JP2021028407A - Titanium alloy sheet, and exhaust system components for automobile - Google Patents

Titanium alloy sheet, and exhaust system components for automobile Download PDF

Info

Publication number
JP2021028407A
JP2021028407A JP2019147376A JP2019147376A JP2021028407A JP 2021028407 A JP2021028407 A JP 2021028407A JP 2019147376 A JP2019147376 A JP 2019147376A JP 2019147376 A JP2019147376 A JP 2019147376A JP 2021028407 A JP2021028407 A JP 2021028407A
Authority
JP
Japan
Prior art keywords
phase
titanium alloy
less
temperature
alloy plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019147376A
Other languages
Japanese (ja)
Other versions
JP7397278B2 (en
Inventor
秀徳 岳辺
Hidenori Takebe
秀徳 岳辺
哲 川上
Akira Kawakami
哲 川上
想祐 西脇
Sosuke Nishiwaki
想祐 西脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019147376A priority Critical patent/JP7397278B2/en
Publication of JP2021028407A publication Critical patent/JP2021028407A/en
Application granted granted Critical
Publication of JP7397278B2 publication Critical patent/JP7397278B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

To provide a titanium alloy sheet in which coarsening of crystal grains is suppressed under a high-temperature environment, and high-temperature strength is excellent.SOLUTION: A titanium alloy sheet contains Cu, Sn, Si, Nb and Al, contains one or both of Cr and Mo, Fe and O are limited to 0.06% or less and 0.07% or less respectively, contains one or two or more kinds of Ni, V, Mn, Zr, Co, Ta, W, C and N by 0.3% or less in total, balance is Ti and impurities, in which a metallic structure consists of an α phase and a second phase, the average crystal grain diameter of the α phase is 10 to 50 μm, and the number of measurement areas having the number density 0.01 piece/μm2 or more is 80% or more of all measurement areas.SELECTED DRAWING: None

Description

本発明は、チタン合金板及び自動車用排気系部品に関する。 The present invention relates to a titanium alloy plate and an exhaust system component for an automobile.

四輪自動車や二輪自動車(以下、自動車等という)の排気装置には、エキゾーストマニホールド及びエキゾーストパイプが備えられている。エンジンから排出され、エキゾーストマニホールドによって集約された排気ガスは、エキゾーストパイプを介して車体後方の排気口から外部に排出される。エキゾーストパイプの途中には、触媒装置やマフラー(消音器)が配置されており、排ガスの浄化及び排気音の消音がなされる。本明細書では、エキゾーストマニホールドからエキゾーストパイプ、排気口までの全体を通して、「排気装置」と称する。また、排気装置を構成するエキゾーストマニホールド、エキゾーストパイプ、触媒装置、マフラーなどの部品を「排気系部品」と称する。 The exhaust system of a four-wheeled vehicle or a two-wheeled vehicle (hereinafter referred to as an automobile or the like) is provided with an exhaust manifold and an exhaust pipe. The exhaust gas discharged from the engine and collected by the exhaust manifold is discharged to the outside from the exhaust port at the rear of the vehicle body via the exhaust pipe. A catalyst device and a muffler (silencer) are arranged in the middle of the exhaust pipe to purify the exhaust gas and muffle the exhaust noise. In the present specification, the entire area from the exhaust manifold to the exhaust pipe to the exhaust port is referred to as an "exhaust device". Further, parts such as an exhaust manifold, an exhaust pipe, a catalyst device, and a muffler constituting the exhaust system are referred to as "exhaust system parts".

従来、自動車等の排気装置の構成部材には、耐食性、高強度や加工性等に優れたステンレス鋼が使用されていたが、近年では、ステンレス鋼よりも軽量であり、高強度で耐食性にも優れるチタン材が使用されつつある。例えば、二輪自動車の排気装置には、JIS2種の工業用純チタン材が使われている。さらに、最近では、JIS2種の工業用純チタン材に代わって、より耐熱性が高いチタン合金が使用されつつある。 Conventionally, stainless steel having excellent corrosion resistance, high strength, workability, etc. has been used as a component of an exhaust device of an automobile or the like, but in recent years, it is lighter than stainless steel, and has high strength and corrosion resistance. Excellent titanium materials are being used. For example, JIS2 type industrial pure titanium material is used for the exhaust system of a two-wheeled vehicle. Furthermore, recently, titanium alloys having higher heat resistance are being used in place of JIS2 type industrial pure titanium materials.

特に最近は、排ガス温度が上昇する傾向にある。そのため、エキゾーストパイプにおける排気ガス温度は、800℃程度に達する場合があり、この温度域においても十分な高温強度の確保が求められる。 Especially recently, the exhaust gas temperature tends to rise. Therefore, the exhaust gas temperature in the exhaust pipe may reach about 800 ° C., and it is required to secure sufficient high temperature strength even in this temperature range.

特許文献1には、Siを0.15〜2質量%含むとともに、Alを0.30質量%未満に規制し、残部チタンおよび不可避的不純物からなる耐高温酸化性に優れたチタン合金が記載されている。
また、特許文献2には、質量基準でAl:0.30〜1.50%と、Si:0.10〜1.0%を含有することを特徴とする耐高温酸化性および耐食性に優れたチタン合金が記載されている。
また、特許文献3には、質量%で、Cu:2.1%超〜4.5%、酸素:0.04%以下、Fe:0.06%以下を含有し、残部Tiおよび不可避的不純物からなる、冷間加工性に優れる排気装置部材用耐熱チタン合金が記載されている。
また、特許文献4には、質量%で、Si:0.1〜0.6%、Fe:0.04〜0.2%、O:0.02〜0.15%であり、FeとOの含有量の合計が、0.1%以上、0.3%以下、残部Tiおよび、単独の含有量が0.04%未満の不可避的不純物からなる、耐酸化性に優れた排気系部品用チタン合金材が記載されている。
Patent Document 1 describes a titanium alloy containing 0.15 to 2% by mass of Si, restricting Al to less than 0.30% by mass, and having excellent high temperature oxidation resistance consisting of residual titanium and unavoidable impurities. ing.
Further, Patent Document 2 is characterized by containing Al: 0.30 to 1.50% and Si: 0.10 to 1.0% on a mass basis, and is excellent in high temperature oxidation resistance and corrosion resistance. Titanium alloys are listed.
Further, Patent Document 3 contains Cu: more than 2.1% to 4.5%, oxygen: 0.04% or less, Fe: 0.06% or less in mass%, and the balance Ti and unavoidable impurities. A heat-resistant titanium alloy for an exhaust device member, which comprises excellent cold workability, is described.
Further, in Patent Document 4, in mass%, Si: 0.1 to 0.6%, Fe: 0.04 to 0.2%, O: 0.02 to 0.15%, and Fe and O. For exhaust system parts with excellent oxidation resistance, consisting of unavoidable impurities having a total content of 0.1% or more, 0.3% or less, residual Ti, and a single content of less than 0.04%. Titanium alloy materials are listed.

しかし、特許文献1〜特許文献4に記載されたチタン合金は、化学成分を限定することで、高温強度を確保しようとするものであり、800℃以上の高温域における強度は必ずしも十分ではなかった。 However, the titanium alloys described in Patent Documents 1 to 4 try to secure high-temperature strength by limiting the chemical composition, and the strength in a high-temperature range of 800 ° C. or higher is not always sufficient. ..

排気ガスの高温化に伴い、排気系部品にはより高い高温強度が求められている。そのため、従来技術では、合金への添加元素量が多くなっている。しかし、添加元素量が多くなると、強度が向上する一方で加工性が低下する問題がある。加工性の低下を抑制するためには、チタン板の製造時に高温で焼鈍すればよいが、高温で焼鈍するとチタン板の結晶粒径が粗大化し、このチタン板からなる排気系部品の使用環境において更に粗大な組織に変化し、使用中に特性劣化するおそれがある。そのため、製造時に比較的低温で粒成長させることで加工性を向上させ、一方、高温環境下では粒成長が抑制されるようなチタン合金が望まれる。
また、排気系部品では、高温酸化が抑制されることも望まれる。
As the temperature of exhaust gas rises, higher high temperature strength is required for exhaust system parts. Therefore, in the prior art, the amount of elements added to the alloy is large. However, when the amount of added elements is large, there is a problem that the strength is improved and the processability is lowered. In order to suppress the deterioration of workability, the titanium plate may be annealed at a high temperature during production, but when annealed at a high temperature, the crystal grain size of the titanium plate becomes coarse, and in the usage environment of the exhaust system parts made of this titanium plate. It may change to a coarser structure and its characteristics may deteriorate during use. Therefore, it is desired to use a titanium alloy that improves workability by growing grains at a relatively low temperature during production, while suppressing grain growth in a high temperature environment.
It is also desired that high temperature oxidation is suppressed in exhaust system parts.

特開2007−270199号公報JP-A-2007-270199 特開2005−290548号公報Japanese Unexamined Patent Publication No. 2005-290548 特開2009−030140号公報JP-A-2009-030140 特開2013−142183号公報Japanese Unexamined Patent Publication No. 2013-142183

本発明は上記事情に鑑みてなされたものであり、加工性に優れ、高温環境下で結晶粒の粗大化が抑制され、高温強度に優れ、更には高温での耐酸化性に優れたチタン合金板及び自動車用排気系部品を提供することを課題とする。 The present invention has been made in view of the above circumstances, and is a titanium alloy having excellent workability, suppression of coarsening of crystal grains in a high temperature environment, excellent high temperature strength, and excellent oxidation resistance at high temperature. An object of the present invention is to provide plates and exhaust system parts for automobiles.

上記課題を解決するため、本発明は以下の構成を採用する。
[1] 質量%で、
Cu:0.7%以上1.5%以下、
Sn:0.5%以上1.5%以下、
Si:0.15%以上0.35%以下、
Nb:0.25%以上1.0%以下、
Al:0%以上1.0%以下を含有し、
更に、Cr、Moの一方または両方を合計で0.05〜0.30%含有し、
Feを0.06%以下、Oを0.07%以下にそれぞれ制限し、
Ni、V、Mn、Zr、Co、Ta、W、C、Nの1種または2種以上を各々0〜0.05%かつ合計で0.3%以下含有し、
残部がTi及び不純物であり、
金属組織がα相と第二相からなり、
前記α相の平均結晶粒径が10〜50μmであり、
断面において任意に選択した100箇所の測定領域毎に前記第二相の個数密度を求めた場合に、個数密度が0.01個/μm以上の測定領域の数が全測定領域の80%以上であることを特徴とするチタン合金板。
[2] 前記第二相の面積率が0.5%以上であることを特徴とする[1]に記載のチタン合金板。
[3] 上記[1]または[2]に記載のチタン合金板からなる、自動車用排気系部品。
In order to solve the above problems, the present invention adopts the following configuration.
[1] By mass%
Cu: 0.7% or more and 1.5% or less,
Sn: 0.5% or more and 1.5% or less,
Si: 0.15% or more and 0.35% or less,
Nb: 0.25% or more and 1.0% or less,
Al: Contains 0% or more and 1.0% or less,
Further, one or both of Cr and Mo are contained in a total of 0.05 to 0.30%.
Limit Fe to 0.06% or less and O to 0.07% or less, respectively.
Contains 1 or 2 or more of Ni, V, Mn, Zr, Co, Ta, W, C and N in an amount of 0 to 0.05% and 0.3% or less in total.
The rest is Ti and impurities,
The metallographic structure consists of α phase and second phase,
The average crystal grain size of the α phase is 10 to 50 μm.
When the number density of the second phase is obtained for each of 100 measurement regions arbitrarily selected in the cross section, the number of measurement regions having a number density of 0.01 / μm 2 or more is 80% or more of the total measurement regions. A titanium alloy plate characterized by being.
[2] The titanium alloy plate according to [1], wherein the area ratio of the second phase is 0.5% or more.
[3] An automobile exhaust system component made of the titanium alloy plate according to the above [1] or [2].

