JP2021026957A - Negative electrode for secondary battery and secondary battery using the same - Google Patents

Negative electrode for secondary battery and secondary battery using the same Download PDF

Info

Publication number
JP2021026957A
JP2021026957A JP2019145742A JP2019145742A JP2021026957A JP 2021026957 A JP2021026957 A JP 2021026957A JP 2019145742 A JP2019145742 A JP 2019145742A JP 2019145742 A JP2019145742 A JP 2019145742A JP 2021026957 A JP2021026957 A JP 2021026957A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
positive electrode
fiber bundle
metal wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019145742A
Other languages
Japanese (ja)
Other versions
JP7298380B2 (en
Inventor
広幸 中野
Hiroyuki Nakano
広幸 中野
秀亮 岡
Hideaki Oka
秀亮 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2019145742A priority Critical patent/JP7298380B2/en
Publication of JP2021026957A publication Critical patent/JP2021026957A/en
Application granted granted Critical
Publication of JP7298380B2 publication Critical patent/JP7298380B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To improve an output input characteristic and quick charging property and also to improve shape freedom of a secondary battery.SOLUTION: A negative electrode 10 for a secondary battery is provided with a fiber bundle 14 bundled with a carbon fiber 12 and a metal wire 16 inserted into the fiber bundle 14 along a longitudinal direction of the fiber bundle 14.SELECTED DRAWING: Figure 1

Description

本明細書で開示する発明は、二次電池用負極及びそれを用いた二次電池に関する。 The invention disclosed in the present specification relates to a negative electrode for a secondary battery and a secondary battery using the same.

従来、エネルギー密度の高い二次電池としては、複数の柱状負極と、各柱状負極の周囲を囲うように設けられた分離膜と、隣合う分離膜同士の間を埋めるように設けられた正極とを備えたものが知られている(特許文献1)。この二次電池は、分離膜で周囲を囲われた柱状負極が正極内に配置された構造である。この二次電池の正極は、正六角柱からなる柱状正極を空間充填して得られたものであり、分離膜で囲われた柱状負極が、柱状正極の中心孔に配置されている。柱状負極としては、リチウムイオンを吸蔵・放出可能な炭素質材料などからなる円柱体に、断面が円形状の集電線が埋設されたものが例示されている。 Conventionally, as a secondary battery having a high energy density, a plurality of columnar negative electrodes, a separation membrane provided so as to surround each columnar negative electrode, and a positive electrode provided so as to fill the space between adjacent separation films. Is known (Patent Document 1). This secondary battery has a structure in which a columnar negative electrode surrounded by a separation membrane is arranged in the positive electrode. The positive electrode of this secondary battery is obtained by spatially filling a columnar positive electrode made of a regular hexagonal prism, and a columnar negative electrode surrounded by a separation membrane is arranged in a central hole of the columnar positive electrode. An example of the columnar negative electrode is a columnar body made of a carbonaceous material capable of storing and releasing lithium ions, in which a collecting wire having a circular cross section is embedded.

特開2018−152229号公報JP-A-2018-152229

しかしながら、特許文献1の二次電池では、出入力特性や急速充電性が十分高いとはいえず、また、柱状負極の長手方向の抵抗が比較的高いため柱状負極を長くすることが困難であった。 However, it cannot be said that the secondary battery of Patent Document 1 has sufficiently high input / output characteristics and quick chargeability, and it is difficult to lengthen the columnar negative electrode because the resistance in the longitudinal direction of the columnar negative electrode is relatively high. It was.

本開示は、このような課題に鑑みなされたものであり、出入力特性や急速充電性を向上させると共に二次電池の形状自由度も向上させることを主目的とする。 The present disclosure has been made in view of such a problem, and its main purpose is to improve the input / output characteristics and quick chargeability, and also to improve the degree of freedom in the shape of the secondary battery.

上述した目的を達成するために、本発明者らは、二次電池用負極に工夫を施すことにより出入力特性や急速充電性を向上させると共に二次電池の形状自由度も向上させることができることを見い出し、本明細書で開示する発明を完成するに至った。 In order to achieve the above-mentioned object, the present inventors can improve the input / output characteristics and the quick chargeability by devising the negative electrode for the secondary battery, and also improve the degree of freedom in the shape of the secondary battery. We have found and completed the invention disclosed herein.

即ち、本明細書で開示する二次電池用負極は、炭素繊維を束ねた繊維束と、前記繊維束の長手方向に沿って前記繊維束に挿通された金属ワイヤと、を備えたものである。 That is, the negative electrode for a secondary battery disclosed in the present specification includes a fiber bundle in which carbon fibers are bundled and a metal wire inserted into the fiber bundle along the longitudinal direction of the fiber bundle. ..

また、本明細書で開示する二次電池は、上述した二次電池用負極と、前記二次電池用負極の周囲を囲うように設けられた分離膜と、正極活物質を含み、前記分離膜の周囲に設けられた正極と、を備えたものである。 Further, the secondary battery disclosed in the present specification includes the above-mentioned negative electrode for a secondary battery, a separation membrane provided so as to surround the negative electrode for a secondary battery, and a positive electrode active material, and the separation membrane. It is provided with a positive electrode provided around the.

本明細書で開示する二次電池用負極では、繊維束を構成する炭素繊維は、負極活物質であると同時に集電体としても機能する。また、繊維束に金属ワイヤを挿通することで、集電抵抗が低減する。したがって、この二次電池用負極を用いた二次電池によれば、出入力特性や急速充電性が向上する。また、負極の長手方向の抵抗が小さいため、負極の長さを比較的長くすることができ、二次電池の形状自由度が向上する。 In the negative electrode for a secondary battery disclosed in the present specification, the carbon fibers constituting the fiber bundle function as a negative electrode active material and at the same time as a current collector. Further, by inserting the metal wire through the fiber bundle, the current collecting resistance is reduced. Therefore, according to the secondary battery using the negative electrode for the secondary battery, the input / output characteristics and the quick chargeability are improved. Further, since the resistance in the longitudinal direction of the negative electrode is small, the length of the negative electrode can be made relatively long, and the degree of freedom in the shape of the secondary battery is improved.

負極10の概略構成を示す斜視図A perspective view showing a schematic configuration of the negative electrode 10. ピン形二次電池30の概略構成を示す斜視図。The perspective view which shows the schematic structure of the pin type secondary battery 30. 角形二次電池40の概略構成を示す斜視図。The perspective view which shows the schematic structure of the square secondary battery 40.

