JP6831993B2 - Method for producing pregelatinized starch powder - Google Patents

Method for producing pregelatinized starch powder Download PDF

Info

Publication number
JP6831993B2
JP6831993B2 JP2016176945A JP2016176945A JP6831993B2 JP 6831993 B2 JP6831993 B2 JP 6831993B2 JP 2016176945 A JP2016176945 A JP 2016176945A JP 2016176945 A JP2016176945 A JP 2016176945A JP 6831993 B2 JP6831993 B2 JP 6831993B2
Authority
JP
Japan
Prior art keywords
pregelatinized starch
starch powder
raw material
grains
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016176945A
Other languages
Japanese (ja)
Other versions
JP2018038368A (en
Inventor
昭博 西岡
昭博 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamagata University NUC
Original Assignee
Yamagata University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamagata University NUC filed Critical Yamagata University NUC
Priority to JP2016176945A priority Critical patent/JP6831993B2/en
Publication of JP2018038368A publication Critical patent/JP2018038368A/en
Application granted granted Critical
Publication of JP6831993B2 publication Critical patent/JP6831993B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cereal-Derived Products (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Description

本発明は、アルファ化デンプン粉の製造方法に関し、特に大量生産における技術の改良に関する。 The present invention relates to a method for producing pregelatinized starch powder, and particularly to an improvement in technology in mass production.

穀物に含まれるデンプンをアルファ化(非晶質化)することで、アルファ化前に対して異なる特性が発現することが一般に知られている。例えば、予めアルファ化された米粉は、長期保存が可能である一方で、蒸煮を必要とせずに水や湯を加えるだけで美味しく食することができることが知られている。また、PLA(ポリ乳酸樹脂)などの生分解性樹脂への添加剤としてデンプンを用いる場合には、水やグリセリンなどの可塑剤を同時に添加して高温で処理することにより、デンプンをアルファ化することでPLA等と複合化できることが知られている。 It is generally known that by pregelatinizing (amorphizing) starch contained in grains, different characteristics are exhibited compared to before pregelatinization. For example, it is known that pre-pregelatinized rice flour can be stored for a long period of time, but can be eaten deliciously simply by adding water or hot water without the need for steaming. When starch is used as an additive to a biodegradable resin such as PLA (polylactic acid resin), starch is pregelatinized by simultaneously adding a plasticizer such as water or glycerin and treating the starch at a high temperature. It is known that this can be combined with PLA and the like.

従来のアルファ化デンプンは、原料穀粒を水中に懸濁・加熱(すなわち炊飯)により糊化させた後に除水することによって製造されることが通常であった。しかしながら、炊飯後に除水してアルファ化する方法では、水や湯を加えるだけで食料とできる程度までアルファされたデンプン粉を製造することは可能であったが、完全に近い程度までアルファ化されたデンプン粉の製造は不可能であった。その理由は、炊飯により一旦ほぼ完全にアルファ化したデンプンの一部が、乾燥(除水)の過程で生じる「老化」により再び結晶化するためである。 Conventional pregelatinized starch is usually produced by suspending raw material grains in water, gelatinizing them by heating (that is, cooking rice), and then removing water. However, with the method of removing water after cooking rice and pregelatinizing it, it was possible to produce starch powder that was pregelatinized to the extent that it could be used as food simply by adding water or hot water, but it was pregelatinized to a degree close to complete. It was impossible to produce starch powder. The reason is that a part of starch that has been almost completely pregelatinized by cooking rice recrystallizes due to "aging" that occurs in the process of drying (water removal).

また、アルファ化米粉を利用する場合、種々の添加剤として増粘剤を配合して製品化している技術が提案されている(特許文献1)。 Further, when pregelatinized rice flour is used, a technique has been proposed in which a thickener is blended as various additives to commercialize the product (Patent Document 1).

本発明者らは、臼式粉砕機に原料穀物を投入し、原料穀物を80℃以上、特に100〜200℃の温度に加熱しながらせん断条件下に粉砕することで、高度にアルファ化したアルファ化デンプン粉を、水を加えずに容易に製造する技術を開発した(特許文献2、3)。特許文献2に記載の技術によれば、炊飯後に除水してアルファ化する方法と同程度にアルファ化できる。さらに特許文献3に記載の技術によれば、相対的に移動する2部材間のギャップ、加熱温度、原料穀物の含水量などの条件によって、アルファ化デンプンの示差走査熱量測定においてアルファ化していない標準試料の融解に伴う吸熱エンタルピーを△Hmaxとしたときにα=(1−△H/△Hmax)×100で示される数値αが80以上となるような同融解温度時の吸熱エンタルピー△Hを持つ、非常に高い程度までアルファ化されたデンプン粉を得ることができる。このデンプン粉は、食品分野への用途だけでなく、これとは全く異なる分野、例えばPLAなどの生分解性樹脂への添加剤としても、きわめて高い有用性を持ち得る。 The present inventors put the raw material grain into a mortar-type crusher and crush the raw material grain under shearing conditions while heating it to a temperature of 80 ° C. or higher, particularly 100 to 200 ° C., thereby highly pregelatinized alpha. We have developed a technique for easily producing chemical starch powder without adding water (Patent Documents 2 and 3). According to the technique described in Patent Document 2, the pregelatinization can be performed to the same extent as the method of pregelatinizing by removing water after cooking rice. Further, according to the technique described in Patent Document 3, a standard that is not pregelatinized in differential scanning calorimetry of pregelatinized starch due to conditions such as a gap between two relatively moving members, a heating temperature, and a water content of raw material grains. an endothermic enthalpy associated to the melting of the sample △ H max and then alpha = when the (1- △ H T / △ H max) endothermic enthalpy at the melting temperature, such as the numerical values indicated by × 100 alpha is 80 or more △ with H T, it is possible to obtain a very high extent pregelatinized starch flour. This starch powder can have extremely high usefulness not only for applications in the food field but also as an additive to a completely different field, for example, a biodegradable resin such as PLA.

特許第4190180号公報Japanese Patent No. 4190180 特許第4767128号公報Japanese Patent No. 4767128 特許第5503885号公報Japanese Patent No. 55038885

特許文献2、3においては、アルファ化を達成する技術に主眼を置いていたが、この技術においては量産化が新たな課題となっている。量産化の条件においては、食品分野や生分解性樹脂への添加剤などに好適なアルファ化デンプン粉を得るために結晶化度を制御することができる知見は得られていなかった。 Patent Documents 2 and 3 have focused on a technique for achieving pregelatinization, but mass production has become a new issue in this technique. Under the conditions of mass production, it has not been found that the crystallinity can be controlled in order to obtain pregelatinized starch powder suitable for the food field and additives for biodegradable resins.