本発明によれば、加工性に優れ、また、高温環境下で結晶粒の粗大化が抑制され、高温強度に優れ、更には高温での耐酸化性に優れたチタン合金板及び自動車用排気系部品を提供できる。 According to the present invention, a titanium alloy plate and an exhaust system for automobiles are excellent in workability, suppress the coarsening of crystal grains in a high temperature environment, are excellent in high temperature strength, and are also excellent in oxidation resistance at high temperature. Can provide parts.

自動車用排気系部品は、チタン合金板を例えばプレス成形することによって得られ、また、自動車用排気系部品は高温環境下で使用される。そのため、自動車用排気系部品の素材となるチタン合金板には、優れた加工性、高温強度、高温での耐酸化性が求められる。また、高温環境下で使用された際に粗粒化しないことも求められる。 The exhaust system parts for automobiles are obtained by, for example, press-molding a titanium alloy plate, and the exhaust system parts for automobiles are used in a high temperature environment. Therefore, the titanium alloy plate used as a material for exhaust system parts for automobiles is required to have excellent workability, high-temperature strength, and high-temperature oxidation resistance. It is also required that it does not coarsen when used in a high temperature environment.

従来の排気系部品の素材としてのチタン合金には、Siが多く含まれている。Siを多く含むチタン合金にはSiを含む金属間化合物が多数析出している。Siを含む金属間化合物を多数析出させることで、高温加熱時に金属間化合物の一部を残存させ、この残存させた金属間化合物によってα相の粒成長を抑制することで高温強度の低下を抑制している。しかし、金属間化合物が多数析出すると、チタン合金の結晶粒径が小さくなり、加工性が低下する。 Titanium alloy as a material for conventional exhaust system parts contains a large amount of Si. A large number of Si-containing intermetallic compounds are precipitated in the titanium alloy containing a large amount of Si. By precipitating a large number of intermetallic compounds containing Si, a part of the intermetallic compound remains during high-temperature heating, and the residual intermetallic compound suppresses the grain growth of the α phase to suppress the decrease in high-temperature strength. doing. However, when a large number of intermetallic compounds are precipitated, the crystal grain size of the titanium alloy becomes small and the processability deteriorates.

一方、Si量が比較的少ないチタン合金は、高温強度を確保するためにAlやSnが多く含有される必要があり、金属組織はほぼα相単相の組織となる。しかし、このようなチタン合金では、高温加熱時に金属間化合物が消失しやすく、高温領域においてα相が著しく粒成長する場合がある。 On the other hand, a titanium alloy having a relatively small amount of Si needs to contain a large amount of Al and Sn in order to secure high-temperature strength, and the metal structure has a substantially α-phase single-phase structure. However, in such a titanium alloy, the intermetallic compound tends to disappear when heated at a high temperature, and the α phase may grow remarkably in a high temperature region.

α相の結晶粒径が小さすぎるチタン合金板は、上述のように、排気系部品に加工する際の加工性が大幅に低下する。そのため、チタン合金板の製造時に、比較的低温の領域(以下、低温領域という場合がある。)において加熱して結晶粒の粒成長を促すことで、加工性及び高温強度を両立させる必要がある。 As described above, a titanium alloy plate having an α-phase crystal grain size having an excessively small crystal grain size significantly reduces workability when processing an exhaust system component. Therefore, when manufacturing a titanium alloy plate, it is necessary to achieve both processability and high-temperature strength by heating in a relatively low temperature region (hereinafter, may be referred to as a low temperature region) to promote grain growth of crystal grains. ..

低温領域での加熱により粒成長を促進するためには、ソリュートドラッグ効果及び第二相によるピン止め効果を抑制する必要がある。ソリュートドラッグ効果はピン止め効果に比べて影響が小さく、高温強度を確保するためには合金元素を多く添加せざるを得ない。従って、ピン止め効果を抑制することで、加工性の向上に必要な結晶粒サイズを確保する必要がある。 In order to promote grain growth by heating in a low temperature region, it is necessary to suppress the solution drug effect and the pinning effect of the second phase. The solution drag effect has a smaller effect than the pinning effect, and a large amount of alloying elements must be added in order to secure high-temperature strength. Therefore, it is necessary to secure the crystal grain size required for improving the workability by suppressing the pinning effect.

低温領域でのピン止め効果は、主に金属間化合物によって得られる。ピン止め効果を抑制して粒成長を促すために、チタンとの間で金属間化合物を形成するCuやSiのような元素の添加量を抑制する必要がある。Cuは、Siよりも低温で金属間化合物を形成する上、高温強度への寄与が大きいので、Cuを含有させる一方でSi量を抑制することが望ましい。 The pinning effect in the low temperature region is mainly obtained by intermetallic compounds. In order to suppress the pinning effect and promote grain growth, it is necessary to suppress the amount of elements such as Cu and Si that form an intermetallic compound with titanium. Since Cu forms an intermetallic compound at a lower temperature than Si and has a large contribution to high-temperature strength, it is desirable to contain Cu while suppressing the amount of Si.

さらに、低温領域よりも高い温度領域である高温領域での粒成長を抑制するためには、β相を形成しやすくする必要がある。しかしながら、β相が増えすぎると耐酸化性が劣化するため、緩やかにβ相が増加するとともにα相に固溶しても耐酸化性の劣化を抑制できることが望ましい。 Furthermore, in order to suppress grain growth in the high temperature region, which is a higher temperature region than the low temperature region, it is necessary to facilitate the formation of the β phase. However, if the β phase increases too much, the oxidation resistance deteriorates. Therefore, it is desirable that the β phase gradually increases and the deterioration of the oxidation resistance can be suppressed even if the β phase is dissolved in the α phase.

以上の観点から、Cu、Sn、Si、Nbやその他のβ安定化元素を鋭意調査した結果、CrとMoがβ相の形成を促進させるために効果的であることが判明した。CrまたはMoの適量を含有させることによって、750℃以上の高温領域でも結晶粒の粗大化を抑制できることを見出した。 From the above viewpoints, as a result of diligent investigation of Cu, Sn, Si, Nb and other β-stabilizing elements, it was found that Cr and Mo are effective for promoting the formation of β phase. It has been found that by containing an appropriate amount of Cr or Mo, coarsening of crystal grains can be suppressed even in a high temperature region of 750 ° C. or higher.

また、自動車用排気系部品の使用時の高温環境下において金属組織中にβ相が偏って析出すると、微細粒と粗大粒が混在した混粒組織となり、疲労特性に悪影響を生じることが懸念されるため、高温領域において均一にβ相が分散するように化学成分のばらつきを抑制することも好ましい。 In addition, if the β phase is unevenly deposited in the metal structure in a high temperature environment when the exhaust system parts for automobiles are used, a mixed grain structure in which fine grains and coarse grains are mixed may be formed, which may adversely affect the fatigue characteristics. Therefore, it is also preferable to suppress the variation in the chemical composition so that the β phase is uniformly dispersed in the high temperature region.

また、チタン合金板を排気系部品に加工する際の加工性を十分に確保するために、α相の平均結晶粒径を一定以上に制御し、また、加工時の肌荒れ防止のために、平均結晶粒径を大きくしすぎないことも好ましい。
以上の観点から鋭意検討したところ、本実施形態のチタン合金板を完成させるに至った。
In addition, in order to ensure sufficient workability when processing titanium alloy plates into exhaust system parts, the average crystal grain size of the α phase is controlled to a certain level or higher, and in order to prevent rough skin during processing, the average It is also preferable not to make the crystal grain size too large.
As a result of diligent studies from the above viewpoints, the titanium alloy plate of the present embodiment was completed.

以下、本実施形態のチタン合金板及び自動車用排気系部品について説明する。
本実施形態のチタン合金板は、質量%で、Cu:0.7%以上1.5%以下、Sn:0.5%以上1.5%以下、Si:0.15%以上0.35%以下、Nb:0.25%以上1.0%以下、Al:0%以上1.0%以下を含有し、更に、Cr,Moの一方または両方を合計で0.05〜0.30%含有し、Feを0.06%以下、Oを0.07%以下にそれぞれ制限し、Ni、V、Mn、Zr、Co、Ta、W、C、Nの1種または2種以上を各々0〜0.05%かつ合計で0.3%以下含有し、残部がTi及び不純物であり、金属組織がα相と第二相からなり、α相の平均結晶粒径が10〜50μmであり、断面において任意に選択した100箇所の測定領域毎に第二相の個数密度を求めた場合に、個数密度が0.01個/μm以上の測定領域の数が全測定領域の80%以上のチタン合金板である。
また、本実施形態のチタン合金板は、第二相の面積率が0.5%以上であることが好ましい。
次に、本実施形態の自動車用排気系部品は、上記のチタン合金板からなることが好ましい。
Hereinafter, the titanium alloy plate and the exhaust system parts for automobiles of the present embodiment will be described.
The titanium alloy plate of the present embodiment has Cu: 0.7% or more and 1.5% or less, Sn: 0.5% or more and 1.5% or less, Si: 0.15% or more and 0.35% in mass%. Hereinafter, Nb: 0.25% or more and 1.0% or less, Al: 0% or more and 1.0% or less, and one or both of Cr and Mo are contained in a total of 0.05 to 0.30%. Then, Fe is limited to 0.06% or less, O is limited to 0.07% or less, and one or more of Ni, V, Mn, Zr, Co, Ta, W, C, and N are 0 to 0, respectively. It contains 0.05% and 0.3% or less in total, the balance is Ti and impurities, the metal structure is composed of α phase and second phase, the average crystal grain size of α phase is 10 to 50 μm, and the cross section is When the number density of the second phase is obtained for each of the 100 measurement regions arbitrarily selected in the above, the number of measurement regions having a number density of 0.01 / μm 2 or more is 80% or more of the total measurement region. It is an alloy plate.
Further, the titanium alloy plate of the present embodiment preferably has a second phase area ratio of 0.5% or more.
Next, the automobile exhaust system component of the present embodiment is preferably made of the above titanium alloy plate.

まず、本実施形態のチタン合金板の化学成分について説明する。なお、化学成分の含有量の単位である「%」は、「質量%」を意味する。 First, the chemical composition of the titanium alloy plate of the present embodiment will be described. In addition, "%" which is a unit of the content of a chemical component means "mass%".