次に、本実施形態で開示する負極10、ピン形二次電池30及び角形二次電池40について図面を用いて説明する。図1は負極10の概略構成を示す斜視図、図2は二次電池30の概略構成を示す斜視図、図3は角形二次電池40の概略構成を示す斜視図である。ここでは、説明の便宜のため、二次電池としてリチウムイオンをキャリアとするリチウムイオン二次電池を例示して説明する。 Next, the negative electrode 10, the pin-type secondary battery 30, and the square secondary battery 40 disclosed in the present embodiment will be described with reference to the drawings. FIG. 1 is a perspective view showing a schematic configuration of a negative electrode 10, FIG. 2 is a perspective view showing a schematic configuration of a secondary battery 30, and FIG. 3 is a perspective view showing a schematic configuration of a square secondary battery 40. Here, for convenience of explanation, a lithium ion secondary battery having a lithium ion carrier as the secondary battery will be described as an example.

負極10は、図1に示すように、リチウムイオン二次電池用の円柱形状の負極であり、炭素繊維12を束ねた繊維束14と、この繊維束14の長手方向に沿って繊維束14に挿通された金属ワイヤ16とを備えている。 As shown in FIG. 1, the negative electrode 10 is a cylindrical negative electrode for a lithium ion secondary battery, and is formed into a fiber bundle 14 in which carbon fibers 12 are bundled and a fiber bundle 14 along the longitudinal direction of the fiber bundle 14. It is provided with an inserted metal wire 16.

繊維束14は、ストレート形状の炭素繊維12を多数本束ねたものである。炭素繊維12の直径は、1μm以上200μm以下であることが好ましい。この直径が1μm以上であれば、繊維束14としての強度を担保することができ安定した充放電ができる。また、この直径が200μm以下であれば、キャリアであるイオンの移動距離が長くなりすぎず、高出力性能が得られる。また、この直径がこの範囲であれば、単位体積あたりのエネルギー密度をより高めることができる。あるいは、この範囲であれば、キャリアであるイオンの移動距離をより短くすることができ、より大きな電流で充放電を行うことができる。炭素繊維12の直径は、5μm以上20μm以下であることがより好ましい。炭素繊維12の長手方向の長さは、20mm以上200mm以下であることが好ましい。炭素繊維12の長さが20mm以上であれば、電池容量をより高めることができ好ましく、200mm以下(特に150mm以下)であれば、負極10の電気抵抗をより低減することができ好ましい。 The fiber bundle 14 is a bundle of a large number of straight carbon fibers 12. The diameter of the carbon fiber 12 is preferably 1 μm or more and 200 μm or less. When this diameter is 1 μm or more, the strength of the fiber bundle 14 can be ensured and stable charging / discharging can be performed. Further, when this diameter is 200 μm or less, the moving distance of the ion as a carrier does not become too long, and high output performance can be obtained. Further, if this diameter is in this range, the energy density per unit volume can be further increased. Alternatively, within this range, the moving distance of the carrier ions can be shortened, and charging / discharging can be performed with a larger current. The diameter of the carbon fiber 12 is more preferably 5 μm or more and 20 μm or less. The length of the carbon fiber 12 in the longitudinal direction is preferably 20 mm or more and 200 mm or less. When the length of the carbon fiber 12 is 20 mm or more, the battery capacity can be further increased, and when it is 200 mm or less (particularly 150 mm or less), the electric resistance of the negative electrode 10 can be further reduced, which is preferable.

繊維束14は、導電性を有する炭素繊維12の束であるため、別途導電材を含んでいる必要はないが、必要に応じてバインダを含んでいてもよい。バインダは、炭素繊維12同士を繋ぎ止めて所定の形状を保つ役割を果たすものであり、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素ゴム等の含フッ素樹脂、或いはポリプロピレン、ポリエチレン等の熱可塑性樹脂、エチレンプロピレンジエンモノマー(EPDM)ゴム、スルホン化EPDMゴム、天然ブチルゴム(NBR)等を単独で、あるいは2種以上の混合物として用いることができる。また、水系バインダーであるセルロース系やスチレンブタジエンゴム(SBR)の水分散体等を用いることもできる。 Since the fiber bundle 14 is a bundle of conductive carbon fibers 12, it is not necessary to separately include a conductive material, but a binder may be included if necessary. The binder plays a role of connecting the carbon fibers 12 to each other and maintaining a predetermined shape. For example, a fluororesin such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluororubber, or polypropylene is used. , Polyethylene resin such as polyethylene, ethylene propylene diene monomer (EPDM) rubber, sulfonated EPDM rubber, natural butyl rubber (NBR) and the like can be used alone or as a mixture of two or more kinds. Further, an aqueous dispersion of cellulose-based binder or styrene-butadiene rubber (SBR), which is an aqueous binder, can also be used.

金属ワイヤ16は、繊維束14の中心を炭素繊維12の長手方向に沿って挿通している。金属ワイヤ16は、室温における体積抵抗率が10μΩcm以下のものが好ましく、例えばCuやNiが好ましい。金属ワイヤ16は、1本の金属線であってもよいし、複数本の金属線の集合体であってもよい。金属ワイヤ16の長さは、炭素繊維12の長さと同じであることが好ましい。金属ワイヤ16の直径は10μm以上100μm以下が好ましい。この直径が10μm以上であれば、負極10の電気抵抗が十分小さくなるため好ましい。この直径が100μm以下であれば、容量を比較的高くすることができるため好ましい。金属ワイヤ16の直径は20μm以上50μm以下であることがより好ましい。繊維束14及び金属ワイヤ16の合計重量に対する金属ワイヤ16の重量の比は、7重量%以上30重量%以下であることが好ましい。この比が7重量%以上であれば、出入力特性や急速充電性に関連のあるレート性が良好になるため好ましい。また、この比が30重量%以下(特に16重量%以下)であれば、繊維束14及び金属ワイヤ16の合計重量で規格化した負極容量(単位:mAh/g)が比較的高い値になるため好ましい。 The metal wire 16 inserts the center of the fiber bundle 14 along the longitudinal direction of the carbon fiber 12. The metal wire 16 preferably has a volume resistivity of 10 μΩcm or less at room temperature, and for example, Cu or Ni is preferable. The metal wire 16 may be a single metal wire or an aggregate of a plurality of metal wires. The length of the metal wire 16 is preferably the same as the length of the carbon fiber 12. The diameter of the metal wire 16 is preferably 10 μm or more and 100 μm or less. When this diameter is 10 μm or more, the electrical resistance of the negative electrode 10 is sufficiently small, which is preferable. When this diameter is 100 μm or less, the capacity can be relatively increased, which is preferable. The diameter of the metal wire 16 is more preferably 20 μm or more and 50 μm or less. The ratio of the weight of the metal wire 16 to the total weight of the fiber bundle 14 and the metal wire 16 is preferably 7% by weight or more and 30% by weight or less. When this ratio is 7% by weight or more, the rateability related to the input / output characteristics and the quick chargeability becomes good, which is preferable. When this ratio is 30% by weight or less (particularly 16% by weight or less), the negative electrode capacity (unit: mAh / g) standardized by the total weight of the fiber bundle 14 and the metal wire 16 becomes a relatively high value. Therefore, it is preferable.