例えば、特許文献1のように増粘剤を配合する技術も知られているが、米粉パンはアルファ化米粉と結晶性米粉をブレンドすることで粘度を調整し、100%米粉パンを製パンすることが可能となる。しかし、米の結晶性を制御し、粉砕するだけでパンなどの生地の物性を制御することができ、上記のようなブレンドをしなくても米粉パンなどの食品を製造できる技術は確立されていない。結晶性を制御することで、従来技術のように結晶・非晶化穀物粉をブレンドせずに製パンを可能とする技術が求められており、アルファ化度を自在に制御可能なアルファ化デンプン粉の量産化が望まれている。さらには従来から穀物を家畜用の飼料として用いる場合には事前に穀物をアルファ化することができれば、家畜の出荷時期を調整する目的で家畜の成長速度をコントロールできる家畜用飼料が開発できることを意味する。これには穀物のアルファ化の程度(アルファ化度)を自在にコントロールする技術が必要であるが、従来の一般的な手法でアルファ化度をコントロールすることは困難である。 For example, a technique of blending a thickener as in Patent Document 1 is also known, but rice flour bread is made from 100% rice flour bread by adjusting the viscosity by blending pregelatinized rice flour and crystalline rice flour. It becomes possible. However, the technology that can control the crystallinity of rice and control the physical properties of dough such as bread simply by crushing it, and can produce foods such as rice flour bread without blending as described above has been established. Absent. By controlling the crystallinity, there is a demand for a technology that enables bread making without blending crystalline and amorphous grain flour as in the conventional technology, and pregelatinized starch that can freely control the degree of pregelatinization. Mass production of flour is desired. Furthermore, if grains can be pregelatinized in advance when grains are used as feed for livestock, it means that livestock feed that can control the growth rate of livestock can be developed for the purpose of adjusting the shipping time of livestock. To do. This requires a technique for freely controlling the degree of pregelatinization (degree of pregelatinization) of grains, but it is difficult to control the degree of pregelatinization by conventional general methods.

また、上記のように、特許文献2、3の技術によって工業的な大量生産を行うことを想定した場合の条件では、結晶化度の高いアルファ化デンプン粉においてもアルファ化と関連する明確な知見や指針はなかった。例えば、粉砕後の穀物を加熱せん断粉砕機から吐出量1kg/時間以上、さらには10kg/時間以上で吐出するようなアルファ化デンプン粉を大量生産する条件では、特許文献2で得られるような高度にアルファ化したアルファ化デンプン粉等を得るための具体的条件やその条件と大量生産との因果関係は明確ではなかった。 Further, as described above, under the conditions assuming that industrial mass production is carried out by the techniques of Patent Documents 2 and 3, clear findings related to pregelatinization even in pregelatinized starch powder having a high degree of crystallinity. And there was no guideline. For example, under the condition of mass-producing pregelatinized starch powder such that the crushed grain is discharged from a heating shear crusher at a discharge rate of 1 kg / hour or more, and further at a discharge rate of 10 kg / hour or more, the altitude as obtained in Patent Document 2 can be obtained. The specific conditions for obtaining pregelatinized starch powder and the like and the causal relationship between the conditions and mass production were not clear.

本発明は、以上の通りの事情に鑑みてなされたものであり、原料穀物を加熱せん断粉砕機に投入して粉砕しアルファ化デンプン粉を製造するに際して、粉砕した穀物の吐出量が多い量産条件において、食品分野や生分解性樹脂への添加剤などに好適なアルファ化デンプン粉を得るために、結晶化度の高い領域から低い領域までの広範囲で結晶化度を制御することができるアルファ化デンプン粉の製造方法を提供することを課題としている。 The present invention has been made in view of the above circumstances, and is a mass production condition in which a large amount of crushed grain is discharged when raw material grains are put into a heating shear crusher and crushed to produce pregelatinized starch powder. In order to obtain pregelatinized starch powder suitable for the food field and additives for biodegradable resins, pregelatinization capable of controlling the degree of crystallization over a wide range from a region having a high degree of crystallization to a region having a low degree of crystallization. An object of the present invention is to provide a method for producing starch powder.

上記の課題を解決するために、本発明のアルファ化デンプン粉の製造方法は、原料穀物を加熱せん断粉砕機に投入して粉砕し、粉砕後の穀物を加熱せん断粉砕機から吐出量1kg/時間以上で吐出するアルファ化デンプン粉の製造方法であって、次式:
Q値=[加熱せん断粉砕機における原料穀物の滞留時間(sec)]×[最大せん断速度(1/sec)]
で表されるQ値が500以上の条件で原料穀物を粉砕することを特徴としている。
In order to solve the above problems, in the method for producing pregelatinized starch powder of the present invention, the raw material grains are put into a heating shear crusher and crushed, and the crushed grains are discharged from the heating shear crusher at a discharge rate of 1 kg / hour. This is a method for producing pregelatinized cereal powder to be discharged as described above.
Q value = [residence time of raw grain in heat shear crusher (sec)] x [maximum shear rate (1 / sec)]
It is characterized in that the raw material grain is crushed under the condition that the Q value represented by is 500 or more.

本発明によれば、原料穀物を加熱せん断粉砕機に投入して粉砕しアルファ化デンプン粉を製造するに際して、粉砕した穀物の吐出量が多い量産条件において、食品分野や生分解性樹脂への添加剤などに好適なアルファ化デンプン粉を得るために、結晶化度の高い領域から低い領域までの広範囲で結晶化度を制御することができる。 According to the present invention, when raw material grains are put into a heating shear crusher and crushed to produce pregelatinized starch powder, they are added to the food field and biodegradable resins under mass production conditions in which the amount of crushed grains discharged is large. In order to obtain pregelatinized starch powder suitable for agents and the like, the degree of crystallization can be controlled in a wide range from a region having a high degree of crystallization to a region having a low degree of crystallization.

本発明の方法を実施するための装置構成の一例を示す概略図(上が上面図、下が側面図)である。It is the schematic (top view, bottom view) which shows an example of the apparatus configuration for carrying out the method of this invention. 図1の装置の要部断面図である。It is sectional drawing of the main part of the apparatus of FIG. 参考例1において製粉処理して得られた米粉と、未粉砕米粒の広角X線回折グラフである。3 is a wide-angle X-ray diffraction graph of rice flour obtained by milling in Reference Example 1 and uncrushed rice grains. 参考例2において吐出量1kg/時間以下で粉砕して得られた米粉の広角X線回折グラフである。6 is a wide-angle X-ray diffraction graph of rice flour obtained by pulverizing rice flour at a discharge rate of 1 kg / hour or less in Reference Example 2. Q値と結晶化度の関係を示すグラフである。It is a graph which shows the relationship between the Q value and the crystallinity.

以下に、本発明を詳細に説明する。 The present invention will be described in detail below.

本発明は、原料穀物を加熱せん断粉砕機に投入して粉砕し、粉砕後の穀物を加熱せん断粉砕機から吐出量1kg/時間以上で吐出するアルファ化デンプン粉の製造方法である。加熱せん断粉砕機からの穀物の吐出量は、1kg/時間以上、3kg/時間以上、5kg/時間以上、または10kg/時間以上である。 The present invention is a method for producing pregelatinized starch powder, in which raw material grains are put into a heat shear crusher and crushed, and the crushed grains are discharged from a heat shear crusher at a discharge rate of 1 kg / hour or more. The amount of grain discharged from the heat shear crusher is 1 kg / hour or more, 3 kg / hour or more, 5 kg / hour or more, or 10 kg / hour or more.

本発明者らは、上記の課題に鑑みて実験と研究を重ねた結果、粉砕機の相対的に移動する2部材(臼式粉砕機や2軸混練粉砕機など)間のギャップが最も小さい箇所のせん断速度を最大せん断速度とし、それと滞留時間(吐出量と対応)との積をQ値と定義したところ、驚くべきことに、結晶化度(アルファ化度と対応)との相対関係が図5のように明確な関係となることを見出し、本発明を完成するに至った。 As a result of repeated experiments and researches in view of the above problems, the present inventors have found that the gap between two relatively moving members of the crusher (such as a mortar crusher and a twin-screw kneading crusher) is the smallest. When the shear rate of is defined as the maximum shear rate and the product of it and the residence time (corresponding to the discharge amount) is defined as the Q value, surprisingly, the relative relationship with the degree of crystallization (corresponding to the degree of pregelatinization) is shown in the figure. We have found that the relationship is as clear as in 5, and have completed the present invention.