Cu:0.7〜1.5%
十分な高温強度を確保するためにはCuを0.7%以上含有させる必要がある。一方、Cu量が1.5%を超えると、鋳塊製造時にCuが偏析する可能性が高くなる。そのため、Cu量の上限を1.5%以下とする。より好ましいCu量は0.8〜1.3%の範囲である。
Cu: 0.7-1.5%
In order to secure sufficient high temperature strength, it is necessary to contain Cu in 0.7% or more. On the other hand, if the amount of Cu exceeds 1.5%, there is a high possibility that Cu will segregate during ingot production. Therefore, the upper limit of the amount of Cu is set to 1.5% or less. A more preferable amount of Cu is in the range of 0.8 to 1.3%.

Sn:0.5〜1.5%
十分な高温強度を確保するためには、Snを0.5%以上含有させる必要がある。一方、Snは金属間化合物を形成しがたいため、多量に含有させることもできるが、α相中のCu及びSi固溶限度が低下するため、Sn量は1.5%以下にしておく必要がある。また、Snは比重が大きな元素であり、多量に加えても原子数比率で比較するとさほど多くないため、固容強化への寄与が小さいことも、含有量の上限を制限する理由である。より好ましいSn量は0.8〜1.3%の範囲である。
Sn: 0.5 to 1.5%
In order to secure sufficient high temperature strength, it is necessary to contain Sn at 0.5% or more. On the other hand, since it is difficult to form an intermetallic compound, Sn can be contained in a large amount, but since the Cu and Si solid solution limits in the α phase are lowered, the Sn amount needs to be 1.5% or less. There is. Further, Sn is an element having a large specific gravity, and even if it is added in a large amount, it is not so large when compared in terms of atomic number ratio. Therefore, the contribution to solidification enhancement is small, which is also a reason for limiting the upper limit of the content. A more preferable Sn amount is in the range of 0.8 to 1.3%.

Si:0.15〜0.35%
耐酸化性及び高温強度を確保するためには、Siを0.15%以上含有させる必要がある。一方、Si量が0.35%を超えるとシリサイドが形成され、粒成長を著しく阻害してしまう。よって、Si量を0.35%以下とする。より好ましいSi量は0.15〜0.25%の範囲である。
Si: 0.15-0.35%
In order to secure oxidation resistance and high temperature strength, it is necessary to contain 0.15% or more of Si. On the other hand, if the amount of Si exceeds 0.35%, silicide is formed, which significantly inhibits grain growth. Therefore, the amount of Si is set to 0.35% or less. A more preferable amount of Si is in the range of 0.15 to 0.25%.

Nb:0.25〜1.0%
耐酸化性を確保するためには、Nbを0.25%以上含有させる必要がある。Nbを多く含有するほど耐酸化性は向上するが、原料コストが上昇することに加えて、耐酸化性の向上効果が頭打ちになってくるため、Nbの上限を1.0%以下とする。より好ましいNb量は0.3〜0.5%の範囲である。
Nb: 0.25 to 1.0%
In order to ensure oxidation resistance, it is necessary to contain Nb in an amount of 0.25% or more. The more Nb is contained, the higher the oxidation resistance is improved, but in addition to the increase in raw material cost, the effect of improving the oxidation resistance reaches a plateau, so the upper limit of Nb is set to 1.0% or less. A more preferable amount of Nb is in the range of 0.3 to 0.5%.

Al:0〜1.0%
Alは任意選択元素であり、高温強度を確保するために含有させてもよいが、Al量が多くなると、α相を安定化させてβ相の形成を抑制してしまう。また、冷延性も大きく低下してしまう。そのため、Alを含有させる場合は最大で1.0%以下とする必要がある。Alは任意選択元素であるため下限を0%とするが、高温強度を確保するためにAl量を0.1%以上含有させてもよい。
Al: 0-1.0%
Al is an optional element and may be contained in order to secure high-temperature strength, but when the amount of Al increases, the α phase is stabilized and the formation of the β phase is suppressed. In addition, the cold ductility is greatly reduced. Therefore, when Al is contained, it is necessary to make it 1.0% or less at the maximum. Since Al is an optional element, the lower limit is set to 0%, but the amount of Al may be 0.1% or more in order to secure high-temperature strength.

Cr、Moの一方または両方を合計で0.05〜0.30%
Cr及びMoを含有させることでβ相が形成され始める温度が低下する。そのため、高温環境下での使用によりβ相が析出しやすくなり、このβ相が、高温でのα相の粒成長を抑制するようになる。そのためにはCr及びMoの一方または両方の合計量を0.05%以上にする必要がある。一方、CrやMoが過剰に含有すると、チタン合金板の製造時のα相の平均結晶粒径の調整時に粒成長を阻害するようになる。また、CrやMoの過剰な含有によって室温での強度が高くなり、スプリングバックによる成形狙い形状とのずれが生じやすくなる。そのため、Cr及びMoの一方または両方の上限を0.30%以下とする。
One or both of Cr and Mo are 0.05 to 0.30% in total.
The inclusion of Cr and Mo lowers the temperature at which the β phase begins to form. Therefore, the β phase is likely to be precipitated by use in a high temperature environment, and this β phase suppresses the grain growth of the α phase at a high temperature. For that purpose, it is necessary to make the total amount of one or both of Cr and Mo 0.05% or more. On the other hand, if Cr or Mo is excessively contained, grain growth will be inhibited when the average crystal grain size of the α phase is adjusted during the production of the titanium alloy plate. Further, the excessive content of Cr and Mo increases the strength at room temperature, and the shape tends to deviate from the target shape due to springback. Therefore, the upper limit of one or both of Cr and Mo is set to 0.30% or less.

Fe:0.06%以下
Fe量が多すぎると、低温域からβ相が生じやすくなるため、粒成長が阻害されるようになる。また、Cr及びMoの適正な含有量の範囲が狭くなることで、制御を難しくする。そのため、Feは少ないほどよく、多くても0.06%以下に制限する必要がある。
Fe: 0.06% or less If the amount of Fe is too large, β phase is likely to be generated from the low temperature region, so that grain growth is inhibited. Further, the range of appropriate contents of Cr and Mo is narrowed, which makes control difficult. Therefore, the smaller the amount of Fe, the better, and it is necessary to limit the amount to 0.06% or less at the maximum.

O:0.07%以下
Oは室温強度を増加させるが、高温強度はほとんど向上させない。そのため、スプリングバック量が大きくなるだけであり、少ないことに越したことはない。ただし、工業的に酸素(O)を低減させることは難しく、極端に低減すると原料コストが上昇するため、0.04%程度は含有され、ばらつきを考慮すると0.07%程度になることもある。そのため、Oの上限を0.07%以下に制限する。
O: 0.07% or less O increases the room temperature strength, but hardly improves the high temperature strength. Therefore, the amount of springback is only large, and it is better to be small. However, it is difficult to reduce oxygen (O) industrially, and if it is extremely reduced, the raw material cost will increase. Therefore, about 0.04% is contained, and considering the variation, it may be about 0.07%. .. Therefore, the upper limit of O is limited to 0.07% or less.

Ni、V、Mn、Zr、Co、Ta、W、C、Nの1種または2種以上を各々0〜0.05%かつ合計で0.3%以下
Ni,V,Mn,Zr,Co,Ta,Wはいずれもβ相を安定化する効果を少なからず有する。そのため、本実施形態のように、Nb、Cr、Moでα相およびβ相を制御するにあたっては、これらの元素は少ないほうがよい。また、N及びCが過剰に含有されると、α相を安定化するとともに、室温での強度を高めるために、加工性が劣化する。そのため、N及びCも少ないほうがよい。従って、これらの元素の上限をそれぞれ0.05%以下とするとともに、これらの元素の合計量を0.3%以下にする。
One or more of Ni, V, Mn, Zr, Co, Ta, W, C, N of 0 to 0.05% each and 0.3% or less in total Ni, V, Mn, Zr, Co, Both Ta and W have a considerable effect of stabilizing the β phase. Therefore, when controlling the α phase and β phase with Nb, Cr, and Mo as in the present embodiment, it is preferable that these elements are small. Further, when N and C are excessively contained, the α phase is stabilized and the workability is deteriorated in order to increase the strength at room temperature. Therefore, it is better that N and C are also small. Therefore, the upper limit of each of these elements is set to 0.05% or less, and the total amount of these elements is set to 0.3% or less.

本実施形態のチタン合金板の残部は、Ti及び上記以外の他の不純物である。 The rest of the titanium alloy plate of this embodiment is Ti and other impurities other than the above.

次に、本実施形態のチタン合金板の組織について説明する。
本実施形態のチタン合金板は、組織中に、平均結晶粒径10μm以上50μm以下のα相と、第二相とが含有される。第二相はα相以外の組織であり、主に金属間化合物である。α相は金属組織の大部分を占める組織であり、金属組織の残部が第二相となる。
Next, the structure of the titanium alloy plate of the present embodiment will be described.
The titanium alloy plate of the present embodiment contains an α phase having an average crystal grain size of 10 μm or more and 50 μm or less and a second phase in the structure. The second phase is a structure other than the α phase and is mainly an intermetallic compound. The α phase is a structure that occupies most of the metal structure, and the rest of the metal structure is the second phase.

α相の平均結晶粒径:10〜50μm
α相の平均結晶粒径が小さいと、耐力が増加してスプリングバック量が多くなるため、狙いの成形形状を得難くなる上、加工性(加工限界)も低下する。そのため、平均結晶粒径を10μm以上にする必要がある。一方、平均結晶粒径が大きすぎると成形加工時に表面にしわなどの模様が発生するため、外観上望ましくなく、加工性の向上も頭打ちになってくる。そのため、結晶粒径は50μm以下とする必要がある。なお、平均結晶粒径は切断法で求めた値とする。具体的には、α相の平均結晶粒径は、チタン合金板のL断面上に、一辺が100μm以上の正方形の領域を設け、この領域において圧延方向に平行な長さ100μm以上(上限は前記正方形領域の一辺の長さ)の線分を等間隔に5本以上引いて、その線分が切断する結晶粒の平均個数から算出する。α相の判別は、測定領域を走査型電子顕微鏡(SEM)により観察し、反射電子像からα相を判別する。第二相は母相であるα相に比べて白色もしくは黒色であるため、これらを除いた領域をα相とする。
Average crystal grain size of α phase: 10 to 50 μm
If the average crystal grain size of the α phase is small, the yield strength increases and the amount of springback increases, so that it becomes difficult to obtain the desired molded shape and the workability (processing limit) also decreases. Therefore, it is necessary to set the average crystal grain size to 10 μm or more. On the other hand, if the average crystal grain size is too large, patterns such as wrinkles are generated on the surface during the molding process, which is not desirable in appearance, and the improvement in workability also reaches a plateau. Therefore, the crystal grain size needs to be 50 μm or less. The average crystal grain size is a value obtained by the cutting method. Specifically, the average crystal grain size of the α phase is such that a square region having a side of 100 μm or more is provided on the L cross section of the titanium alloy plate, and a length of 100 μm or more parallel to the rolling direction is provided in this region (the upper limit is the above). Draw five or more line segments (the length of one side of the square region) at equal intervals, and calculate from the average number of crystal grains that the line segments cut. To discriminate the α phase, the measurement region is observed with a scanning electron microscope (SEM), and the α phase is discriminated from the reflected electron image. Since the second phase is whiter or blacker than the α phase, which is the parent phase, the region excluding these is referred to as the α phase.

