剤は、フィブリル形成能を有する含フッ素ポリマーを挙げることができ、かかるポリマーとしてはポリテトラフルオロエチレン、テトラフルオロエチレン系共重合体(例えば、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、など)、米国特許第4379910号公報に示されるような部分フッ素化ポリマー、フッ素化ジフェノールから製造されるポリカーボネート樹脂などを挙げることができる。中でも好ましくはポリテトラフルオロエチレン(以下PTFEと称することがある)である。
(D component: anti-drip agent)
Anti-dripping agents used as component D in the present invention include fluorine-containing polymers having fibril-forming ability. hexafluoropropylene copolymers, etc.), partially fluorinated polymers as shown in US Pat. No. 4,379,910, and polycarbonate resins made from fluorinated diphenols. Among them, polytetrafluoroethylene (hereinafter sometimes referred to as PTFE) is preferred.

フィブリル形成能を有するPTFEの分子量は極めて高い分子量を有し、せん断力などの外的作用によりPTFE同士を結合して繊維状になる傾向を示すものである。その分子量は、標準比重から求められる数平均分子量において100万~1000万、より好ましく200万~900万である。かかるPTFEは、固体形状の他、水性分散液形態のものも使用可能である。またかかるフィブリル形成能を有するPTFEは樹脂中での分散性を向上させ、さらに良好な難燃性および機械的特性を得るために他の樹脂との混合形態のPTFE混合物を使用することも可能である。 PTFE having fibril-forming ability has an extremely high molecular weight, and exhibits a tendency to bond PTFE to become fibrous by an external action such as a shearing force. Its molecular weight is 1,000,000 to 10,000,000, more preferably 2,000,000 to 9,000,000 in terms of number average molecular weight determined from standard specific gravity. Such PTFE can be used not only in a solid form but also in an aqueous dispersion form. In addition, PTFE having such fibril-forming ability improves its dispersibility in resin, and it is also possible to use a PTFE mixture in which it is mixed with other resins in order to obtain good flame retardancy and mechanical properties. be.

かかるフィブリル形成能を有するPTFEの市販品としては例えば三井・ケマーズフロロプロダクツ(株)のテフロン(登録商標)6-J、ダイキン工業(株)のポリフロンMPA FA500HおよびF-201などを挙げることができる。PTFEの水性分散液の市販品としては、ダイキン工業(株)製のフルオンDシリーズ、三井・ケマーズフロロプロダクツ(株)のテフロン(登録商標)31-JRなどを代表として挙げることができる。 Examples of commercially available PTFE having fibril-forming ability include Teflon (registered trademark) 6-J manufactured by Mitsui Chemours Fluoro Products Co., Ltd., Polyflon MPA FA500H and F-201 manufactured by Daikin Industries, Ltd., and the like. can. Commercially available PTFE aqueous dispersions include Fluon D series manufactured by Daikin Industries, Ltd., and Teflon (registered trademark) 31-JR manufactured by Mitsui Chemours Fluoro Products Co., Ltd., and the like.

混合形態のPTFEとしては、(1)PTFEの水性分散液と有機重合体の水性分散液または溶液とを混合し共沈殿を行い共凝集混合物を得る方法(特開昭60-258263号公報、特開昭63-154744号公報などに記載された方法)、(2)PTFEの水性分散液と乾燥した有機重合体粒子とを混合する方法(特開平4-272957号公報に記載された方法)、(3)PTFEの水性分散液と有機重合体粒子溶液を均一に混合し、かかる混合物からそれぞれの媒体を同時に除去する方法(特開平06-220210号公報、特開平08-188653号公報などに記載された方法)、(4)PTFEの水性分散液中で有機重合体を形成する単量体を重合する方法(特開平9-95583号公報に記載された方法)、および(5)PTFEの水性分散液と有機重合体分散液を均一に混合後、さらに該混合分散液中でビニル系単量体を重合し、その後混合物を得る方法(特開平11-29679号などに記載された方法)により得られたものが使用できる。これら混合形態のPTFEの市販品としては、三菱ケミカル(株)の「メタブレン A3800」(商品名)、「メタブレンA3750」などを挙げることができる。 (1) A method of mixing an aqueous dispersion of PTFE and an aqueous dispersion or solution of an organic polymer to co-precipitate to obtain a co-aggregated mixture (JP-A-60-258263, JP-A-60-258263; (2) a method of mixing an aqueous dispersion of PTFE and dried organic polymer particles (method described in JP-A-4-272957); (3) A method of uniformly mixing an aqueous dispersion of PTFE and a solution of organic polymer particles and simultaneously removing the respective media from the mixture (described in JP-A-06-220210, JP-A-08-188653, etc.). (4) a method of polymerizing a monomer that forms an organic polymer in an aqueous dispersion of PTFE (the method described in JP-A-9-95583); and (5) an aqueous dispersion of PTFE. After uniformly mixing the dispersion and the organic polymer dispersion, a vinyl monomer is further polymerized in the mixed dispersion, and then a mixture is obtained (method described in JP-A-11-29679, etc.). You can use what you get. Examples of commercially available PTFE in mixed form include "METABLEN A3800" (trade name) and "METABLEN A3750" available from Mitsubishi Chemical Corporation.

混合形態におけるPTFEの割合としては、PTFE混合物100重量%中、PTFEが1~60重量%が好ましく、より好ましくは5~55重量%である。PTFEの割合がかかる範囲にある場合は、PTFEの良好な分散性を達成することができる。 The ratio of PTFE in the mixed form is preferably 1 to 60% by weight, more preferably 5 to 55% by weight, based on 100% by weight of the PTFE mixture. Good dispersibility of PTFE can be achieved when the proportion of PTFE is in this range.

ポリテトラフルオロエチレン系混合体に使用される有機系重合体としてスチレン系単量体としては、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基およびハロゲンからなる群より選ばれた1つ以上の基で置換されてもよいスチレン、例えば、オルト-メチルスチレン、メタ-メチルスチレン、パラ-メチルスチレン、ジメチルスチレン、エチル-スチレン、パラ-tert-ブチルスチレン、メトキシスチレン、フルオロスチレン、モノブロモスチレン、ジブロモスチレン、およびトリブロモスチレン、ビニルキシレン、ビニルナフタレンが例示されるが、これらに制限されない。前記スチレン系単量体は単独又は2つ以上の種類を混合して使用することができる。 As the organic polymer used in the polytetrafluoroethylene-based mixture, the styrene-based monomer is selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and halogen. styrenes optionally substituted with one or more groups, such as ortho-methylstyrene, meta-methylstyrene, para-methylstyrene, dimethylstyrene, ethyl-styrene, para-tert-butylstyrene, methoxystyrene, fluorostyrene, Examples include, but are not limited to, monobromostyrene, dibromostyrene, and tribromostyrene, vinylxylene, vinylnaphthalene. The styrenic monomers may be used alone or in combination of two or more.

ポリテトラフルオロエチレン系混合体に使用される有機系重合体として使用されるアクリル系単量体は、置換されてもよい(メタ)アクリレート誘導体を含む。具体的に前記アクリル系単量体としては、炭素数1~20のアルキル基、炭素数3~8のシクロアルキル基、アリール基、及びグリシジル基からなる群より選ばれた1つ以上基により置換されてもよい(メタ)アクリレート誘導体、例えば(メタ)アクリロ二トリル、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、アミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルへキシル(メタ)アクリレート、シクロへキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ドデシル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレートおよびグリシジル(メタ)アクリレート、炭素数1~6のアルキル基、又はアリール基により置換されてもよいマレイミド、例えば、マレイミド、N-メチル-マレイミドおよびN-フェニル-マレイミド、マレイン酸、フタル酸およびイタコン酸が例示されるが、これらに制限されない。前記アクリル系単量体は単独又は2つ以上の種類を混合して使用することができる。これらの中でも(メタ)アクリロ二トリルが好ましい。 Acrylic monomers used as organic polymers used in polytetrafluoroethylene-based mixtures include optionally substituted (meth)acrylate derivatives. Specifically, the acrylic monomer is substituted with one or more groups selected from the group consisting of an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an aryl group, and a glycidyl group. (meth)acrylate derivatives such as (meth)acrylonitrile, methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, amyl (meth)acrylate, hexyl ( meth)acrylate, 2-ethylhexyl (meth)acrylate, cyclohexyl (meth)acrylate, octyl (meth)acrylate, dodecyl (meth)acrylate, phenyl (meth)acrylate, benzyl (meth)acrylate and glycidyl (meth)acrylate Examples include maleimides optionally substituted by acrylates, alkyl groups having 1 to 6 carbon atoms, or aryl groups, such as maleimide, N-methyl-maleimide and N-phenyl-maleimide, maleic acid, phthalic acid and itaconic acid. but not limited to these. The acrylic monomers may be used alone or in combination of two or more. Among these, (meth)acrylonitrile is preferred.