結晶化度がQ値で制御できることは、種々の用途でアルファ化米粉と結晶性米粉を併用する点において、Q値でわずかな結晶性を低減させることも非常に重要となる。例えば米粉パンなどはアルファ化米粉と結晶性米粉をブレンドすることで100%米粉パンを製パンすることが可能となることが知られている。しかし本発明によれば、Q値で米の結晶性を制御できることから、粉砕するだけでパンなどの生地の物性を制御することができ、上記のようなブレンドをしなくてもこれまで製造が困難であったグルテンフリー食品等を容易に製造できる。 The fact that the degree of crystallinity can be controlled by the Q value means that it is very important to reduce the slight crystallinity by the Q value in terms of using pregelatinized rice flour and crystalline rice flour in combination for various purposes. For example, it is known that rice flour bread can be made into 100% rice flour bread by blending pregelatinized rice flour and crystalline rice flour. However, according to the present invention, since the crystallinity of rice can be controlled by the Q value, the physical properties of dough such as bread can be controlled only by crushing, and the production has been performed so far without blending as described above. Gluten-free foods, which have been difficult, can be easily produced.

小型臼から中型臼を使用した結果、Q値=最大せん断速度×滞留時間(吐出量)が一義的に結晶化度を左右する重要な因子であることを見出した。結晶化度を低下させるには、Q値を増大させることが必須である。生産量(吐出量)を増加させると滞留時間が短くなるので、結晶化度がある一定以下の値を保持しつつ生産量を上げるには、最大せん断速度を増加させることが必要になる。 As a result of using small to medium mortars, it was found that Q value = maximum shear rate x residence time (discharge amount) is an important factor that uniquely influences the crystallinity. In order to reduce the crystallinity, it is essential to increase the Q value. Since the residence time becomes shorter when the production amount (discharge amount) is increased, it is necessary to increase the maximum shear rate in order to increase the production amount while maintaining the crystallinity below a certain value.

せん断速度は、周速度/ギャップで計算できるので、臼の大型化による周速度増加、あるいはギャップの減少が重要になる。 Since the shear rate can be calculated by the peripheral speed / gap, it is important to increase the peripheral speed or decrease the gap by increasing the size of the mortar.

この関係は、臼式粉砕形状に限定されるものではなく、2軸混練粉砕機など他の粉砕製造方法にも対応することが容易に類推される。すなわち、加熱せん断粉砕機としては、図1および図2に示すような臼式粉砕機の他、本発明の方法を実施することができるものであれば他のいかなる装置を使用してもよい。なお、本発明において「せん断条件下に粉砕する」とは、単に圧縮して粉砕するというものではなく、物体内部にある面に沿って両側部分を互いにずれさせるような作用をもって粉砕することをいう。例えば、原料穀物にせん断力を与えて粉砕するための装置としては、臼式粉砕機の他、相対的に回転する2つのローラの間の微小ギャップに原料穀物を通過させる間にせん断粉砕する装置構成や、小径の円筒形または円柱形部材と大径の円筒形部材とを同心に配置させて相対回転させ、小径部材の外側と大径部材の内側との間の微小ギャップに原料穀物を通過させる間にせん断粉砕する装置構成などを採用することが可能である。 This relationship is not limited to the mortar-type crushing shape, and it can be easily inferred that it corresponds to other crushing manufacturing methods such as a twin-screw kneading crusher. That is, as the heating shear crusher, in addition to the mortar crusher as shown in FIGS. 1 and 2, any other device may be used as long as the method of the present invention can be carried out. In the present invention, "crushing under shear conditions" does not mean simply compressing and crushing, but crushing with an action of shifting both side portions along a surface inside the object. .. For example, as a device for applying a shearing force to a raw material grain to grind it, in addition to a mortar type crusher, a device for shearing and crushing while passing the raw material grain through a minute gap between two relatively rotating rollers. The composition and the small-diameter cylindrical or cylindrical member and the large-diameter cylindrical member are concentrically arranged and rotated relative to each other, and the raw material grain is passed through a minute gap between the outside of the small-diameter member and the inside of the large-diameter member. It is possible to adopt an apparatus configuration such as shear crushing during the process.

本発明の方法では、上記Q値が500以上の条件で原料穀物を粉砕する。Q値が500以上の条件であれば、加熱せん断粉砕機による粉砕後における穀物の結晶化度が、例えば15程度まで下げられたアルファ化デンプン粉を得ることができ、結晶性米粉や増粘多糖類などを混ぜなくてもグルテンフリー食品の加工と製品化が可能となる。また、水や湯を加えるだけで食料とできる程度までアルファされたデンプン粉をはじめとして、特許文献2に記載されたような、非常に高い程度までアルファ化されたデンプン粉も得ることができ、アルファ化の程度を結晶化度の低い範囲で様々にコントロールしたアルファ化デンプン粉を得ることができる。 In the method of the present invention, the raw material grain is crushed under the condition that the Q value is 500 or more. When the Q value is 500 or more, it is possible to obtain pregelatinized starch flour in which the degree of crystallization of grains after crushing by a heating shear crusher is reduced to, for example, about 15, and crystalline rice flour or thickening polysaccharide can be obtained. It is possible to process and commercialize gluten-free foods without mixing sugars. In addition, starch powder that has been pregelatinized to a degree that can be used as food simply by adding water or hot water, and starch powder that has been pregelatinized to a very high degree as described in Patent Document 2 can also be obtained. It is possible to obtain pregelatinized starch powder in which the degree of pregelatinization is variously controlled within a range of low crystallinity.

結晶化度の低いアルファ化デンプン粉を得る点を考慮すると、上記Q値が3500以上の条件で原料穀物を粉砕することが好ましく、上記Q値が9000以上の条件で原料穀物を粉砕することが特に好ましい。このような条件であれば、結晶化度がより低いアルファ化デンプン粉を得ることができ、加熱せん断粉砕機による粉砕後における穀物の結晶化度が、例えば6%未満のアルファ化デンプン粉を得ることもできる。 Considering the point of obtaining pregelatinized starch powder having a low crystallinity, it is preferable to crush the raw material grain under the condition that the Q value is 3500 or more, and the raw material grain can be crushed under the condition that the Q value is 9000 or more. Especially preferable. Under such conditions, pregelatinized starch flour having a lower crystallinity can be obtained, and pregelatinized starch flour having a grain crystallinity of less than 6% after crushing by a heat shear crusher can be obtained, for example. You can also do it.

加熱せん断粉砕機からの穀物の吐出量が1kg/時間以上のような条件では、上記Q値が300000以下の条件で原料穀物を粉砕することが好ましく、100000以下の条件で原料穀物を粉砕することがより好ましい。穀物の吐出量がこのように多い条件でせん断速度を大きくすると、詰まりが生じやすくなる。 Under the condition that the discharge rate of the grain from the heat shear crusher is 1 kg / hour or more, it is preferable to crush the raw grain under the condition that the Q value is 300,000 or less, and the raw grain is crushed under the condition of 100,000 or less. Is more preferable. If the shear rate is increased under such a large amount of grain discharge, clogging is likely to occur.