次に、この負極10を用いたピン形二次電池30について図2に基づいて説明する。 Next, a pin-type secondary battery 30 using the negative electrode 10 will be described with reference to FIG.

ピン形二次電池30は、図2に示すように、負極10と、分離膜(隔壁ともいう)18と、柱状正極20とを備えている。 As shown in FIG. 2, the pin-type secondary battery 30 includes a negative electrode 10, a separation film (also referred to as a partition wall) 18, and a columnar positive electrode 20.

負極10は、既に説明したとおりのものである。 The negative electrode 10 is as described above.

分離膜18は、円柱状の負極10の外周面(上部を除く)及び下端面を囲うように設けられている。分離膜18は、負極10の上端面には設けられていない。分離膜18は、キャリアであるイオンの伝導性を有し、負極10と柱状正極20とを絶縁するものである。分離膜18としては、イオン伝導性と絶縁性とを有するポリマーが好適である。この分離膜18は、例えば、ポリフッ化ビニリデン(PVdF)とヘキサフルオロプロピレン(HFP)との共重合体や、ポリメタクリル酸メチル(PMMA)、及びPMMAとアクリルポリマーとの共重合体などが挙げられる。例えば、PVdFとHFPとの共重合体では、電解液の一部がこの膜を膨潤ゲル化し、イオン伝導膜となる。この分離膜18の厚さは、例えば、絶縁性を確保することを考慮すると、0.5μm以上であることが好ましく、2μm以上であることがより好ましく、5μm以上であるものとしてもよい。また、分離膜18の厚さは、イオン伝導性の低下を抑制することを考慮すると、20μm以下であることが好ましく、10μm以下であることがより好ましい。そのため、分離膜18の厚さは、0.5〜20μmの範囲であることが、イオン伝導性と絶縁性とを両立させる上で好適である。この分離膜18は、例えば、原料を含む溶液へ負極10を浸漬させてその表面にコートすることにより形成されるものとしてもよい。 The separation film 18 is provided so as to surround the outer peripheral surface (excluding the upper portion) and the lower end surface of the columnar negative electrode 10. The separation film 18 is not provided on the upper end surface of the negative electrode 10. The separation membrane 18 has conductivity of ions as carriers and insulates the negative electrode 10 and the columnar positive electrode 20. As the separation membrane 18, a polymer having ionic conductivity and insulating property is suitable. Examples of the separation film 18 include a copolymer of polyvinylidene fluoride (PVdF) and hexafluoropropylene (HFP), polymethyl methacrylate (PMMA), and a copolymer of PMMA and an acrylic polymer. .. For example, in a copolymer of PVdF and HFP, a part of the electrolytic solution swells and gels this membrane to become an ionic conduction membrane. The thickness of the separation membrane 18 is preferably 0.5 μm or more, more preferably 2 μm or more, and may be 5 μm or more, for example, in consideration of ensuring insulating properties. Further, the thickness of the separation membrane 18 is preferably 20 μm or less, and more preferably 10 μm or less in consideration of suppressing a decrease in ionic conductivity. Therefore, the thickness of the separation membrane 18 is preferably in the range of 0.5 to 20 μm in order to achieve both ionic conductivity and insulating property. The separation membrane 18 may be formed, for example, by immersing the negative electrode 10 in a solution containing a raw material and coating the surface thereof.

電解液は、本実施形態では、非水系溶媒にリチウムイオンを含む支持塩を溶解したもの(非水系電解液)とした。非水系溶媒としては、例えば、カーボネート類、エステル類、エーテル類、ニトリル類、フラン類、スルホラン類及びジオキソラン類などが挙げられ、これらを単独又は混合して用いることができる。具体的には、カーボネート類としてエチレンカーボネート(EC)やプロピレンカーボネート、ビニレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネートなどの環状カーボネート類や、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート、エチル−n−ブチルカーボネート、メチル−t−ブチルカーボネート、ジ−i−プロピルカーボネート、t−ブチル−i−プロピルカーボネートなどの鎖状カーボネート類、γ−ブチルラクトン、γ−バレロラクトンなどの環状エステル類、ギ酸メチル、酢酸メチル、酢酸エチル、酪酸メチルなどの鎖状エステル類、ジメトキシエタン、エトキシメトキシエタン、ジエトキシエタンなどのエーテル類、アセトニトリル、ベンゾニトリルなどのニトリル類、テトラヒドロフラン、メチルテトラヒドロフラン、などのフラン類、スルホラン、テトラメチルスルホランなどのスルホラン類、1,3−ジオキソラン、メチルジオキソランなどのジオキソラン類などが挙げられる。支持塩としては、例えば、LiPF6、LiBF4、LiAsF6、LiCF3SO3、LiN(CF3SO22、LiC(CF3SO23、LiSbF6、LiSiF6、LiAlF4、LiSCN、LiClO4、LiCl、LiF、LiBr、LiI、LiAlCl4などが挙げられる。このうち、LiPF6、LiBF4、LiClO4などの無機塩、及びLiCF3SO3、LiN(CF3SO22、LiC(CF3SO23などの有機塩からなる群より選ばれる1種又は2種以上の塩を組み合わせて用いることが電気特性の点から見て好ましい。この支持塩は、電解液中の濃度が0.1mol/L以上5mol/L以下であることが好ましく、0.5mol/L以上2mol/L以下であることがより好ましい。 In the present embodiment, the electrolytic solution is a non-aqueous solvent in which a supporting salt containing lithium ions is dissolved (non-aqueous electrolytic solution). Examples of the non-aqueous solvent include carbonates, esters, ethers, nitriles, furans, sulfolanes, dioxolanes and the like, and these can be used alone or in combination. Specifically, as carbonates, cyclic carbonates such as ethylene carbonate (EC), propylene carbonate, vinylene carbonate, butylene carbonate, and chloroethylene carbonate, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate, and ethyl. Chain carbonates such as -n-butyl carbonate, methyl-t-butyl carbonate, di-i-propyl carbonate, t-butyl-i-propyl carbonate, cyclic esters such as γ-butyl lactone and γ-valerolactone, Chain esters such as methyl formate, methyl acetate, ethyl acetate, methyl butyrate, ethers such as dimethoxyethane, ethoxymethoxyethane, diethoxyethane, nitriles such as acetonitrile and benzonitrile, furan such as tetrahydrofuran and methyl tetrahydrofuran, etc. Classes, sulfolanes such as sulfolane and tetramethylsulfolane, and dioxolanes such as 1,3-dioxolane and methyldioxolane. Examples of the supporting salt include LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiSbF 6 , LiSiF 6 , LiAlF 4 , LiSCN, and the like. Examples thereof include LiClO 4 , LiCl, LiF, LiBr, LiI, and LiAlCl 4. Of these, 1 is selected from the group consisting of inorganic salts such as LiPF 6 , LiBF 4 , and LiClO 4 , and organic salts such as LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , and LiC (CF 3 SO 2 ) 3. It is preferable to use a seed or a combination of two or more kinds of salts from the viewpoint of electrical characteristics. The concentration of this supporting salt in the electrolytic solution is preferably 0.1 mol / L or more and 5 mol / L or less, and more preferably 0.5 mol / L or more and 2 mol / L or less.