また、本実施形態のチタン合金板のα相は等軸粒であることが好ましい。具体的には、α相の結晶粒のアスペクト比(長軸径/短軸径)が3以下であることが好ましい。後述するように熱延板焼鈍または中間焼鈍においてβ変態点以上に加熱することで一旦針状結晶粒が形成されるが、その後の冷間圧延と最終焼鈍によって再結晶化が起こり、等軸の結晶粒が形成される。アスペクト比は、チタン合金板のL断面上においてα相の結晶粒の長軸径/短軸径の比であるアスペクト比を求め、10個の結晶粒のアスペクト比の平均値とする。 Further, the α phase of the titanium alloy plate of the present embodiment is preferably equiaxed grains. Specifically, it is preferable that the aspect ratio (major axis diameter / minor axis diameter) of the α-phase crystal grains is 3 or less. As will be described later, needle-like crystal grains are once formed by heating above the β transformation point in hot-rolled sheet annealing or intermediate annealing, but recrystallization occurs by subsequent cold rolling and final annealing, resulting in equiaxed. Crystal grains are formed. For the aspect ratio, the aspect ratio, which is the ratio of the major axis diameter / minor axis diameter of the α-phase crystal grains on the L cross section of the titanium alloy plate, is obtained and used as the average value of the aspect ratios of the 10 crystal grains.

次に、第二相の分布状態について説明する。本実施形態のチタン合金板は、金属組織の大部分がα相からなり、残部が第二相からなる。第二相の主なものは、各種の金属間化合物である。これらの金属間化合物が含有されることによって、高温環境下でのα相の粒成長がピン止め効果により抑制されて高温強度が向上する。ただし、金属組織中に第二相が不均一に分布すると、高温環境下でのα相の粒成長の程度が局所的に異なり、混粒組織となり、疲労特性が劣化する。そのため、第二相が金属組織中に均一に分布している必要がある。 Next, the distribution state of the second phase will be described. In the titanium alloy plate of the present embodiment, most of the metal structure is composed of the α phase, and the rest is composed of the second phase. The main components of the second phase are various intermetallic compounds. By containing these intermetallic compounds, the grain growth of the α phase in a high temperature environment is suppressed by the pinning effect, and the high temperature strength is improved. However, if the second phase is unevenly distributed in the metal structure, the degree of grain growth of the α phase in a high temperature environment is locally different, resulting in a mixed grain structure and deterioration of fatigue characteristics. Therefore, the second phase needs to be uniformly distributed in the metallographic structure.

第二相の分布の均一性の指標として、第二相の個数密度に着目する。チタン合金板の断面の複数箇所において個数密度を測定し、一定以上の個数密度の箇所が多ければ、ピン止め効果が生じ、混粒組織が得られにくくなる。 As an index of the uniformity of the distribution of the second phase, we focus on the number density of the second phase. The number densities are measured at a plurality of points on the cross section of the titanium alloy plate, and if there are many points having a number density above a certain level, a pinning effect is produced and it becomes difficult to obtain a mixed grain structure.

そこで本実施形態では、チタン合金板の断面において任意に選択した100箇所の測定領域毎に第二相の個数密度を求めた場合に、個数密度が0.01個/μm以上の測定領域の数が全測定領域の80%以上であることが好ましい。第二相の分布状態がこの条件を満たす場合に、高温加熱時にα相の混粒組織が生じにくくなり、高温での粗粒化が抑制され、高温環境下での強度が向上し、また、疲労強度も向上する。 Therefore, in the present embodiment, when the number density of the second phase is obtained for each of 100 measurement regions arbitrarily selected in the cross section of the titanium alloy plate, the number density is 0.01 / μm 2 or more in the measurement region. The number is preferably 80% or more of the total measurement area. When the distribution state of the second phase satisfies this condition, the mixed grain structure of the α phase is less likely to occur during high temperature heating, coarsening at high temperature is suppressed, the strength under high temperature environment is improved, and the strength is improved. Fatigue strength is also improved.

チタン合金板のL断面において、一辺が100μmの領域を10×10に等分割した各々の領域を測定領域(一辺が10μmの領域100個を測定領域として用いる)とし、各測定領域毎に、第二相の単位面積あたりの個数を求めることにより、個数密度を求める。このときの個数密度が0.01個/μm以上の測定領域の数が全測定領域の80%以上となることが好ましい。 In the L cross section of the titanium alloy plate, each region obtained by equally dividing a region having a side of 100 μm into 10 × 10 is used as a measurement region (100 regions having a side of 10 μm are used as measurement regions), and each measurement region is divided into a second region. The number density is obtained by obtaining the number of two phases per unit area. At this time, the number of measurement regions having a number density of 0.01 / μm 2 or more is preferably 80% or more of the total measurement regions.

一辺が100μmの領域の位置は、チタン合金の断面の任意の位置とする。測定領域を走査型電子顕微鏡(SEM)により観察し、反射電子像からα相と第二相とを判別する。金属間化合物である第二相は、母相であるα相に比べて白色もしくは黒色であるとともに微細な析出物であるため、この特徴から第二相と識別できる。そして、測定領域内の第二相の個数を計数して、各測定領域毎の第二相の個数密度(個/μm)を求める。そして、第二相の個数密度が0.01個/μm以上の測定領域の数を計数し、その数を測定領域の全数で除することで、0.01個/μm以上の測定領域の割合を求める。 The position of the region having a side of 100 μm is an arbitrary position on the cross section of the titanium alloy. The measurement area is observed with a scanning electron microscope (SEM), and the α phase and the second phase are discriminated from the reflected electron image. The second phase, which is an intermetallic compound, is whiter or blacker than the α phase, which is the parent phase, and is a fine precipitate. Therefore, it can be distinguished from the second phase from this feature. Then, the number of the second phase in the measurement region is counted, and the number density (piece / μm 2 ) of the second phase for each measurement region is obtained. Then, by counting the number of measurement regions having a number density of 0.01 / μm 2 or more in the second phase and dividing the number by the total number of measurement regions, the measurement regions of 0.01 / μm 2 or more are obtained. To find the ratio of.

第二相の面積率が0.5%以上
金属組織における第二相の面積分率は、0.01%以上が好ましく、0.05%以上がより好ましく、0.1%以上が更に好ましく、0.5%以上であることがより好ましい。第二相が0.01%以上の面積率で存在すると、α相の固溶元素量が減少することで固溶強化量が減少する。それによって0.2%耐力を大きく減少させることが可能となり、その結果、スプリングバックを抑制することが可能となる。特に、第二相の面積分率を0.5%以上とすることで、0.2%耐力を大きく減少させ、加工性を高めることができる。第二相の面積率の上限は、3%以下が好ましく、2%以下がより好ましい。
The area ratio of the second phase is 0.5% or more. The surface integral ratio of the second phase in the metal structure is preferably 0.01% or more, more preferably 0.05% or more, further preferably 0.1% or more. More preferably, it is 0.5% or more. When the second phase exists at an area ratio of 0.01% or more, the amount of solid solution strengthening decreases due to the decrease in the amount of solid solution elements in the α phase. As a result, the 0.2% proof stress can be significantly reduced, and as a result, springback can be suppressed. In particular, by setting the surface integral ratio of the second phase to 0.5% or more, the 0.2% proof stress can be greatly reduced and the workability can be improved. The upper limit of the area ratio of the second phase is preferably 3% or less, more preferably 2% or less.

第二相の面積分率は、第二相の個数密度と同じ領域で測定を行う。上記の一辺が100μmの領域を走査型電子顕微鏡(SEM)により観察し、反射電子像からα相と第二相とを判別する。金属間化合物である第二相は、母相であるα相に比べて白色もしくは黒色であるとともに微細な析出物であるため、この特徴から第二相と識別できる。そして、領域内の第二相の面積を測定し、第二相の面積率(%)を求める。 The surface integral of the second phase is measured in the same region as the number density of the second phase. The region having a side of 100 μm is observed with a scanning electron microscope (SEM), and the α phase and the second phase are discriminated from the reflected electron image. The second phase, which is an intermetallic compound, is whiter or blacker than the α phase, which is the parent phase, and is a fine precipitate. Therefore, it can be distinguished from the second phase from this feature. Then, the area of the second phase in the region is measured, and the area ratio (%) of the second phase is obtained.

本実施形態のチタン合金板は、以下の特性を有することが好ましい。 The titanium alloy plate of the present embodiment preferably has the following characteristics.

全伸び:25%以上
成形加工後の部品形状にもよるが、少なくともチタン合金板を管形状に成形・溶接できることが必要である。また、その後は管の曲げ加工が必要になる。従って、本実施形態のチタン合金板は、加工性を向上するために、少なくとも全伸びが25%以上であることが好ましい。
Total elongation: 25% or more It is necessary that at least a titanium alloy plate can be formed and welded into a tube shape, although it depends on the shape of the part after molding. After that, it is necessary to bend the pipe. Therefore, the titanium alloy plate of the present embodiment preferably has at least a total elongation of 25% or more in order to improve workability.

0.2%耐力:380MPa以下
本実施形態のチタン合金板は、化学組成の違いによるヤング率の差が非常に小さいので、0.2%耐力がスプリングバック量に大きく影響する。ヤング率は100〜110GPaであるため、0.2%耐力の10MPaの増加分が、スプリングバック量の約0.01%に対応する。0.2%耐力が低い場合は280MPa程度になるため、スプリングバック量が大きく異なることが無いように0.1%の差を許容するとし、本実施形態のチタン合金板の0.2%耐力は380MPa以下とすることが好ましい。これにより、加工性が向上する。
0.2% proof stress: 380 MPa or less Since the difference in Young's modulus due to the difference in chemical composition of the titanium alloy plate of this embodiment is very small, the 0.2% proof stress greatly affects the amount of springback. Since Young's modulus is 100 to 110 GPa, an increase of 0.2% proof stress of 10 MPa corresponds to about 0.01% of the springback amount. If the 0.2% proof stress is low, it will be about 280 MPa, so a difference of 0.1% is allowed so that the springback amount does not differ significantly, and the 0.2% proof stress of the titanium alloy plate of the present embodiment is assumed. Is preferably 380 MPa or less. This improves workability.

全伸び及び0.2%耐力は、室温引張試験を行うことにより測定する。室温での引張試験は、上記のチタン合金板から、長手方向が圧延方向に対して平行のASTMサブサイズ引張試験片を採取し、ひずみ速度を、0.2%耐力の測定では0.5%/minとし、伸びの測定では30%/minとして行う。試験温度は10〜35℃の範囲内とする。 Total elongation and 0.2% proof stress are measured by performing a room temperature tensile test. In the tensile test at room temperature, an ASTM subsize tensile test piece whose longitudinal direction is parallel to the rolling direction is taken from the above titanium alloy plate, and the strain rate is measured by 0.2% and the proof stress is 0.5%. It is set to / min, and the elongation is measured at 30% / min. The test temperature shall be in the range of 10 to 35 ° C.

エリクセン値:10.0mm以上
エリクセン試験は深絞りと張出の要素を評価するため、管形状以外への成形では重要である。純チタン(ASTM Grade2)のエリクセン値が10〜11mmであるため、本実施形態のチタン合金板は、エリクセン値が10.0mm以上であることが加工性向上のために好ましい。
Eriksen value: 10.0 mm or more The Eriksen test evaluates the factors of deep drawing and overhang, so it is important for molding other than tube shape. Since the Eriksen value of pure titanium (ASTM Grade 2) is 10 to 11 mm, the titanium alloy plate of the present embodiment preferably has an Eriksen value of 10.0 mm or more in order to improve workability.