加熱せん断粉砕機として臼式粉砕機を用いてアルファ化デンプン粉を製造する際には、上臼と下臼のギャップを適宜に調整する。ギャップは、原料とされる穀粒や処理後に得るべき所望の穀粉の大きさなどを考慮し、特に限定されないが、例えば0.5〜0.01mm、特に0.1〜0.01mm程度の範囲内で任意に調整される。次に、臼を所定の温度とした後、臼を所定の回転数(穀物のせん断速度に対応)で回転させる。そして臼式粉砕機に原料穀物を投入し、原料穀物を所定の温度においてせん断条件下に粉砕する。アルファ化の程度を結晶化度の低い範囲で様々に制御したアルファ化デンプン粉を得ることができる点、つまり微小な結晶化度制御もQ値で制御できる点などを考慮すると、粉砕時の温度は、特に限定されないが、例えば常温以上とするか、あるいは40℃以上、好ましくは80℃以上に加熱しながらせん断条件下に粉砕する。粉砕時の温度上限は、特に限定されないが、200℃以下が好ましい。原料穀物の含水率は、特に限定されないが、10%以上が好ましい。 When producing pregelatinized starch powder using a mortar crusher as a heat shear crusher, the gap between the upper mortar and the lower mortar is appropriately adjusted. The gap is not particularly limited in consideration of the grain used as a raw material and the size of the desired flour to be obtained after the treatment, but is, for example, in the range of 0.5 to 0.01 mm, particularly 0.1 to 0.01 mm. It is adjusted arbitrarily within. Next, after the mortar is brought to a predetermined temperature, the mortar is rotated at a predetermined rotation speed (corresponding to the shear rate of the grain). Then, the raw material grain is put into a mortar type crusher, and the raw material grain is crushed at a predetermined temperature under shearing conditions. Considering that it is possible to obtain pregelatinized starch powder in which the degree of pregelatinization is variously controlled in a range of low crystallinity, that is, that minute crystallinity control can also be controlled by a Q value, the temperature at the time of pulverization Is not particularly limited, but is pulverized under shearing conditions while being heated to, for example, room temperature or higher, or 40 ° C. or higher, preferably 80 ° C. or higher. The upper limit of the temperature at the time of pulverization is not particularly limited, but is preferably 200 ° C. or lower. The water content of the raw material grain is not particularly limited, but is preferably 10% or more.

本発明において、アルファ化デンプン粉は、デンプンが主成分である穀物類、たとえば米、小麦、大豆、小豆、そば、芋類、豆類、とうもろこし類などのすべてを対象としており、本発明により簡便かつ短時間でこれらをアルファ化製粉することができる。 In the present invention, the pregelatinized starch flour is intended for all cereals containing starch as a main component, such as rice, wheat, soybeans, adzuki beans, buckwheat, potatoes, legumes, and corn. These can be pregelatinized and milled in a short time.

高度にアルファ化されたデンプン粉は、従来の食品分野への用途だけでなく、様々な分野への用途が期待される。例えば、PLAなどのプラスチックに対しても良好な分散性や相容性を発揮するので、水やグリセリンなどの可塑剤を使用する必要を無くすだけでなく、機械的物性を向上させる効果も得られることから、プラスチック添加剤としても有用である。さらにはバイオエタノール生産時における前処理技術としても有効な方法であり、従来のように原料澱粉の糊化(アルファ化)工程を経ずに高い酵素反応性を付与でき、バイオエタノール生産における糊化(アルファ化)工程を省力できることから生産工程の簡略化も期待できる。 The highly pregelatinized starch powder is expected to be used not only in the conventional food field but also in various fields. For example, since it exhibits good dispersibility and compatibility with plastics such as PLA, it not only eliminates the need to use plasticizers such as water and glycerin, but also has the effect of improving mechanical properties. Therefore, it is also useful as a plastic additive. Furthermore, it is an effective method as a pretreatment technique during bioethanol production, and it is possible to impart high enzymatic reactivity without going through the gelatinization (pregelatinization) step of the raw material starch as in the past, and gelatinization in bioethanol production. Since the (pregelatinization) process can be saved, the production process can be expected to be simplified.

さらに、本発明によれば粉砕条件を任意に選択することで、様々なアルファ化度のアルファ化デンプン粉を製造することができるため、冷水に対する膨潤性の異なる穀物類を製造することができる。すなわち、様々な生地粘度を有する穀物粉を任意に作成可能である。このことは、たとえば米粉100%パンなど従来は生地に粘りが乏しく製パンが実際上不可能であると考えられてきたものや、100%蕎麦における「つなぎ」などについても、本発明により得られるアルファ化デンプン粉を粘度調整剤として応用することが可能となる。 Further, according to the present invention, by arbitrarily selecting the crushing conditions, pregelatinized starch powder having various degrees of pregelatinization can be produced, so that grains having different swelling properties with respect to cold water can be produced. That is, grain flour having various dough viscosities can be arbitrarily produced. This can also be obtained by the present invention for breads such as 100% rice flour bread, which have conventionally been considered to be practically impossible to make bread due to the lack of stickiness of the dough, and "connectors" in 100% buckwheat noodles. It becomes possible to apply pregelatinized starch powder as a viscosity modifier.

さらに、本発明によれば簡単かつ瞬時にデンプンをアルファ化することができることから、煮るという前工程が必要とされていたすべての加工処理についてその必要をなくすこともでき、きわめて広い応用範囲を有する。たとえば、工業材料としての用途として、生分解性樹脂の原料である乳酸を合成する際のデンプンの糖化、プラスチック/デンプンのコンポジット材料、バイオエタノール生産工程などにおいて、本発明の方法によって得られるアルファ化デンプン粉を用いれば、該前工程が不要となり、従来技術が必要としていた炊飯などのアルファ化工程を省略することができるため、コスト面や工程面においてメリットが大きい。その他、酒造過程における発酵、味噌製造時の麹発酵などの際に、従来はデンプンが主原料である穀物類、たとえばとうもろこし、米、小麦粉などを煮る(炊飯)という前工程を必ず要していたが、本発明によって得られるアルファ化デンプンを用いれば、該前工程が不要となり、同様にコスト面や工程面において多大な優位性がある。 Furthermore, according to the present invention, since starch can be easily and instantly pregelatinized, it is possible to eliminate the need for all processing processes that required a pre-step of boiling, and it has an extremely wide range of applications. .. For example, as an industrial material, saccharification of starch in synthesizing lactic acid, which is a raw material of a biodegradable resin, plastic / starch composite material, pregelatinization obtained by the method of the present invention in a bioethanol production process, etc. If starch powder is used, the pre-step is not required, and the pregelatinization step such as rice cooking, which is required by the prior art, can be omitted, which is a great advantage in terms of cost and process. In addition, in the case of fermentation in the sake brewing process, koji fermentation in the production of miso, etc., the pre-process of boiling grains such as corn, rice, and wheat flour, which are mainly made of starch, has always been required (rice cooking). However, if the pregelatinized starch obtained by the present invention is used, the pre-step is unnecessary, and similarly, there is a great advantage in terms of cost and process.

このように、本発明の方法によって得られるアルファ化デンプン粉は、食品としての応用はもちろんのこと、工業材料としての応用性も幅広く期待できるものであって、本発明は幅広い産業分野において著しく高い利用可能性を有する。 As described above, the pregelatinized starch powder obtained by the method of the present invention is expected to be widely applicable not only as a food product but also as an industrial material, and the present invention is remarkably high in a wide range of industrial fields. Has availability.

図1は本発明の方法を実施するための装置構成の一例を示す概略図である。この装置10は、固定設置される上臼11と、この上臼11との間に所定のギャップ13を介して回転可能に設けられる下臼12とを有する。上臼11は中心に米粒などの原料穀物を投入する原料投入口14を有してリング状に形成されている。投入口14は、上臼11の底面においてギャップ13に通じている。下臼12は上臼11と略同一外径を有する円盤形状に形成されている。 FIG. 1 is a schematic view showing an example of an apparatus configuration for carrying out the method of the present invention. The device 10 has a fixedly installed upper mortar 11 and a lower mortar 12 rotatably provided between the upper mortar 11 via a predetermined gap 13. The upper mortar 11 has a raw material input port 14 for inputting raw material grains such as rice grains in the center, and is formed in a ring shape. The insertion port 14 leads to the gap 13 on the bottom surface of the upper mill 11. The lower mortar 12 is formed in a disk shape having substantially the same outer diameter as the upper mortar 11.

