JP2021027293A - Multilayer printed board - Google Patents
Multilayer printed board Download PDFInfo
- Publication number
- JP2021027293A JP2021027293A JP2019146558A JP2019146558A JP2021027293A JP 2021027293 A JP2021027293 A JP 2021027293A JP 2019146558 A JP2019146558 A JP 2019146558A JP 2019146558 A JP2019146558 A JP 2019146558A JP 2021027293 A JP2021027293 A JP 2021027293A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- outermost
- insulating layer
- multilayer printed
- skip via
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 claims abstract description 36
- 239000000758 substrate Substances 0.000 claims abstract description 27
- 239000010410 layer Substances 0.000 claims description 141
- 239000004020 conductor Substances 0.000 claims description 37
- 239000012790 adhesive layer Substances 0.000 claims description 20
- 239000002184 metal Substances 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000011888 foil Substances 0.000 claims description 4
- 238000007747 plating Methods 0.000 claims description 4
- 239000004642 Polyimide Substances 0.000 claims description 2
- 229920001721 polyimide Polymers 0.000 claims description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 2
- 238000009413 insulation Methods 0.000 abstract description 7
- 238000012360 testing method Methods 0.000 abstract description 4
- 230000000149 penetrating effect Effects 0.000 abstract description 3
- 238000005336 cracking Methods 0.000 abstract 1
- 230000005540 biological transmission Effects 0.000 description 11
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 239000011889 copper foil Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 2
- 229920000106 Liquid crystal polymer Polymers 0.000 description 2
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
Landscapes
- Production Of Multi-Layered Print Wiring Board (AREA)
Abstract
Description
本発明は、高周波基板として用いられる多層プリント配線板に関する。 The present invention relates to a multilayer printed wiring board used as a high frequency substrate.
最近、マイクロ波やミリ波などの高周波領域で使用されるプリント配線板の要求が増加している。特に、次世代の高速通信システムや車載レーダシステムへの用途において盛んに開発が進められている。高周波領域で使用されるプリント配線板には、表層や内層にアンテナ回路が配置されるものもあり、その場合はアンテナの送受信を安定的にできるように絶縁層の平坦性とより均一な絶縁層の厚みが要求される。 Recently, there is an increasing demand for printed wiring boards used in high frequency regions such as microwaves and millimeter waves. In particular, it is being actively developed for applications in next-generation high-speed communication systems and in-vehicle radar systems. Some printed wiring boards used in the high frequency region have antenna circuits arranged on the surface layer and inner layer. In that case, the flatness of the insulating layer and the more uniform insulating layer are provided so that the transmission and reception of the antenna can be stabilized. Thickness is required.
通常のビルドアップ多層プリント配線板では、逐次積層工法を用いてコア基板の表裏に導体層と絶縁層を交互に積層すると、導体回路上に絶縁層(プリプレグ)と銅箔を積層する関係から絶縁層の表面には多少なりとも凹凸が発生し、また絶縁層の膜厚にばらつきも発生する。これは、下層の導体回路の凹凸を絶縁層(プリプレグ)を積層成型する際に拾ってしまうためである。絶縁層の表面の凹凸と膜厚のばらつきは、高周波になるとアンテナの送受信や回路の電気特性(伝送性能)に影響を及ぼす恐れがある。 In a normal build-up multilayer printed wiring board, when the conductor layer and the insulating layer are alternately laminated on the front and back of the core substrate by using the sequential lamination method, the insulating layer (prepreg) and the copper foil are laminated on the conductor circuit to insulate. The surface of the layer has some irregularities, and the thickness of the insulating layer also varies. This is because the unevenness of the conductor circuit in the lower layer is picked up when the insulating layer (prepreg) is laminated and molded. The unevenness of the surface of the insulating layer and the variation in film thickness may affect the transmission / reception of the antenna and the electrical characteristics (transmission performance) of the circuit at high frequencies.