エリクセン値は、JIS Z 2247(2006)に規定するエリクセン試験方法に準じて測定する。測定サンプルの板厚は0.1〜2mmの範囲とし、幅は90mm以上とする。試験機はJIS B 7729に記載された通りとする。ジグ寸法は標準試験片による試験の寸法を用いる。ただし、潤滑剤には厚さ50μmのテフロンシートを用いる。 The Eriksen value is measured according to the Eriksen test method specified in JIS Z 2247 (2006). The plate thickness of the measurement sample shall be in the range of 0.1 to 2 mm, and the width shall be 90 mm or more. The testing machine shall be as described in JIS B 7729. For the jig size, use the size of the test with the standard test piece. However, a Teflon sheet having a thickness of 50 μm is used as the lubricant.

耐酸化性:大気中で800℃、100時間保持後の酸化増量が5.0mg/cm以下
排気系部品における酸化増量は5mg/cm以下がほとんどであり、これを達成することが望ましい。そのため、耐酸化性の指標として、本実施形態のチタン合金板の酸化増量は5.0mg/cm以下を満たすことが好ましい。
Oxidation resistance: The increase in oxidation after holding at 800 ° C. for 100 hours in the air is 5.0 mg / cm 2 or less. Most of the exhaust system parts have an increase in oxidation of 5 mg / cm 2 or less, and it is desirable to achieve this. Therefore, as an index of oxidation resistance, it is preferable that the amount of oxidation increase of the titanium alloy plate of the present embodiment satisfies 5.0 mg / cm 2 or less.

酸化増量は、上記のチタン合金板から、20mm×20mmの試験片を採取し、表面をエメリー紙#400で湿式研磨し、800℃で100時間、静止大気中に暴露し、暴露後の増加質量を測定し、増加質量を引張試験片の表面積で割った値((増加質量(mg)/試験片の表面積(cm))とする。なお、酸化試験によってスケール剥離が発生する場合は剥離したスケールもばく露後の重量に含める必要がある。 To increase the amount of oxidation, a 20 mm × 20 mm test piece is sampled from the above titanium alloy plate, the surface is wet-polished with emery paper # 400, exposed to static air at 800 ° C. for 100 hours, and the increased mass after exposure. Is measured and the value obtained by dividing the increased mass by the surface area of the tensile test piece ((increased mass (mg) / surface area of the test piece (cm 2 ))). If scale peeling occurs due to the oxidation test, the mass is peeled off. Scale should also be included in the post-exposure weight.

高温での結晶粒径:750℃で100時間保持後の平均結晶粒径が70μm以下
高温での結晶粒の粗大化を防止したとみなすには、おおむね70μm以下にしておく必要がある。これよりも高温である800℃ではさらにβ相が増加するため、必然と細粒となる。したがって、750℃での評価を行うことで、高温での粗粒化の指標とすることができる。
Crystal grain size at high temperature: The average crystal grain size after holding at 750 ° C. for 100 hours is 70 μm or less. In order to prevent the coarsening of crystal grains at high temperature, it is necessary to keep the crystal grain size at about 70 μm or less. At 800 ° C., which is a higher temperature than this, the β phase further increases, so that the particles inevitably become fine particles. Therefore, the evaluation at 750 ° C. can be used as an index of coarse graining at high temperature.

高温での結晶粒径は、チタン合金板をアルゴン雰囲気中で750℃で100時間保持する。その後、チタン合金板のL断面を露出させ、L断面上に一辺が100μm以上の正方形の領域を設け、この領域において圧延方向に平行な長さ100μm以上(上限は正方形領域の一辺の長さ)の線分を等間隔に5本以上引いて、その線分が切断する結晶粒の平均個数から平均結晶粒径を算出する。 The crystal grain size at high temperature is such that the titanium alloy plate is held at 750 ° C. for 100 hours in an argon atmosphere. After that, the L cross section of the titanium alloy plate is exposed, a square region having a side of 100 μm or more is provided on the L cross section, and the length parallel to the rolling direction in this region is 100 μm or more (the upper limit is the length of one side of the square region). 5 or more line segments are drawn at equal intervals, and the average crystal grain size is calculated from the average number of crystal grains cut by the line segments.

高温強度(0.2%耐力):750℃で30MPa以上
材料として、高温強度が確保される必要がある。本実施形態においては、粗粒化を生じやすい温度域での高温強度が重要と考えており、700〜750℃が粗粒化しやすい温度域となる。これ以上ではβ相が多量に生成することで粗粒化はむしろ抑制される方向である。そこで、本実施形態のチタン合金板は、組織変化が生じやすい750℃での0.2%耐力で比較評価を行う。その結果、0.2%耐力が30MPa以上であることが好ましい。
High temperature strength (0.2% proof stress): It is necessary to secure high temperature strength as a material of 30 MPa or more at 750 ° C. In the present embodiment, it is considered that the high temperature intensity in the temperature range where coarse graining is likely to occur is important, and 700 to 750 ° C. is the temperature range where coarse graining is likely to occur. Above this, coarse graining is rather suppressed by the formation of a large amount of β phase. Therefore, the titanium alloy plate of the present embodiment is comparatively evaluated with a 0.2% proof stress at 750 ° C. at which structural changes are likely to occur. As a result, the 0.2% proof stress is preferably 30 MPa or more.

750℃で100h保持後、400℃での高温強度:250MPa以上
排気系部品の実環境では、室温から800℃近傍まで様々なパターンで温度変動しており、600℃以下で使用される時間が長い。600℃以下の温度域では、高温域に保持された場合の組織粗大化に伴って強度低下が著しくなる。高温強度の評価において、試験温度のばらつきを考慮すると、400℃で試験を行うことが望ましい。これは、500℃近傍では重要な変形機構要素であるすべり変形において、すべり系の変化がはじまることや、引張変形中の応力ひずみ曲線にセレーションが生じるなど組織因子以外の要素が関係してくるため、正しく評価するためには500℃よりも低温でかつ、温度が高い領域で試験する方がよい。したがって、400℃での試験で評価することとし、高温に曝された後でも250MPa以上の強度が得られることが好ましい。
After holding at 750 ° C for 100 hours, high temperature strength at 400 ° C: 250 MPa or more In the actual environment of exhaust system parts, the temperature fluctuates in various patterns from room temperature to around 800 ° C, and it is used for a long time at 600 ° C or lower. .. In the temperature range of 600 ° C. or lower, the strength decreases remarkably with the coarsening of the structure when it is maintained in the high temperature range. In the evaluation of high temperature strength, it is desirable to carry out the test at 400 ° C. in consideration of the variation in the test temperature. This is because factors other than tissue factors such as the start of changes in the slip system and the occurrence of serrations in the stress-strain curve during tensile deformation are involved in slip deformation, which is an important deformation mechanism element near 500 ° C. In order to evaluate correctly, it is better to test in a region where the temperature is lower than 500 ° C and the temperature is high. Therefore, it is preferable to evaluate by a test at 400 ° C. and to obtain a strength of 250 MPa or more even after being exposed to a high temperature.

750℃の高温強度(0.2%耐力)は、高温引張試験を行うことにより測定する。高温引張試験は、上記のチタン合金板から、長手方向が圧延方向に対して平行の引張試験片(平行部幅10mm、平行部長さ及び標点間距離35mm)を採取し、ひずみ速度を0.4%/minとして行う。試験雰囲気は750℃の大気中とし、試験片が十分に試験温度に達するように、試験雰囲気中に10分間保持した後、試験を行う。 The high temperature strength (0.2% proof stress) at 750 ° C. is measured by performing a high temperature tensile test. In the high-temperature tensile test, a tensile test piece (parallel portion width 10 mm, parallel portion length and distance between gauge points 35 mm) whose longitudinal direction is parallel to the rolling direction is sampled from the above titanium alloy plate, and the strain rate is set to 0. Perform at 4% / min. The test atmosphere is set to 750 ° C., and the test piece is held in the test atmosphere for 10 minutes so that the test piece sufficiently reaches the test temperature, and then the test is performed.

750℃で100h保持後、400℃での高温引張強度は、アルゴン雰囲気中750℃で100時間保持した試験片を用いて高温引張試験を行うことで測定する。引張試験の試験片形状およびひずみ速度は750℃の高温強度(0.2%耐力)の場合と同様とする。試験雰囲気は400℃の大気中とし、試験片が十分に試験温度に達するように、試験雰囲気中に10分間保持した後、試験を行う。 After holding at 750 ° C. for 100 hours, the high temperature tensile strength at 400 ° C. is measured by performing a high temperature tensile test using a test piece held at 750 ° C. for 100 hours in an argon atmosphere. The shape and strain rate of the test piece in the tensile test are the same as in the case of high temperature strength (0.2% proof stress) at 750 ° C. The test atmosphere is set to 400 ° C., and the test piece is held in the test atmosphere for 10 minutes so that the test piece sufficiently reaches the test temperature, and then the test is performed.

本実施形態のチタン合金板は、自動車用排気系部品の素材として用いることができる。すなわち、本実施形態のチタン合金板を所定の形状に成形し、溶接することで、各種の自動車用排気系部品とすることができる。本実施形態の自動車用排気系部品としては、エキゾーストマニホールド、エキゾーストパイプ、触媒装置、マフラーなどの部品を例示でき、これらの素材として、本実施形態のチタン合金板を用いることができる。これらの排気系部品は、四輪自動車に限らず、二輪自動車にも用いることができる。 The titanium alloy plate of the present embodiment can be used as a material for exhaust system parts for automobiles. That is, various automobile exhaust system parts can be obtained by forming the titanium alloy plate of the present embodiment into a predetermined shape and welding it. Examples of automobile exhaust system parts of the present embodiment include parts such as an exhaust manifold, an exhaust pipe, a catalyst device, and a muffler, and the titanium alloy plate of the present embodiment can be used as these materials. These exhaust system parts can be used not only for four-wheeled vehicles but also for two-wheeled vehicles.

次に、本実施形態のチタン合金板の製造方法について説明する。
一般に、等軸粒で構成された金属組織が強度と加工性のバランスに優れ、また、冷延性に優れるため、熱間圧延以降では焼鈍がβ変態点未満で行われている。しかし、β変態点未満で焼鈍したチタン合金は、α相と第二相が混在する状態であり、α相と第二相との間での元素分配が生じる。元素分配が生じると、第二相の分布が不均一となり、目的とする金属組織が得られなくなる。
Next, a method for manufacturing the titanium alloy plate of the present embodiment will be described.
In general, since a metal structure composed of equiaxed grains has an excellent balance between strength and workability and excellent cold ductility, annealing is performed below the β transformation point after hot rolling. However, the titanium alloy annealed below the β transformation point is in a state where the α phase and the second phase are mixed, and elemental partitioning occurs between the α phase and the second phase. When elemental partitioning occurs, the distribution of the second phase becomes non-uniform, and the desired metal structure cannot be obtained.