下臼12はモータ15により所定速度で回転駆動される。上臼11と下臼12との間のギャップ13はギャップ調整部16の範囲内で調整可能であり、原料とされる穀粒や処理後に得るべき所望の穀粉の大きさなどに応じて、特に限定されないが、例えば0.5〜0.01mm、特に0.1〜0.01mm程度の範囲内で任意に調整される。 The lower mill 12 is rotationally driven by the motor 15 at a predetermined speed. The gap 13 between the upper mill 11 and the lower mill 12 can be adjusted within the range of the gap adjusting portion 16, and is particularly dependent on the grain used as the raw material and the desired size of the flour to be obtained after the treatment. Although not limited, it is arbitrarily adjusted within the range of, for example, 0.5 to 0.01 mm, particularly about 0.1 to 0.01 mm.

上臼11にはヒータ17が設けられる。ヒータ17は上臼11と略同一の外径寸法を有すると共に原料投入口14と略同径の開口を有するリング状に形成されている。ヒータ17は、ヒータコード18を介して温度コントローラ19に接続されており、温度コントローラ19により設定された温度に加熱されることにより、上臼11を全面加熱する。コンピュータ22は、温度コントローラ19による設定温度(データケーブル23から入力)と、熱電対(図示せず)による測定温度(データケーブル21から入力)とを比較して、温度制御ケーブル24を介してヒータ制御信号を温度コントローラ19に与える。 A heater 17 is provided on the upper mill 11. The heater 17 has a ring shape having substantially the same outer diameter as the upper mill 11 and having an opening having substantially the same diameter as the raw material input port 14. The heater 17 is connected to the temperature controller 19 via the heater cord 18, and is heated to the temperature set by the temperature controller 19 to heat the upper mill 11 on the entire surface. The computer 22 compares the set temperature (input from the data cable 23) by the temperature controller 19 with the measured temperature (input from the data cable 21) by the thermocouple (not shown), and heats the heater via the temperature control cable 24. A control signal is given to the temperature controller 19.

また、コンピュータ22はモータ制御ケーブル25を介してモータ制御信号をモータ15に与えて、モータ15による下臼12の回転数を制御する。下臼11の回転数は、ギャップ13に投入された穀粒が固定の上臼11と回転する下臼12との間で受けるせん断速度が目的の値となるように設定される。 Further, the computer 22 gives a motor control signal to the motor 15 via the motor control cable 25 to control the rotation speed of the lower mill 12 by the motor 15. The number of rotations of the lower mortar 11 is set so that the shear rate received by the grains thrown into the gap 13 between the fixed upper mortar 11 and the rotating lower mortar 12 becomes a target value.

上臼11/下臼12の下方にはこれらの外径より十分に大きな内径を有する受け皿26が設けられる。受け皿26の底面には穀粉落下口27が開口しており、この装置10による処理後の穀粉(米粉など)を受け皿26から落下させ、さらに穀粉落下シュート28を経て所定の容器(図示せず)などに収容させるようにしている。 Below the upper mortar 11 / lower mortar 12, a saucer 26 having an inner diameter sufficiently larger than these outer diameters is provided. A flour drop port 27 is opened on the bottom surface of the saucer 26, and the flour (rice flour, etc.) processed by this device 10 is dropped from the saucer 26, and further passed through a flour drop chute 28 to a predetermined container (not shown). I try to accommodate it in such places.

装置10の要部断面図である図2に示されるように、上臼11は、原料投入口14に臨む内面11aから底面11bに至る原料通路11cが断面視においてテーパー状、平面視においては螺旋状に形成されている。原料投入口14の下端部には、テーパー状通路11cによって拡大化された収容部20が形成されているので、原料投入口14に投入された原料穀物はギャップ13に入り込んで剪断粉砕される直前にこの収容部20に入り込み、ヒータ17により加熱された上臼11の内面11aからの伝熱ないし放熱によって加熱される。前述の熱電対は、上臼11の側面から中心に向けて形成した穴に挿入され、上臼11と下臼12の間のギャップ13で剪断粉砕されているときの処理温度を近似的に示している。上臼11および下臼12の各ギャップ13に臨む面には、原料穀物に対する剪断力を増大させるために円周方向と交わる方向に延長する多数条の凹溝が形成されている。 As shown in FIG. 2, which is a cross-sectional view of a main part of the device 10, in the upper mill 11, the raw material passage 11c from the inner surface 11a facing the raw material input port 14 to the bottom surface 11b is tapered in cross-sectional view and spiral in plan view. It is formed in a shape. Since the accommodating portion 20 enlarged by the tapered passage 11c is formed at the lower end of the raw material input port 14, the raw material grain input into the raw material input port 14 enters the gap 13 and is immediately before being sheared and crushed. It enters the accommodating portion 20 and is heated by heat transfer or heat dissipation from the inner surface 11a of the upper mill 11 heated by the heater 17. The thermocouple described above approximately indicates the processing temperature when the thermocouple is inserted into a hole formed from the side surface of the upper mill 11 toward the center and is sheared and crushed in the gap 13 between the upper mill 11 and the lower mill 12. ing. On the surface of the upper mortar 11 and the lower mortar 12 facing the gap 13, a large number of concave grooves extending in the direction intersecting the circumferential direction are formed in order to increase the shearing force on the raw material grain.

次いで、この装置10を用いて行うアルファ化製粉処理について説明する。まず、ギャップ調整部16を介して上臼11と下臼12との間のギャップ13を、原料穀粒や処理後の穀粉の大きさなどに応じて調整する。また、温度コントローラ19によりヒータ17を所定温度(たとえば80〜140℃の範囲内で、10℃刻みで設定可能)に加熱し、その熱伝導によって上臼11を加熱する。また、コンピュータ22によって制御された回転数でモータ15が駆動され、前記所定の剪断速度を与えるように下臼12を回転させる。 Next, the pregelatinized milling treatment performed using this apparatus 10 will be described. First, the gap 13 between the upper mill 11 and the lower mill 12 is adjusted via the gap adjusting portion 16 according to the size of the raw material grains and the processed flour. Further, the temperature controller 19 heats the heater 17 to a predetermined temperature (for example, it can be set in increments of 10 ° C. within the range of 80 to 140 ° C.), and the upper mill 11 is heated by the heat conduction. Further, the motor 15 is driven at a rotation speed controlled by the computer 22 to rotate the lower mill 12 so as to give the predetermined shear rate.

以上で装置10の準備が完了するので、原料穀粒を投入口14に投入して処理を開始する。ヒータ17は既に所定温度に加熱されており、これによって上臼11も加熱されているので、穀粒はヒータ17および投入口14を通過し、さらにテーパー状通路11cないし収容部29を通過する間に該ヒータ温度に対応した温度に加熱され、その直後に、下臼12との間のギャップ13に送り込まれ、固定の上臼11と回転する下臼12との間で剪断力を受けて粉砕される。剪断粉砕によって得られた穀粉(米粉)はギャップ13の側方から放出されて受け皿26に収容され、落下口27および落下シュート28を経て所定の容器(図示せず)に回収される。 Now that the preparation of the apparatus 10 is completed, the raw material grains are put into the inlet 14 and the process is started. Since the heater 17 has already been heated to a predetermined temperature, and the upper mill 11 is also heated by this, the grains pass through the heater 17 and the input port 14, and further pass through the tapered passage 11c to the accommodating portion 29. It is heated to a temperature corresponding to the heater temperature, and immediately after that, it is sent into the gap 13 between the lower mill 12 and receives a shearing force between the fixed upper mill 11 and the rotating lower mill 12 to be crushed. Will be done. The flour (rice flour) obtained by shearing is discharged from the side of the gap 13 and stored in the saucer 26, and is collected in a predetermined container (not shown) via the drop port 27 and the drop chute 28.