最外層の絶縁層として、予め硬化した高周波用の絶縁基材を用いると、当該最外層の絶縁層を平坦化し膜厚のばらつきを改善できると考えられるが、コア基板と最外層の絶縁層を接着するための接着層(プリプレグ、接着シートなど)が必要となる。そうなると、表層の導体回路と内層のコア基板の導体回路を接続するために、最外層の絶縁層と接着層の2層を貫通するスキップビアを設ける必要がある。特に、部品を実装する側(面)については、部品と内層回路との接続が必要となるため、スキップビア構造が必須の構造となる。
しかしながら、このような最外層の絶縁層と接着層の2層を貫通するスキップビアを有する多層プリント配線板に熱履歴を付与、例えば、一定の時間吸湿させ、リフローによる耐熱試験(ピーク温度260℃、2回処理)やはんだによる耐熱試験を実施した場合、絶縁層、とりわけスキップビア底部ランドの直下の絶縁層にクラックが発生する問題があった。
If a pre-cured insulating base material for high frequency is used as the outermost insulating layer, it is considered that the outermost insulating layer can be flattened and the variation in film thickness can be improved. However, the core substrate and the outermost insulating layer may be used. An adhesive layer (prepreg, adhesive sheet, etc.) for bonding is required. In that case, in order to connect the conductor circuit of the surface layer and the conductor circuit of the core substrate of the inner layer, it is necessary to provide a skip via penetrating the two layers of the insulating layer and the adhesive layer of the outermost layer. In particular, on the side (surface) on which the component is mounted, the skip via structure is indispensable because the component and the inner layer circuit need to be connected.
However, a heat history is given to such a multilayer printed wiring board having skip vias penetrating the two layers of the outermost insulating layer and the adhesive layer, for example, moisture is absorbed for a certain period of time, and a heat resistance test by reflow (peak temperature 260 ° C.) When a heat resistance test using (2 treatments) or soldering was carried out, there was a problem that cracks were generated in the insulating layer, particularly the insulating layer directly under the skip via bottom land.
従来、スキップビアのコンタクトランド下部に位置する絶縁樹脂に発生するクラックを防止する手段として、例えば、次に示すものが知られている(特許文献1参照)。
図3は、従来の逐次積層によるビルドアップ多層プリント配線板の例を示すもので、同一の基材を用いたビルドアップ層12のL1層からL3層に掛けて設けたスキップビアに接続されるコア基板コンタクトランド16の直下の位置にダミーパターン19が設けられている。図3のビルドアップ多層プリント配線板200では、当該ダミーパターン19により、コンタクトランド16の下部に位置する絶縁樹脂の膨張を抑制し、クラックの発生を防止できるが、プリント配線板の小型化や、高周波基板として利用するにあたっての伝送性能に関わる特殊設計やノイズの影響を考慮する場合、ダミーパターン19の形成は難しかった。
Conventionally, as a means for preventing cracks generated in the insulating resin located below the contact land of the skip via, for example, the following is known (see Patent Document 1).
FIG. 3 shows an example of a conventional build-up multilayer printed wiring board by sequential lamination, and is connected to skip vias provided from the L1 layer to the L3 layer of the build-up layer 12 using the same base material. A dummy pattern 19 is provided at a position directly below the core substrate contact land 16. In the build-up multilayer printed wiring board 200 of FIG. 3, the dummy pattern 19 can suppress the expansion of the insulating resin located below the contact land 16 and prevent the occurrence of cracks, but the size of the printed wiring board can be reduced. It was difficult to form the dummy pattern 19 when considering the special design related to the transmission performance and the influence of noise when using it as a high-frequency substrate.
本発明は、上記の如き従来の問題と実状に鑑みてなされたものであり、小型化されたマイクロ波やミリ波などの高周波基板として用いられる多層プリント配線板であって、最外層の絶縁層の平坦性と厚みの均一性を確保しつつ、耐熱試験などを実施することで発生するスキップビア底部ランド直下の絶縁層のクラックを防止した多層プリント配線板を提供することを課題とする。 The present invention has been made in view of the above-mentioned conventional problems and actual conditions, and is a multilayer printed wiring board used as a miniaturized high-frequency substrate for microwaves, millimeter waves, etc., and is the outermost insulating layer. It is an object of the present invention to provide a multilayer printed wiring board that prevents cracks in the insulating layer directly under the land of the bottom of the skip via, which is generated by conducting a heat resistance test while ensuring the flatness and the uniformity of the thickness.