柱状正極20は、中心孔20aを有する円柱形状に形成されている。柱状正極20の中心孔20aには、外周面及び下端面が分離膜18で囲われた負極10が配置されている。中心孔20aは、柱状正極20の中心軸に沿って柱状正極20の上端面から下端面の手前まで設けられた有底筒状の孔である。そのため、負極10の外周面及び下端面と、柱状正極20の中心孔20aの内壁及び底面とは、分離膜18によって絶縁されている。 The columnar positive electrode 20 is formed in a cylindrical shape having a central hole 20a. In the central hole 20a of the columnar positive electrode 20, a negative electrode 10 whose outer peripheral surface and lower end surface are surrounded by a separation film 18 is arranged. The central hole 20a is a bottomed tubular hole provided along the central axis of the columnar positive electrode 20 from the upper end surface to the lower end surface of the columnar positive electrode 20. Therefore, the outer peripheral surface and the lower end surface of the negative electrode 10 and the inner wall and the bottom surface of the central hole 20a of the columnar positive electrode 20 are insulated by the separation film 18.

柱状正極20は、正極活物質を含んでいるが、正極活物質が導電性を有さない場合は、導電性を有する導電材を混合して成形したものとしてもよい。柱状正極20は、例えば、正極活物質と、必要に応じて導電材と、結着材とを混合し成形したものとしてもよい。正極活物質は、例えば、キャリアであるリチウムを吸蔵放出可能な材料が挙げられる。正極活物質としては、リチウムと遷移金属とを有する化合物が挙げられる。こうした化合物としては、例えば、リチウムと遷移金属元素とを含む酸化物やリチウムと遷移金属元素とを含むリン酸化合物などが挙げられる。具体的には、基本組成式をLi(1-x)MnO2(0≦x≦1など、以下同じ)やLi(1-x)Mn24などとするリチウムマンガン複合酸化物、基本組成式をLi(1-x)CoO2などとするリチウムコバルト複合酸化物、基本組成式をLi(1-x)NiO2などとするリチウムニッケル複合酸化物、基本組成式をLi(1-x)CoaNibMnc2(a>0、b>0、c>0、a+b+c=1)、Li(1-x)CoaNibMnc4(0<a<1、0<b<1、1≦c<2、a+b+c=2)などとするリチウムコバルトニッケルマンガン複合酸化物、基本組成式をLiV23などとするリチウムバナジウム複合酸化物、基本組成式をV25などとする遷移金属酸化物などを用いることができる。また、基本組成式をLiFePO4とするリン酸鉄リチウム化合物などを正極活物質として用いることができる。これらのうち、リチウムコバルトニッケルマンガン複合酸化物、例えば、LiCo1/3Ni1/3Mn1/32やLiNi0.4Co0.3Mn0.32などが好ましい。なお、「基本組成式」とは、他の元素、例えば、AlやMgなどの成分を含んでもよい趣旨である。 The columnar positive electrode 20 contains a positive electrode active material, but when the positive electrode active material does not have conductivity, it may be formed by mixing a conductive material having conductivity. The columnar positive electrode 20 may be formed by mixing, for example, a positive electrode active material, a conductive material, and a binder, if necessary. Examples of the positive electrode active material include a material capable of occluding and releasing lithium as a carrier. Examples of the positive electrode active material include compounds having lithium and a transition metal. Examples of such a compound include an oxide containing lithium and a transition metal element, a phosphoric acid compound containing lithium and a transition metal element, and the like. Specifically, a lithium manganese composite oxide having a basic composition formula of Li (1-x) MnO 2 (0 ≦ x ≦ 1, etc., the same applies hereinafter) or Li (1-x) Mn 2 O 4, etc., basic composition Lithium cobalt composite oxide whose formula is Li (1-x) CoO 2, etc., Lithium nickel composite oxide whose basic composition formula is Li (1-x) NiO 2, etc., basic composition formula is Li (1-x) Co a Ni b Mn c O 2 (a> 0, b> 0, c> 0, a + b + c = 1), Li (1-x) Co a Ni b Mn c O 4 (0 <a <1, 0 <b) <1, 1 ≦ c <2, a + b + c = 2), etc. Lithium cobalt nickel manganese composite oxide, basic composition formula is LiV 2 O 3, etc. Lithium vanadium composite oxide, basic composition formula is V 2 O 5, etc. A transition metal oxide or the like can be used. Further, a lithium iron phosphate compound having a basic composition formula of LiFePO 4 or the like can be used as the positive electrode active material. Of these, lithium cobalt nickel-manganese composite oxides such as LiCo 1/3 Ni 1/3 Mn 1/3 O 2 and LiNi 0.4 Co 0.3 Mn 0.3 O 2 are preferable. The "basic composition formula" is intended to include other elements such as components such as Al and Mg.