以下に、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

以下の例において、せん断速度、滞留時間、Q値、粉砕した米粉の結晶化度は、次の方法で測定した。
(1)最大せん断速度
モータ15の回転数、上下臼11、12の円周から周速度を求め、ギャップ13の値より、次の関係から粉砕した最大せん断速度を定義した。
周速度[mm/s]=(回転数[rpm]×円周[mm])/60
最大せん断速度[1/sec]=周速度[mm/s]/ギャップ[mm])
(2)滞留時間
粉砕時における吐出量の値より、次の関係から滞留時間を定義した。
滞留時間[sec]=1/吐出量
(3)Q値
以下の式からQ値を求めた。
Q値=[加熱せん断粉砕機における原料穀物の滞留時間(sec)]×[最大せん断速度(1/sec)]
(4)結晶化度
広角X線回折の測定結果よりピークを結晶反射と非晶散乱に分離した。得られた非晶散乱によるピークの積分値をS、結晶反射によるピークの積分値をSとする。次の関係から粉砕した米粉の結晶化度を求めた。
結晶化度(%)=(S/(S+S))×100
上記広角X線回折の実験仕様は、次の通りである。
・測定機器 Rigaku社製RINT−RAPID
・測定条件
スキャンスピード 4°/min
測定角度 5〜35°
管電圧 40kV
管電流 30mA
<参考例1>
生米を乳鉢で粗粉砕し広角X線回折を行った。
<参考例2>
一般の貯蔵米として標準的である14.4%の水分含有量の米粒を原料として、図1および図2に示される構成の装置10を用いて実際に製粉処理を行った。使用した装置10において、上臼11、下臼12およびヒータ17はいずれも外径寸法が90mm(半径45mm)であり、その中心に口径10mmの投入口14を有する。上臼11のテーパー状原料通路11cは内面11aから5mmの範囲に亘って形成されている(図2)。臼間のギャップ13は0.01mm(10μm)に固定して、モータ15の回転数は240rpmとし、米粒の投入量を120g/hで、実際の製粉処理を行った。また粉砕温度は120℃で製粉処理を行った。
<参考例3>
参考例2と同じ構成の装置10を用いたが、この例では下臼12の外形寸法を60mm(半径30mm)に変え、臼間のギャップ13を0.01mm(10μm)に固定して、モータ15の回転数は100rpmとし、米粒の投入量を120g/hで実際の製粉処理を行った。また粉砕温度は120℃で製粉処理を行った。
<参考例4>
参考例2と同じ構成の装置10を用いて、臼間のギャップ13を0.01mm(10μm)に固定して、モータ15の回転数は240rpmとし、米粒の投入量を200g/hで実際の製粉処理を行った。また粉砕温度は120℃で製粉処理を行った。
<参考例5>
参考例2と同じ構成の装置10を用いたが、この例では下臼12の外形寸法を60mm(半径30mm)に変え、臼間のギャップ13を0.01mm(10μm)に固定して、モータ15の回転数は240rpmとし、米粒の投入量を200g/hで実際の製粉処理を行った。また粉砕温度は120℃で製粉処理を行った。
In the following examples, the shear rate, residence time, Q value, and crystallinity of crushed rice flour were measured by the following methods.
(1) Maximum shear rate The peripheral speed was obtained from the rotation speed of the motor 15 and the circumferences of the upper and lower mortars 11 and 12, and the maximum shear rate crushed was defined from the value of the gap 13 from the following relationship.
Circumferential speed [mm / s] = (rotation speed [rpm] x circumference [mm]) / 60
Maximum shear rate [1 / sec] = peripheral speed [mm / s] / gap [mm])
(2) Dwelling time The dwelling time was defined from the following relationship from the value of the discharge amount at the time of crushing.
Dwelling time [sec] = 1 / Discharge amount (3) Q value The Q value was calculated from the following formula.
Q value = [residence time of raw grain in heat shear crusher (sec)] x [maximum shear rate (1 / sec)]
(4) Crystallinity The peaks were separated into crystal reflection and amorphous scattering from the measurement results of wide-angle X-ray diffraction. The integral value of the peak due to the resulting amorphous scattering S a, the integral value of the peak due to the crystal reflecting the S c. The crystallinity of the crushed rice flour was determined from the following relationship.
Crystallinity (%) = (S c / (S c + S a )) × 100
The experimental specifications of the wide-angle X-ray diffraction are as follows.
・ Measuring equipment RINT-RAPID manufactured by Rigaku
・ Measurement conditions Scan speed 4 ° / min
Measuring angle 5 to 35 °
Tube voltage 40kV
Tube current 30mA
<Reference example 1>
Raw rice was roughly pulverized in a mortar and subjected to wide-angle X-ray diffraction.
<Reference example 2>
Using rice grains having a water content of 14.4%, which is standard for general stored rice, as a raw material, milling was actually performed using the apparatus 10 having the configuration shown in FIGS. 1 and 2. In the device 10 used, the upper mortar 11, the lower mortar 12, and the heater 17 all have an outer diameter of 90 mm (radius 45 mm), and have an input port 14 having a diameter of 10 mm at the center thereof. The tapered raw material passage 11c of the upper mill 11 is formed over a range of 5 mm from the inner surface 11a (FIG. 2). The gap 13 between the mortars was fixed at 0.01 mm (10 μm), the rotation speed of the motor 15 was 240 rpm, and the amount of rice grains charged was 120 g / h, and the actual milling process was performed. Further, the milling process was performed at a crushing temperature of 120 ° C.
<Reference example 3>
The device 10 having the same configuration as that of Reference Example 2 was used, but in this example, the external dimensions of the lower mortar 12 were changed to 60 mm (radius 30 mm), the gap 13 between the mortars was fixed to 0.01 mm (10 μm), and the motor was used. The rotation speed of 15 was 100 rpm, and the amount of rice grains added was 120 g / h for the actual milling process. Further, the milling process was performed at a crushing temperature of 120 ° C.
<Reference example 4>
Using the device 10 having the same configuration as that of Reference Example 2, the gap 13 between the mortars is fixed to 0.01 mm (10 μm), the rotation speed of the motor 15 is 240 rpm, and the amount of rice grains input is 200 g / h. Milling was performed. Further, the milling process was performed at a crushing temperature of 120 ° C.
<Reference example 5>
The device 10 having the same configuration as that of Reference Example 2 was used, but in this example, the external dimensions of the lower mortar 12 were changed to 60 mm (radius 30 mm), the gap 13 between the mortars was fixed to 0.01 mm (10 μm), and the motor was used. The rotation speed of 15 was set to 240 rpm, and the actual milling process was performed at an input amount of rice grains of 200 g / h. Further, the milling process was performed at a crushing temperature of 120 ° C.

