JP2021029201A - Method for producing pregelatinized starch powder - Google Patents

Method for producing pregelatinized starch powder Download PDF

Info

Publication number
JP2021029201A
JP2021029201A JP2019154978A JP2019154978A JP2021029201A JP 2021029201 A JP2021029201 A JP 2021029201A JP 2019154978 A JP2019154978 A JP 2019154978A JP 2019154978 A JP2019154978 A JP 2019154978A JP 2021029201 A JP2021029201 A JP 2021029201A
Authority
JP
Japan
Prior art keywords
pregelatinized starch
raw material
kneading
starch powder
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019154978A
Other languages
Japanese (ja)
Other versions
JP7365605B2 (en
Inventor
昭博 西岡
Akihiro Nishioka
昭博 西岡
智則 香田
Tomonori Koda
智則 香田
孔明 佐藤
Yoshiaki Sato
孔明 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamagata University NUC
Original Assignee
Yamagata University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamagata University NUC filed Critical Yamagata University NUC
Priority to JP2019154978A priority Critical patent/JP7365605B2/en
Publication of JP2021029201A publication Critical patent/JP2021029201A/en
Application granted granted Critical
Publication of JP7365605B2 publication Critical patent/JP7365605B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a method for producing pregelatinized starch powder whereby excellent ground products can be obtained when using a heat shear grinder with a structure in which the rotation axis of a grinding mechanism and the flow of raw material grains are parallel, a typical example of the heat shear grinder being a biaxial extruder.SOLUTION: The present invention relates to a method for producing pregelatinized starch powder by using a heat shear grinder with a structure in which the rotation axis of a grinding mechanism and the flow of raw material grains are parallel, wherein a QE value given by the following formula 1 is 400 or more.SELECTED DRAWING: Figure 4

Description

本発明は、アルファ化デンプン粉の製造方法に関する。 The present invention relates to a method for producing pregelatinized starch powder.

穀物に含まれるデンプンをアルファ化(非晶質化)することで、アルファ化前に対して異なる特性が発現することが一般に知られている。例えば、予めアルファ化された米粉は、長期保存が可能である一方で、蒸煮を必要とせずに水や湯を加えるだけで美味しく食することができることが知られている。また、PLA(ポリ乳酸樹脂)等の生分解性樹脂への添加剤としてデンプンを用いる場合には、水やグリセリン等の可塑剤を同時に添加して高温で処理することにより、デンプンをアルファ化することでPLA等と複合化できることが知られている。 It is generally known that by pregelatinizing (amorphizing) starch contained in grains, different characteristics are exhibited compared to before pregelatinization. For example, it is known that pre-pregelatinized rice flour can be stored for a long period of time, but can be eaten deliciously simply by adding water or hot water without the need for steaming. When starch is used as an additive to a biodegradable resin such as PLA (polylactic acid resin), starch is pregelatinized by simultaneously adding a plasticizer such as water or glycerin and treating the starch at a high temperature. It is known that this can be combined with PLA and the like.

本発明者らは、臼式粉砕機に原料穀物を投入し、原料穀物を80℃以上、特に100〜200℃の温度に加熱しながらせん断条件下にて粉砕することで、高度にアルファ化したアルファ化デンプン粉を、水を加えずに容易に製造する技術を開発した(特許文献1〜3)。イースト発酵により良好に膨張し、十分な成型性、保形性を有する米粉パン生地によって高品質な成形米粉パンを製造する技術への応用等(特許文献4)、食品分野をはじめとして各種の技術分野への普及が期待され、実用化もされている。 The present inventors put the raw material grains into a mortar-type crusher and crushed the raw material grains under shearing conditions while heating them to a temperature of 80 ° C. or higher, particularly 100 to 200 ° C. to achieve high pregelatinization. We have developed a technique for easily producing pregelatinized starch powder without adding water (Patent Documents 1 to 3). Various technical fields including the food field, such as application to technology for producing high-quality molded rice flour bread from rice flour bread dough that expands well by yeast fermentation and has sufficient moldability and shape retention (Patent Document 4). It is expected to spread to the market and has been put into practical use.

本発明者らが開発した、上記アルファ化デンプン粉を製造するための従来の装置は、上臼と下臼を用いて、これらの間に形成された平面状のギャップに中央部の投入口から原料穀物を投入し、中央部から外周部へ原料穀物を移送、滞留させながら同時に加熱し上臼と下臼の相対回転によってせん断力を与えて粉砕し、外周部からアルファ化デンプン粉を排出している。相対回転する粉砕部の回転軸と材料の流れはこの場合垂直になっている。 The conventional apparatus for producing the pregelatinized starch powder developed by the present inventors uses an upper mortar and a lower mortar to form a planar gap between them from a central input port. Raw grain is put in, raw grain is transferred from the central part to the outer peripheral part, heated at the same time while staying, and shearing force is applied by the relative rotation of the upper and lower mortar to crush, and pregelatinized starch powder is discharged from the outer peripheral part. ing. In this case, the rotation axis of the crushing portion that rotates relative to each other and the material flow are perpendicular to each other.

上記従来技術では、アルファ化を達成する技術に主眼を置いていたが、更なる段階として量産化、特に高吐出化に適した技術が望まれていた。 In the above-mentioned conventional technique, the main focus is on the technique for achieving pregelatinization, but as a further step, a technique suitable for mass production, particularly high discharge is desired.

このような状況に鑑みて、特許文献5ではQ=[加熱せん断粉砕機に置ける原料穀物の滞留時間(sec)]×[最大せん断速度(1/sec)]
で表されるQ値の条件を示すことで原料穀物を粉砕するアルファ化デンプン粉の製造方法を提案している。
In view of this situation, in Patent Document 5, Q = [retention time of raw grain in a heated shear crusher (sec)] × [maximum shear rate (1 / sec)].
By showing the condition of the Q value represented by, we propose a method for producing pregelatinized starch powder that crushes the raw material grain.

特許第4767128号公報Japanese Patent No. 4767128 特許第5503885号公報Japanese Patent No. 55038885 特開2009−213472号公報Japanese Unexamined Patent Publication No. 2009-213472 特許第5769053号公報Japanese Patent No. 5769053 特開2018−38368号公報Japanese Unexamined Patent Publication No. 2018-38368

特許文献5では、相対回転する粉砕部の回転軸と材料の流れが垂直な場合の実施例があった。特許文献5には相対回転する粉砕部の回転軸と材料の流れが平行となる場合は特許文献5の方法の適用を類推想起できるものとして記述されているが、相対回転する粉砕部の回転軸と材料の流れが平行となる代表的な機構である2軸押出機のニーダー部分による粉砕を試みたところ、上記Q値による範囲の特定では良好な粉砕物が得られないことが分かった。 In Patent Document 5, there is an example in which the rotation axis of the crushing portion that rotates relative to each other and the flow of the material are perpendicular to each other. Patent Document 5 describes that the application of the method of Patent Document 5 can be recalled when the rotation axis of the crushing portion that rotates relative to the material flow is parallel, but the rotation axis of the crushing portion that rotates relative to each other. When pulverization was attempted by the kneader portion of a twin-screw extruder, which is a typical mechanism in which the material flows in parallel with each other, it was found that a good pulverized product could not be obtained by specifying the range by the above Q value.