柱状正極20に導電材を含ませる場合、その導電材は、電池性能に悪影響を及ぼさない電子伝導性材料であれば特に限定されず、例えば、天然黒鉛(鱗状黒鉛、鱗片状黒鉛)や人造黒鉛などの黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラック、カーボンウィスカ、ニードルコークス、炭素繊維、金属(銅、ニッケル、アルミニウム、銀、金など)などの1種又は2種以上を混合したものを用いることができる。柱状正極20に結着材を含ませる場合、その結着材は、活物質粒子や導電材粒子を繋ぎ止めて所定の形状を保つ役割を果たすものであれば特に限定されず、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素ゴム等の含フッ素樹脂、或いはポリプロピレン、ポリエチレン等の熱可塑性樹脂、エチレンプロピレンジエンモノマー(EPDM)ゴム、スルホン化EPDMゴム、天然ブチルゴム(NBR)等を単独で、あるいは2種以上の混合物として用いることができる。また、水系バインダーであるセルロース系やスチレンブタジエンゴム(SBR)の水分散体等を用いることもできる。 When the columnar positive electrode 20 contains a conductive material, the conductive material is not particularly limited as long as it is an electron conductive material that does not adversely affect the battery performance. For example, natural graphite (scaly graphite, scaly graphite) or artificial graphite is used. Use one or a mixture of two or more types of graphite, acetylene black, carbon black, Ketjen black, carbon whisker, needle coke, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.). be able to. When the columnar positive electrode 20 contains a binder, the binder is not particularly limited as long as it plays a role of holding the active material particles and the conductive material particles together to maintain a predetermined shape. For example, polytetra. Fluororesin such as fluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluororubber, or thermoplastic resin such as polypropylene, polyethylene, ethylene propylene diene monomer (EPDM) rubber, sulfonated EPDM rubber, natural butyl rubber (NBR) Etc. can be used alone or as a mixture of two or more kinds. Further, an aqueous dispersion of cellulose-based binder or styrene-butadiene rubber (SBR), which is an aqueous binder, can also be used.

以上詳述したピン形二次電池30によれば、出入力特性や急速充電性が向上すると共にピン形二次電池30の形状自由度も向上する。こうした効果が得られる理由は、以下のように考えられる。すなわち、ピン形二次電池30の負極10では、繊維束14を構成する炭素繊維12は、負極活物質であると同時に集電体としても機能する。また、繊維束14に金属ワイヤ16を挿通することで、集電抵抗が低減する。したがって、この負極10を用いたピン形二次電池30によれば、出入力特性や急速充電性が向上する。また、負極10の長手方向の抵抗が小さいため、負極10の長さを比較的長くすることができ、ピン形二次電池30の形状自由度が向上する。 According to the pin-type secondary battery 30 described in detail above, the input / output characteristics and the quick chargeability are improved, and the degree of freedom in the shape of the pin-type secondary battery 30 is also improved. The reason why such an effect can be obtained is considered as follows. That is, in the negative electrode 10 of the pin-type secondary battery 30, the carbon fibers 12 constituting the fiber bundle 14 function as both a negative electrode active material and a current collector at the same time. Further, by inserting the metal wire 16 through the fiber bundle 14, the current collecting resistance is reduced. Therefore, according to the pin-type secondary battery 30 using the negative electrode 10, the input / output characteristics and the quick chargeability are improved. Further, since the resistance of the negative electrode 10 in the longitudinal direction is small, the length of the negative electrode 10 can be made relatively long, and the degree of freedom in the shape of the pin-type secondary battery 30 is improved.

次に、負極10を用いた角形二次電池40について図3に基づいて説明する。 Next, the square secondary battery 40 using the negative electrode 10 will be described with reference to FIG.

角形二次電池40は、図3に示すように、電池本体42と、負極集電体44と、正極集電体46とを備えている。 As shown in FIG. 3, the square secondary battery 40 includes a battery body 42, a negative electrode current collector 44, and a positive electrode current collector 46.

電池本体42は、ピン形二次電池30を負極10の上端面が上向きになるように、左右方向にm個(mは2以上の整数)、前後方向にn個(nは2以上の整数)並べて、全体形状が直方体になるように左右及び前後に圧縮したものである。そのため、電池本体42を構成するピン形二次電池30の柱状正極20は、中心孔20aを有する直方体になっている。電池本体42の各辺の長さは、短いものから順に並べると、左右方向の長さX、上下方向の長さY、前後方向の長さZとなる(X<Y<Z)。 The battery body 42 contains m pin-type secondary batteries 30 in the left-right direction (m is an integer of 2 or more) and n in the front-rear direction (n is an integer of 2 or more) so that the upper end surface of the negative electrode 10 faces upward. ) Side by side, compressed left and right and back and forth so that the overall shape is a square. Therefore, the columnar positive electrode 20 of the pin-type secondary battery 30 constituting the battery body 42 is a rectangular parallelepiped having a central hole 20a. The lengths of each side of the battery body 42 are the length X in the left-right direction, the length Y in the up-down direction, and the length Z in the front-rear direction when arranged in order from the shortest one (X <Y <Z).

負極集電体44は、導電性材料で形成された板状部材であり、電池本体42の上面に配置されている。負極集電体44には、すべての負極10の上端面が並列接続されている。負極集電体44を形成する導電性材料としては、例えば、カーボンペーパー、アルミニウム、銅、チタン、ステンレス鋼、ニッケル、鉄、白金、焼成炭素、導電性高分子、導電性ガラスなどのほか、接着性、導電性及び耐酸化性(還元性)を向上させる目的で、アルミニウムや銅などの表面をカーボン、ニッケル、チタン、銀、白金、金などで処理したものも用いることができる。 The negative electrode current collector 44 is a plate-shaped member made of a conductive material, and is arranged on the upper surface of the battery body 42. The upper end surfaces of all the negative electrodes 10 are connected in parallel to the negative electrode current collector 44. Examples of the conductive material forming the negative electrode current collector 44 include carbon paper, aluminum, copper, titanium, stainless steel, nickel, iron, platinum, calcined carbon, conductive polymer, conductive glass, and the like, as well as adhesive. For the purpose of improving the property, conductivity and oxidation resistance (reducing property), those having the surface of aluminum, copper or the like treated with carbon, nickel, titanium, silver, platinum, gold or the like can also be used.