<実施例1>
参考例2と同じ構成の装置10を用いたが、この実施例では、上臼11、下臼12およびヒータ17はいずれも外径寸法が250mm(半径125mm)で形成されている。臼間のギャップ13を0.01mm(10μm)に固定して、モータ15の回転数は50rpmとし、米粒の投入量を6.5kg/hで、実際の製粉処理を行った。また粉砕温度は120℃で製粉処理を行った。
<実施例2>
実施例1と同じ構成の装置を用いて、臼間のギャップ13を0.01mm(10μm)に固定して、モータ15の回転数は100rpmとし、米粒の投入量を6.5kg/hで、実際の製粉処理を行った。また粉砕温度は120℃で製粉処理を行った。
<実施例3>
実施例1と同じ構成の装置を用いて、臼間のギャップ13を0.01mm(10μm)に固定して、モータ15の回転数は50rpmとし、米粒の投入量を11.5kg/hで、実際の製粉処理を行った。また粉砕温度は120℃で製粉処理を行った。
<実施例4>
実施例1と同じ構成の装置を用いて、臼間のギャップ13を0.01mm(10μm)に固定して、モータ15の回転数は100rpmとし、米粒の投入量を11.5kg/hで、実際の製粉処理を行った。また粉砕温度は120℃で製粉処理を行った。
<実施例5>
実施例1と同じ構成の装置を用いて、臼間のギャップ13を0.04mm(40μm)に固定して、モータ15の回転数は45rpmとし、米粒の投入量を6.5kg/hで、実際の製粉処理を行った。また粉砕温度は120℃で製粉処理を行った。
<実施例6>
実施例1と同じ構成の装置を用いて、臼間のギャップ13を0.07mm(70μm)に固定して、モータ15の回転数は45rpmとし、米粒の投入量を4kg/hで、実際の製粉処理を行った。また粉砕温度は120℃で製粉処理を行った。
<実施例7>
実施例1と同じ構成の装置を用いて、臼間のギャップ13を0.1mm(100μm)に固定して、モータ15の回転数は45rpmとし、米粒の投入量を6.5kg/hで、実際の製粉処理を行った。また粉砕温度は120℃で製粉処理を行った。
<実施例8>
実施例1と同じ構成の装置を用いて、臼間のギャップ13を0.3mm(300μm)に固定して、モータ15の回転数は45rpmとし、米粒の投入量を6.5kg/hで、実際の製粉処理を行った。また粉砕温度は120℃で製粉処理を行った。
<実施例9>
実施例1と同じ構成の装置を用いて、臼間のギャップ13を0.5mm(500μm)に固定して、モータ15の回転数は45rpmとし、米粒の投入量を6.5kg/hで、実際の製粉処理を行った。また粉砕温度は120℃で製粉処理を行った。
<実施例10>
実施例1と同じ構成の装置を用いて、臼間のギャップ13を0.7mm(700μm)に固定して、モータ15の回転数は45rpmとし、米粒の投入量を6.5kg/hで、実際の製粉処理を行った。また粉砕温度は120℃で製粉処理を行った。
<Example 1>
The device 10 having the same configuration as that of Reference Example 2 was used, but in this embodiment, the upper mortar 11, the lower mortar 12, and the heater 17 are all formed with an outer diameter of 250 mm (radius 125 mm). The gap 13 between the mortars was fixed at 0.01 mm (10 μm), the rotation speed of the motor 15 was set to 50 rpm, and the amount of rice grains charged was 6.5 kg / h, and the actual milling process was performed. Further, the milling process was performed at a crushing temperature of 120 ° C.
<Example 2>
Using the device having the same configuration as in Example 1, the gap 13 between the mortars was fixed to 0.01 mm (10 μm), the rotation speed of the motor 15 was 100 rpm, and the input amount of rice grains was 6.5 kg / h. The actual milling process was performed. Further, the milling process was performed at a crushing temperature of 120 ° C.
<Example 3>
Using the device having the same configuration as in Example 1, the gap 13 between the mortars was fixed to 0.01 mm (10 μm), the rotation speed of the motor 15 was 50 rpm, and the input amount of rice grains was 11.5 kg / h. The actual milling process was performed. Further, the milling process was performed at a crushing temperature of 120 ° C.
<Example 4>
Using the device having the same configuration as that of the first embodiment, the gap 13 between the mortars was fixed to 0.01 mm (10 μm), the rotation speed of the motor 15 was 100 rpm, and the input amount of rice grains was 11.5 kg / h. The actual milling process was performed. Further, the milling process was performed at a crushing temperature of 120 ° C.
<Example 5>
Using the device having the same configuration as in Example 1, the gap 13 between the mortars was fixed to 0.04 mm (40 μm), the rotation speed of the motor 15 was 45 rpm, and the amount of rice grains charged was 6.5 kg / h. The actual milling process was performed. Further, the milling process was performed at a crushing temperature of 120 ° C.
<Example 6>
Using the device having the same configuration as in Example 1, the gap 13 between the mortars was fixed to 0.07 mm (70 μm), the rotation speed of the motor 15 was 45 rpm, and the amount of rice grains charged was 4 kg / h. Milling was performed. Further, the milling process was performed at a crushing temperature of 120 ° C.
<Example 7>
Using the device having the same configuration as in Example 1, the gap 13 between the mortars was fixed to 0.1 mm (100 μm), the rotation speed of the motor 15 was 45 rpm, and the input amount of rice grains was 6.5 kg / h. The actual milling process was performed. Further, the milling process was performed at a crushing temperature of 120 ° C.
<Example 8>
Using the device having the same configuration as in Example 1, the gap 13 between the mortars was fixed to 0.3 mm (300 μm), the rotation speed of the motor 15 was 45 rpm, and the input amount of rice grains was 6.5 kg / h. The actual milling process was performed. Further, the milling process was performed at a crushing temperature of 120 ° C.
<Example 9>
Using the device having the same configuration as in Example 1, the gap 13 between the mortars was fixed to 0.5 mm (500 μm), the rotation speed of the motor 15 was 45 rpm, and the input amount of rice grains was 6.5 kg / h. The actual milling process was performed. Further, the milling process was performed at a crushing temperature of 120 ° C.
<Example 10>
Using the device having the same configuration as in Example 1, the gap 13 between the mortars was fixed to 0.7 mm (700 μm), the rotation speed of the motor 15 was 45 rpm, and the input amount of rice grains was 6.5 kg / h. The actual milling process was performed. Further, the milling process was performed at a crushing temperature of 120 ° C.

<比較例1>
実施例5と同じ構成の装置を用いて、臼間のギャップ13を1mm(1000・香jに固定して、モータ15の回転数は45rpmとし、米粒の投入量を6.5kg/hで、実際の製粉処理を行った。また粉砕温度は120で製粉処理を行った。
<比較例2>
Q値がゼロつまり未粉砕米粒の結晶化度を表4に示す。
<Comparative example 1>
Using the device having the same configuration as in Example 5, the gap 13 between the mortars was fixed to 1 mm (1000, incense j), the rotation speed of the motor 15 was 45 rpm, and the amount of rice grains charged was 6.5 kg / h. The actual milling process was performed. The milling process was performed at a crushing temperature of 120.
<Comparative example 2>
Table 4 shows the crystallinity of uncrushed rice grains having a Q value of zero.

以上のように、投入量、臼直径、回転数、せん断速度、吐出量、滞留時間などを変更し、各Q値における結晶化度を測定した。その結果を表1〜表4に示す。またこれらの結果をQ値と結晶化度のグラフとして図5に示した。 As described above, the crystallinity at each Q value was measured by changing the input amount, the mortar diameter, the rotation speed, the shear rate, the discharge amount, the residence time, and the like. The results are shown in Tables 1 to 4. Moreover, these results are shown in FIG. 5 as a graph of Q value and crystallinity.