上記をまとめると、従来のパラメータ範囲では、2軸押出機に代表される粉砕部の回転軸と材料の流れが平行となる場合には従来技術では対応できないという課題がある。 Summarizing the above, in the conventional parameter range, there is a problem that the conventional technique cannot cope with the case where the rotating shaft of the crushing portion represented by the twin-screw extruder and the material flow are parallel.

本発明は、以上のような事情に鑑みてなされたものであり、2軸押出機に代表される、粉砕機構の回転軸と原料穀物の流れが平行になる構造を有する加熱せん断粉砕機を用いた場合において、良好な粉砕物が得られるアルファ化デンプン粉の製造方法を提供することを課題としている。 The present invention has been made in view of the above circumstances, and uses a heating shear crusher typified by a twin-screw extruder, which has a structure in which the rotation axis of a crushing mechanism and the flow of raw material grains are parallel to each other. It is an object of the present invention to provide a method for producing pregelatinized starch powder in which a good pulverized product can be obtained.

上記の課題を解決するために本発明者は鋭意検討した結果、2軸押出機に代表される、粉砕機構の回転軸と原料穀物の流れが平行になる構造を有する加熱せん断粉砕機を用いた場合には、特許文献5のQ値ではなく下記に定義されるQE値を用いることで良好な粉砕物が得られることを見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventor used a heating shear crusher typified by a twin-screw extruder, which has a structure in which the rotation axis of the crushing mechanism and the flow of raw material grains are parallel. In this case, it was found that a good pulverized product can be obtained by using the Q E value defined below instead of the Q value of Patent Document 5, and the present invention has been completed.

すなわち、本発明のアルファ化デンプン粉の製造方法は、粉砕機構の回転軸と原料穀物の流れが平行になる構造を有する加熱せん断粉砕機を用いたアルファ化デンプン粉の製造方法であって、次式: That is, the method for producing pregelatinized starch powder of the present invention is a method for producing pregelatinized starch powder using a heating shear crusher having a structure in which the rotation axis of the crushing mechanism and the flow of raw material grains are parallel. formula:

Figure 2021029201
で与えられるQE値を400以上とすることを特徴としている。
Figure 2021029201
It is characterized in that the Q E value given in is 400 or more.

本発明によれば、量産化に絶大な効果が見込める2軸押出機を利用し、加熱せん断粉砕による良好なアルファ化米粉の製造が可能となる。 According to the present invention, it is possible to produce good pregelatinized rice flour by heat shear pulverization by using a twin-screw extruder that is expected to have a great effect on mass production.

本発明の方法を実施するための構成装置の主要部の一例を示す概略図(上が上面図、下が側面図である)Schematic diagram showing an example of a main part of a constituent device for carrying out the method of the present invention (upper is a top view, lower is a side view). 参考例となる特許文献5に記載された構成装置の一例(上が上面図、下が側面図である)An example of the constituent device described in Patent Document 5 as a reference example (upper is a top view, lower is a side view). 本手法により製造した低結晶性米粉のX線回折実験の結果Results of X-ray diffraction experiment of low crystalline rice flour produced by this method 結晶化度とQE値の関係(実施例)Relationship between Crystallinity and Q E Value (Example) 結晶化度とQ値の関係(比較例)Relationship between crystallinity and Q value (comparative example) 従来手法により得られる低結晶性米粉のX線回折実験の結果Results of X-ray diffraction experiment of low crystalline rice flour obtained by the conventional method

以下に、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

なお、最大せん断速度は次の記号: The maximum shear rate is the following symbol:

Figure 2021029201
で表されるが、出願書類作成の都合上、以下の記述においては便宜的にγ[・]と記載する場合がある。
Figure 2021029201
However, for the convenience of preparing application documents, it may be described as γ [・] in the following description for convenience.

本発明のアルファ化デンプン粉の製造方法は、粉砕機構の回転軸と原料穀物の流れが平行になる構造を有する加熱せん断粉砕機を用いたアルファ化デンプン粉の製造方法である。 The method for producing pregelatinized starch powder of the present invention is a method for producing pregelatinized starch powder using a heating shear crusher having a structure in which the rotation axis of the crushing mechanism and the flow of raw material grains are parallel.

なお、本明細書において原料穀物の流れとは、局所の流れではなく全体の平均の流れである。従って局所的な流れは粉砕機構のスクリュウ等により螺旋に沿っているため粉砕機構の回転軸と平行ではない場合でも、全体の平均の流れが粉砕機構の回転軸と平行な場合には本発明に含まれる。 In the present specification, the flow of the raw material grain is not a local flow but an average flow of the whole. Therefore, since the local flow is along the spiral by the screw of the crushing mechanism, even if it is not parallel to the rotation axis of the crushing mechanism, if the average flow of the whole is parallel to the rotation axis of the crushing mechanism, the present invention is made. included.

また本明細書において粉砕機構の回転軸と原料穀物の流れが平行とは、粉砕機構の回転軸と、原料穀物の流れ(上記した全体の平均の流れ)とが成す角度が40°以内であることを指し、特に30°以内が好ましい。 Further, in the present specification, the parallel axis of the rotation axis of the crushing mechanism and the flow of the raw material grain means that the angle formed by the rotation axis of the crushing mechanism and the flow of the raw material grain (the above-mentioned average flow of the whole) is within 40 °. In particular, it is preferably within 30 °.