正極集電体46は、導電性材料で形成された板状部材であり、電池本体42の左側面に配置されている。正極集電体46は、負極10や負極集電体44と電気的に絶縁されている。正極集電体46を形成する導電性材料としては、負極集電体44を形成する導電性材料として例示したものが挙げられる。 The positive electrode current collector 46 is a plate-shaped member made of a conductive material, and is arranged on the left side surface of the battery body 42. The positive electrode current collector 46 is electrically insulated from the negative electrode 10 and the negative electrode current collector 44. Examples of the conductive material for forming the positive electrode current collector 46 include those exemplified as the conductive material for forming the negative electrode current collector 44.

以上詳述した角形二次電池40も、負極10を用いているため、出入力特性や急速充電性が向上するし、負極10の長さを比較的長くすることができ、角形二次電池40の形状自由度が向上する。 Since the square secondary battery 40 described in detail above also uses the negative electrode 10, the input / output characteristics and quick chargeability are improved, and the length of the negative electrode 10 can be made relatively long. The degree of freedom in shape is improved.

なお、本開示は上述した実施形態に何ら限定されることはなく、本開示の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It goes without saying that the present disclosure is not limited to the above-described embodiment, and can be implemented in various embodiments as long as it belongs to the technical scope of the present disclosure.

例えば、上述した実施形態では、二次電池のキャリアをリチウムイオンとしたが、特にこれに限定されず、ナトリウムイオンやカリウムイオンなどのアルカリ金属イオン、カルシウムイオンやマグネシウムイオンなどの2族元素イオンとしてもよい。また、正極活物質は、キャリアのイオンを吸蔵放出可能な材料であればよい。また、電解液を非水系電解液としたが、水系電解液としてもよい。 For example, in the above-described embodiment, the carrier of the secondary battery is lithium ion, but the carrier is not particularly limited to this, and as an alkali metal ion such as sodium ion or potassium ion, or a group 2 element ion such as calcium ion or magnesium ion. May be good. The positive electrode active material may be any material that can occlude and release carrier ions. Further, although the electrolytic solution is a non-aqueous electrolytic solution, it may be an aqueous electrolytic solution.

上述した実施形態では、二次電池として電解液を用いるものを例示したが、電解液を用いない全固体電池としてもよい。 In the above-described embodiment, a battery that uses an electrolytic solution as the secondary battery has been exemplified, but an all-solid-state battery that does not use an electrolytic solution may be used.

上述した実施形態では、負極10を構成する繊維束14をストレート形状の炭素繊維12を多数本束ねたものとしたが、特にこれに限定されるものではなく、例えば多数本の炭素繊維12を撚ったものとしてもよい。 In the above-described embodiment, the fiber bundle 14 constituting the negative electrode 10 is formed by bundling a large number of straight-shaped carbon fibers 12, but the present invention is not particularly limited to this, and for example, a large number of carbon fibers 12 are twisted. It may be the one.

上述した実施形態では、ピン形二次電池30の柱状正極20を円柱形状としたが、特にこれに限定されるものではなく、例えば空間充填可能な正多角柱(例えば正六角柱、正三角柱、正四角柱など)であってもよい。なお、「空間充填」とは、空間内を3次元形状の物体で隙間なく埋め尽くすことをいう。 In the above-described embodiment, the columnar positive electrode 20 of the pin-type secondary battery 30 has a cylindrical shape, but the present invention is not particularly limited to this, and for example, a space-fillable regular polygonal prism (for example, a regular hexagonal prism, a regular triangular prism, and a regular prism) It may be a prism (such as a prism). In addition, "space filling" means filling the space with three-dimensional objects without gaps.

上述した実施形態では、角形二次電池40の負極集電体44や正極集電体46を板状としたが、特に板状に限定されるものではなく、例えば、箔状、フィルム状、シート状、ネット状、パンチングシート、ガラス体、多孔質体、発泡体、繊維群の形成体などでもよい。また、負極及び正極集電体44,46は、同じ形状であってもよいし、異なる形状であってもよい。 In the above-described embodiment, the negative electrode current collector 44 and the positive electrode current collector 46 of the square secondary battery 40 are plate-shaped, but are not particularly limited to plate-shaped, and are, for example, foil-shaped, film-shaped, and sheet. The shape, net shape, punching sheet, glass body, porous body, foam, fiber group forming body and the like may be used. Further, the negative electrode and the positive electrode current collectors 44 and 46 may have the same shape or may have different shapes.

上述した実施形態では、角形二次電池40の電池本体42は、柱状正極20を備えたピン形二次電池30を集合させたものとして説明したが、特にこれに限定されるものではなく、例えば、分離膜18の付いた負極10が電池本体42とほぼ同じ大きさの直方体形状の正極内に互いに接することなく独立して立設されたものとしてもよい。 In the above-described embodiment, the battery body 42 of the square secondary battery 40 has been described as an assembly of pin-type secondary batteries 30 having a columnar positive electrode 20, but the present invention is not particularly limited to this, for example. The negative electrode 10 having the separation film 18 may be independently erected in the positive electrode having a rectangular shape having substantially the same size as the battery body 42 without being in contact with each other.

上述した実施形態では、角形二次電池40の左側面に正極集電体46を設けたが、特にこれに限定されるものではなく、右側面に設けてもよいし、前面あるいは後面に設けてもよいし、下面に設けてもよい。但し、角形二次電池40の左右方向の長さXが上下方向の長さYや前後方向の長さZよりも短いため、角形二次電池40の左側面又は右側面に正極集電体46を設けることが好ましい。こうすることにより、正極の電気抵抗が小さくなるからである。 In the above-described embodiment, the positive electrode current collector 46 is provided on the left side surface of the square secondary battery 40, but the present invention is not particularly limited thereto, and may be provided on the right side surface, or may be provided on the front surface or the rear surface. It may be provided on the lower surface. However, since the length X in the left-right direction of the square secondary battery 40 is shorter than the length Y in the vertical direction and the length Z in the front-rear direction, the positive electrode current collector 46 is on the left side surface or the right side surface of the square secondary battery 40. It is preferable to provide. This is because the electrical resistance of the positive electrode is reduced by doing so.