本発明者は、上記の課題を解決すべく先ずスキップビア底部ランド直下の絶縁層にクラックが発生する原因を検証したところ、図2に示すように、スキップビア5自体が最外層の絶縁層と接着層(プリプレグ)の2層の絶縁層を貫通して形成される関係から、絶縁層厚みが厚くなることでスキップビア底部ランド直下の絶縁層に応力が掛かり、また、最外層の絶縁層に用いる予め硬化した高周波用の絶縁基材や接着層(プリプレグ)の線膨張係数の大きさや、両者の線膨張係数の違いからさらに応力が掛かる。この構造に熱履歴が加わると絶縁層のひずみを緩和しきれなくなり、スキップビア底部ランド直下の絶縁層にクラック8が発生するものと考えられた。そして、スキップビア底部ランド直下の絶縁層のひずみを緩和すべく、さらに研究を重ねた結果、最外層に高周波対応低損失材からなる絶縁層を配置し、且つスッキプビア底部ランドを含む導体層の厚みを当該最外層の絶縁層の内層側の導体層よりも厚くすれば、極めて良い結果が得られることを見出し、本発明を完成するに至った。 In order to solve the above problems, the present inventor first verified the cause of cracks in the insulating layer directly under the bottom land of the skip via, and as shown in FIG. 2, the skip via 5 itself became the outermost insulating layer. Since it is formed through the two insulating layers of the adhesive layer (prepreg), stress is applied to the insulating layer directly under the skip via bottom land due to the thickening of the insulating layer, and the outermost insulating layer Further stress is applied due to the magnitude of the linear expansion coefficient of the pre-cured insulating base material for high frequency and the adhesive layer (prepreg) used, and the difference in the linear expansion coefficient between the two. It was considered that when the thermal history was added to this structure, the strain of the insulating layer could not be completely relaxed, and crack 8 was generated in the insulating layer directly under the land at the bottom of the skip via. Then, as a result of further research to alleviate the strain of the insulating layer directly under the skip via bottom land, an insulating layer made of a high-frequency compatible low-loss material is arranged on the outermost layer, and the thickness of the conductor layer including the skip via bottom land. It has been found that extremely good results can be obtained by making the thickness of the outermost layer thicker than that of the conductor layer on the inner layer side of the insulating layer, and the present invention has been completed.
すなわち、本発明は、表裏面に導体層を有するコア基板と、当該コア基板の表裏面の最外に接着層を介して積層された高周波対応低損失材からなる最外層の絶縁層と、当該最外層の絶縁層の内層側に形成された導体層と、当該最外層の絶縁層と接着層を貫通し、当該コア基板の導体層に達するスキップビアとを備えた多層プリント配線板であって、当該コア基板の導体層は当該スキップビアの底部ランドを含み、当該スキップビアの底部ランドを含む導体層の厚みは、当該最外層の絶縁層の内層側の導体層の厚みより厚いことを特徴とする多層プリント配線板により、上記課題を解決したものである。 That is, the present invention comprises a core substrate having a conductor layer on the front and back surfaces, an outermost insulating layer made of a high-frequency compatible low-loss material laminated on the outermost side of the front and back surfaces of the core substrate via an adhesive layer. A multilayer printed wiring board having a conductor layer formed on the inner layer side of the outermost insulating layer and a skip via that penetrates the outermost insulating layer and the adhesive layer and reaches the conductor layer of the core substrate. The conductor layer of the core substrate includes the bottom land of the skip via, and the thickness of the conductor layer including the bottom land of the skip via is thicker than the thickness of the conductor layer on the inner layer side of the insulating layer of the outermost layer. The above-mentioned problem is solved by the multi-layer printed wiring board.