本発明において加熱せん断粉砕機は、特に限定されないが、加熱装置と粉砕機構を有しスクリュウ式の押し出し機構を備え、送りながら加熱と同時に粉砕し吐出する押し出し式粉砕装置が挙げられる。その他に、例えばコニカルカッターを備えたミルに温度制御装置を実装したものや、内側の円柱部材と外側の円筒部材を備えた粉砕機等が挙げられる。ここで内側の円柱部材と外側の円筒部材を備えた粉砕機は、上下に延びる円筒部材と、この円筒部材に挿入された上下に延びる円柱部材とを備え、臼式構造の上部には、円筒部材と円柱部材との間で原料穀物の投入口が形成される。円筒部材の内周面と円柱部材の外周面との間で、投入口から上下に連続するギャップが形成され、臼式構造の下部には、円筒部材と円柱部材との相対的な回転により、ギャップにおいて原料穀物を粉砕およびアルファ化して生成したアルファ化デンプン粉の排出口がギャップから連続して形成された構造を有する。そして相対的に回転する臼式構造のギャップに原料穀物を投入し、加熱下にせん断力を与えることにより原料穀物を粉砕およびアルファ化する。 In the present invention, the heating shear crusher is not particularly limited, and examples thereof include an extrusion type crushing device which has a heating device and a crushing mechanism, includes a screw type extrusion mechanism, and crushes and discharges at the same time as heating while feeding. In addition, for example, a mill equipped with a conical cutter equipped with a temperature control device, a crusher provided with an inner cylindrical member and an outer cylindrical member, and the like can be mentioned. Here, the crusher provided with the inner cylindrical member and the outer cylindrical member includes a vertically extending cylindrical member and a vertically extending cylindrical member inserted into the cylindrical member, and the upper part of the mortar-type structure is a cylinder. An input port for raw material grains is formed between the member and the cylindrical member. A gap that is continuous up and down from the input port is formed between the inner peripheral surface of the cylindrical member and the outer peripheral surface of the cylindrical member. It has a structure in which outlets for pregelatinized starch powder produced by crushing and pregelatinizing raw grain in the gap are continuously formed from the gap. Then, the raw material grain is put into the gap of the relatively rotating mortar structure, and the raw material grain is crushed and pregelatinized by applying a shearing force under heating.

このような加熱せん断粉砕機として、具体的には、2軸押出機が代表的なものとして挙げられる。その他に、例えば一軸式の連続式固相せん断混練機等が挙げられる。 Specific examples of such a heating shear crusher include a twin-screw extruder. In addition, for example, a uniaxial continuous solid phase shear kneader and the like can be mentioned.

加熱せん断粉砕機におけるニーディング部の構造は、図1のようにニーディングの歯を外周部に備えたニーディングユニットを回転軸の方向に複数設け、シリンダー部1の内周面との間で原料穀物をせん断する構造や、その他に、石臼状の特殊ブレードを備えた一軸混練機等が挙げられる。ただし、本発明のニーディング部の構造はこれに限るものではなく、せん断により粉砕される機構のものであればよい。 As for the structure of the kneading portion in the heat shear crusher, as shown in FIG. 1, a plurality of kneading units having kneading teeth on the outer peripheral portion are provided in the direction of the rotation axis, and between the kneading portion and the inner peripheral surface of the cylinder portion 1. Examples include a structure for shearing raw grain and a uniaxial kneader equipped with a special millstone-shaped blade. However, the structure of the kneading portion of the present invention is not limited to this, and any mechanism may be used as long as it has a mechanism of being pulverized by shearing.

本明細書においては、少なくともシリンダー部に投入されニーディング部を通過するまでの穀物を、「原料穀物」と称する。少なくとも加熱せん断粉砕機から本発明の方法に従ってシリンダー部を経て排出された穀物粉を「アルファ化デンプン粉」と称する。 In the present specification, at least the grain that has been charged into the cylinder section and passed through the kneading section is referred to as "raw grain". At least the grain flour discharged from the heat shear crusher through the cylinder portion according to the method of the present invention is referred to as "pregelatinized starch flour".

加熱せん断粉砕機におけるニーディング部のギャップは、原料とされる穀粒や処理後に得るべき所望の穀粉の大きさなどを考慮し、特に限定されないが、例えば0.4〜0.1mm程度、特に0.2mm程度以下の範囲内で調整される。 The gap of the kneading portion in the heat shear crusher is not particularly limited in consideration of the grain used as the raw material and the desired size of the flour to be obtained after the treatment, but is, for example, about 0.4 to 0.1 mm, particularly about 0.2 mm. It is adjusted within the following range.

図1には本発明を実施するための粉砕機構の一例を示す。この粉砕機構は、加熱せん断粉砕機として2軸押出機を用いたものであり、粉砕機構の全体または部分の温度を調整する機構を備えたものである。原料穀物は投入口側から吐出口側に向かって図1の7の矢印の方向に流れていく。1はシリンダー部で、第一スクリュウ2、第二スクリュウ3が回転中心4、5が平行となるように設置されている。第一スクリュウ2は、上流側より下流側へ投入口側フルフライト部2a、ニーディング部(開始点2bから終了点2cまで)、吐出口側フルフライト部2dが設置され、第二スクリュウ3は、上流側より下流側へ投入口側フルフライト部3a、ニーディング部(開始点3bから終了点3cまで)、吐出口側フルフライト部3dが設置されている。ニーディング部は、ニーディングの歯を外周部に備えたニーディングユニットが回転軸の方向に複数設けられ、シリンダー部1の内周面との間でクリアランス6を形成し、原料穀物をせん断するようになっている。 FIG. 1 shows an example of a crushing mechanism for carrying out the present invention. This crushing mechanism uses a twin-screw extruder as a heating shear crushing machine, and is provided with a mechanism for adjusting the temperature of the whole or a part of the crushing mechanism. The raw material grain flows from the inlet side toward the discharge port side in the direction of the arrow 7 in FIG. 1 is a cylinder part, and the first screw 2 and the second screw 3 are installed so that the rotation centers 4 and 5 are parallel to each other. The first screw 2 has a full flight section 2a on the inlet side, a kneading section (from the start point 2b to the end point 2c), and a full flight section 2d on the discharge port side from the upstream side to the downstream side. , The inlet side full flight section 3a, the kneading section (from the start point 3b to the end point 3c), and the discharge port side full flight section 3d are installed from the upstream side to the downstream side. In the kneading portion, a plurality of kneading units having kneading teeth on the outer peripheral portion are provided in the direction of the rotation axis to form a clearance 6 with the inner peripheral surface of the cylinder portion 1 to shear the raw material grain. It has become like.

ここで、アルファ化に関わる因子をいくつか検討する。その一つは最大せん断速度γ[・](1/sec) である。せん断歪みが生じることで材料は仕事を受ける。材料が粉砕機内で受ける仕事の総量は、総せん断歪み量として評価することができる。総せん断歪み量は、加熱せん断粉砕機における原料穀物の滞留時間τ(sec)との積で定義される次のQに関係する。 Here, we consider some factors involved in pregelatinization. One of them is the maximum shear rate γ [・] (1 / sec). The material receives work due to shear strain. The total amount of work the material receives in the crusher can be evaluated as the total amount of shear strain. The total shear strain amount is related to the following Q defined by the product of the residence time τ (sec) of the raw material grain in the heat shear crusher.