[実施例1]
長さ100mm、直径10μmの炭素繊維を1000本束ねた繊維束のほぼ中心に、長さ100mm、直径20μmのCuワイヤ(金属ワイヤ)を挿通し、それをバインダであるポリフッ化ビニリデン(PVdF)を溶解したN−メチルピロリドン(NMP)溶液に浸漬し、乾燥させることで、直径250μm、長さ100mmの負極を作製した。このとき、繊維束及びCuワイヤの合計重量に対するCuワイヤの重量の比が3%となるように、Cuワイヤの本数を調整した。ポリフッ化ビニリデン−co−ヘキサフルオロプロピレン(PVdF−HFP)を溶解したNMP溶液を用いたディップコート法により、負極の外周面及び下面に厚さ12μmのPVdF−HFP分離膜を形成した。続いて、分離膜を備えた負極に水系正極ペーストをディップコートすることで、隔壁表面に正極合材層を形成した。正極ペーストとしては、Li(NiCoMn)O2とカーボンブラックとPVdFバインダを水中に分散させたものを用いた。この一体物に電解液(1M LiPF6,EC/DMC/EMC=3/4/3(体積比))を注液後、密閉し、外周面にアルミホイルを巻いて正極集電体することで、ピン形リチウムイオン二次電池を作製した。
[Example 1]
A Cu wire (metal wire) having a length of 100 mm and a diameter of 20 μm is inserted into a fiber bundle in which 1000 carbon fibers having a length of 100 mm and a diameter of 10 μm are bundled, and a binder, polyvinylidene fluoride (PVdF), is used. A negative electrode having a diameter of 250 μm and a length of 100 mm was prepared by immersing it in a dissolved N-methylpyrrolidone (NMP) solution and drying it. At this time, the number of Cu wires was adjusted so that the ratio of the weight of the Cu wires to the total weight of the fiber bundle and the Cu wires was 3%. A 12 μm-thick PVdF-HFP separation membrane was formed on the outer peripheral surface and the lower surface of the negative electrode by a dip coating method using an NMP solution in which polyvinylidene fluoride-co-hexafluoropropylene (PVdF-HFP) was dissolved. Subsequently, a positive electrode mixture layer was formed on the partition wall surface by dip-coating the negative electrode provided with the separation film with the aqueous positive electrode paste. As the positive electrode paste, Li (NiComn) O 2 , carbon black, and PVdF binder dispersed in water were used. An electrolytic solution (1M LiPF 6 , EC / DMC / EMC = 3/4/3 (volume ratio)) is injected into this integral body, sealed, and an aluminum foil is wrapped around the outer peripheral surface to collect a positive electrode current collector. , A pin-type lithium ion secondary battery was manufactured.

得られたピン形リチウムイオン二次電池のレート性と負極容量を測定した。レート性は、25℃、4Cレート、2V〜4.1Vで充放電試験を行った場合の放電容量を求め、その放電容量の、実施例4(後述)の放電容量に対する割合(百分率)とした。負極容量は、分離膜を備えた上述の負極をLi金属対極と対向させ、注液したセルを作製して評価した。充放電条件は、25℃、0.1Cレート、0.005V〜2Vとし、放電容量は、繊維束とCuワイヤの合計重量で規格化した値とした。結果を表1に示す。 The rate and negative electrode capacity of the obtained pin-type lithium ion secondary battery were measured. For the rate property, the discharge capacity when the charge / discharge test was performed at 25 ° C., 4C rate, and 2V to 4.1V was determined, and the discharge capacity was defined as the ratio (percentage) of the discharge capacity to the discharge capacity of Example 4 (described later). .. The negative electrode capacity was evaluated by preparing a cell in which the above-mentioned negative electrode provided with the separation membrane was opposed to the Li metal counter electrode and injected. The charge / discharge conditions were 25 ° C., 0.1 C rate, 0.005 V to 2 V, and the discharge capacity was a value standardized by the total weight of the fiber bundle and the Cu wire. The results are shown in Table 1.

[比較例1,実施例2〜4]
Cuワイヤの重量比を変更したこと以外は実施例1と同様にしてレート性、負極容量を求めた。結果を表1に示す。
[Comparative Example 1, Examples 2-4]
The rateability and the negative electrode capacity were determined in the same manner as in Example 1 except that the weight ratio of the Cu wire was changed. The results are shown in Table 1.

[実施例5,6]
負極の長さ(炭素繊維の長さ及びCuワイヤの長さ)を変更したこと以外は実施例2と同様にしてレート性、負極容量を求めた。結果を表1に示す。
[Examples 5 and 6]
The rate and the negative electrode capacity were determined in the same manner as in Example 2 except that the length of the negative electrode (the length of the carbon fiber and the length of the Cu wire) was changed. The results are shown in Table 1.

[実施例7]
Cuワイヤの直径を50μmに変更したこと以外は実施例2と同様にしてレート性、負極容量を求めた。結果を表1に示す。
[Example 7]
The rate and the negative electrode capacity were determined in the same manner as in Example 2 except that the diameter of the Cu wire was changed to 50 μm. The results are shown in Table 1.

[実施例8]
Cuワイヤの代わりにNiワイヤを用いたこと以外は実施例2と同様にしてレート性、負極容量を求めた。結果を表1に示す。
[Example 8]
The rate and the negative electrode capacity were determined in the same manner as in Example 2 except that the Ni wire was used instead of the Cu wire. The results are shown in Table 1.

[実施例9]
Cuワイヤの代わりにNiワイヤを用いたこと以外は実施例7と同様にしてレート性、負極容量を求めた。結果を表1に示す。
[Example 9]
The rate and the negative electrode capacity were determined in the same manner as in Example 7 except that the Ni wire was used instead of the Cu wire. The results are shown in Table 1.