チタン合金中の合金元素の分布は、凝固時((鋳塊製造時)に生じた分配状態が、分塊工程である程度均質化されていくが、分塊工程はβ単相域加熱されるものの、工程完了時にβ変態点未満になることがある。また、β変態点未満にならなくとも、冷却速度は非常に遅く、冷却中に分配が生じてしまう。冷却速度を高めるために、たとえば、分塊圧延後に水冷したとしても、内部と表層部の冷却速度差は大きく、冷却速度が小さな内部では必ずある程度の元素分配が生じてしまう。 Regarding the distribution of alloying elements in the titanium alloy, the distribution state generated during solidification (during ingot production) is homogenized to some extent in the slabbing process, but the slabbing process is heated in the β single phase region. The cooling rate may be less than the β transformation point at the completion of the process, and even if the temperature is not lower than the β transformation point, the cooling rate is very slow and distribution occurs during cooling. In order to increase the cooling rate, for example, Even if water is cooled after slab rolling, the difference in cooling rate between the inside and the surface layer is large, and some elemental distribution always occurs inside the inside where the cooling rate is low.

また、元素分配を解消するために、熱間圧延前に鋳片をβ変態点以上に加熱したとしても、熱延中の温度低下によってβ変態点未満となって熱延中に元素分配が進んでしまう。また、鋳片の内部までβ変態点以上に昇温するためには長時間保持が必要になるため、酸化による表層硬化層の形成が生じることで、冷延性が低下する。 Further, even if the slab is heated above the β transformation point before hot rolling in order to eliminate the elemental distribution, the temperature drops during hot rolling so that the slab becomes less than the β transformation point and the elemental distribution proceeds during hot rolling. It ends up. Further, since it is necessary to keep the temperature inside the slab above the β transformation point for a long time, the surface hardened layer is formed by oxidation, and the cold ductility is lowered.

本実施形態では、従来ではβ変態点未満で行っていた熱延板の焼鈍と中間焼鈍の少なくとも一方をβ変態点以上で行うことで、それまでの元素分配を軽減するとともに、冷却速度5℃/秒以上で700℃まで冷却を行うことで元素分配を軽減した板を得ることができる。分塊工程とは異なり、板厚が薄くなった熱延板とした後にβ変態点以上に加熱することで表層及び内部の両方で元素分配を抑制することが可能となる。なお、熱延板の焼鈍と中間焼鈍の両方でβ変態点以上の焼鈍を行う方がより合金元素を均一に分布させることができる。 In the present embodiment, at least one of the annealing of the hot-rolled plate and the intermediate annealing, which has been conventionally performed below the β transformation point, is performed at the β transformation point or higher, thereby reducing the elemental distribution up to that point and cooling rate of 5 ° C. By cooling to 700 ° C. at / sec or more, a plate with reduced elemental distribution can be obtained. Unlike the slabbing step, it is possible to suppress elemental distribution both in the surface layer and inside by heating the hot-rolled plate with a thin plate thickness above the β transformation point. It should be noted that the alloying elements can be more uniformly distributed by annealing above the β transformation point in both the annealing of the hot-rolled plate and the intermediate annealing.

すなわち、本実施形態のチタン合金板の製造方法は、上述した化学成分を有するチタン合金からなるインゴットに熱間圧延を施して熱間圧延板とし、熱間圧延板に対して中間焼鈍を伴う冷間圧延を行う。また、最終冷間圧延の圧延率を40%以上とする。冷間圧延後に、670℃以上820℃の均熱温度で1分〜24時間の最終焼鈍を行う。また、最終焼鈍後に、550〜670℃の均熱温度で2時間以上保持する再焼鈍を行ってもよい。冷間圧延は、最終冷間圧延と最終焼鈍の前に、中間圧延と中間焼鈍を行ってもよい。 That is, in the method for producing a titanium alloy plate of the present embodiment, an ingot made of a titanium alloy having the above-mentioned chemical components is hot-rolled to obtain a hot-rolled plate, and the hot-rolled plate is cooled with intermediate annealing. Perform inter-rolling. Further, the rolling ratio of the final cold rolling is set to 40% or more. After cold rolling, final annealing is performed at a soaking temperature of 670 ° C. or higher and 820 ° C. for 1 minute to 24 hours. Further, after the final annealing, re-annealing may be performed in which the temperature is kept at a soaking temperature of 550 to 670 ° C. for 2 hours or more. In the cold rolling, intermediate rolling and intermediate annealing may be performed before the final cold rolling and final annealing.

また、熱間圧延と冷間圧延との間で、熱延板焼鈍を行ってもよい。 Further, hot rolled sheet annealing may be performed between hot rolling and cold rolling.

最終冷間圧延前の中間焼鈍の条件は、焼鈍温度をβ変態点以上とし、焼鈍時間を1〜5分間とし、焼鈍温度から700℃までの平均冷却速度を5℃/秒以上とすることが好ましい。なお、中間冷延の条件は特に限定しない。 The conditions for intermediate annealing before the final cold rolling are that the annealing temperature is β transformation point or higher, the annealing time is 1 to 5 minutes, and the average cooling rate from the annealing temperature to 700 ° C is 5 ° C / sec or higher. preferable. The conditions for intermediate cold spreading are not particularly limited.

熱延板焼鈍を行う場合は、熱延板焼鈍または最終中間焼鈍の焼鈍温度のいずれか一方をβ変態点以上の温度とすることが好ましい。この場合、より好ましくは、中間焼鈍の焼鈍温度をβ変態点以上とすることがより好ましい。また、熱延板焼鈍及び中間焼鈍の焼鈍温度の両方をβ変態点以上の温度としてもよい。
以下、製造条件について説明する。
When performing hot-rolled plate annealing, it is preferable that either the hot-rolled plate annealing or the final intermediate annealing temperature is set to a temperature equal to or higher than the β transformation point. In this case, it is more preferable that the annealing temperature of the intermediate annealing is set to β transformation point or higher. Further, both the annealing temperatures of the hot-rolled plate annealing and the intermediate annealing may be set to temperatures equal to or higher than the β transformation point.
The manufacturing conditions will be described below.

熱延板焼鈍または最終中間焼鈍の焼鈍温度のいずれか一方をβ変態点以上の温度とすることで、元素分配を抑制し、合金元素をより均一に分布させ、第二相の分布を均一にすることができる。特に、少なくとも中間焼鈍の焼鈍温度をβ変態点以上の温度とすることにより、板厚がより薄くなった状態でβ変態点以上に加熱されることになり、板の表面及び内部での元素分配を抑制できる。更に、熱延板焼鈍と中間焼鈍の両方でβ変態点以上の焼鈍を行うことで、元素分配を抑制して合金元素をより均一に分布させることができる。 By setting either the annealing temperature of the hot-rolled plate annealing or the final intermediate annealing to a temperature above the β transformation point, the elemental distribution is suppressed, the alloying elements are distributed more uniformly, and the distribution of the second phase is made uniform. can do. In particular, by setting the annealing temperature of at least the intermediate annealing to a temperature equal to or higher than the β transformation point, the plate is heated above the β transformation point in a state where the plate thickness is thinner, and elemental distribution on the surface and inside of the plate. Can be suppressed. Further, by performing annealing above the β transformation point in both the hot-rolled plate annealing and the intermediate annealing, the element distribution can be suppressed and the alloying elements can be more uniformly distributed.

β変態点以上の温度に加熱した後は、元素分配を防止するために、焼鈍温度から700℃までの平均冷却速度を5℃/秒以上とする条件で冷却するとよい。 After heating to a temperature equal to or higher than the β transformation point, it is preferable to cool the product under the condition that the average cooling rate from the annealing temperature to 700 ° C. is 5 ° C./sec or more in order to prevent element distribution.

β変態点以上で焼鈍した場合、金属組織が針状組織となり、冷延性が低下する。そのため、冷間圧延の条件は、1パス目から2パス目までの圧下率を10%以下とし、それ以降は15%以下とすることで、割れを生じさせることなく安定して冷間圧延できる。圧延初期に割れが生じないように2パス目までは低圧下率で加工する。その後は加工発熱により温度が上昇するため圧下率を高めても割れにくくなる。 When annealed above the β transformation point, the metal structure becomes a needle-like structure and the cold ductility decreases. Therefore, the conditions for cold rolling are that the rolling reduction from the first pass to the second pass is set to 10% or less, and thereafter it is set to 15% or less, so that cold rolling can be stably performed without causing cracks. .. Process at low pressure lowering rate up to the second pass so that cracks do not occur at the initial stage of rolling. After that, the temperature rises due to the heat generated by processing, so even if the reduction rate is increased, it becomes difficult to crack.

最終焼鈍後に加工性に優れる等軸粒を得る必要があるため、最終冷間圧延での冷延率(累積冷延率)は少なくとも40%以上とする。最終冷間圧延での累積冷延率の上限は、割れを防止するために90%以下とすればよい。 Since it is necessary to obtain equiaxed grains having excellent workability after the final annealing, the cold rolling ratio (cumulative cold rolling ratio) in the final cold rolling is at least 40% or more. The upper limit of the cumulative cold rolling ratio in the final cold rolling may be 90% or less in order to prevent cracking.

その後、十分にα相の結晶粒径を大きくし、かつ等軸粒とするための最終焼鈍をβ変態点未満で行う必要がある。最終焼鈍の焼鈍温度は670℃以上820℃以下とする必要がある。670℃未満では金属間化合物が多量に生成し、ピン止め効果によりα相の粒成長を阻害するため、長時間の焼鈍を行っても十分な結晶粒径を得ることはできず、加工性が不十分となる。820℃を超えると、β相が析出してしまうため、820℃以下とする必要がある。焼鈍時間は1分から24時間の範囲とする。670〜820℃の比較的低温領域での最終焼鈍を行うことにより、α相の結晶粒を急激に粗大化させることなく、α相の平均結晶粒径を調整することができる。また、本実施形態では、自動車用排気系部品の使用温度として想定される温度域よりも低い温度域で最終焼鈍を行うことで、β相の析出を防止しつつα相の結晶粒径を調整できる。 After that, it is necessary to sufficiently increase the crystal grain size of the α phase and perform final annealing below the β transformation point to obtain equiaxed grains. The annealing temperature of the final annealing needs to be 670 ° C. or higher and 820 ° C. or lower. If the temperature is lower than 670 ° C., a large amount of intermetallic compounds are generated, and the pinning effect inhibits the grain growth of the α phase. Therefore, sufficient crystal grain size cannot be obtained even after long-term annealing, resulting in poor processability. It will be insufficient. If the temperature exceeds 820 ° C, the β phase is precipitated, so the temperature must be 820 ° C or lower. The annealing time is in the range of 1 minute to 24 hours. By performing the final annealing in a relatively low temperature region of 670 to 820 ° C., the average crystal grain size of the α phase can be adjusted without abruptly coarsening the crystal grains of the α phase. Further, in the present embodiment, the crystal grain size of the α phase is adjusted while preventing the precipitation of the β phase by performing the final annealing in a temperature range lower than the temperature range assumed as the operating temperature of the exhaust system parts for automobiles. it can.

なお、結晶粒成長を十分にさせた後に、550〜670℃に2時間以上保持する再焼鈍を行ってもよい。これによって金属間化合物の面積率を0.5%以上にすることができ、0.2%耐力をより低下させることができる。 After the crystal grains have been sufficiently grown, re-annealing may be performed by holding the crystal grains at 550 to 670 ° C. for 2 hours or more. As a result, the area ratio of the intermetallic compound can be increased to 0.5% or more, and the 0.2% proof stress can be further reduced.