表1〜表4より、粉砕後の米粉を臼式粉砕機から吐出量1kg/時間以上で吐出するような条件では、最大せん断速度と滞留時間の積をQ値と定義したところ、結晶化度との相対関係が図5のように明確な関係となることを見出した。つまり、Q値が一義的に結晶化度を左右する重要な因子であることを見出し、結晶化度を低下させるには、Q値を増大することが必須であること、生産量(吐出量)を増加させると滞留時間が短くなるので、結晶化度がある一定以下の値を保持しつつ生産量を上げるには、最大せん断速度を増加させることが必要になることが明らかになった。 From Tables 1 to 4, the product of the maximum shear rate and the residence time was defined as the Q value under the condition that the crushed rice powder was discharged from the mortar crusher at a discharge rate of 1 kg / hour or more. It was found that the relative relationship with and is a clear relationship as shown in FIG. In other words, we found that the Q value is an important factor that uniquely affects the crystallinity, and in order to reduce the crystallinity, it is essential to increase the Q value, and the production amount (discharge amount). Since the residence time becomes shorter when the amount is increased, it is clarified that it is necessary to increase the maximum shear rate in order to increase the production amount while maintaining the crystallinity below a certain value.

10 加熱せん断粉砕機
11 上臼
11a 内面
11b 底面
11c テーパー状原料通路
12 下臼
13 ギャップ
14 原料投入口
15 モータ
16 ギャップ調整部
17 ヒータ
18 ヒータコード
19 温度コントローラ
20 収容部
21 データケーブル
22 コンピュータ
23 データケーブル
24 温度制御ケーブル
25 モータ制御ケーブル
26 受け皿
27 穀粉落下口
28 穀粉落下シュート
10 Heating shear crusher 11 Upper mortar 11a Inner surface 11b Bottom surface 11c Tapered raw material passage 12 Lower mortar 13 Gap 14 Raw material input port 15 Motor 16 Gap adjustment unit 17 Heater 18 Heater code 19 Temperature controller 20 Storage unit 21 Data cable 22 Computer 23 Data Cable 24 Temperature control cable 25 Motor control cable 26 Usu 27 Grain drop port 28 Grain drop chute

Claims (7)

原料穀物を加熱せん断粉砕機に投入して粉砕し、粉砕後の穀物を加熱せん断粉砕機から吐出量1kg/時間以上で吐出するアルファ化デンプン粉の製造方法であって、次式:
Q値=[加熱せん断粉砕機における原料穀物の滞留時間(sec)]×[最大せん断速度(1/sec)]
で表されるQ値が500以上の条件で原料穀物を粉砕し、
前記Q値を制御することで前記アルファ化デンプン粉の結晶化度を制御する、アルファ化デンプン粉の製造方法。
A method for producing pregelatinized starch powder in which raw material grains are put into a heat shear crusher and crushed, and the crushed grains are discharged from a heat shear crusher at a discharge rate of 1 kg / hour or more.
Q value = [residence time of raw grain in heat shear crusher (sec)] x [maximum shear rate (1 / sec)]
The raw material grain is crushed under the condition that the Q value represented by is 500 or more.
A method for producing pregelatinized starch powder, wherein the crystallinity of the pregelatinized starch powder is controlled by controlling the Q value.
加熱せん断粉砕機が臼式粉砕機である請求項1に記載のアルファ化デンプン粉の製造方法。 The method for producing pregelatinized starch powder according to claim 1, wherein the heat shear crusher is a mortar crusher. Q値が9000以上の条件で原料穀物を粉砕する請求項1または2に記載のアルファ化デンプン粉の製造方法。 The method for producing pregelatinized starch powder according to claim 1 or 2, wherein the raw material grain is crushed under the condition that the Q value is 9000 or more. 加熱せん断粉砕機からの穀物の吐出量が10kg/時間以上である請求項1〜3のいずれか一項に記載のアルファ化デンプン粉の製造方法。 The method for producing pregelatinized starch powder according to any one of claims 1 to 3, wherein the amount of grains discharged from the heat shear crusher is 10 kg / hour or more. 原料穀物を80℃以上の温度に加熱して粉砕する請求項1〜4のいずれか一項に記載のアルファ化デンプン粉の製造方法。 The method for producing pregelatinized starch powder according to any one of claims 1 to 4, wherein the raw material grain is heated to a temperature of 80 ° C. or higher and pulverized. 原料穀物の含水率が10%以上である請求項1〜5のいずれか一項に記載のアルファ化デンプン粉の製造方法。 The method for producing pregelatinized starch powder according to any one of claims 1 to 5, wherein the water content of the raw material grain is 10% or more. 加熱せん断粉砕機による粉砕後における穀物の結晶化度が6%未満である請求項1〜6のいずれか一項に記載のアルファ化デンプン粉の製造方法。 The method for producing pregelatinized starch powder according to any one of claims 1 to 6, wherein the crystallinity of the grain after crushing by a heat shear crusher is less than 6%.
JP2016176945A 2016-09-09 2016-09-09 Method for producing pregelatinized starch powder Active JP6831993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016176945A JP6831993B2 (en) 2016-09-09 2016-09-09 Method for producing pregelatinized starch powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016176945A JP6831993B2 (en) 2016-09-09 2016-09-09 Method for producing pregelatinized starch powder

Publications (2)

Publication Number Publication Date
JP2018038368A JP2018038368A (en) 2018-03-15
JP6831993B2 true JP6831993B2 (en) 2021-02-24

Family

ID=61624339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016176945A Active JP6831993B2 (en) 2016-09-09 2016-09-09 Method for producing pregelatinized starch powder

Country Status (1)

Country Link
JP (1) JP6831993B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019204793A1 (en) * 2018-04-19 2019-10-24 Phytoption Llc Emulsifiers and the uses thereof
WO2023162988A1 (en) * 2022-02-25 2023-08-31 株式会社アルファテック Method for producing gelatinized starch dry powder, gelatinized starch dry powder, gelatinized buckwheat dry powder, and device for producing gelatinized starch dry powder

Also Published As

Publication number Publication date
JP2018038368A (en) 2018-03-15

Similar Documents

Publication Publication Date Title
CA2187725C (en) Starch products having hot or cold water dispersibility and hot or cold swelling viscosity
JP4160109B1 (en) Method for producing amorphous cellulose
EP2112169B1 (en) Process for producing noncrystalline cellulose
JP6831993B2 (en) Method for producing pregelatinized starch powder
JP4160108B1 (en) Method for producing amorphous cellulose
MXPA96004656A (en) Products of starch with dispersibility in cold or hot water and viscosity of cold burning or in calie
CA2762523A1 (en) Process for producing non-crystalline cellulose
Oliveira et al. Physical and thermal properties and X‐ray diffraction of corn flour systems as affected by whole grain wheat flour and extrusion conditions
Kaur et al. Comparative study on functional, rheological, thermal, and morphological properties of native and modified cereal flours
WO2021010447A1 (en) Production method for crystalline sorbitol powder
Guha et al. Changes in rheological properties of rice flour during extrusion cooking
Tian et al. Effect of different milling mechanical forces on the structures and properties of wheat flour
JP7365605B2 (en) Method for producing pregelatinized starch powder
JP4767128B2 (en) Production method and production apparatus for pregelatinized flour
JP5503885B2 (en) Production method of pregelatinized starch powder and production method of plastic additive and composite material
Deng et al. The effect of heat-moisture treatment conditions on the structure properties and functionalities of potato starch.
JP6774810B2 (en) Manufacturing method of noodles containing wheat bran
JP2007075104A5 (en)
JPH0116136B2 (en)
JP2009213472A (en) Method of producing pregelatinized starch
JP2008211997A (en) Method and apparatus for producing pregelatinized grain flour
EP3577159B1 (en) Process for manufacturing particles comprising polylactic acid
JP2005245305A (en) Method for pulverizing food raw material
CN201004974Y (en) Chocolate melting system
JP2006035150A (en) Processing method of bran

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R150 Certificate of patent or registration of utility model

Ref document number: 6831993

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250