Figure 2021029201
特許文献5では、アルファ化の指標となる結晶化度がQの減少関数になることが議論されている。結晶化度が低いほど非晶質化(アルファ化)の程度が高くアルファ化米粉の品質が良好であることから、特許文献5では、特定のQ以上の条件で粉砕することを見出していた。本発明は図1に代表される粉砕機構によりヒーターによる加熱と同時にせん断を加えることで原料穀物を粉砕し非晶質化させるものであるが、特許文献5のQ値を図1の粉砕機構に適用することができないことが分かった。
Figure 2021029201
Patent Document 5 argues that the crystallinity, which is an index of pregelatinization, is a decreasing function of Q. Since the lower the crystallinity, the higher the degree of amorphization (pregelatinization) and the better the quality of the pregelatinized rice flour, Patent Document 5 has found that the rice flour is pulverized under a specific Q or higher condition. In the present invention, the raw material grain is crushed and amorphized by applying shear at the same time as heating by a heater by a crushing mechanism represented by FIG. 1, and the Q value of Patent Document 5 is applied to the crushing mechanism of FIG. It turned out that it could not be applied.

検討の結果、その原因は、図1の粉砕機構と図2(特許文献5に対応する参考例)の粉砕機構の違いにあることが分かった。一つの原因は、図2(特許文献5に対応する参考例)においては、上下の平板の臼間の数ミクロン程度のギャップの間で粉砕が行われるのに対し、図1(本発明)においては、2b〜2c間、3b〜3c間のニーディング部で行われることにある。二つ目の原因は原料穀物の流れの方向である。図2の機構では、上臼8と下臼9の間にギャップ14が形成され、上臼8の投入口10より原料穀物が投入されて回転中心11を軸として下臼が回転し、図2の12および13に代表される回転軸と垂直の方向に材料は送られながら粉砕される。 As a result of the examination, it was found that the cause was the difference between the crushing mechanism of FIG. 1 and the crushing mechanism of FIG. 2 (reference example corresponding to Patent Document 5). One cause is that in FIG. 2 (reference example corresponding to Patent Document 5), pulverization is performed in a gap of about several microns between the mortars of the upper and lower flat plates, whereas in FIG. 1 (the present invention). Is to be performed in the kneading section between 2b and 2c and between 3b and 3c. The second cause is the direction of the flow of raw grain. In the mechanism of FIG. 2, a gap 14 is formed between the upper mortar 8 and the lower mortar 9, raw material grains are charged from the inlet 10 of the upper mortar 8, and the lower mortar rotates about the rotation center 11 to rotate the lower mortar. The material is crushed while being fed in the direction perpendicular to the rotation axis represented by 12 and 13.

一方で図1の場合は、スクリュウ軸の回転軸に平行となる矢印7の方向に材料が送られながら粉砕される。これらの違いを鑑みた結果、式(1)のQ値において考慮されていなかった因子であるニーディング部での材料の充填率φが重要であることが分かってきた。検討の結果、図1に代表される回転軸と材料の流れが平行な場合には、式(1)のQ値ではなく次で定義されるQE値を用いることが妥当であることが分かった。 On the other hand, in the case of FIG. 1, the material is crushed while being fed in the direction of arrow 7 parallel to the rotation axis of the screw shaft. As a result of considering these differences, it has become clear that the filling rate φ of the material in the kneading portion, which is a factor not considered in the Q value of the equation (1), is important. As a result of the examination, it was found that when the rotation axis represented by Fig. 1 and the material flow are parallel, it is appropriate to use the Q E value defined below instead of the Q value in Eq. (1). It was.

Figure 2021029201
もちろん、式(1)のQ値を図1の構成装置に対して計算することも可能であるが、特許文献5で示された結果にならない場合があることが判明した。
Figure 2021029201
Of course, it is possible to calculate the Q value of the equation (1) for the constituent device of FIG. 1, but it has been found that the result shown in Patent Document 5 may not be obtained.

本発明の方法では、式(2)のQE値が400以上の条件、好ましくは500以上の条件で原料穀物を粉砕する。QE値が400以上の条件であれば、加熱せん断粉砕機による粉砕後における穀物の結晶化度が、例えば15%程度まで下げられたアルファ化デンプン粉を得ることができ、結晶性米粉や増粘多糖類などを混ぜなくてもグルテンフリー食品の加工と製品化が可能となる。また、水や湯を加えるだけで食料とできる程度までアルファ化されたデンプン粉をはじめとして、非常に高い程度までアルファ化されたデンプン粉も得ることができ、アルファ化の程度を結晶化度の低い範囲で様々にコントロールしたアルファ化デンプン粉を得ることができる。 In the method of the present invention, the raw material grain is crushed under the condition that the Q E value of the formula (2) is 400 or more, preferably 500 or more. If the Q E value is 400 or more, it is possible to obtain pregelatinized starch flour in which the crystallinity of grains after crushing by a heating shear crusher is reduced to, for example, about 15%, and crystalline rice flour or increased grains can be obtained. It is possible to process and commercialize gluten-free foods without mixing viscous polysaccharides. In addition, starch powder that has been pregelatinized to a very high degree can be obtained, including starch powder that has been pregelatinized to the extent that it can be used as food simply by adding water or hot water. Various controlled pregelatinized starch powders can be obtained in a low range.

結晶化度の低いアルファ化デンプン粉を得る点を考慮すると、上記QE値が600以上の条件で原料穀物を粉砕することが好ましく、上記QE値が800以上の条件で原料穀物を粉砕することが特に好ましい。このような条件であれば、結晶化度がより低いアルファ化デンプン粉を得ることができ、加熱せん断粉砕機による粉砕後における穀物の結晶化度が、例えば5%未満のアルファ化デンプン粉を得ることもできる。 Considering the point of obtaining pregelatinized starch powder having a low crystallinity, it is preferable to crush the raw material grain under the condition that the Q E value is 600 or more, and the raw material grain is crushed under the condition that the Q E value is 800 or more. Is particularly preferred. Under such conditions, pregelatinized starch flour having a lower degree of crystallization can be obtained, and pregelatinized starch flour having a grain crystallization degree of less than 5% after crushing by a heat shear crusher can be obtained, for example. You can also do it.

加熱せん断粉砕機からの穀物の吐出量が50kg/時間以上のような条件では、上記QE値が105以下の条件で原料穀物を粉砕することが好ましく、104以下の条件で原料穀物を粉砕することがより好ましい。 The condition that the ejection amount is more than 50 kg / time of grain from the heating shear grinder, it is preferred that the Q E value is pulverized raw material grain at 10 5 following conditions, 10 4 raw material grains under the following conditions It is more preferable to grind.