本発明によれば、最外層の絶縁層として高周波対応低損失材からなる絶縁層を有するため、最外層の絶縁層の平坦性と厚みの均一性を確保でき、アンテナの送受信及び回路の電気特性(伝送性能)を安定化できる。また、当該最外層の絶縁層の内層側に形成された導体層よりもスキップビア底部ランドを含む導体層の厚みが厚いため、スキップビアが貫通する最外層の絶縁層と接着層の線膨張係数の違い及び絶縁層の厚みによるスキップビア底部ランド直下の絶縁層のひずみを抑制でき、もって、当該スキップビア底部ランド直下の絶縁層に発生するクラックを防止し、信頼性の高いプリント配線板とすることができる。 According to the present invention, since the outermost insulating layer has an insulating layer made of a high-frequency compatible low-loss material, the flatness and thickness of the outermost insulating layer can be ensured, and the transmission / reception of the antenna and the electrical characteristics of the circuit can be ensured. (Transmission performance) can be stabilized. Further, since the conductor layer including the skip via bottom land is thicker than the conductor layer formed on the inner layer side of the outermost insulating layer, the linear expansion coefficient of the outermost insulating layer and the adhesive layer through which the skip via penetrates. It is possible to suppress the distortion of the insulating layer directly under the skip via bottom land due to the difference and the thickness of the insulating layer, thereby preventing cracks generated in the insulating layer directly under the skip via bottom land and making it a highly reliable printed wiring board. be able to.
以下本発明多層プリント配線板の実施の形態を、図1を用いて説明する。 Hereinafter, embodiments of the multilayer printed wiring board of the present invention will be described with reference to FIG.
図1において、多層プリント配線板100は、表裏面に導体層6を有する4層コア基板1と、当該コア基板1の表裏面の最外にそれぞれ接着層2を介して積層された高周波対応低損失材からなる最外層の絶縁層3と、当該最外層の絶縁層3の内層側に形成された導体層7と、当該最外層の絶縁層3の外層側に形成されたアンテナ回路4と、当該最外層の絶縁層3と接着層2を貫通し、導体層6に達するスキップビア5とから構成されている。当該導体層6は、スキップビア5の底部ランドを含み、金属箔(例えば、銅箔)6aと金属めっき(例えば、銅めっき)6bからなっている。また、当該最外層の絶縁層3の内層側の導体層7は、金属箔(例えば、銅箔)からなっていて、当該導体層7の厚みよりも、スキップビア5の底部ランドを含む導体層6の厚みが厚い構成となっている。
また、当該スッキプビア5の底部ランドを含む導体層6の厚みが厚いことにより、スキップビア5の底部ランドのクラック抑制効果の1つ目の要素となる。
In FIG. 1, the multilayer printed wiring board 100 has a four-layer core substrate 1 having a conductor layer 6 on the front and back surfaces, and a high-frequency compatible low circuit board laminated on the outermost side of the front and back surfaces of the core substrate 1 via an adhesive layer 2, respectively. An outermost insulating layer 3 made of a loss material, a conductor layer 7 formed on the inner layer side of the outermost insulating layer 3, an antenna circuit 4 formed on the outer layer side of the outermost insulating layer 3, and the like. It is composed of a skip via 5 that penetrates the insulating layer 3 and the adhesive layer 2 of the outermost layer and reaches the conductor layer 6. The conductor layer 6 includes the bottom land of the skip via 5, and is composed of a metal foil (for example, copper foil) 6a and a metal plating (for example, copper plating) 6b. Further, the conductor layer 7 on the inner layer side of the outermost insulating layer 3 is made of a metal foil (for example, copper foil), and is a conductor layer including the bottom land of the skip via 5 rather than the thickness of the conductor layer 7. 6 has a thick structure.
Further, since the conductor layer 6 including the bottom land of the skip via 5 is thick, it becomes the first element of the crack suppressing effect of the bottom land of the skip via 5.