有機重合体に含まれるアクリル系単量体由来単位の量は、スチレン系単量体由来単位100重量部に対して好ましくは8~11重量部、より好ましくは8~10重量部、さらに好ましくは8~9重量部である。アクリル系単量体由来単位が8重量部より少ないとコーティング強度が低下することがあり、11重量部より多いと成形品の表面外観が悪くなり得る。 The amount of the acrylic monomer-derived units contained in the organic polymer is preferably 8 to 11 parts by weight, more preferably 8 to 10 parts by weight, and still more preferably 100 parts by weight of the styrene-based monomer-derived units. 8 to 9 parts by weight. If the acrylic monomer-derived unit is less than 8 parts by weight, the coating strength may be lowered, and if it is more than 11 parts by weight, the surface appearance of the molded article may be deteriorated.

本発明のポリテトラフルオロエチレン系混合体は、残存水分含量が0.5重量%以下であることが好ましく、より好ましくは0.2~0.4重量%、さらに好ましくは0.1~0.3重量%である。残存水分量が0.5重量%より多いと難燃性に悪影響を与えることがある。 The polytetrafluoroethylene-based mixture of the present invention preferably has a residual moisture content of 0.5% by weight or less, more preferably 0.2 to 0.4% by weight, and still more preferably 0.1 to 0.4% by weight. 3% by weight. If the residual water content is more than 0.5% by weight, it may adversely affect flame retardancy.

本発明のポリテトラフルオロエチレン系混合体の製造工程には、開始剤の存在下でスチレン系単量体及びアクリル単量体からなるグループより選ばれた1つ以上の単量体を含むコーティング層を分岐状ポリテトラフルオロエチレンの外部に形成するステップが含まれる。さらに、前記コーティング層形成のステップ後に残存水分含量を0.5重量%以下、好ましくは0.2~0.4重量%、より好ましくは0.1~0.3重量%となるように乾燥させるステップを含むことが好ましい。乾燥のステップは、例えば、熱風乾燥又は真空乾燥方法のような当業界に公知にされた方法を用いて行うことができる。 In the process for producing the polytetrafluoroethylene-based mixture of the present invention, a coating layer containing one or more monomers selected from the group consisting of styrene-based monomers and acrylic monomers in the presence of an initiator outside the branched polytetrafluoroethylene. Further, after the step of forming the coating layer, drying is performed so that the remaining moisture content is 0.5 wt% or less, preferably 0.2 to 0.4 wt%, more preferably 0.1 to 0.3 wt%. It preferably includes steps. The drying step can be performed using methods known in the art such as, for example, hot air drying or vacuum drying methods.

本発明のポリテトラフルオロエチレン系混合体に使用される開始剤は、スチレン系及び/又はアクリル系単量体の重合反応に使用されるものであれば制限なく使用され得る。前記開始剤としては、クミルハイドロパーオキサイド、ジ-tert-ブチルパーオキサイド、ベンゾイルパーオキサイド、ハイドロゲンパーオキサイド、およびポタシウムパーオキサイドが例示されるが、これらに制限されない。本発明のポリテトラフルオロエチレン系混合体には、反応条件に応じて前記開始剤を1種以上使用することができる。前記開始剤の量は、ポリテトラフルオロエチレンの量及び単量体の種類/量を考慮して使用される範囲内で自由に選択され、全組成物の量を基準として0.15~0.25重量部使用することが好ましい。 The initiator used for the polytetrafluoroethylene-based mixture of the present invention can be used without limitation as long as it is used for the polymerization reaction of styrene-based and/or acrylic-based monomers. Examples of the initiator include, but are not limited to, cumyl hydroperoxide, di-tert-butyl peroxide, benzoyl peroxide, hydrogen peroxide, and potassium peroxide. One or more of the above initiators may be used in the polytetrafluoroethylene-based mixture of the present invention, depending on the reaction conditions. The amount of the initiator is freely selected within the range used in consideration of the amount of polytetrafluoroethylene and the type/amount of the monomer, and is 0.15 to 0.15 based on the amount of the total composition. It is preferred to use 25 parts by weight.

本発明のポリテトラフルオロエチレン系混合体は、懸濁重合法により下記の手順にて製造を行った。 The polytetrafluoroethylene-based mixture of the present invention was produced by the suspension polymerization method according to the following procedure.

まず、反応器中に水および分岐状ポリテトラフルオロエチレンディスパージョン(固形濃度:60%、ポリテトラフルオロエチレン粒子径:0.15~0.3μm)を入れた後、攪拌しながらアクリルモノマー、スチレンモノマーおよび水溶性開始剤としてクメンハイドロパーオキサイドを添加し80~90℃にて9時間反応を行なった。反応終了後、遠心分離機にて30分間遠心分離を行うことにより水分を除去し、ペースト状の生成物を得た。その後、生成物のペーストを熱風乾燥機にて80~100℃にて8時間乾燥した。その後、かかる乾燥した生成物の粉砕を行い本発明のポリテトラフルオロエチレン系混合体を得た。 First, water and branched polytetrafluoroethylene dispersion (solid concentration: 60%, polytetrafluoroethylene particle size: 0.15 to 0.3 μm) were placed in a reactor, and then acrylic monomers and styrene were mixed with stirring. Cumene hydroperoxide was added as a monomer and a water-soluble initiator, and the reaction was carried out at 80 to 90° C. for 9 hours. After completion of the reaction, centrifugation was performed for 30 minutes in a centrifuge to remove moisture and obtain a paste-like product. After that, the product paste was dried in a hot air dryer at 80 to 100° C. for 8 hours. Thereafter, the dried product was pulverized to obtain the polytetrafluoroethylene-based mixture of the present invention.

かかる懸濁重合法は、特許3469391号公報などに例示される乳化重合法における乳化分散による重合工程を必要としないため、乳化剤および重合後のラテックスを凝固沈殿するための電解質塩類を必要としない。また乳化重合法で製造されたポリテトラフルオロエチレン混合体では、混合体中の乳化剤および電解質塩類が混在しやすく取り除きにくくなるため、かかる乳化剤、電解質塩類由来のナトリウム金属イオン、カリウム金属イオンを低減することは難しい。本発明で使用するポリテトラフルオロエチレン系混合体(B成分)は、懸濁重合法で製造されているため、かかる乳化剤、電解質塩類を使用しないことから混合体中のナトリウム金属イオン、カリウム金属イオンが低減することができ、熱安定性および耐加水分解性を向上することができる。 Such a suspension polymerization method does not require a polymerization step by emulsification dispersion in the emulsion polymerization method exemplified in Japanese Patent No. 3469391, and thus does not require an emulsifier and electrolytic salts for coagulating and precipitating latex after polymerization. In addition, in a polytetrafluoroethylene mixture produced by an emulsion polymerization method, the emulsifier and electrolyte salts in the mixture are easily mixed and difficult to remove, so sodium metal ions and potassium metal ions derived from such emulsifiers and electrolyte salts are reduced. It is difficult. Since the polytetrafluoroethylene-based mixture (component B) used in the present invention is produced by a suspension polymerization method, such emulsifiers and electrolyte salts are not used, so sodium metal ions and potassium metal ions in the mixture can be reduced, and thermal stability and hydrolysis resistance can be improved.

また、本発明ではドリップ防止剤として被覆分岐PTFEを使用することができる。被覆分岐PTFEは分岐状ポリテトラフルオロエチレン粒子および有機系重合体からなるポリテトラフルオロエチレン系混合体であり、分岐状ポリテトラフルオロエチレンの外部に有機系重合体、好ましくはスチレン系単量体由来単位及び/又はアクリル系単量体由来単位を含む重合体からなるコーティング層を有する。前記コーティング層は、分岐状ポリテトラフルオロエチレンの表面上に形成される。また、前記コーティング層はスチレン系単量体及びアクリル系単量体の共重合体を含むことが好ましい。 Coated branched PTFE can also be used as an anti-drip agent in the present invention. The coated branched PTFE is a polytetrafluoroethylene-based mixture composed of branched polytetrafluoroethylene particles and an organic polymer. It has a coating layer made of a polymer containing units and/or acrylic monomer-derived units. The coating layer is formed on the surface of branched polytetrafluoroethylene. Also, the coating layer preferably contains a copolymer of a styrene-based monomer and an acrylic-based monomer.

被覆分岐PTFEに含まれるポリテトラフルオロエチレンは分岐状ポリテトラフルオロエチレンである。含まれるポリテトラフルオロエチレンが分岐状ポリテトラフルオロエチレンでない場合、ポリテトラフルオロエチレンの添加が少ない場合の滴下防止効果が不十分となる。分岐状ポリテトラフルオロエチレンは粒子状であり、好ましくは0.1~0.6μm、より好ましくは0.3~0.5μm、さらに好ましくは0.3~0.4μmの粒子径を有する。0.1μmより粒子径が小さい場合には成形品の表面外観に優れるが、0.1μmより小さい粒子径を有するポリテトラフルオロエチレンを商業的に入手することは難しい。また0.6μmより粒子径が大きい場合には成形品の表面外観が悪くなる場合がある。本発明に使用されるポリテトラフルオロエチレンの数平均分子量は1×10~1×10が好ましく、より好ましくは2×10~9×10であり、一般的に高い分子量のポリテトラフルオロエチレンが安定性の側面においてより好ましい。粉末又は分散液の形態いずれも使用され得る。 The polytetrafluoroethylene contained in the coated branched PTFE is branched polytetrafluoroethylene. If the contained polytetrafluoroethylene is not branched polytetrafluoroethylene, the anti-dripping effect will be insufficient when the amount of polytetrafluoroethylene added is small. The branched polytetrafluoroethylene is particulate and preferably has a particle size of 0.1 to 0.6 μm, more preferably 0.3 to 0.5 μm, still more preferably 0.3 to 0.4 μm. When the particle size is smaller than 0.1 μm, the surface appearance of molded articles is excellent, but it is difficult to commercially obtain polytetrafluoroethylene having a particle size smaller than 0.1 μm. Also, if the particle size is larger than 0.6 μm, the surface appearance of the molded product may deteriorate. The polytetrafluoroethylene used in the present invention preferably has a number average molecular weight of 1×10 4 to 1×10 7 , more preferably 2×10 6 to 9×10 6 . Fluoroethylene is more preferred in terms of stability. Either powder or dispersion form can be used.

被覆分岐PTFEにおける分岐状ポリテトラフルオロエチレンの含有量は、被覆分岐PTFEの総重量100重量部に対して、好ましくは20~60重量部、より好ましくは40~55重量部、さらに好ましくは47~53重量部、特に好ましくは48~52重量部、最も好ましくは49~51重量部である。分岐状ポリテトラフルオロエチレンの割合がかかる範囲にある場合は、分岐状ポリテトラフルオロエチレンの良好な分散性を達成することができる。 The content of the branched polytetrafluoroethylene in the coated branched PTFE is preferably 20 to 60 parts by weight, more preferably 40 to 55 parts by weight, and still more preferably 47 to 60 parts by weight with respect to 100 parts by weight of the total weight of the coated branched PTFE. 53 parts by weight, particularly preferably 48 to 52 parts by weight, most preferably 49 to 51 parts by weight. When the proportion of branched polytetrafluoroethylene is within this range, good dispersibility of branched polytetrafluoroethylene can be achieved.

D成分の含有量は、A成分とB成分との合計100重量部に対し、0.1~3重量部、好ましくは0.15~2重量部、より好ましくは0.5~1.5重量部である。この範囲より大きいとコストアップにつながるうえ、押出加工性が不十分となる。一方、この範囲より小さいと難燃化が不十分となり、引張り強度も低下する。なお、上記D成分の割合は正味のドリップ防止剤の量を示し、混合形態のPTFEの場合には、正味のPTFE量を示す。 The content of component D is 0.1 to 3 parts by weight, preferably 0.15 to 2 parts by weight, more preferably 0.5 to 1.5 parts by weight, with respect to the total 100 parts by weight of components A and B. Department. If it exceeds this range, the cost will increase and the extrusion processability will be insufficient. On the other hand, if it is less than this range, the flame retardancy will be insufficient and the tensile strength will also decrease. The ratio of component D indicates the net amount of anti-dripping agent, and in the case of mixed PTFE, indicates the net amount of PTFE.

(E成分:ガラス繊維および/または炭素繊維)
本発明でE成分として用いられるガラス繊維としては、丸型断面を有するガラス繊維、繊維長断面の長径の平均値が10~50μm、長径と短径の比(長径/短径)の平均値が1.5~8である扁平断面ガラス繊維、ガラスミルドファイバーが好適に例示されるが、特に繊維長断面の長径の平均値が10~50μm、長径と短径の比(長径/短径)の平均値が1.5~8である扁平断面ガラス繊維が引張り強度、寸法精度の点でより好ましい。上記扁平断面ガラス繊維の繊維長断面の平均値は15~40μmであることが好ましく、15~35μmであることがより好ましい。また、長径と短径の比(長径/短径)の平均値は2~6であることが好ましく、2~5であることがより好ましい。また扁平断面形状としては扁平の他、楕円状、まゆ状、および三つ葉状、あるいはこれに類する形状の非円形断面形状を挙げることができ、なかでも機械的強度、低異方性の改良の点から扁平形状が好ましい。
(E component: glass fiber and/or carbon fiber)
The glass fiber used as the component E in the present invention is a glass fiber having a round cross section, an average value of the major diameter of the long cross section of the fiber of 10 to 50 μm, and an average value of the ratio of the major diameter to the minor diameter (long diameter / minor diameter). Flat cross-section glass fibers and glass milled fibers having a diameter of 1.5 to 8 are preferable examples, but in particular, the average value of the major diameter of the fiber long cross section is 10 to 50 μm, and the ratio of the major diameter to the minor diameter (long diameter/short diameter) is 10 to 50 μm. A flat cross-section glass fiber having an average value of 1.5 to 8 is more preferable in terms of tensile strength and dimensional accuracy. The average value of the fiber length cross section of the flat cross-section glass fiber is preferably 15 to 40 μm, more preferably 15 to 35 μm. Also, the average value of the ratio of the major axis to the minor axis (major axis/minor axis) is preferably 2-6, more preferably 2-5. The flat cross-sectional shape includes not only flat but also non-circular cross-sectional shapes such as elliptical, cocoon-shaped, trefoil, or similar shapes. Among them, improvement in mechanical strength and low anisotropy Therefore, a flat shape is preferable.

上記のガラス繊維のガラス組成は、Aガラス、Cガラス、およびEガラス等に代表され
る各種のガラス組成が適用され、特に限定されない。かかるガラス繊維は、必要に応じてTiO、SO、およびP等の成分を含有するものであってもよい。これらの中でもEガラス(無アルカリガラス)がより好ましい。かかるガラス繊維は、周知の表面処理剤、例えばシランカップリング剤、チタネートカップリング剤、またはアルミネートカップリング剤等で表面処理が施されたものが機械的強度の向上の点から好ましい。また、オレフィン系樹脂、スチレン系樹脂、アクリル系樹脂、ポリエステル系樹脂、エポキシ系樹脂、およびウレタン系樹脂等で集束処理されたものが好ましく、エポキシ系樹脂、ウレタン系樹脂が機械的強度の点から特に好ましい。集束処理されたガラス繊維の集束剤付着量は、ガラス繊維100重量%中、好ましくは0.1~3重量%、より好ましくは0.2~1重量%である。
The glass composition of the glass fiber is not particularly limited, and various glass compositions represented by A glass, C glass, E glass, and the like are applied. Such glass fibers may contain components such as TiO 2 , SO 3 and P 2 O 5 as necessary. Among these, E glass (alkali-free glass) is more preferable. Such glass fibers are preferably surface-treated with a known surface treatment agent such as a silane coupling agent, a titanate coupling agent, an aluminate coupling agent, or the like, from the viewpoint of improving mechanical strength. In addition, it is preferable to use olefin-based resin, styrene-based resin, acrylic-based resin, polyester-based resin, epoxy-based resin, urethane-based resin, or the like for convergence treatment. Especially preferred. The amount of the sizing agent attached to the sizing-treated glass fibers is preferably 0.1 to 3% by weight, more preferably 0.2 to 1% by weight, based on 100% by weight of the glass fibers.

本発明でE成分として用いられる炭素繊維としては、例えば金属コートカーボンファイバー、カーボンミルドファイバー、気相成長カーボンファイバー等のカーボンファイバー、およびカーボンナノチューブ等が挙げられる。カーボンナノチューブは繊維径0.003~0.1μm、単層、2層、および多層のいずれであってもよく、多層(いわゆるMWCNT)が好ましい。これらの中でも機械的強度に優れる点において、カーボンファイバーが好ましい。 Examples of carbon fibers used as the E component in the present invention include carbon fibers such as metal-coated carbon fibers, carbon milled fibers, vapor-grown carbon fibers, and carbon nanotubes. Carbon nanotubes have a fiber diameter of 0.003 to 0.1 μm and may be single-walled, double-walled or multi-walled, with multi-walled (so-called MWCNT) being preferred. Among these, carbon fiber is preferable in terms of excellent mechanical strength.

カーボンファイバーとしては、セルロース系、ポリアクリロニトリル系、およびピッチ系などのいずれも使用可能である。また芳香族スルホン酸類またはそれらの塩のメチレ型結合による重合体と溶媒よりなる原料組成を紡糸または成形し、次いで炭化するなどの方法に代表される不融化工程を経ない紡糸を行う方法により得られたものも使用可能である。更に汎用タイプ、中弾性率タイプ、および高弾性率タイプのいずれも使用可能である。これらの中でも特にポリアクリロニトリル系の高弾性率タイプが好ましい。 Any of cellulose-based, polyacrylonitrile-based, and pitch-based carbon fibers can be used as the carbon fiber. Alternatively, it can be obtained by spinning or molding a raw material composition consisting of a solvent and a polymer of aromatic sulfonic acids or their salts or a methyle type bond, followed by carbonization or the like, and spinning without an infusibilization step. It is also possible to use the Furthermore, general-purpose type, medium modulus type, and high modulus type can all be used. Among these, a polyacrylonitrile-based high elastic modulus type is particularly preferable.

また、カーボンファイバーの表面はマトリックス樹脂との密着性を高め、機械的強度を向上する目的で酸化処理されることが好ましい。酸化処理方法は特に限定されないが、例えば、(1)炭素繊維を酸もしくはアルカリまたはそれらの塩、あるいは酸化性気体により処理する方法、(2)炭素繊維化可能な繊維または炭素繊維を、含酸素化合物を含む不活性ガスの存在下、700℃以上の温度で焼成する方法、および(3)炭素繊維を酸化処理した後、不活性ガスの存在下で熱処理する方法などが好適に例示される。 In addition, the surface of the carbon fiber is preferably oxidized for the purpose of enhancing adhesion to the matrix resin and improving mechanical strength. Although the oxidation treatment method is not particularly limited, for example, (1) a method of treating carbon fibers with an acid or alkali or a salt thereof, or an oxidizing gas; Preferable examples include a method of firing at a temperature of 700° C. or higher in the presence of an inert gas containing a compound, and (3) a method of subjecting carbon fibers to oxidation treatment followed by heat treatment in the presence of an inert gas.

金属コートカーボンファイバーは、カーボンファイバーの表面に金属層をコートしたものである。金属としては、銀、銅、ニッケル、およびアルミニウムなどが挙げられ、ニッケルが金属層の耐腐食性の点から好ましい。金属コートの方法としては、メッキ法および蒸着法等の公知の方法が挙げられ、中でもメッキ法が好適に利用される。また、かかる金属コートカーボンファイバーの場合も、元となるカーボンファイバーとしては上記のカーボンファイバーとして挙げたものが使用可能である。金属被覆層の厚みは好ましくは0.1~1μm、より好ましくは0.15~0.5μmである。更に好ましくは0.2~0.35μmである。 A metal-coated carbon fiber is obtained by coating the surface of a carbon fiber with a metal layer. Examples of metals include silver, copper, nickel, and aluminum, and nickel is preferred from the viewpoint of corrosion resistance of the metal layer. Methods of metal coating include known methods such as plating and vapor deposition, among which plating is preferably used. Also in the case of such a metal-coated carbon fiber, the carbon fiber mentioned above can be used as the original carbon fiber. The thickness of the metal coating layer is preferably 0.1-1 μm, more preferably 0.15-0.5 μm. More preferably, it is 0.2 to 0.35 μm.

かかるカーボンファイバー、金属コートカーボンファイバーは、オレフィン系樹脂、スチレン系樹脂、アクリル系樹脂、ポリエステル系樹脂、エポキシ系樹脂、およびウレタン系樹脂等で集束処理されたものが好ましい。特にウレタン系樹脂、エポキシ系樹脂で処理された炭素繊維は、機械的強度に優れることから本発明において好適である。 Such carbon fibers and metal-coated carbon fibers are preferably bundled with olefin-based resin, styrene-based resin, acrylic-based resin, polyester-based resin, epoxy-based resin, urethane-based resin, or the like. In particular, carbon fibers treated with urethane-based resins and epoxy-based resins are suitable in the present invention because of their excellent mechanical strength.

E成分の含有量は、A成分とB成分との合計100重量部に対して、25~150重量部であり、好ましくは30~140重量部、より好ましくは40~120重量部である。E成分の含有量が25重量部未満では引張り強度の向上が不十分となり、かつ成形収縮率が大きくなり寸法精度が悪くなる。一方、150重量部を超える場合には、逆に強度、難燃性が低下する。 The content of component E is 25 to 150 parts by weight, preferably 30 to 140 parts by weight, and more preferably 40 to 120 parts by weight, per 100 parts by weight of components A and B combined. If the content of component E is less than 25 parts by weight, the improvement in tensile strength will be insufficient, and the mold shrinkage rate will increase, resulting in poor dimensional accuracy. On the other hand, if it exceeds 150 parts by weight, the strength and flame retardancy are lowered.

(F成分:フェノキシ樹脂およびエポキシ樹脂)
本発明でF成分として用いられるフェノキシ樹脂としては、例えば、下記一般式(15)で表わされるフェノキシ樹脂などが挙げられる。
(F component: phenoxy resin and epoxy resin)
Examples of the phenoxy resin used as the F component in the present invention include phenoxy resins represented by the following general formula (15).

Figure 0007311356000017
Figure 0007311356000017

(式中、Xは下記一般式(16)で表される基からなる群より選ばれる少なくとも一つの基、Yは水素原子または水酸基と反応する化合物の残基、nは0以上の整数である。) (Wherein, X is at least one group selected from the group consisting of groups represented by the following general formula (16), Y is a hydrogen atom or a residue of a compound that reacts with a hydroxyl group, n is an integer of 0 or more .)

Figure 0007311356000018
Figure 0007311356000018

(式中、Phはフェニル基を示す。)
上記一般式(16)において、水酸基と反応する化合物としては、エステル、カーボネート、エポキシ基などを有する化合物、カルボン酸無水物、酸ハライド、イソシアナート基などを有する化合物等を挙げることができ、エステルとしては、特に分子内エステルが好ましく、例えばカプロラクトン等が挙げられる。上記一般式(15)で表わされるフェノキシ樹脂において、Yが水素原子である化合物は、二価のフェノール類とエピクロルヒドリンから容易に製造することができる。また、Yが水酸基と反応する化合物の残基である化合物は、二価のフェノール類とエピクロルヒドリンから製造したフェノキシ樹脂と上記水酸基と反応する化合物を加熱下で混合することにより、容易に製造することができる。
(In the formula, Ph represents a phenyl group.)
In the general formula (16), examples of the compound that reacts with a hydroxyl group include esters, carbonates, compounds having an epoxy group, carboxylic acid anhydrides, acid halides, compounds having an isocyanate group, and the like. As, intramolecular esters are particularly preferable, and examples thereof include caprolactone and the like. A compound in which Y is a hydrogen atom in the phenoxy resin represented by the general formula (15) can be easily produced from dihydric phenols and epichlorohydrin. In addition, a compound in which Y is a residue of a compound that reacts with a hydroxyl group can be easily produced by mixing under heating a phenoxy resin produced from a dihydric phenol and epichlorohydrin and the compound that reacts with the hydroxyl group. can be done.

本発明でF成分として用いられるエポキシ樹脂としては、例えば、下記一般式(17)で表わされるエポキシ樹脂などが挙げられる。 Examples of epoxy resins used as the F component in the present invention include epoxy resins represented by the following general formula (17).

Figure 0007311356000019
Figure 0007311356000019

(式中、Xおよびnは式(15)と同じである。)
上記一般式(17)で表わされるエポキシ樹脂は、二価のフェノール類とエピクロルヒドリンから容易に製造することができる。二価フェノール類としては、2,2-ビス(4-ヒドロキシフェニル)プロパン〔ビスフェノールA〕などのビスフェノールA型エポキシ樹脂、1,1-ビス(4-ヒドロキシフェニル)エタンまたは4,4’-ジヒドロキシビフェニルなどが用いられる。
(Wherein, X and n are the same as in formula (15).)
The epoxy resin represented by the general formula (17) can be easily produced from dihydric phenols and epichlorohydrin. Examples of dihydric phenols include bisphenol A type epoxy resins such as 2,2-bis(4-hydroxyphenyl)propane [bisphenol A], 1,1-bis(4-hydroxyphenyl)ethane or 4,4'-dihydroxy Biphenyl and the like are used.

フェノキシ樹脂およびエポキシ樹脂として、市販品を用いることもできる。フェノキシ樹脂(ビスフェノールA型)の市販品としては、PKHB(Gabriel Phenoxies社製、Mw=32,000)、PKHH(Gabriel Phenoxies社製、Mw=52,000)、PKFE(Gabriel Phenoxies社製、Mw=60,000)等が挙げられる。また、エポキシ樹脂(ビスフェノールA型)の市販品としては、jER1256(三菱ケミカル(株)製、Mw=50,000)等が挙げられる。 A commercial item can also be used as a phenoxy resin and an epoxy resin. Commercially available phenoxy resins (bisphenol A type) include PKHB (manufactured by Gabriel Phenoxies, Mw = 32,000), PKHH (manufactured by Gabriel Phenoxies, Mw = 52,000), PKFE (manufactured by Gabriel Phenoxies, Mw = 60,000) and the like. Commercially available epoxy resins (bisphenol A type) include jER1256 (manufactured by Mitsubishi Chemical Corporation, Mw=50,000).

フェノキシ樹脂およびエポキシ樹脂の重量平均分子量としては特に限定されるものでは
ないが、通常5,000~100,000、好ましくは8,000~80,000、更に
好ましくは10,000~50,000である。重量平均分子量が5,000~100,
000の範囲であると、特に機械的物性が良好である。
Although the weight average molecular weight of the phenoxy resin and epoxy resin is not particularly limited, it is usually 5,000 to 100,000, preferably 8,000 to 80,000, more preferably 10,000 to 50,000. be. weight average molecular weight of 5,000 to 100,
000, the mechanical properties are particularly good.

F成分の含有量は、A成分とB成分との合計100重量部に対し、0.1~8重量部、好ましくは1~7重量部、より好ましくは3~6重量部である。含有量が上記範囲を超えて少なすぎる場合には引張り強度が低くなる。一方、含有量が上記範囲を超えてる場合には難燃性が悪くなり、かつ引張り強度が低下する。 The content of component F is 0.1 to 8 parts by weight, preferably 1 to 7 parts by weight, and more preferably 3 to 6 parts by weight, per 100 parts by weight of components A and B combined. If the content exceeds the above range and is too small, the tensile strength will be low. On the other hand, when the content exceeds the above range, the flame retardancy is deteriorated and the tensile strength is lowered.

(G成分:リン系安定剤)
本発明において射出成形時にB成分の液晶ポリエステル樹脂の繊維化による機械特性向上効果をより有効に発揮させるためには、予めマトリックス相中で液晶性ポリエステル樹脂がミクロ分散していると効率的である。そのため、液晶性ポリエステル樹脂がマトリックス相中でミクロ分散するための分散助剤として、G成分であるリン系安定剤を添加することが必要である。リン系安定剤として、分子量300未満のホスフェート化合物が好ましい。分子量が300以上になると樹脂中への分散が悪くなり、安定剤としての効果が低下する場合がある。具体的にはトリメチルホスフェートが例示される。また、亜燐酸のエステルも好ましく、具体的には、テトラキス(2,4ジ-t-ブチルフェニル)-4,4’-ビフェニレンフォスフォナイト、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトール-ジフォスファイト、ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトール-ジフォスファイト、トリス(2,4-ジ-t-ブチルフェニル)フォスファイト等が例示される。これらリン系安定剤は、単独でも併用添加してもよい。G成分の含有量は、A成分とB成分との合計100重量部に対し、0.01~3重量部であり、0.01~1重量部が好ましく、0.02~0.1重量部がより好ましい。G成分の含有量が3重量部を超えると、押出加工時の揮発ガスが多く、またペレット化しても成形時モールドデポジットが発生する。また、コスト的にも不利になる傾向がある。また0.01重量部より少ない場合は本組成特有の引張り強度が発現しない。
(G component: phosphorus stabilizer)
In the present invention, in order to more effectively exhibit the effect of improving mechanical properties by fiberizing the liquid crystalline polyester resin of the component B during injection molding, it is efficient if the liquid crystalline polyester resin is previously microdispersed in the matrix phase. . Therefore, it is necessary to add a phosphorus-based stabilizer, which is the G component, as a dispersing aid for microdispersing the liquid crystalline polyester resin in the matrix phase. Phosphate compounds having a molecular weight of less than 300 are preferred as phosphorus-based stabilizers. If the molecular weight is 300 or more, the dispersion in the resin becomes poor, and the effect as a stabilizer may decrease. A specific example is trimethyl phosphate. Esters of phosphorous acid are also preferred, specifically tetrakis(2,4-di-t-butylphenyl)-4,4′-biphenylenephosphonite, bis(2,6-di-t-butyl-4 -methylphenyl)pentaerythritol-diphosphite, bis(2,4-di-t-butylphenyl)pentaerythritol-diphosphite, tris(2,4-di-t-butylphenyl)phosphite and the like. be. These phosphorus stabilizers may be added alone or in combination. The content of the G component is 0.01 to 3 parts by weight, preferably 0.01 to 1 part by weight, and 0.02 to 0.1 part by weight, based on 100 parts by weight of the total of the A component and the B component. is more preferred. If the content of the G component exceeds 3 parts by weight, a large amount of volatile gas is generated during extrusion processing, and mold deposits occur during molding even when pelletized. Moreover, it tends to be disadvantageous in terms of cost. If the amount is less than 0.01 parts by weight, the tensile strength peculiar to this composition is not exhibited.

(その他の添加剤について)
また、本発明の樹脂組成物には、更に本発明の目的を損なわない範囲で、他の熱可塑性樹脂(例えば、ポリアリレート樹脂、フッ素樹脂、ポリエステル樹脂等)、酸化防止剤(例えば、ヒンダ-ドフェノ-ル系化合物等)、衝撃改良剤、紫外線吸収剤、光安定剤、離型剤、滑剤、着色剤、無機充填剤(タルク、マイカ、ウォラストナイト、カオリンなど)等を配合することができる。
(About other additives)
The resin composition of the present invention may further contain other thermoplastic resins (eg, polyarylate resins, fluororesins, polyester resins, etc.), antioxidants (eg, hinder Dophenol compounds, etc.), impact modifiers, UV absorbers, light stabilizers, release agents, lubricants, colorants, inorganic fillers (talc, mica, wollastonite, kaolin, etc.), etc. can.

本発明の樹脂組成物を製造するには、任意の方法が採用される。例えば各成分、並びに任意に他の成分を予備混合し、その後溶融混練し、ペレット化する方法を挙げることができる。予備混合の手段としては、ナウターミキサー、V型ブレンダー、ヘンシェルミキサー、メカノケミカル装置、押出混合機などを挙げることができる。予備混合においては場合により押出造粒器やブリケッティングマシーンなどにより造粒を行うこともできる。予備混合後、ベント式二軸押出機に代表される溶融混練機で溶融混練、およびペレタイザー等の機器によりペレット化する。溶融混練機としては他にバンバリーミキサー、混練ロール、恒熱撹拌容器などを挙げることができるが、ベント式ニ軸押出機が好ましい。他に、各成分、並びに任意に他の成分を予備混合することなく、それぞれ独立に二軸押出機に代表される溶融混練機に供給する方法も取ることもできる。 Any method may be employed to produce the resin composition of the present invention. For example, a method of premixing each component and optionally other components, followed by melt-kneading and pelletizing can be mentioned. Means for premixing include a Nauta mixer, a V-type blender, a Henschel mixer, a mechanochemical device, an extrusion mixer, and the like. In the pre-mixing, granulation can be performed by an extrusion granulator, a briquetting machine, or the like. After pre-mixing, the mixture is melt-kneaded by a melt-kneader typified by a vented twin-screw extruder, and pelletized by a device such as a pelletizer. Other examples of the melt-kneader include a Banbury mixer, a kneading roll, a constant temperature stirring vessel and the like, but a vented twin-screw extruder is preferred. Alternatively, each component and, optionally, other components may be supplied independently to a melt-kneader typified by a twin-screw extruder without being premixed.

上記の如く得られた本発明のポリカーボネート樹脂組成物は通常前記の如く製造されたペレットを射出成形して各種製品を製造することができる。更にペレットを経由することなく、押出機で溶融混練された樹脂を直接シート、フィルム、異型押出成形品、ダイレクトブロー成形品、および射出成形品にすることも可能である。 The polycarbonate resin composition of the present invention obtained as described above can be used to produce various products by injection molding the pellets produced as described above. Further, it is also possible to directly form sheets, films, profile extrusion moldings, direct blow moldings, and injection moldings from resins melted and kneaded in an extruder without going through pellets.

かかる射出成形においては、通常の成形方法だけでなく、適宜目的に応じて、射出圧縮成形、射出プレス成形、ガスアシスト射出成形、発泡成形(超臨界流体の注入によるものを含む)、インサート成形、インモールドコーティング成形、断熱金型成形、急速加熱冷却金型成形、二色成形、サンドイッチ成形、および超高速射出成形などの射出成形法を用いて成形品を得ることができる。これら各種成形法の利点は既に広く知られるところである。また成形はコールドランナー方式およびホットランナー方式のいずれも選択することができる。また本発明のポリカーボネート樹脂組成物は、押出成形により各種異形押出成形品、シートを成形することも可能である。 In such injection molding, not only ordinary molding methods but also injection compression molding, injection press molding, gas-assisted injection molding, foam molding (including injection of supercritical fluid), insert molding, Molded articles can be obtained using injection molding methods such as in-mold coating molding, adiabatic molding, rapid heat and cool molding, two-color molding, sandwich molding, and ultra-high speed injection molding. The advantages of these various molding methods are already widely known. For molding, either cold runner method or hot runner method can be selected. Further, the polycarbonate resin composition of the present invention can also be molded into various profile extrudates and sheets by extrusion molding.

本発明の樹脂組成物が利用される成形体としては、例えば、コネクター、ソケット、リレー部品、コイルボビン、光ピックアップ、発振子、プリント配線板、コンピュータ関連部品等の電気・電子部品;ICトレー、ウエハーキャリヤー等の半導体製造プロセス関連部品;コンピュータ、VTR、テレビ、アイロン、エアコン、ステレオ、掃除機、冷蔵庫、炊飯器、照明器具等の家庭電気製品部品やハウジング材;ランプリフレクター、ランプホルダー等の照明器具部品;コンパクトディスク、レーザーディスク(登録商標)、スピーカー等の音響製品部品;光ケーブル用フェルール、電話機部品、ファクシミリ部品、モデム等の通信機器部品;分離爪、ヒータホルダー等の複写機関連部品;インペラー、ファン、歯車、ギヤ、軸受け、モーター部品及びケース等の機械部品;自動車用機構部品、エンジン部品、エンジンルーム内部品、電装部品、内装部品等の自動車部品;マイクロ波調理用鍋、耐熱食器等の調理用器具;床材、壁材等の断熱、防音用材料、梁、柱等の支持材料、屋根材等の建築資材又は土木建築用材料;航空機部品、宇宙機部品、原子炉等の放射線施設部材、海洋施設部材、洗浄用治具、光学機器部品、バルブ類、パイプ類、ノズル類、フィルター類、膜、医療用機器部品及び医療用材料、センサー類部品、サニタリー備品、スポーツ用品、レジャー用品等が挙げられる。 Examples of molded articles using the resin composition of the present invention include electric and electronic parts such as connectors, sockets, relay parts, coil bobbins, optical pickups, oscillators, printed wiring boards, and computer-related parts; IC trays and wafers. Components related to the semiconductor manufacturing process such as carriers; Computers, VTRs, TVs, irons, air conditioners, stereos, vacuum cleaners, refrigerators, rice cookers, lighting fixtures and other household electrical appliance components and housing materials; Lamp reflectors, lamp holders and other lighting fixtures Parts: Audio product parts such as compact discs, laser discs (registered trademark) and speakers; Ferrules for optical cables, telephone parts, facsimile parts, communication equipment parts such as modems; Copier related parts such as separation claws and heater holders; Machine parts such as fans, gears, gears, bearings, motor parts and cases; Automobile parts such as mechanical parts for automobiles, engine parts, parts in the engine room, electrical parts, interior parts; Cooking utensils; Heat insulation and soundproofing materials such as flooring and wall materials; Supporting materials such as beams and columns; Building materials such as roofing materials; Parts, marine facility parts, cleaning jigs, optical equipment parts, valves, pipes, nozzles, filters, membranes, medical equipment parts and medical materials, sensor parts, sanitary equipment, sporting goods, leisure goods etc.

本発明のポリカーボネート樹脂組成物は、引張り強度、寸法精度および難燃性に優れる。これらの特性は、従来の技術にはないものであるため、本発明の奏する工業的効果は極めて大である。 The polycarbonate resin composition of the present invention is excellent in tensile strength, dimensional accuracy and flame retardancy. Since these characteristics are not found in the prior art, the industrial effects of the present invention are extremely large.

本発明者が現在最良と考える発明の形態は、上記の各要件の好ましい範囲を集約したものとなるが、例えば、その代表例を下記の実施例中に記載する。もちろん本発明はこれらの形態に限定されるものではない。 The present inventors consider the best mode of the invention to be a summary of the preferred ranges of the above requirements, and representative examples thereof are described in the following examples, for example. Of course, the present invention is not limited to these forms.

以下に実施例をあげて本発明を更に説明する。なお、評価は下記の方法によって実施した。
(ポリカーボネート樹脂組成物の評価)
(i)引張り強度:下記の方法で得られた引張り試験片(JIS K6251記載のダンベル状3号型:厚み2mm)を用い、引張り強度の測定を実施した。(引張り速度:5mm/min、試験温度;23℃)
(ii)成形収縮率:下記の方法で得られた幅50mm×長さ100mm×厚み2mmの角板を23℃、相対湿度50%雰囲気にて24時間放置した後、角板寸法を3次元測定機(ミツトヨ(株)製)により測定し、成形収縮率を算出した。成形品はフィルムゲートを長さ方向の一端に有する金型キャビティを用いて成形されたものである。したがって長さ方向が流れ方向、および幅方向が流れ方向と直角の方向となる。
(iii)難燃性:下記の方法で得られたUL試験片を用いて、UL94に従い、厚み0.8mmにおけるV試験(垂直燃焼試験)を実施した。
(iv)押出加工性:押出時の安定性に関して以下の基準で評価を実施した。
押出時のストランドが安定している。:〇
押出時のストランドがやや不安定であるが、ペレット化は可能である。:△
押出時のストランドがかなり不安定である。ペレット化は困難であるか揮発ガスなどが多い。:×
The present invention will be further described with reference to the following examples. In addition, evaluation was implemented by the following method.
(Evaluation of polycarbonate resin composition)
(i) Tensile strength: Tensile strength was measured using a tensile test piece (dumbbell-shaped No. 3 according to JIS K6251: thickness 2 mm) obtained by the following method. (Tension speed: 5 mm/min, test temperature: 23°C)
(ii) Mold shrinkage rate: After leaving a square plate of width 50 mm × length 100 mm × thickness 2 mm obtained by the following method in an atmosphere of 23 ° C. and a relative humidity of 50% for 24 hours, the dimensions of the square plate are measured three-dimensionally. The molding shrinkage rate was calculated by measuring with a machine (manufactured by Mitutoyo Co., Ltd.). The molded article was molded using a mold cavity with a film gate at one longitudinal end. Therefore, the length direction is the machine direction, and the width direction is the direction perpendicular to the machine direction.
(iii) Flame retardancy: A V test (vertical burning test) at a thickness of 0.8 mm was carried out according to UL94 using a UL test piece obtained by the following method.
(iv) Extrusion processability: Stability during extrusion was evaluated according to the following criteria.
Strands are stable during extrusion. : O Strands during extrusion are somewhat unstable, but pelletization is possible. : △
Strands during extrusion are fairly unstable. Pelletization is difficult or there are many volatile gases. : ×

[実施例1~12、比較例1~12]
表1および表2に示す組成で、E成分を除く成分からなる混合物を押出機の第1供給口から供給した。かかる混合物はV型ブレンダーで混合して得た。E成分は、第2供給口からサイドフィーダーを用いて供給した。押出は径30mmφのベント式二軸押出機((株)日本製鋼所TEX30α-38.5BW-3V)を使用し、スクリュー回転数200r.p.m.、吐出量25kg/h、ベントの真空度3kPaで溶融混練しペレットを得た。なお、押出温度については、第1供給口からダイス部分まで300℃で実施した。
[Examples 1 to 12, Comparative Examples 1 to 12]
A mixture of components other than component E having the composition shown in Tables 1 and 2 was supplied from the first supply port of the extruder. Such a mixture was obtained by mixing in a V-blender. The E component was supplied using a side feeder from the second supply port. For extrusion, a vented twin-screw extruder (Japan Steel Works, Ltd. TEX30α-38.5BW-3V) with a diameter of 30 mm was used, and the screw rotation speed was 200 r.p.m. p. m. , a discharge rate of 25 kg/h and a vent vacuum degree of 3 kPa to obtain pellets. The extrusion temperature was 300° C. from the first supply port to the die.

得られたペレットの一部は、120℃で6時間熱風循環式乾燥機にて乾燥した後、射出成形機を用いて、シリンダー温度300℃、金型温度80℃にて厚み2mmの引張り試験片(JIS K6251 ダンベル状3号型)、成形収縮率測定用試験片およびUL試験片を成形した。 A portion of the obtained pellets was dried at 120°C for 6 hours in a hot air circulating dryer, and then molded into a tensile test piece with a thickness of 2 mm at a cylinder temperature of 300°C and a mold temperature of 80°C using an injection molding machine. (JIS K6251 Dumbbell-shaped No. 3 type), test pieces for mold shrinkage measurement and UL test pieces were molded.

なお、表1および表2中の記号表記の各成分は下記の通りである。
(A成分)
A-1:芳香族ポリカーボネート樹脂(ビスフェノールAとホスゲンから常法によって作られた粘度平均分子量22,400のポリカーボネート樹脂粉末、帝人(株)製 パンライトL-1225WP(製品名))
A-2:芳香族ポリカーボネート樹脂(ビスフェノールAとホスゲンから常法によって作られた粘度平均分子量19,700のポリカーボネート樹脂粉末、帝人(株)製 パンライトL-1225WX(製品名))
A-3:芳香族ポリカーボネート樹脂(ビスフェノールAとホスゲンから常法によって作られた粘度平均分子量16,000のポリカーボネート樹脂粉末、帝人(株)製 パンライトCM-1000(製品名))
A-4:PC-PDMS-1:ポリカーボネート-ポリジオルガノシロキサン共重合樹脂(粘度平均分子量19,800、PDMS量4.2%、PDMS重合度37)
(B成分)
B-1:液晶ポリエステル樹脂(p-ヒドロキシ安息香酸から誘導される繰返し単位と6-ヒドロキシ-2-ナフトエ酸から誘導される繰返し単位を含有する液晶ポリエステル樹脂ペレット、ポリプラスチックス(株)製 ラペロスA-950RX(製品名))融点=275~285℃
(C成分)
C-1:レゾルノール[ジ(2,6-ジメチルフェニル)ホスフェート]を主成分とするリン酸エステル(大八化学工業(株)製 PX-200(商品名))
C-2:パーフルオロブタンスルホン酸カリウム塩(DIC(株)製メガファックF-114P(商品名))
(D成分)
D-1:ドリップ防止剤(ポリテトラフルオロエチレン(ダイキン工業(株)製 ポリフロンMPA FA-500H(商品名))
(E成分)
E-1:ガラス繊維:扁平断面チョップドガラス繊維(日東紡績(株)製:CSG 3PA-830(商品名)、長径28μm、短径7μm、カット長3mm、エポキシ系集束剤)
E-2:ガラス繊維:円形断面チョップドガラス繊維(日本電気硝子(株)製:T-120H(商品名)、直径:10.5μm、カット長3mm、エポキシ系集束剤)
E-3:炭素繊維:PAN系炭素繊維(帝人(株)製 HTC205(商品名)、エポキシ系集束剤5.3重量部、カット長6mm、繊維径7μm)
E-4:ガラス繊維:扁平断面チョップドガラス繊維(日東紡績(株)製:CSG 3PL-830(製品名)、長径20μm、短径10μm、カット長3mm、エポキシ系集束剤)
(F成分)
F-1:ビスフェノールA型フェノキシ樹脂(Gabriel Phenoxies社製、PKHH(商品名)、重量平均分子量52,000)
F-2:ビスフェノールA型エポキシ樹脂(三菱ケミカル(株)製、jER-1256(商品名)、重量平均分子量50,000)
(G成分)
G-1:リン系安定剤(大八化学工業(株)製 トリメチルホスフェート(TMP))
(その他の成分)
タルク:ビクトリライトTK-RC((株)勝光山鉱業所製)、レーザー回折・散乱法により測定される平均粒子サイズ(D50)4.7μmのタルクをかさ密度0.7~0.8g/cmに脱気圧縮したタルク、白色度:92%、Ig.Loss(強熱減量割合:JIS M8855に準拠):5.83%、pH=9.5)
離型剤:Licowax E powder(クラリアントジャパン(株)製、モンタン酸エステルワックス)
着色剤:40重量部のカーボンブラック(三菱ケミカル(株)製:カーボンブラックMA-100(商品名))、3重量部のホワイトミネラルオイル(エクソンモービル製:プライモール N382(商品名))、0.2重量部のモンタン酸エステルワックス(クラリアントジャパン(株)製:Licowax E powder(商品名))、および56.8重量部のビスフェノールA型ポリカーボネート樹脂(帝人(株)製:CM-1000(商品名)、粘度平均分子量16,000)の4成分の合計100重量部を二軸押出機を用いて溶融混合して製造された、カーボンブラックマスターペレット。
In addition, each component of symbol notation in Table 1 and Table 2 is as follows.
(A component)
A-1: Aromatic polycarbonate resin (Polycarbonate resin powder with a viscosity average molecular weight of 22,400 made from bisphenol A and phosgene by a conventional method, Panlite L-1225WP (product name) manufactured by Teijin Limited)
A-2: Aromatic polycarbonate resin (polycarbonate resin powder with a viscosity average molecular weight of 19,700 made from bisphenol A and phosgene by a conventional method, Panlite L-1225WX (product name) manufactured by Teijin Limited)
A-3: Aromatic polycarbonate resin (Polycarbonate resin powder with a viscosity average molecular weight of 16,000 made from bisphenol A and phosgene by a conventional method, Panlite CM-1000 (product name) manufactured by Teijin Limited)
A-4: PC-PDMS-1: Polycarbonate-polydiorganosiloxane copolymer resin (viscosity average molecular weight 19,800, PDMS content 4.2%, PDMS polymerization degree 37)
(B component)
B-1: liquid crystal polyester resin (liquid crystal polyester resin pellets containing repeating units derived from p-hydroxybenzoic acid and repeating units derived from 6-hydroxy-2-naphthoic acid, LAPEROS manufactured by Polyplastics Co., Ltd. A-950RX (product name)) Melting point = 275-285°C
(C component)
C-1: Phosphate ester containing resolnol [di(2,6-dimethylphenyl)phosphate] as a main component (PX-200 (trade name) manufactured by Daihachi Chemical Industry Co., Ltd.)
C-2: Perfluorobutanesulfonic acid potassium salt (manufactured by DIC Corporation Megafac F-114P (trade name))
(D component)
D-1: anti-drip agent (polytetrafluoroethylene (manufactured by Daikin Industries, Ltd. Polyflon MPA FA-500H (trade name))
(E component)
E-1: Glass fiber: Flat cross-section chopped glass fiber (manufactured by Nitto Boseki Co., Ltd.: CSG 3PA-830 (trade name), major axis 28 μm, minor axis 7 μm, cut length 3 mm, epoxy sizing agent)
E-2: Glass fiber: Chopped glass fiber with circular cross section (manufactured by Nippon Electric Glass Co., Ltd.: T-120H (trade name), diameter: 10.5 μm, cut length: 3 mm, epoxy sizing agent)
E-3: Carbon fiber: PAN-based carbon fiber (HTC205 (trade name) manufactured by Teijin Limited, epoxy sizing agent 5.3 parts by weight, cut length 6 mm, fiber diameter 7 μm)
E-4: Glass fiber: Flat cross-section chopped glass fiber (manufactured by Nitto Boseki Co., Ltd.: CSG 3PL-830 (product name), major axis 20 μm, minor axis 10 μm, cut length 3 mm, epoxy sizing agent)
(F component)
F-1: Bisphenol A type phenoxy resin (PKHH (trade name) manufactured by Gabriel Phenoxies, weight average molecular weight 52,000)
F-2: Bisphenol A type epoxy resin (manufactured by Mitsubishi Chemical Corporation, jER-1256 (trade name), weight average molecular weight 50,000)
(G component)
G-1: Phosphorus-based stabilizer (trimethyl phosphate (TMP) manufactured by Daihachi Chemical Industry Co., Ltd.)
(other ingredients)
Talc: Victorilite TK-RC (manufactured by Katsumitsuyama Mining Co., Ltd.), talc with an average particle size (D50) of 4.7 μm measured by a laser diffraction/scattering method, with a bulk density of 0.7 to 0.8 g/cm Talc degassed and compressed to 3 , brightness: 92%, Ig. Loss (ignition loss ratio: compliant with JIS M8855): 5.83%, pH = 9.5)
Release agent: Licowax E powder (manufactured by Clariant Japan Co., Ltd., Montan acid ester wax)
Colorant: 40 parts by weight of carbon black (manufactured by Mitsubishi Chemical Corporation: carbon black MA-100 (trade name)), 3 parts by weight of white mineral oil (manufactured by Exxon Mobil: Primol N382 (trade name)), 0 2 parts by weight of Montan acid ester wax (manufactured by Clariant Japan Co., Ltd.: Licowax E powder (trade name)) and 56.8 parts by weight of bisphenol A type polycarbonate resin (manufactured by Teijin Limited: CM-1000 (trade name) Carbon black master pellets produced by melt mixing 100 parts by weight of four components (name) and viscosity-average molecular weight of 16,000) using a twin-screw extruder.

Figure 0007311356000020
Figure 0007311356000020

Figure 0007311356000021
Figure 0007311356000021

上記表1および表2から本発明の配合により、高い引張り強度と成形収縮率の異方性が少なく高い寸法精度を有し難燃性に優れたポリカーボネート樹脂組成物が得られていることが分かる。 From Tables 1 and 2 above, it can be seen that the compounding of the present invention provides a polycarbonate resin composition having high tensile strength, less anisotropy in mold shrinkage, high dimensional accuracy, and excellent flame retardancy. .

Claims (5)

(A)芳香族ポリカーボネート系樹脂(A成分)および(B)液晶ポリエステル樹脂(B成分)からなる成分100重量部に対し、(C)有機リン系難燃剤および有機金属塩系難燃剤よりなる群より選ばれる少なくとも1種の難燃剤(C成分)0.01~40重量部、(D)ポリテトラフルオロエチレン(D成分)0.1~3重量部、(E)ガラス繊維および/または炭素繊維(E成分)25~150重量部、(F)ビスフェノールA型フェノキシ樹脂および/またはビスフェノールA型エポキシ樹脂(F成分)0.1~8重量部並びに(G)ホスフェート化合物(G成分)0.01~3重量部を含有し、A成分とB成分との重量比[(A)/(B)]が98/2~60/40であるポリカーボネート樹脂組成物。 A group consisting of (C) an organic phosphorus flame retardant and an organic metal salt flame retardant per 100 parts by weight of a component consisting of (A) an aromatic polycarbonate resin (component A) and (B) a liquid crystal polyester resin (component B) At least one flame retardant (C component) selected from 0.01 to 40 parts by weight, (D) polytetrafluoroethylene (D component) 0.1 to 3 parts by weight, (E) glass fiber and / or carbon fiber (Component E) 25 to 150 parts by weight, (F) bisphenol A type phenoxy resin and/or bisphenol A type epoxy resin (Component F) 0.1 to 8 parts by weight, and (G) phosphate compound (Component G) 0.01 A polycarbonate resin composition containing up to 3 parts by weight and having a weight ratio [(A)/(B)] of component A to component B of 98/2 to 60/40. A成分の粘度平均分子量が1.7×10~2.1×10である請求項1記載のポリカーボネート樹脂組成物。 2. The polycarbonate resin composition according to claim 1, wherein component A has a viscosity average molecular weight of 1.7×10 4 to 2.1×10 4 . B成分が、p-ヒドロキシ安息香酸から誘導される繰返し単位と6-ヒドロキシ-2-ナフトエ酸から誘導される繰返し単位を含有する液晶ポリエステル樹脂である請求項1または2に記載のポリカーボネート樹脂組成物。 3. The polycarbonate resin composition according to claim 1, wherein component B is a liquid crystalline polyester resin containing repeating units derived from p-hydroxybenzoic acid and repeating units derived from 6-hydroxy-2-naphthoic acid. . E成分が、繊維断面の長径の平均値が10~50μm、長径と短径の比(長径/短径)の平均値が1.5~8である扁平状断面ガラス繊維である請求項1~3のいずれかに記載のポリカーボネート樹脂組成物。 Component E is a flat cross-section glass fiber having an average long diameter of 10 to 50 μm in cross section and an average ratio of long diameter to short diameter (long diameter/short diameter) of 1.5 to 8. 4. The polycarbonate resin composition according to any one of 3. 請求項1~のいずれかに記載のポリカーボネート樹脂組成物を成形してなる成形品。 A molded article obtained by molding the polycarbonate resin composition according to any one of claims 1 to 4 .
JP2019150927A 2019-03-14 2019-08-21 Polycarbonate resin composition Active JP7311356B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019046642 2019-03-14
JP2019046642 2019-03-14

Publications (2)

Publication Number Publication Date
JP2020152886A JP2020152886A (en) 2020-09-24
JP7311356B2 true JP7311356B2 (en) 2023-07-19

Family

ID=72557914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019150927A Active JP7311356B2 (en) 2019-03-14 2019-08-21 Polycarbonate resin composition

Country Status (1)

Country Link
JP (1) JP7311356B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163315A (en) 2006-12-08 2008-07-17 Teijin Chem Ltd Flame-retardant polycarbonate resin composition
JP2009155377A (en) 2007-12-25 2009-07-16 Teijin Chem Ltd Polycarbonate resin composition
JP2012188578A (en) 2011-03-11 2012-10-04 Teijin Chem Ltd Glass fiber reinforced polycarbonate resin composition with excellent die wear property
WO2014148641A1 (en) 2013-03-21 2014-09-25 帝人株式会社 Glass-fiber-reinforced polycarbonate resin composition
JP2015081333A (en) 2013-10-24 2015-04-27 帝人株式会社 Carbon fiber reinforced polycarbonate resin composition
WO2020184577A1 (en) 2019-03-14 2020-09-17 帝人株式会社 Impeller and resin composition therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163315A (en) 2006-12-08 2008-07-17 Teijin Chem Ltd Flame-retardant polycarbonate resin composition
JP2009155377A (en) 2007-12-25 2009-07-16 Teijin Chem Ltd Polycarbonate resin composition
JP2012188578A (en) 2011-03-11 2012-10-04 Teijin Chem Ltd Glass fiber reinforced polycarbonate resin composition with excellent die wear property
WO2014148641A1 (en) 2013-03-21 2014-09-25 帝人株式会社 Glass-fiber-reinforced polycarbonate resin composition
JP2015081333A (en) 2013-10-24 2015-04-27 帝人株式会社 Carbon fiber reinforced polycarbonate resin composition
WO2020184577A1 (en) 2019-03-14 2020-09-17 帝人株式会社 Impeller and resin composition therefor

Also Published As

Publication number Publication date
JP2020152886A (en) 2020-09-24

Similar Documents

Publication Publication Date Title
JP5280669B2 (en) Flame retardant polycarbonate resin composition
WO2016203916A1 (en) Preparation method for polycarbonate resin composition
JP5150494B2 (en) Resin composition
US20220127455A1 (en) Impeller and resin composition therefor
JP2012188578A (en) Glass fiber reinforced polycarbonate resin composition with excellent die wear property
TWI398463B (en) An aromatic polycarbonate resin composition and a molded body using the same
JP7111602B2 (en) Thermally conductive polycarbonate resin composition
JP5480676B2 (en) Flame retardant polycarbonate resin composition
JP6073700B2 (en) Reinforced polycarbonate resin composition
JP7303058B2 (en) Thermally conductive polycarbonate resin composition
JP7311356B2 (en) Polycarbonate resin composition
JP6133650B2 (en) Flame retardant polycarbonate resin composition
JP5767056B2 (en) Polycarbonate resin composition
JP7311355B2 (en) Polycarbonate resin composition
JP5855844B2 (en) Polycarbonate resin composition
WO2024053274A1 (en) Polycarbonate resin composition and molded article formed of same
JP2024035935A (en) Polycarbonate resin composition and molded products made from it
JP2018016756A (en) Polycarbonate resin composition
JP6605966B2 (en) Resin composition
JP7332389B2 (en) Polycarbonate-polydiorganosiloxane copolymer
JP7311357B2 (en) Thermally conductive polycarbonate resin composition
JP7368253B2 (en) thermoplastic resin composition
JP7416637B2 (en) Polycarbonate-polysiloxane resin
JP7219102B2 (en) Thermoplastic resin composition
JP2011088951A (en) Aromatic polycarbonate resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230706

R150 Certificate of patent or registration of utility model

Ref document number: 7311356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150