Figure 2021026957
Figure 2021026957

炭素繊維を束ねた繊維束に金属ワイヤを挿通した負極を用いた実施例1〜9では、金属ワイヤが挿通されていない負極を用いた比較例1に比べて、レート性が向上した。レート性が高いほど、出入力特性や急速充電性が良好になる。また、実施例1〜4の結果から、金属ワイヤの重量比が増加するほどレート性が向上することがわかり、実施例2,5,7の結果から、負極長さが短いほどレート性が向上することがわかった。このようにレート性が向上したのは、負極の電気抵抗が低下したためと考えられる。更に、実施例2,8や実施例7,9の結果から、金属ワイヤがCuであってもNiであってもほぼ同等の結果が得られることがわかった。負極容量については、実施例1〜9では、比較例1に比べてやや低下したものの比較的高い値であった。レート性を考慮すると、金属ワイヤの重量比は7重量%以上30重量%以下が好ましく、レート性及び負極容量を両立させることを考慮すると、金属ワイヤの重量比は7重量%以上16重量%以下が好ましいといえる。 In Examples 1 to 9 in which a negative electrode in which a metal wire was inserted into a fiber bundle in which carbon fibers were bundled was used, the rateability was improved as compared with Comparative Example 1 in which a negative electrode in which a metal wire was not inserted was used. The higher the rate, the better the input / output characteristics and quick chargeability. Further, from the results of Examples 1 to 4, it was found that the rateability improved as the weight ratio of the metal wire increased, and from the results of Examples 2, 5 and 7, the rateability improved as the negative electrode length became shorter. I found out that It is considered that the reason why the rateability was improved in this way was that the electrical resistance of the negative electrode was reduced. Furthermore, from the results of Examples 2 and 8 and Examples 7 and 9, it was found that almost the same results can be obtained regardless of whether the metal wire is Cu or Ni. Regarding the negative electrode capacity, in Examples 1 to 9, the value was relatively high, although it was slightly lower than that in Comparative Example 1. Considering the rate property, the weight ratio of the metal wire is preferably 7% by weight or more and 30% by weight or less, and considering both the rate property and the negative electrode capacity, the weight ratio of the metal wire is 7% by weight or more and 16% by weight or less. Can be said to be preferable.

10 負極、12 炭素繊維、14 繊維束、16 金属ワイヤ、18 分離膜、20 柱状正極、20a 中心孔、30 ピン形二次電池、40 角形二次電池、42 電池本体、44 負極集電体、46 正極集電体。 10 Negative electrode, 12 carbon fiber, 14 fiber bundle, 16 metal wire, 18 separation film, 20 columnar positive electrode, 20a center hole, 30-pin secondary battery, 40-square secondary battery, 42 battery body, 44 negative electrode current collector, 46 Positive electrode current collector.

Claims (4)

炭素繊維を束ねた繊維束と、
前記繊維束の長手方向に沿って前記繊維束に挿通された金属ワイヤと、
を備えた二次電池用負極。
A fiber bundle that bundles carbon fibers and
A metal wire inserted into the fiber bundle along the longitudinal direction of the fiber bundle,
Negative electrode for secondary batteries equipped with.
前記炭素繊維の長さは、前記金属ワイヤの長さと同じである、
請求項1に記載の二次電池用負極。
The length of the carbon fiber is the same as the length of the metal wire.
The negative electrode for a secondary battery according to claim 1.
前記繊維束及び前記金属ワイヤの合計重量に対する前記金属ワイヤの重量の比が7重量%以上30重量%以下である、
請求項1又は2に記載の二次電池用負極。
The ratio of the weight of the metal wire to the total weight of the fiber bundle and the metal wire is 7% by weight or more and 30% by weight or less.
The negative electrode for a secondary battery according to claim 1 or 2.
請求項1〜3のいずれか1項に記載の二次電池用負極と、
前記二次電池用負極の周囲を囲うように設けられた分離膜と、
正極活物質を含み、前記分離膜の周囲に設けられた正極と、
を備えた二次電池。
The negative electrode for a secondary battery according to any one of claims 1 to 3,
A separation membrane provided so as to surround the negative electrode for the secondary battery, and
A positive electrode containing a positive electrode active material and provided around the separation membrane,
Rechargeable battery with.
JP2019145742A 2019-08-07 2019-08-07 Negative electrode for secondary battery and secondary battery using the same Active JP7298380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019145742A JP7298380B2 (en) 2019-08-07 2019-08-07 Negative electrode for secondary battery and secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019145742A JP7298380B2 (en) 2019-08-07 2019-08-07 Negative electrode for secondary battery and secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2021026957A true JP2021026957A (en) 2021-02-22
JP7298380B2 JP7298380B2 (en) 2023-06-27

Family

ID=74664954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019145742A Active JP7298380B2 (en) 2019-08-07 2019-08-07 Negative electrode for secondary battery and secondary battery using the same

Country Status (1)

Country Link
JP (1) JP7298380B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020149824A (en) * 2019-03-12 2020-09-17 トヨタ自動車株式会社 Lithium ion secondary battery and method for manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020149824A (en) * 2019-03-12 2020-09-17 トヨタ自動車株式会社 Lithium ion secondary battery and method for manufacturing the same

Also Published As

Publication number Publication date
JP7298380B2 (en) 2023-06-27

Similar Documents

Publication Publication Date Title
KR100804411B1 (en) Electrode Assembly of Novel Structure and Secondary Battery Comprising the Same
JP6631568B2 (en) Secondary battery and method of manufacturing the same
US9786916B2 (en) Electrode and secondary battery including the same
US11101456B2 (en) Secondary battery and method for manufacturing same
JP6930147B2 (en) Rechargeable battery
US10840508B2 (en) Lithium ion secondary battery
KR20150014397A (en) Anode Mixture for Secondary Battery Having Improved Structural Safety and Secondary Battery Having the Same
JP7059988B2 (en) Secondary battery
JP6691906B2 (en) Secondary battery
KR101495301B1 (en) The Electrodes For Secondary Battery and the Secondary Battery Comprising the Same
US10897043B2 (en) Secondary battery
JP7007240B2 (en) Secondary battery
JP7087422B2 (en) Secondary battery
CN105940543A (en) Lithium ion battery system
JP7111119B2 (en) storage device
JP6981452B2 (en) Secondary battery
JP7298380B2 (en) Negative electrode for secondary battery and secondary battery using the same
JP6991876B2 (en) Secondary battery
CN110476288B (en) Nonaqueous electrolyte storage element and method for manufacturing same
JP7247821B2 (en) A negative electrode for a secondary battery, a secondary battery, and a method for manufacturing a negative electrode for a secondary battery.
JP6981453B2 (en) Secondary battery
JP7424120B2 (en) Energy storage device
JP6991877B2 (en) Secondary battery
JP7207348B2 (en) storage device
WO2021100225A1 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230529

R150 Certificate of patent or registration of utility model

Ref document number: 7298380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150