高周波対応低損失材は、低誘電率及び低誘電正接特性を持ち合わせた高周波特性に対応した基材である。多層プリント配線板100において、最外層に高周波対応低損失材からなる絶縁層3を有することで、表面の平坦性、すなわち、面一な表面を形成することが可能となり、外層側の面に形成されたアンテナ回路4の電波の送受信が安定する。また、層間絶縁層の厚みが一定となる為、回路の電気特性(伝送性能)が安定する。
一般的に、高周波対応低損失材の比誘電率は低いが、使用する周波数により適宜選択され、例えば、76から80GHzの場合、比誘電率として3.0程度、20GHz付近の場合、比誘電率として3.5程度が好ましい。また、高周波対応低損失材の誘電正接は低ければ低いほどよく、好ましくは0.005以下(1GHz)、より好ましくは0.001以下(1GHz)である。高周波対応低損失材は、比誘電率4.0以下(1GHz)且つ誘電正接0.005以下(1GHz)であることが、アンテナ回路4としての送受信がスムーズに行われるため好ましい。
高周波対応低損失材としては、PTFE(フッ素樹脂)、LCP(液晶ポリマー)、変性PPE、COP(シクロオレフィンポリマー)、変性ポリイミドなどの基材が好適に用いられる。
The high-frequency compatible low-loss material is a base material that has low dielectric constant and low dielectric loss tangent characteristics and is compatible with high-frequency characteristics. In the multilayer printed wiring board 100, by having the insulating layer 3 made of a high-frequency compatible low-loss material in the outermost layer, it becomes possible to form a flat surface, that is, a flush surface, and it is formed on the outer layer side surface. The transmission and reception of radio waves of the antenna circuit 4 is stable. Further, since the thickness of the interlayer insulating layer is constant, the electrical characteristics (transmission performance) of the circuit are stable.
Generally, the relative permittivity of a high-frequency compatible low-loss material is low, but it is appropriately selected depending on the frequency used. For example, in the case of 76 to 80 GHz, the relative permittivity is about 3.0, and in the case of around 20 GHz, the relative permittivity. It is preferably about 3.5. Further, the lower the dielectric loss tangent of the high frequency compatible low loss material, the better, preferably 0.005 or less (1 GHz), and more preferably 0.001 or less (1 GHz). The high-frequency compatible low-loss material preferably has a relative permittivity of 4.0 or less (1 GHz) and a dielectric loss tangent of 0.005 or less (1 GHz) because transmission and reception as the antenna circuit 4 can be performed smoothly.
As the high-frequency compatible low-loss material, a substrate such as PTFE (fluororesin), LCP (liquid crystal polymer), modified PPE, COP (cycloolefin polymer), or modified polyimide is preferably used.
高周波対応低損失材からなる絶縁層3の厚さは、80μm以上であることが設計上伝送特性を考慮する上で望ましい。 It is desirable that the thickness of the insulating layer 3 made of a high-frequency compatible low-loss material is 80 μm or more in consideration of transmission characteristics in design.
また、スキップビア5の底部ランドを含む導体層6の厚みが、高周波対応低損失材からなる最外層の絶縁層3の内層側に形成された導体層7の厚みより厚いと、スキップビア5の底部が補強され、スキップビア底部ランド直下の絶縁層へ掛かる応力及びそれに伴う変形を抑える。結果として、スキップビア底部ランド直下の絶縁層に入るクラック8(図2参照)の原因となる絶縁層へのひずみを緩和することができるため、クラック8を防止することが可能となる。
高周波対応低損失材からなる最外層の絶縁層3の厚さが80μm以上になると、より顕著にクラックが発生しやすい為、導体層6の厚みが導体層7の厚みより厚い構成となることがより顕著な効果を生む。
Further, when the thickness of the conductor layer 6 including the bottom land of the skip via 5 is thicker than the thickness of the conductor layer 7 formed on the inner layer side of the outermost insulating layer 3 made of the high frequency compatible low loss material, the skip via 5 is formed. The bottom is reinforced to suppress the stress applied to the insulating layer directly under the skip via bottom land and the resulting deformation. As a result, the strain on the insulating layer that causes the crack 8 (see FIG. 2) entering the insulating layer directly under the bottom land of the skip via can be relaxed, so that the crack 8 can be prevented.
When the thickness of the outermost insulating layer 3 made of a high-frequency compatible low-loss material is 80 μm or more, cracks are more likely to occur, so that the thickness of the conductor layer 6 may be thicker than that of the conductor layer 7. Produces a more remarkable effect.