また、熱間圧延前の工程は特に制限はない。例えば、電子ビーム溶解もしくは真空アーク溶解などによって製造された所定の化学組成を有するインゴットに、凝固組織の破壊を目的とした分塊工程(鍛造もしくは圧延)がβ単相域で行われた後、熱間圧延によって熱間圧延板を製造すればよい。 Further, the process before hot rolling is not particularly limited. For example, an ingot having a predetermined chemical composition produced by electron beam melting or vacuum arc melting is subjected to a slabbing step (forging or rolling) for the purpose of destroying the solidified structure in the β single phase region. A hot rolled plate may be manufactured by hot rolling.

表1に示す化学組成を有するチタン合金No.1〜No.40を、真空アークボタン溶解によりインゴットとした。作製したインゴットを1000℃で熱間圧延し、10mm厚の熱延板とした。その後、860℃での熱間圧延を行うことで4mm厚の熱延板を得た。表1では、Ni、V、Mn、Zr、Co、Ta、W、C、Nのそれぞれの含有率の記載を省略し、これら元素の含有率の合計量を「others」の欄に記載した。これらの元素のそれぞれの含有率はいずれも0.05%以下だった。 Titanium alloy No. having the chemical composition shown in Table 1. 1-No. 40 was made into an ingot by melting the vacuum arc button. The produced ingot was hot-rolled at 1000 ° C. to obtain a hot-rolled plate having a thickness of 10 mm. Then, hot rolling at 860 ° C. was performed to obtain a hot-rolled plate having a thickness of 4 mm. In Table 1, the description of the content of each of Ni, V, Mn, Zr, Co, Ta, W, C, and N was omitted, and the total content of these elements was described in the column of "others". The content of each of these elements was 0.05% or less.

その後、脱スケール工程もしくは、表2に記載の温度と時間で熱延板焼鈍を行った後に脱スケール工程を施し、その後、冷間圧延とともに必要に応じて中間焼鈍を行い、最終冷間圧延を行った。更に、最終焼鈍を行い、一部の合金については再焼鈍を行った。このようにして、No.1〜40のチタン合金板を製造した。 After that, a descaling step or a hot-rolled sheet annealing at the temperature and time shown in Table 2 is performed, and then a descaling step is performed. Then, cold rolling and intermediate annealing are performed as necessary to perform final cold rolling. went. Further, final annealing was performed, and some alloys were re-annealed. In this way, No. 1 to 40 titanium alloy plates were manufactured.

得られたチタン合金板について、各種の評価を行った。 Various evaluations were performed on the obtained titanium alloy plate.

α相の平均結晶粒径は、チタン合金板のL断面上に、一辺が100μm以上の正方形の領域を設け、この領域において圧延方向に平行な長さ100μm以上(上限は正方形領域の一辺の長さ)の線分を等間隔に5本以上引いて、その線分が切断する結晶粒の平均個数から算出した。α相の判別は、測定領域を走査型電子顕微鏡(SEM)により観察し、反射電子像からα相を判別した。第二相は母相であるα相に比べて白色もしくは黒色であるため、これらを除いた領域をα相とした。 The average crystal grain size of the α phase is such that a square region having a side of 100 μm or more is provided on the L cross section of the titanium alloy plate, and the length parallel to the rolling direction in this region is 100 μm or more (the upper limit is the length of one side of the square region). 5 or more line segments were drawn at equal intervals, and the line segment was calculated from the average number of crystal grains to be cut. To discriminate the α phase, the measurement region was observed with a scanning electron microscope (SEM), and the α phase was discriminated from the reflected electron image. Since the second phase is whiter or blacker than the α phase, which is the parent phase, the region excluding these is defined as the α phase.

第二相の分布状態は、チタン合金板のL断面において、一辺が100μmの領域を10×10に等分割した各々の領域を測定領域(一辺が10μmの領域100個を測定領域として用いる)とし、各測定領域毎に、第二相の単位面積あたりの個数を求めることにより、個数密度を求めた。 As for the distribution state of the second phase, in the L cross section of the titanium alloy plate, each region obtained by equally dividing a region having a side of 100 μm into 10 × 10 is used as a measurement region (100 regions having a side of 10 μm are used as measurement regions). , The number density was obtained by obtaining the number of the second phase per unit area for each measurement region.

一辺が100μmの領域の位置は、チタン合金の断面の任意の位置とした。測定領域を走査型電子顕微鏡(SEM)により観察し、反射電子像からα相と第二相とを判別した。金属間化合物である第二相は、母相であるα相に比べて白色もしくは黒色であるとともに微細な析出物であるため、この特徴から第二相と識別できた。そして、測定領域内の第二相の個数を計数して、各測定領域毎の第二相の個数密度(個/μm)を求めた。そして、第二相の個数密度が0.01個/μm以上の測定領域の数を計数し、その数を測定領域の全数で除することで、0.01個/μm以上の測定領域の割合を求めた。 The position of the region having a side of 100 μm was set to an arbitrary position on the cross section of the titanium alloy. The measurement area was observed with a scanning electron microscope (SEM), and the α phase and the second phase were discriminated from the reflected electron image. Since the second phase, which is an intermetallic compound, is whiter or blacker than the α phase, which is the parent phase, and is a fine precipitate, it can be distinguished from the second phase from this feature. Then, the number of the second phase in the measurement region was counted, and the number density (piece / μm 2 ) of the second phase for each measurement region was obtained. Then, by counting the number of measurement regions having a number density of 0.01 / μm 2 or more in the second phase and dividing the number by the total number of measurement regions, the measurement regions of 0.01 / μm 2 or more are obtained. The ratio of

第二相の面積分率は、第二相の個数密度と同じ領域で測定を行った。上記の一辺が100μmの領域を走査型電子顕微鏡(SEM)により観察し、上記と同様にして反射電子像からα相と第二相とを判別した。そして、領域内の第二相の面積を測定し、第二相の面積率(%)を求めた。 The surface integral of the second phase was measured in the same region as the number density of the second phase. A region having a side of 100 μm was observed with a scanning electron microscope (SEM), and the α phase and the second phase were discriminated from the reflected electron image in the same manner as described above. Then, the area of the second phase in the region was measured, and the area ratio (%) of the second phase was obtained.

全伸び及び0.2%耐力は、室温引張試験を行うことにより測定する。室温での引張試験は、上記のチタン合金板から、長手方向が圧延方向に対して平行のASTMサブサイズ引張試験片を採取し、ひずみ速度を、0.2%耐力の測定では0.5%/minとし、伸びの測定では30%/minとして行う。試験温度は10〜35℃の範囲内とした。全伸びは25%以上、0.2%耐力は380MPa以下をそれぞれ合格とした。また、0.2%耐力の測定と同時に、室温の引張強度も測定した。 Total elongation and 0.2% proof stress are measured by performing a room temperature tensile test. In the tensile test at room temperature, an ASTM subsize tensile test piece whose longitudinal direction is parallel to the rolling direction is taken from the above titanium alloy plate, and the strain rate is measured by 0.2% and the proof stress is 0.5%. It is set to / min, and the elongation is measured at 30% / min. The test temperature was in the range of 10 to 35 ° C. The total elongation was 25% or more, and the 0.2% proof stress was 380 MPa or less. At the same time as measuring the 0.2% proof stress, the tensile strength at room temperature was also measured.

エリクセン値は、JIS Z 2247(2006)に規定するエリクセン試験方法に準じて測定した。測定サンプルの板幅は90mm以上とした。試験機はJIS B 7729に記載された通りとした。ただし、潤滑剤には厚さ50μmのテフロンシートを用いた。ジグ寸法は標準試験片による試験の寸法を用いた。エリクセン値が10.0mm以上を合格とした。 The Eriksen value was measured according to the Eriksen test method specified in JIS Z 2247 (2006). The plate width of the measurement sample was 90 mm or more. The testing machine was as described in JIS B 7729. However, a Teflon sheet having a thickness of 50 μm was used as the lubricant. For the jig size, the size of the test using the standard test piece was used. Eriksen values of 10.0 mm or more were considered acceptable.

酸化増量は、チタン合金板から、20mm×20mmの試験片を採取し、表面をエメリー紙#400で湿式研磨し、800℃で100時間、静止大気中に暴露し、暴露後の増加質量を測定し、増加質量を引張試験片の表面積で割った値((増加質量(mg)/試験片の表面積(cm))とした。なお、酸化試験によってスケール剥離が発生した場合は、剥離したスケールもばく露後の重量に含めた。 To increase the amount of oxidation, a 20 mm × 20 mm test piece is taken from a titanium alloy plate, the surface is wet-polished with emery paper # 400, exposed to static air at 800 ° C. for 100 hours, and the increased mass after exposure is measured. Then, the increased mass was divided by the surface area of the tensile test piece ((increased mass (mg) / surface area of the test piece (cm 2 ))). If scale peeling occurred in the oxidation test, the peeled scale was obtained. It was included in the weight after exposure.

高温での結晶粒径は、チタン合金板をアルゴン雰囲気中にて750℃で100時間保持した。その後、チタン合金板のL断面を露出させ、L断面上に一辺が100μm以上の正方形の領域を設け、この領域において圧延方向に平行な長さ100μm以上(上限は正方形領域の一辺の長さ)の線分を等間隔に5本以上引いて、その線分が切断する結晶粒の平均個数から平均結晶粒径を算出した。 The crystal grain size at high temperature was such that the titanium alloy plate was held at 750 ° C. for 100 hours in an argon atmosphere. After that, the L cross section of the titanium alloy plate is exposed, a square region having a side of 100 μm or more is provided on the L cross section, and the length parallel to the rolling direction in this region is 100 μm or more (the upper limit is the length of one side of the square region). 5 or more line segments were drawn at equal intervals, and the average crystal grain size was calculated from the average number of crystal grains cut by the line segments.

750℃の高温強度(0.2%耐力)は、上記のチタン合金板から、長手方向が圧延方向に対して平行の引張試験片(平行部幅10mm、平行部長さ及び標点間距離35mm)を採取し、ひずみ速度を0.4%/minとして引張試験を行うことにより測定した。試験雰囲気は750℃の大気中とし、試験片が十分に試験温度に達するように、試験雰囲気中に10分間保持した後、試験を行った。高温強度(0.2%耐力)は750℃で30MPa以上を合格とした。 The high-temperature strength (0.2% proof stress) at 750 ° C. is a tensile test piece whose longitudinal direction is parallel to the rolling direction from the above titanium alloy plate (parallel portion width 10 mm, parallel portion length and distance between gauge points 35 mm). Was collected and measured by performing a tensile test with a strain rate of 0.4% / min. The test atmosphere was set to 750 ° C., and the test piece was kept in the test atmosphere for 10 minutes so that the test piece sufficiently reached the test temperature, and then the test was performed. The high temperature strength (0.2% proof stress) was 30 MPa or more at 750 ° C. as acceptable.

750℃で100h保持後、400℃での高温引張強度は、アルゴン雰囲気中750℃で100時間保持した試験片を用いて高温引張試験を行うことで測定した。引張試験の試験片形状およびひずみ速度は750℃の高温強度(0.2%耐力)の場合と同様とした。試験雰囲気は400℃の大気中とし、試験片が十分に試験温度に達するように、試験雰囲気中に10分間保持した後、試験を行った。750℃で100h保持後、400℃での高温強度は、250MPa以上を合格とした。 After holding at 750 ° C. for 100 hours, the high temperature tensile strength at 400 ° C. was measured by performing a high temperature tensile test using a test piece held at 750 ° C. for 100 hours in an argon atmosphere. The shape and strain rate of the test piece in the tensile test were the same as in the case of high temperature strength (0.2% proof stress) at 750 ° C. The test atmosphere was set to an atmosphere of 400 ° C., and the test was carried out after being held in the test atmosphere for 10 minutes so that the test piece sufficiently reached the test temperature. After holding at 750 ° C. for 100 hours, the high temperature strength at 400 ° C. was 250 MPa or more.

評価結果を表3に示す。 The evaluation results are shown in Table 3.

Figure 2021028407
Figure 2021028407

Figure 2021028407
Figure 2021028407

Figure 2021028407
Figure 2021028407

表1に示すように、No.1、2、5〜8、10、11、13〜18、21〜23、25、27、28、31〜34、36〜40は、本発明の範囲にあるチタン合金板であり、優れた特性を示した。なお、各チタン合金板のL断面上においてα結晶粒の長軸径/短軸径の比であるアスペクト比を求め、10個の結晶粒のアスペクト比の平均値を算出したところ、いずれもアスペクト比が3以下であり、等軸粒であった。 As shown in Table 1, No. 1, 2, 5-8, 10, 11, 13-18, 21-23, 25, 27, 28, 31-34, 36-40 are titanium alloy plates within the scope of the present invention, and have excellent characteristics. showed that. The aspect ratio, which is the ratio of the major axis diameter / minor axis diameter of the α crystal grains, was obtained on the L cross section of each titanium alloy plate, and the average value of the aspect ratios of the 10 crystal grains was calculated. The ratio was 3 or less, and the grain was equiaxed.

一方、No.3及び4は、MoとCrの合計量が少なく、750℃においてα相が粗粒化した。
No.9及び12は、MoとCrの合計量が過剰であり、細粒となったために0.2%耐力が高くなり、エリクセン値も低下し、加工性が低下した。
No.19は、Si量が少なく、酸化増量が増大し、耐酸化性が低下した。
No.20は、Si量が過剰であり、α相の平均結晶粒径が小さくなりすぎたため、0.2%耐力が高くなり、エリクセン値も低下し、加工性が低下した。
No.24は、Al量が過剰であり、エリクセン値が低下し、加工性が低下した。
No.26は、β変態点以上で焼鈍を行わなかったため、第二相の分散が不十分になり、750℃で粗粒化が起きた。
No.29は、熱延板焼鈍及び中間焼鈍の焼鈍温度がβ変態点未満であったため、元素分配が生じて750℃で粗粒化が起きた。
No.30は、熱延板焼鈍後の冷却速度が低く、元素分配が生じて第二相の分散が不十分になり、750℃で粗粒化が起きた。
No.35は、最終焼鈍温度が820℃を超えたため、元素分配が生じて第二相の分散が不十分になり、750℃で粗粒化が起きた。
On the other hand, No. In Nos. 3 and 4, the total amount of Mo and Cr was small, and the α phase was coarse-grained at 750 ° C.
No. In Nos. 9 and 12, the total amount of Mo and Cr was excessive, and the particles became fine particles, so that the yield strength was increased by 0.2%, the Eriksen value was also decreased, and the workability was decreased.
No. In No. 19, the amount of Si was small, the amount of oxidation increase was increased, and the oxidation resistance was lowered.
No. In No. 20, the amount of Si was excessive and the average crystal grain size of the α phase was too small, so that the 0.2% proof stress was high, the Eriksen value was also lowered, and the workability was lowered.
No. In No. 24, the amount of Al was excessive, the Eriksen value was lowered, and the workability was lowered.
No. In No. 26, since annealing was not performed above the β transformation point, the dispersion of the second phase became insufficient, and coarse graining occurred at 750 ° C.
No. In No. 29, since the annealing temperatures of the hot-rolled plate annealing and the intermediate annealing were below the β transformation point, elemental partitioning occurred and coarse graining occurred at 750 ° C.
No. In No. 30, the cooling rate after annealing the hot-rolled plate was low, elemental dispersion occurred, the dispersion of the second phase became insufficient, and coarse graining occurred at 750 ° C.
No. In No. 35, since the final annealing temperature exceeded 820 ° C., elemental partitioning occurred and the dispersion of the second phase became insufficient, and coarse graining occurred at 750 ° C.

Claims (3)

質量%で、
Cu:0.7%以上1.5%以下、
Sn:0.5%以上1.5%以下、
Si:0.15%以上0.35%以下、
Nb:0.25%以上1.0%以下、
Al:0%以上1.0%以下を含有し、
更に、Cr,Moの一方または両方を合計で0.05〜0.30%含有し、
Feを0.06%以下、Oを0.07%以下にそれぞれ制限し、
Ni、V、Mn、Zr、Co、Ta、W、C、Nの1種または2種以上を各々0〜0.05%かつ合計で0.3%以下含有し、
残部がTi及び不純物であり、
金属組織がα相と第二相からなり、
前記α相の平均結晶粒径が10〜50μmであり、
断面において任意に選択した100箇所の測定領域毎に前記第二相の個数密度を求めた場合に、個数密度が0.01個/μm以上の測定領域の数が全測定領域の80%以上であることを特徴とするチタン合金板。
By mass%
Cu: 0.7% or more and 1.5% or less,
Sn: 0.5% or more and 1.5% or less,
Si: 0.15% or more and 0.35% or less,
Nb: 0.25% or more and 1.0% or less,
Al: Contains 0% or more and 1.0% or less,
Further, one or both of Cr and Mo are contained in a total of 0.05 to 0.30%.
Limit Fe to 0.06% or less and O to 0.07% or less, respectively.
Contains 1 or 2 or more of Ni, V, Mn, Zr, Co, Ta, W, C and N in an amount of 0 to 0.05% and 0.3% or less in total.
The rest is Ti and impurities,
The metallographic structure consists of α phase and second phase,
The average crystal grain size of the α phase is 10 to 50 μm.
When the number density of the second phase is obtained for each of 100 measurement regions arbitrarily selected in the cross section, the number of measurement regions having a number density of 0.01 / μm 2 or more is 80% or more of the total measurement regions. A titanium alloy plate characterized by being.
前記第二相の面積率が0.5%以上であることを特徴とする請求項1に記載のチタン合金板。 The titanium alloy plate according to claim 1, wherein the area ratio of the second phase is 0.5% or more. 請求項1または請求項2に記載のチタン合金板からなる、自動車用排気系部品。 An automobile exhaust system component made of the titanium alloy plate according to claim 1 or 2.
JP2019147376A 2019-08-09 2019-08-09 Titanium alloy plates and automotive exhaust system parts Active JP7397278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019147376A JP7397278B2 (en) 2019-08-09 2019-08-09 Titanium alloy plates and automotive exhaust system parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019147376A JP7397278B2 (en) 2019-08-09 2019-08-09 Titanium alloy plates and automotive exhaust system parts

Publications (2)

Publication Number Publication Date
JP2021028407A true JP2021028407A (en) 2021-02-25
JP7397278B2 JP7397278B2 (en) 2023-12-13

Family

ID=74667396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019147376A Active JP7397278B2 (en) 2019-08-09 2019-08-09 Titanium alloy plates and automotive exhaust system parts

Country Status (1)

Country Link
JP (1) JP7397278B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023170979A1 (en) * 2022-03-11 2023-09-14 日本製鉄株式会社 Titanium material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4486530B2 (en) 2004-03-19 2010-06-23 新日本製鐵株式会社 Heat-resistant titanium alloy plate excellent in cold workability and method for producing the same
JP5435333B2 (en) 2009-04-22 2014-03-05 新日鐵住金株式会社 Manufacturing method of α + β type titanium alloy thin plate and manufacturing method of α + β type titanium alloy thin plate coil
SI2520677T1 (en) 2009-12-28 2019-11-29 Nippon Steel Corp Heat-resistant titanium alloy material for exhaust system components with excellent oxidation resistance, manufacturing method of heat-resistant titanium alloy sheet with excellent oxidation resistance for exhaust system components, and exhaust system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023170979A1 (en) * 2022-03-11 2023-09-14 日本製鉄株式会社 Titanium material

Also Published As

Publication number Publication date
JP7397278B2 (en) 2023-12-13

Similar Documents

Publication Publication Date Title
KR101454458B1 (en) Heat-resistant titanium alloy with excellent oxidation resistance for exhaust system components, manufacturing method of heat-resistant titanium plate with excellent oxidation resistance for exhaust system components, and exhaust system
JP5682901B2 (en) Ti-added ferritic stainless steel sheet excellent in spinning workability and manufacturing method thereof
JP6889418B2 (en) Manufacturing method of Ni-based super heat-resistant alloy and Ni-based super heat-resistant alloy
US20170283913A1 (en) Aluminum alloy sheet having high formability
JP2019522723A (en) Cold-rolled and annealed steel sheet, process for its production, and use of such steel for producing automotive parts
WO2020195049A1 (en) Method for producing ni-based super-heat-resistant alloy, and ni-based super-heat-resistant alloy
JP5002991B2 (en) Method for producing ferritic stainless steel cold-rolled steel sheet excellent in surface distortion resistance and surface properties and coated steel sheet
JP4424185B2 (en) Hot rolled steel sheet and its manufacturing method
JP6609727B1 (en) Alloy plate and manufacturing method thereof
JP7180782B2 (en) Titanium alloy plate and automobile exhaust system parts
JP5432632B2 (en) Aluminum alloy plate with excellent formability
WO2020031579A1 (en) Method for producing ni-based super-heat-resisting alloy, and ni-based super-heat-resisting alloy
JP7397278B2 (en) Titanium alloy plates and automotive exhaust system parts
JP5189959B2 (en) High strength cold-rolled steel sheet with excellent elongation and stretch flangeability
JP6939913B2 (en) Titanium alloy material
JP7303434B2 (en) Titanium alloy plates and automotive exhaust system parts
US10358698B2 (en) Heat resistant titanium alloy material for exhaust system part use excellent in oxidation resistance, method of production of heat resistant titanium alloy material for exhaust system part use excellent in oxidation resistance, and exhaust system
EP3480326A1 (en) Aluminum alloy sheet having excellent ridging resistance and hem bendability and production method for same
JP6851147B2 (en) Titanium alloy forged material
TWI641696B (en) Titanium alloy
JP7166878B2 (en) Ferritic stainless steel plate, manufacturing method thereof, and ferritic stainless steel member
JP7372532B2 (en) Titanium alloy round rod and connecting rod
WO2022157844A1 (en) Titanium alloy plate and exhaust system component for automobiles
RU2808020C1 (en) Cold-rolled strip for production of corrosion-resistant equipment components and method for its production
WO2023181654A1 (en) Titanium alloy material and production method for titanium alloy component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231113

R151 Written notification of patent or utility model registration

Ref document number: 7397278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151