加熱せん断粉砕機に原料穀物を投入し、原料穀物を所定の温度においてせん断条件下に粉砕する。アルファ化の程度を結晶化度の低い範囲で様々に制御したアルファ化デンプン粉を得ることができる点、つまり精密な結晶化度制御もQE値で制御できる点などを考慮すると、粉砕時の温度は、特に限定されないが、例えば常温以上とするか、あるいは40℃以上、好ましくは80℃以上に加熱しながらせん断条件下に粉砕する。粉砕時の温度上限は、特に限定されないが、200℃以下が好ましい。原料穀物の含水率は、特に限定されないが、10%以上が好ましい。 The raw material grain is put into a heating shear crusher, and the raw material grain is crushed at a predetermined temperature under shearing conditions. Considering that it is possible to obtain pregelatinized starch powder in which the degree of pregelatinization is variously controlled in a range of low crystallinity, that is, precise crystallinity control can also be controlled by the Q E value, etc., at the time of pulverization. The temperature is not particularly limited, but is pulverized under shear conditions while heating to, for example, room temperature or higher, or 40 ° C. or higher, preferably 80 ° C. or higher. The upper limit of the temperature at the time of pulverization is not particularly limited, but is preferably 200 ° C. or lower. The water content of the raw material grain is not particularly limited, but is preferably 10% or more.

本発明において、アルファ化デンプン粉は、デンプンが主成分である穀物類、たとえば米、小麦、大豆、小豆、そば、芋類、豆類、とうもろこし類などのすべてを対象としており、本発明により簡便かつ短時間でこれらをアルファ化製粉することができる。 In the present invention, the pregelatinized starch powder is intended for all cereals containing starch as a main component, such as rice, wheat, soybeans, adzuki beans, buckwheat, potatoes, beans, and corn. These can be pregelatinized and milled in a short time.

従来のアルファ化手法は加水し加熱によるアルファ化の後に乾燥させ粉砕するというものである。この手法によれば加水時の高温処理により、原料澱粉が脂質分子を含む場合には脂質分子がアミロースと複合化しアミロース脂質複合体を形成することが知られている。本発明で製造するアルファ化澱粉は加熱時に加水なしで進行する非晶質化により製造されるため、アミロースが脂質分子を包摂するための十分な分子運動が発生しない。そのため、脂質分子の存在下でもアミロースが脂質分子を包摂していない材料を得ることができる。具体的には、X線の回折強度において回折角20度付近における脂質複合体の回折ピークの割合が0%以上1%以下、さらには0%以上0.7%以下である前記アルファ化デンプン粉が得られる。
<実施例>
以下に、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に限定されるものではない。
The conventional pregelatinization method is to add water, pregelatinize by heating, and then dry and pulverize. According to this method, it is known that when the raw material starch contains a lipid molecule, the lipid molecule is complexed with amylose to form an amylose lipid complex by high temperature treatment at the time of water addition. Since the pregelatinized starch produced in the present invention is produced by amorphization that proceeds without water addition when heated, sufficient molecular motion for amylose to include lipid molecules does not occur. Therefore, it is possible to obtain a material in which amylose does not include lipid molecules even in the presence of lipid molecules. Specifically, the pregelatinized starch powder having a lipid complex diffraction peak ratio of 0% or more and 1% or less, and further 0% or more and 0.7% or less at a diffraction angle of about 20 degrees in X-ray diffraction intensity is obtained. Be done.
<Example>
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

本発明を実現するための装置と実験手法、およびパラメータについて述べると以下の通りとなる。
[1] 使用した押出機
テクノベル社製2軸押出機KZW-30を用いて図1に相当する投入口側フルフライト部、ニーディング部、吐出口側フルフライト部からなる2つのスクリュウで構成される装置を用いた。押出機吐出口側に15mmの右回り45°のニーディングの歯5個で構成されるニーディングユニットを5個設置し、他の部分をフルフライト部とした。
[2] 製造した米粉
上記[1]の押出機を用いて原料米を粉砕することで米粉を製造した。特許文献1〜3にもとづき、加熱と同時に粉砕を行った。投入口の温度を80℃、ニーディング部の温度を130℃とし両者をつなぐ部分の温度は温度勾配をつけるために100℃に設定した。米を投入口から投入し押出機内を流すことで粉砕し米粉を製造した。回転数Nr(rpm)、投入量M(g/sec) をパラメータとして表1にまとめた。原料米は平成28年度産はえぬきとした。
[3] 結晶化度
広角X線回折の測定結果よりピークを結晶反射と非晶反射に分離した。得られた非晶散乱によるピークの積分値をSa、結晶反射によるピークの積分値をScとする。次の関係式から粉砕した米粉の結晶化度を求めた。
The apparatus, experimental method, and parameters for realizing the present invention are as follows.
[1] Extruder used The twin-screw extruder KZW-30 manufactured by Technobel Co., Ltd. is used and is composed of two screws corresponding to FIG. 1 consisting of a full flight section on the inlet side, a kneading section, and a full flight section on the discharge port side. Equipment was used. Five kneading units consisting of five 15 mm clockwise 45 ° kneading teeth were installed on the extruder discharge port side, and the other parts were used as the full flight section.
[2] Rice flour produced Rice flour was produced by crushing raw rice using the extruder described in [1] above. Based on Patent Documents 1 to 3, pulverization was performed at the same time as heating. The temperature of the inlet was set to 80 ° C, the temperature of the kneading part was set to 130 ° C, and the temperature of the part connecting the two was set to 100 ° C to create a temperature gradient. Rice was crushed by pouring rice from the inlet and flowing it through the extruder to produce rice flour. Table 1 summarizes the rotation speed N r (rpm) and the input amount M (g / sec) as parameters. The raw material rice was Haenuki produced in 2016.
[3] Crystallinity The peaks were separated into crystal reflection and amorphous reflection from the measurement results of wide-angle X-ray diffraction. Let S a be the integral value of the peak due to amorphous scattering and S c be the integral value of the peak due to crystal reflection. The crystallinity of the crushed rice flour was determined from the following relational expression.

Figure 2021029201
各条件で製造した米粉の結晶化度を表1にまとめた。
Figure 2021029201
Table 1 summarizes the crystallinity of rice flour produced under each condition.

上記広角X線回折の実験仕様は次の通りである。
・測定機器 Rigaku社製 Ultima V
・測定条件
スキャンスピード 10°/min
測定角度 5〜35°
X線源 Cu-Kα線
管電圧 40kV
管電流 40mA
図3には、表1の条件1、条件5、および、参考例として加熱せん断粉砕機を用いず粗粉砕によって得た米粉の広角X線回折強度の回折角依存性を示す。
[4] アミロース/脂質複合体が占める割合
上記広角X線回折の仕様で得た広角X線回折強度から、回折角度が約20度付近に現れるアミロース/脂質複合体による反射のピークの積分値をSLとして、
The experimental specifications of the wide-angle X-ray diffraction are as follows.
・ Measuring equipment Ultima V manufactured by Rigaku
・ Measurement conditions Scan speed 10 ° / min
Measuring angle 5 to 35 °
X-ray source Cu-K α ray tube voltage 40kV
Tube current 40mA
FIG. 3 shows conditions 1 and 5 in Table 1 and, as a reference example, the diffraction angle dependence of the wide-angle X-ray diffraction intensity of rice flour obtained by coarse crushing without using a heating shear crusher.
[4] Percentage of amylose / lipid complex From the wide-angle X-ray diffraction intensity obtained in the above wide-angle X-ray diffraction specifications, the integrated value of the peak reflection by the amylose / lipid complex that appears at a diffraction angle of about 20 degrees is calculated. As S L

Figure 2021029201
によって、アミロース/脂質複合体が占める割合を求めた。
Figure 2021029201
The ratio of the amylose / lipid complex was determined by.

図3で広角X線回折の結果を示した表1の条件1、条件5、条件17については、アミロース/脂質複合体が占める割合は、それぞれ、0.3%、0.5%、0.3%であった。この結果を表2に記した。X線回折実験の実験仕様は上記[3]に記載のものとした。
[5] 最大せん断速度γ[・]
スクリュウの回転数Nr(rpm)、図1の符号6で示されるギャップh、図1のシリンダー径Dから、最大せん断速度γ[・]を、
Regarding the conditions 1, 5, and 17 of Table 1 showing the results of wide-angle X-ray diffraction in FIG. 3, the proportions of the amylose / lipid complex were 0.3%, 0.5%, and 0.3%, respectively. The results are shown in Table 2. The experimental specifications of the X-ray diffraction experiment are as described in [3] above.
[5] Maximum shear rate γ [・]
From the screw rotation speed N r (rpm), the gap h indicated by reference numeral 6 in FIG. 1, and the cylinder diameter D in FIG. 1, the maximum shear rate γ [・] is determined.

Figure 2021029201
で求めた。ただし、πは円周率である。
[6] 滞留時間τ
滞留時間は、ニーディング部を通り過ぎる原料穀物の速さとして、
Figure 2021029201
I asked for it. However, π is the pi.
[6] Dwell time τ
The residence time is the speed of the raw grain passing through the kneading section.

Figure 2021029201
によって求める。ただし、Lはニーディング部の長さであり、Pnはニーディング部におけるスクリュウの螺旋構造の一巻きの回転軸方向の長さである。PnNrは1分あたりにニーディングの螺旋構造が送り出す原料穀物の回転軸方向の最大進行距離を表す。ニーディング部に螺旋構造がない装置の場合には、その装置の送り出し機構に応じてニーディング部での滞留時間を計算すればよい。
[7] 充填率φ
理論的な充填率φ*は、シリンダー中空部の単位長さあたりの体積vc(cm2)と、第一および第二スクリュウを合わせたニーダー部の単位長さあたりの体積vn(cm2)、また、材料の投入量M(g/sec)、材料の密度ρ(g/cm3)によって、
Figure 2021029201
Asked by. However, L is the length of the kneading portion, and P n is the length of the spiral structure of the screw in the kneading portion in the direction of the rotation axis. P n N r represents the maximum distance traveled in the direction of rotation of the raw grain delivered by the kneading spiral structure per minute. In the case of a device having no spiral structure in the kneading section, the residence time in the kneading section may be calculated according to the feeding mechanism of the device.
[7] Filling rate φ
The theoretical filling rate φ * is the volume v c (cm 2 ) per unit length of the hollow part of the cylinder and the volume v n (cm 2) per unit length of the kneader part including the first and second screws. ), And depending on the material input amount M (g / sec) and the material density ρ (g / cm 3 )

Figure 2021029201
Figure 2021029201

で与えられる。vc(cm2)は、例えば図1のようにシリンダー中空部の断面が2つの円が重なった形状をしている時には、シリンダー径Dとシリンダー間距離Eで与えられる次式 Given in. v c (cm 2 ) is given by the following equation given by the cylinder diameter D and the distance between cylinders E when the cross section of the hollow part of the cylinder has a shape in which two circles overlap as shown in Fig. 1, for example.

Figure 2021029201
によって求められるが、シリンダー部の形状によっては断面形状の測定などによって求められる。vnはニーダー部分のサイズを測定することで求められる。本発明では、澱粉粉体の密度ρは材料によらずほぼ一定と仮定し、充填率φとして、
Figure 2021029201
However, depending on the shape of the cylinder portion, it can be obtained by measuring the cross-sectional shape or the like. v n can be obtained by measuring the size of the kneader part. In the present invention, it is assumed that the density ρ of the starch powder is almost constant regardless of the material, and the filling rate φ is set as

Figure 2021029201
を用いることとした。
[8] ニーディングの歯の数 n
nは、ニーディングの歯の数であるが、同じ角度で連続して配置された歯の数は1つとして計算することとした。
[9] QE
式(2)、(3)、(4)、(7)より得られる式(8)で与えられるQEを用いる。
Figure 2021029201
Was decided to be used.
[8] Number of kneading teeth n
n is the number of kneading teeth, but the number of teeth arranged consecutively at the same angle is calculated as one.
[9] Q E value expression (2), (3), (4), using a Q E given by (7) than obtained equation (8).

Figure 2021029201
表1にn, M, L, D, vc-vn, Pn, Nr, hとともに、計算したQEを記す。表1におけるQE値を横軸に、結晶化度を縦軸に記したものが図4である。
<比較例>
[1] Q値
式(1)で与えられるQ値は特許文献5で示されているものである。実施例と同一の実験に対してこのQ値を計算したものを比較例とし、表1に記載した。その際、最大せん断速度γ[・]は式(3)を用いた。その際、滞留時間τ[sec]としては、
Figure 2021029201
Table 1 shows the calculated Q E along with n, M, L, D, v c -v n , P n , N r , h. FIG. 4 shows the Q E values in Table 1 on the horizontal axis and the crystallinity on the vertical axis.
<Comparison example>
[1] Q value The Q value given by the equation (1) is that shown in Patent Document 5. Table 1 shows a comparative example in which the Q value was calculated for the same experiment as in the examples. At that time, Eq. (3) was used for the maximum shear rate γ [・]. At that time, the residence time τ [sec] is

Figure 2021029201
を用いた。ただし、吐出量は1秒あたりのグラム数として得たものである。Q値を各条件について表1にまとめた。表1におけるQ値を横軸に、結晶化度を縦軸に記したものが図5である。
[2] アミロース/脂質複合体の割合
本発明による方法によらず、加水と加熱により糊化させた後に乾燥させ粉砕することで製造されたアルファ化米粉の代表としてアルファ化米粉J(フライスター社製)の広角X線回折の実験結果を図6に示す。上記<実施例>[4]に記載の方法でこのX線回折の実験結果から求めたアミロース/脂質複合体の割合は1.3%であった。この結果を表2に実施例、参考例、とともにまとめた。
<参考例>
参考例として、粗粉砕した原料米を加熱せん断型粉砕機による処理前の原料米として考え評価した。結晶化度は上記[3]に記載の方法で求めた。アミロース/脂質複合体の割合は上記[4]に記載の方法で求めた。それぞれの結果を、表1、表2に記載した。
Figure 2021029201
Was used. However, the discharge amount is obtained as the number of grams per second. The Q values are summarized in Table 1 for each condition. FIG. 5 shows the Q value in Table 1 on the horizontal axis and the crystallinity on the vertical axis.
[2] Ratio of amylose / lipid complex Pregelatinized rice flour J (Flyster) is a representative of pregelatinized rice flour produced by gelatinizing by watering and heating, then drying and pulverizing, regardless of the method according to the present invention. The experimental results of wide-angle X-ray diffraction of (manufactured by) are shown in FIG. The proportion of amylose / lipid complex obtained from the experimental results of this X-ray diffraction by the method described in <Example> [4] above was 1.3%. The results are summarized in Table 2 together with Examples and Reference Examples.
<Reference example>
As a reference example, the coarsely crushed raw material rice was considered as the raw material rice before treatment by the heat shear type crusher and evaluated. The crystallinity was determined by the method described in [3] above. The ratio of amylose / lipid complex was determined by the method described in [4] above. The results are shown in Tables 1 and 2.

Figure 2021029201
Figure 2021029201

Figure 2021029201
以上に記載した、実施例、比較例、参考例を検討すると本発明の骨子を以下のようにまとめることができる。図4から、QE値の増加に伴い結晶化度が減少し非晶質化が進むことが分かる。参考例となるQE=0の結晶化度も図4のプロットにおいて他のデータとともにおよそ一つの直線上に位置することがわかる。これらは、本手法においてQE値が結晶化度の優れた制御パラメータであることを示している。一方で比較例である特許文献5のQ値で結晶化度をまとめた図5においては、結晶化度はQ値の増加関数となる領域があることが分かる。特許文献5では結晶化度がQ値の減少関数として示されており、本発明の範囲では、特許文献5の発明で満たされる傾向とは明らかに異なることが分かる。さらに参考例となるQ=0の結晶化度はその他のデータを線型的に回帰して求めた直線からは大きく外れることが分かる。これは、特許文献5のQ値が粉砕機構の回転軸と材料の流れが垂直となる臼を用いた結果を基盤とし材料の粉砕部における充填率を考慮していないのに対し、本手法のQEが回転軸と材料の流れが平行となる粉砕機構における充填率の重要性を鑑みた結果である。
Figure 2021029201
The gist of the present invention can be summarized as follows by examining the examples, comparative examples, and reference examples described above. From FIG. 4, it can be seen that the crystallinity decreases and the amorphization progresses as the Q E value increases. It can be seen that the crystallinity of Q E = 0, which is a reference example, is also located on about one straight line together with other data in the plot of FIG. These indicate that the Q E value is an excellent control parameter for the degree of crystallinity in this method. On the other hand, in FIG. 5 in which the crystallinity is summarized by the Q value of Patent Document 5, which is a comparative example, it can be seen that the crystallinity has a region that is an increasing function of the Q value. In Patent Document 5, the crystallinity is shown as a decreasing function of the Q value, and it can be seen that, within the scope of the present invention, the tendency is clearly different from the tendency satisfied by the invention of Patent Document 5. Furthermore, it can be seen that the crystallinity of Q = 0, which is a reference example, deviates significantly from the straight line obtained by linearly regressing other data. This is based on the result of using a mortar in which the Q value of Patent Document 5 is perpendicular to the rotation axis of the crushing mechanism and the flow of the material, and the filling rate in the crushed portion of the material is not considered. This is the result of considering the importance of the filling rate in the crushing mechanism where the Q E is parallel to the rotation axis and the material flow.

また、加熱せん断型粉砕による本手法で得た低結晶性米粉が、従来手法で製造されたものに比べアミロース/脂質複合体の割合が低いことが表2の結果から分かる。このことは、本手法によれば加熱時に十分な水が存在せず、複合体を作るための分子運動が十分に起こらないことに起因しており、本手法で製造する材料の構造上の大きな特徴といえる。 Further, it can be seen from the results in Table 2 that the low crystalline rice flour obtained by this method by the heat shear type pulverization has a lower ratio of amylose / lipid complex than that produced by the conventional method. This is due to the fact that there is not enough water during heating according to this method and sufficient molecular motion to form the complex does not occur, which is a large structural factor of the material produced by this method. It can be said that it is a feature.

1 シリンダー部
2 第一スクリュウ
2a 第一スクリュウの投入口側フルフライト部
2b 第一スクリュウのニーディング部開始点
2c 第一スクリュウのニーディング部終了点
2d 第一スクリュウの吐出口側フルフライト部
3 第二スクリュウ
3a 第二スクリュウの投入口側フルフライト部
3b 第二スクリュウのニーディング部開始点
3c 第二スクリュウのニーディング部終了点
3d 第二スクリュウの吐出口側フルフライト部
4 第一スクリュウの回転中心
5 第二スクリュウの回転中心
6 ニーディング部と1のシリンダーの間のクリアランス
7 原料の流れる方向
8 上臼
9 下臼
10 投入口
11 下臼の回転中心
12 材料の流れ方向の一例を示す矢印
13 材料の流れ方向の一例を示す矢印
14 ギャップ
1 Cylinder part
2 First screw
2a Full flight section on the inlet side of the first screw
2b Starting point of the kneading part of the first screw
2c End point of the kneading part of the first screw
2d Full flight section on the discharge port side of the first screw
3 Second screw
3a Full flight section on the input port side of the second screw
3b Starting point of the kneading part of the second screw
3c End point of the kneading part of the second screw
3d Full flight section on the discharge port side of the second screw
4 Center of rotation of the first screw
5 Center of rotation of the second screw
Clearance between 6 kneading and 1 cylinder
7 Direction of raw material flow
8 mortar
9 Lower mortar
10 Input port
11 Center of rotation of lower mortar
12 Arrows showing an example of material flow direction
13 Arrows showing an example of material flow direction
14 gap

Figure 2021029201
によって求める。ただし、Lはニーディング部の長さであり、Pnはニーディング部におけるスクリュウの螺旋構造の一巻きの回転軸方向の長さである。PnNrは1分あたりにニーデ
ィングの螺旋構造が送り出す原料穀物の回転軸方向の最大進行距離を表す。ニーディング部に螺旋構造がない装置の場合には、その装置の送り出し機構に応じてニーディング部で
の滞留時間を計算すればよい。
[7] 充填率φ
理論的な充填率φ*は、シリンダー中空部の単位長さあたりの体積vc(cm2)と、第一および第二スクリュウを合わせたニーダー部の単位長さあたりの体積vn(cm2)、また、材料の
投入量M(g/min)、材料の密度ρ(g/cm3)によって、
Figure 2021029201
Asked by. However, L is the length of the kneading portion, and P n is the length of the spiral structure of the screw in the kneading portion in the direction of the rotation axis. P n N r represents the maximum distance traveled in the direction of rotation of the raw grain delivered by the kneading spiral structure per minute. In the case of a device having no spiral structure in the kneading section, the residence time in the kneading section may be calculated according to the feeding mechanism of the device.
[7] Filling rate φ
The theoretical filling rate φ * is the volume v c (cm 2 ) per unit length of the hollow part of the cylinder and the volume v n (cm 2) per unit length of the kneader part including the first and second screws. ), And depending on the input amount M (g / min) of the material and the density ρ (g / cm 3 ) of the material.

Figure 2021029201
Figure 2021029201

Figure 2021029201
を用いることとした。
[8] ニーディングの歯の数 n
nは、ニーディングの歯の数であるが、同じ角度で連続して配置された歯の数は1つとして計算することとした。
[9] QE
式(2)、(3)、(4)、(7)より得られる式(8)で与えられるQEを用いる。
Figure 2021029201
Was decided to be used.
[8] Number of kneading teeth n
n is the number of kneading teeth, but the number of teeth arranged consecutively at the same angle is calculated as one.
[9] Q E value expression (2), (3), (4), using a Q E given by (7) than obtained equation (8).

Figure 2021029201
Figure 2021029201

Claims (2)

粉砕機構の回転軸と原料穀物の流れが平行になる構造を有する加熱せん断粉砕機を用いたアルファ化デンプン粉の製造方法であって、次式:
Figure 2021029201
で与えられるQE値を400以上とするアルファ化デンプン粉の製造方法。
A method for producing pregelatinized starch powder using a heat-shear crusher having a structure in which the rotation axis of the crushing mechanism and the flow of raw grain are parallel.
Figure 2021029201
A method for producing pregelatinized starch powder having a Q E value of 400 or more given in.
前記QE値を600以上とする請求項1に記載のアルファ化デンプン粉の製造方法。
The method for producing pregelatinized starch powder according to claim 1, wherein the Q E value is 600 or more.
JP2019154978A 2019-08-27 2019-08-27 Method for producing pregelatinized starch powder Active JP7365605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019154978A JP7365605B2 (en) 2019-08-27 2019-08-27 Method for producing pregelatinized starch powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019154978A JP7365605B2 (en) 2019-08-27 2019-08-27 Method for producing pregelatinized starch powder

Publications (2)

Publication Number Publication Date
JP2021029201A true JP2021029201A (en) 2021-03-01
JP7365605B2 JP7365605B2 (en) 2023-10-20

Family

ID=74674173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019154978A Active JP7365605B2 (en) 2019-08-27 2019-08-27 Method for producing pregelatinized starch powder

Country Status (1)

Country Link
JP (1) JP7365605B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162988A1 (en) * 2022-02-25 2023-08-31 株式会社アルファテック Method for producing gelatinized starch dry powder, gelatinized starch dry powder, gelatinized buckwheat dry powder, and device for producing gelatinized starch dry powder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53144889U (en) * 1977-04-21 1978-11-15
JPH01174345A (en) * 1987-06-25 1989-07-10 Mitsubishi Kakoki Kaisha Ltd Gelatinization apparatus for cereal
JPH089907A (en) * 1994-06-28 1996-01-16 Honen Corp Starch-originated food raw material having both water retainability and oil retainability and food for using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53144889U (en) * 1977-04-21 1978-11-15
JPH01174345A (en) * 1987-06-25 1989-07-10 Mitsubishi Kakoki Kaisha Ltd Gelatinization apparatus for cereal
JPH089907A (en) * 1994-06-28 1996-01-16 Honen Corp Starch-originated food raw material having both water retainability and oil retainability and food for using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
富山 秀樹: "押出成形機の混練シミュレーション", 日本ゴム協会誌, vol. 89, no. 12, JPN6023021455, 2016, pages 368 - 374, ISSN: 0005070114 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162988A1 (en) * 2022-02-25 2023-08-31 株式会社アルファテック Method for producing gelatinized starch dry powder, gelatinized starch dry powder, gelatinized buckwheat dry powder, and device for producing gelatinized starch dry powder

Also Published As

Publication number Publication date
JP7365605B2 (en) 2023-10-20

Similar Documents

Publication Publication Date Title
TW412541B (en) A process for making a physically modified starch and physically modified starch composition, dry mix composition and aggiomerated composition and the method thereof
JP4160108B1 (en) Method for producing amorphous cellulose
EP2112169B1 (en) Process for producing noncrystalline cellulose
JP4034248B2 (en) Quantitative supply apparatus, kneading extrusion equipment, quantitative supply method, kneading extrusion method
US20120103324A1 (en) Process for producing non-crystalline cellulose
JP2009161718A (en) Method for producing noncrystalline cellulose
JP2021029201A (en) Method for producing pregelatinized starch powder
Budi et al. Effect of dough moisture content and extrusion temperature on degree of gelatinization and crystallinity of rice analogues
JP6831993B2 (en) Method for producing pregelatinized starch powder
WO2021010447A1 (en) Production method for crystalline sorbitol powder
JPH03505199A (en) Method and apparatus for producing tribase propellant charge powder
KR101175522B1 (en) Extrusion apparatus for manufacturing of barley noodle
JP6774810B2 (en) Manufacturing method of noodles containing wheat bran
JP4767128B2 (en) Production method and production apparatus for pregelatinized flour
KR100896008B1 (en) Apparatus for manufacturing of rice cake
KR100885087B1 (en) A preparation method of gelatinized starch using extrusion process
JP2009050228A (en) Method for producing granulated rice enriched in functional component
JP2005245305A (en) Method for pulverizing food raw material
JP5390963B2 (en) Method for producing small particle size cellulose
Zelaziński Effect of selected working parameters of single screw extruder on energy consumption in the extrusion process.
WO2023162988A1 (en) Method for producing gelatinized starch dry powder, gelatinized starch dry powder, gelatinized buckwheat dry powder, and device for producing gelatinized starch dry powder
JP6920781B2 (en) How to make a steamed cake using extruder-treated pregelatinized durum wheat grains
JPH0823898A (en) Pellet of processed rice and its production
JP2019187452A (en) Manufacturing method of wheat bran processed product
JPS6249031B2 (en)

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190918

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20190919

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230927

R150 Certificate of patent or registration of utility model

Ref document number: 7365605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150