この実施の形態では、高周波対応低損失材からなる最外層の絶縁層3は、絶縁基材から形成され、当該高周波対応低損失材からなる最外層の絶縁層3の厚みよりも接着層2(プリプレグ、接着シートなど)の厚みは薄くなっている。接着層2の厚みは、高周波対応低損失材からなる最外層の絶縁層3の80%以下程度の厚み、例えば、高周波対応低損失材からなる最外層の絶縁層3の厚みは100μm、接着層2の厚みは60μm程度であることが配線密度、スキップビアの接続信頼性を向上させる上で望ましい。 In this embodiment, the outermost insulating layer 3 made of the high frequency compatible low loss material is formed of an insulating base material, and the adhesive layer 2 (the thickness of the outermost insulating layer 3 made of the high frequency compatible low loss material is larger than the thickness of the adhesive layer 2 ( The thickness of the prepreg, adhesive sheet, etc.) is thin. The thickness of the adhesive layer 2 is about 80% or less of that of the outermost insulating layer 3 made of a high-frequency compatible low-loss material. For example, the thickness of the outermost insulating layer 3 made of a high-frequency compatible low-loss material is 100 μm, and the adhesive layer. It is desirable that the thickness of 2 is about 60 μm in order to improve the wiring density and the connection reliability of the skip via.
また、高周波対応低損失材からなる最外層の絶縁層3の線膨張係数は比誘電率、誘電正接を低減させるために、使用される樹脂特性やフィラーの材質により一般的な絶縁材料(FR−4など)よりも線膨脹係数が大きくなる。そのため組み合わせる接着層2の線膨脹係数は高周波対応低損失材からなる最外層の絶縁層3よりも小さいことが、スキップビアの信頼性を向上する上で望ましい。好ましくはZ方向の線膨脹係数は50ppm/℃以下である。当該理由により、接着層2の線膨張係数が、高周波対応低損失材からなる最外層の絶縁層3よりも小さいことにより、スキップビア5の底部ランドのクラック抑制効果の2つ目の要素となる。 Further, the coefficient of linear expansion of the outermost insulating layer 3 made of a high-frequency compatible low-loss material is a general insulating material (FR-) depending on the resin characteristics used and the material of the filler in order to reduce the relative permittivity and the dielectric loss tangent. The coefficient of linear expansion is larger than that of (4, etc.). Therefore, it is desirable that the coefficient of linear expansion of the adhesive layer 2 to be combined is smaller than that of the outermost insulating layer 3 made of a high-frequency compatible low-loss material in order to improve the reliability of the skip via. Preferably, the coefficient of linear expansion in the Z direction is 50 ppm / ° C. or less. For this reason, the coefficient of linear expansion of the adhesive layer 2 is smaller than that of the outermost insulating layer 3 made of a high-frequency compatible low-loss material, which is the second factor of the crack suppressing effect of the bottom land of the skip via 5. ..
また、この実施の形態では、高周波対応低損失材からなる最外層の絶縁層3を有する例を示したが、4層コア基板1の基材や接着層2を高周波対応低損失材としてもよい。この場合、アンテナ回路4が形成されている高周波対応低損失材の伝送性能のマッチングにより、より最適なアンテナ設計を行うことが可能となる。結果として多層プリント配線板の小型化が可能となるといった効果が得られる。 Further, in this embodiment, an example of having the outermost insulating layer 3 made of a high frequency compatible low loss material is shown, but the base material or the adhesive layer 2 of the 4-layer core substrate 1 may be used as the high frequency compatible low loss material. .. In this case, more optimal antenna design can be performed by matching the transmission performance of the high-frequency compatible low-loss material on which the antenna circuit 4 is formed. As a result, the effect that the multilayer printed wiring board can be miniaturized can be obtained.
1、11:4層コア基板
2:接着層(プリプレグ)
3:高周波対応低損失材からなる最外層の絶縁層
4:アンテナ回路
5、15:スキップビア
6:スキップビア底部ランドを含む導体層
6a:銅箔
6b:銅めっき
7、17:最外層の絶縁層の内層側に形成された導体層
8:クラック
12:ビルドアップ層
16:コンタクトランド
19:ダミーパターン
1, 11: 4-layer core substrate 2: Adhesive layer (prepreg)
3: Outermost insulating layer made of high-frequency compatible low-loss material 4: Antenna circuit 5, 15: Skip via 6: Conductor layer including skip via bottom land 6a: Copper foil 6b: Copper plating 7, 17: Insulation of outermost layer Conductor layer formed on the inner layer side of the layer 8: Crack 12: Build-up layer 16: Contact land 19: Dummy pattern
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019146558A JP7449655B2 (en) | 2019-08-08 | 2019-08-08 | multilayer printed wiring board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019146558A JP7449655B2 (en) | 2019-08-08 | 2019-08-08 | multilayer printed wiring board |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021027293A true JP2021027293A (en) | 2021-02-22 |
JP7449655B2 JP7449655B2 (en) | 2024-03-14 |
Family
ID=74662483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019146558A Active JP7449655B2 (en) | 2019-08-08 | 2019-08-08 | multilayer printed wiring board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7449655B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007045008A (en) * | 2005-08-10 | 2007-02-22 | Ube Ind Ltd | Polyimide film laminated with metal foil on one or both sides and its manufacturing method |
JP2007287721A (en) * | 2006-04-12 | 2007-11-01 | Nippon Mektron Ltd | Multilayer circuit board having cable section, and manufacturing method thereof |
JP2009035809A (en) * | 2007-07-06 | 2009-02-19 | Fujifilm Corp | Surface metal film material, its production method, metal pattern material, its production method, composition for forming polymer layer, and new polymer |
-
2019
- 2019-08-08 JP JP2019146558A patent/JP7449655B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007045008A (en) * | 2005-08-10 | 2007-02-22 | Ube Ind Ltd | Polyimide film laminated with metal foil on one or both sides and its manufacturing method |
JP2007287721A (en) * | 2006-04-12 | 2007-11-01 | Nippon Mektron Ltd | Multilayer circuit board having cable section, and manufacturing method thereof |
JP2009035809A (en) * | 2007-07-06 | 2009-02-19 | Fujifilm Corp | Surface metal film material, its production method, metal pattern material, its production method, composition for forming polymer layer, and new polymer |
Also Published As
Publication number | Publication date |
---|---|
JP7449655B2 (en) | 2024-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20120292085A1 (en) | Flexible printed circuit and method of manufacturing the same | |
JP5658399B1 (en) | Printed wiring board | |
JP2016054313A (en) | Rigid flexible substrate and method for manufacturing the same | |
US20100043223A1 (en) | Stripline Flex Circuit | |
US20150060114A1 (en) | Rigid flexible pcb and method for manufacturing the same | |
US20130048344A1 (en) | High frequency circuit board | |
US20230019563A1 (en) | High-frequency circuit | |
US20050237136A1 (en) | Electronic circuit board having microstrip lines | |
KR102095068B1 (en) | flexible circuit board with planarized cover layer structure | |
JP2014207297A (en) | Flexible printed circuit, and method for manufacturing the same | |
CN104982097A (en) | Substrate with built-in component, and manufacturing method for same | |
CN114126202A (en) | Copper-clad substrate, preparation method thereof, circuit board and electronic equipment | |
JP7449655B2 (en) | multilayer printed wiring board | |
US12009588B2 (en) | Antenna installation structure and electronic device | |
JP2012227404A (en) | Flexible printed wiring board | |
US11864316B2 (en) | Wiring substrate | |
US11582859B2 (en) | Method for manufacturing flexible circuit board | |
JP2006344887A (en) | Printed-wiring board and manufacturing method therefor | |
JP2015185550A (en) | Multilayer high-frequency substrate, and antenna device | |
CN211828497U (en) | Resin multilayer substrate and electronic device | |
US20210399397A1 (en) | High-frequency signal transmission structureand method for manufacturing the same | |
US11564313B2 (en) | Wiring body and method for manufacturing same | |
KR102543589B1 (en) | Dielectric layer material for flexible copper clad laminate and manufacturing method thereof | |
CN115377666B (en) | Manufacturing method of package antenna and package antenna | |
US20230199954A1 (en) | Circuit board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220714 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230525 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230530 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230713 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231024 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231212 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240227 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240304 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7449655 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |