JP6981452B2 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP6981452B2
JP6981452B2 JP2019140857A JP2019140857A JP6981452B2 JP 6981452 B2 JP6981452 B2 JP 6981452B2 JP 2019140857 A JP2019140857 A JP 2019140857A JP 2019140857 A JP2019140857 A JP 2019140857A JP 6981452 B2 JP6981452 B2 JP 6981452B2
Authority
JP
Japan
Prior art keywords
negative electrode
current collector
electrode current
collector layer
columnar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019140857A
Other languages
Japanese (ja)
Other versions
JP2021026808A (en
Inventor
慈 佐々木
匠昭 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2019140857A priority Critical patent/JP6981452B2/en
Publication of JP2021026808A publication Critical patent/JP2021026808A/en
Application granted granted Critical
Publication of JP6981452B2 publication Critical patent/JP6981452B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本明細書で開示する発明は、二次電池に関する。 The invention disclosed herein relates to a secondary battery.

従来、二次電池としては、集電効率を高めるために集電体部分の材料を工夫したもの(特許文献1〜3)や、複数の集電板や導線を固定する集電構造に関するもの(特許文献4〜6)などが知られている。また、エネルギー密度の高い二次電池としては、複数の柱状負極と、各柱状負極の周囲を囲うように設けられた分離膜と、隣合う分離膜同士の間を埋めるように設けられた正極とを備えたものも知られている(特許文献7)。この二次電池は、分離膜で周囲を囲われた柱状負極が正極内に配置された構造である。この二次電池の正極は、正六角柱からなる柱状正極を空間充填して得られたものであり、分離膜で囲われた柱状負極が、柱状正極の中心孔に配置されている。 Conventionally, as a secondary battery, one in which the material of the current collector part is devised in order to improve the current collector efficiency (Patent Documents 1 to 3), and one related to a current collector structure for fixing a plurality of current collector plates and conductors (Patent Documents 1 to 3). Patent documents 4 to 6) and the like are known. Further, as a secondary battery having a high energy density, a plurality of columnar negative electrodes, a separation membrane provided so as to surround each columnar negative electrode, and a positive electrode provided so as to fill the space between adjacent separation films. Is also known (Patent Document 7). This secondary battery has a structure in which a columnar negative electrode surrounded by a separation membrane is arranged in the positive electrode. The positive electrode of this secondary battery is obtained by spatially filling a columnar positive electrode made of a regular hexagonal column, and the columnar negative electrode surrounded by a separation membrane is arranged in the central hole of the columnar positive electrode.

特開2019−32966号公報Japanese Unexamined Patent Publication No. 2019-32966 特開2019−33066号公報Japanese Unexamined Patent Publication No. 2019-33066 特開2018−116910号公報Japanese Unexamined Patent Publication No. 2018-116910 特許第6159719号公報Japanese Patent No. 6159719 特開2014−154272号公報Japanese Unexamined Patent Publication No. 2014-154272 特開2015−103318号公報Japanese Unexamined Patent Publication No. 2015-10313 特開2018−152229号公報Japanese Unexamined Patent Publication No. 2018-152229

しかしながら、特許文献7の二次電池では、負極集電構造は柱状負極の一方の端面を金属製の集電板に接続するものであったため、集電を効率的に行うことができず、重量エネルギー密度や体積エネルギー密度が十分高いとはいえなかった。 However, in the secondary battery of Patent Document 7, since the negative electrode current collecting structure is such that one end face of the columnar negative electrode is connected to the metal current collecting plate, the current collecting cannot be performed efficiently and the weight is heavy. It could not be said that the energy density and the volume energy density were sufficiently high.

本開示は、このような課題に鑑みなされたものであり、分離膜で周囲を囲われた柱状負極が正極内に配置された二次電池において、エネルギー密度を十分高めることを主目的とする。 The present disclosure has been made in view of such a problem, and an object of the present disclosure is to sufficiently increase the energy density in a secondary battery in which a columnar negative electrode surrounded by a separation membrane is arranged in a positive electrode.

上述した目的を達成するために、本発明者らは、分離膜で周囲を囲われた柱状負極が正極内に配置された二次電池において、負極集電構造を工夫することによりエネルギー密度を十分高めることができることを見い出し、本明細書で開示する発明を完成するに至った。 In order to achieve the above-mentioned object, the present inventors sufficiently improve the energy density by devising the negative electrode current collecting structure in the secondary battery in which the columnar negative electrode surrounded by the separation membrane is arranged in the positive electrode. We have found that it can be enhanced, and have completed the invention disclosed in the present specification.

即ち、本明細書で開示する二次電池は、
負極活物質を含む複数の柱状負極と、
各柱状負極の周囲を囲うように設けられた分離膜と、
正極活物質を含み、隣合う前記分離膜同士の間を埋めるように設けられた正極と、
すべての前記柱状負極の一方の端面が露出するように設けられた絶縁層と、
前記絶縁層から露出したすべての前記柱状負極の一方の端面を覆うように設けられた第1負極集電層と、
前記第1負極集電層上に間欠的に設けられた複数の第2負極集電層と、
前記第1負極集電層と接触せず、前記第2負極集電層を架け渡すように設けられ、前記第2負極集電層よりも少ない数の第3負極集電層と、
を備え、
前記第1負極集電層の電流経路の電気抵抗Ra1と、前記第2負極集電層の電流経路の電気抵抗Ra2と、前記第3負極集電層の電流経路の電気抵抗Ra3は、Ra1>Ra2>Ra3の関係を満たす、
ものである。
That is, the secondary battery disclosed in this specification is
Multiple columnar negative electrodes containing negative electrode active material,
A separation membrane provided so as to surround each columnar negative electrode,
A positive electrode containing a positive electrode active material and provided so as to fill the space between adjacent separation membranes,
An insulating layer provided so that one end face of all the columnar negative electrodes is exposed,
A first negative electrode current collector layer provided so as to cover one end face of all the columnar negative electrodes exposed from the insulating layer,
A plurality of second negative electrode current collector layers intermittently provided on the first negative electrode current collector layer, and
A third negative electrode current collector layer, which is provided so as to bridge the second negative electrode current collector layer without contacting the first negative electrode current collector layer and has a smaller number than the second negative electrode current collector layer.
Equipped with
The electric resistance Ra1 of the current path of the first negative electrode current collector layer, the electric resistance Ra2 of the current path of the second negative electrode current collector layer, and the electric resistance Ra3 of the current path of the third negative electrode current collector layer are Ra1>. Satisfying the relationship Ra2> Ra3,
It is a thing.

この二次電池によれば、柱状負極の集電を効率的に行うことができるため、重量エネルギー密度や体積エネルギー密度を十分高くすることができる。負極集電構造を第1負極集電層のみとした場合には、第1負極集電層を電流が流れる経路の電気抵抗が高いためすべての柱状負極からの電流を実用的な電圧低下範囲で流すのは難しい。しかし、ここでは、負極集電構造を、第1負極集電層と、第1負極集電層の上に間欠的に設けられた低抵抗な第2負極集電層と、更に第2負極集電層の上に設けられたより低抵抗な第3負極集電層とで構成したため、すべての柱状負極からの電流を第1負極集電層、第2負極集電層及び第3負極集電層の順に経由して比較的低い電気抵抗で集電することができる。その結果、すべての柱状負極からの電流を実用的な電圧低下範囲で流すことができる。したがって、分離膜で周囲を囲われた柱状負極が正極内に配置された二次電池において、エネルギー密度を十分高めることできる。 According to this secondary battery, since the columnar negative electrode can be efficiently collected, the weight energy density and the volume energy density can be sufficiently increased. When the negative electrode current collecting structure is only the first negative electrode current collecting layer, the electric resistance of the path through which the current flows through the first negative electrode current collecting layer is high, so that the current from all the columnar negative electrodes can be measured within a practical voltage drop range. It's difficult to shed. However, here, the negative electrode current collecting structure is provided with a first negative electrode current collecting layer, a low resistance second negative electrode current collecting layer intermittently provided on the first negative electrode current collecting layer, and a second negative electrode collecting layer. Since it is composed of a third negative electrode current collector layer having a lower resistance provided on the electric layer, the current from all the columnar negative electrodes is collected from the first negative electrode current collector layer, the second negative electrode current collector layer, and the third negative electrode current collector layer. It is possible to collect current with a relatively low electrical resistance via the order of. As a result, the current from all the columnar negative electrodes can flow within a practical voltage drop range. Therefore, in a secondary battery in which a columnar negative electrode surrounded by a separation membrane is arranged in the positive electrode, the energy density can be sufficiently increased.

本明細書で開示する二次電池において、前記電気抵抗Ra1は、前記第2負極集電層と重複していない前記柱状負極の前記端面から前記第1負極集電層を経由して前記第2負極集電層(例えば第2負極集電層の中心線)に至る最短経路の電気抵抗であり、前記電気抵抗Ra2は、前記第2負極集電層の端部から前記第2負極集電層を経由して前記第3負極集電層(例えば第3負極集電層の中心線)に至る経路の電気抵抗であり、前記電気抵抗Ra3は、前記第3負極集電層の一端から他端に至る経路の電気抵抗としてもよい。 In the secondary battery disclosed in the present specification, the electric resistance Ra1 is the second negative electrode current collector layer from the end face of the columnar negative electrode that does not overlap with the second negative electrode current collector layer via the first negative electrode current collector layer. It is the electric resistance of the shortest path to the negative electrode current collecting layer (for example, the center line of the second negative electrode collecting layer), and the electric resistance Ra2 is the second negative electrode collecting layer from the end of the second negative electrode collecting layer. It is the electric resistance of the path to the third negative electrode current collector layer (for example, the center line of the third negative electrode current collector layer) via the above, and the electric resistance Ra3 is from one end to the other end of the third negative electrode current collector layer. It may be the electrical resistance of the path leading to.

本明細書で開示する二次電池において、前記電気抵抗Ra1に対する前記電気抵抗Ra2の比は0.1以下であり、前記電気抵抗Ra2に対する前記電気抵抗Ra3の比は0.1以下であってもよい。こうすれば、エネルギー密度を一層高めることができる。 In the secondary battery disclosed in the present specification, even if the ratio of the electric resistance Ra2 to the electric resistance Ra1 is 0.1 or less and the ratio of the electric resistance Ra3 to the electric resistance Ra2 is 0.1 or less. good. In this way, the energy density can be further increased.

本明細書で開示する二次電池において、前記柱状負極の前記端面は、周期的に配置され、前記第2負極集電層は、同一直線上に並んだ複数の前記柱状負極の前記端面と平行になるように且つ隣合う前記第2負極集電層同士の間隔が一定になるように設けられていてもよい。こうすれば、第2負極集電層は周期的な構造になるため形成しやすくなる。 In the secondary battery disclosed herein, the end faces of the columnar negative electrodes are periodically arranged, and the second negative electrode current collector layer is parallel to the end faces of a plurality of columnar negative electrodes arranged on the same straight line. It may be provided so that the distance between the second negative electrode current collector layers adjacent to each other is constant. By doing so, the second negative electrode current collector layer has a periodic structure and is easy to form.

本明細書で開示する二次電池において、前記第3負極集電層は、前記第2負極集電層を架け渡すように設けられた1本の導電線であってもよい。こうすれば、第3負極集電層が複数本存在する場合に比べて構成が簡素化される。 In the secondary battery disclosed in the present specification, the third negative electrode current collector layer may be one conductive wire provided so as to bridge the second negative electrode current collector layer. By doing so, the configuration is simplified as compared with the case where a plurality of third negative electrode current collector layers are present.

本明細書で開示する二次電池において、前記正極は、空間充填可能な正多角柱からなる複数の柱状正極を空間充填して得られたものであり、前記分離膜で囲われた前記柱状負極は、前記柱状正極の中心孔に配置されていてもよい。こうすれば、正極を比較的容易に作製することができる。 In the secondary battery disclosed in the present specification, the positive electrode is obtained by spatially filling a plurality of columnar positive electrodes composed of positive polygonal columns that can be space-filled, and the columnar negative electrode surrounded by the separation membrane. May be arranged in the central hole of the columnar positive electrode. In this way, the positive electrode can be manufactured relatively easily.

本明細書で開示する二次電池は、固体電解質を用いた全固体電池としてもよいし、電解質液を用いた二次電池としてもよい。 The secondary battery disclosed in the present specification may be an all-solid-state battery using a solid electrolyte, or may be a secondary battery using an electrolyte solution.

二次電池10の概略構成を示す斜視図。The perspective view which shows the schematic structure of the secondary battery 10. 柱状正極26を空間充填して得られた正極16の斜視図。The perspective view of the positive electrode 16 obtained by space-filling the columnar positive electrode 26. 分離膜14付きの柱状負極12を有する柱状正極26の斜視図。FIG. 3 is a perspective view of a columnar positive electrode 26 having a columnar negative electrode 12 with a separation membrane 14. 第1負極集電層21の経路Pa1の電気抵抗Ra1を求める方法の説明図。It is explanatory drawing of the method of obtaining the electric resistance Ra1 of the path Pa1 of the 1st negative electrode current collector layer 21.

次に、本実施形態で開示する二次電池10について図面を用いて説明する。ここでは、説明の便宜のため、リチウムイオンをキャリアとするリチウムイオン二次電池を一例として以下に説明する。図1は二次電池10の概略構成を示す斜視図、図2は柱状正極26を空間充填して得られた正極16の斜視図、図3は分離膜14付きの柱状負極12を有する柱状正極26の斜視図、図4は第1負極集電層21の経路Pa1の電気抵抗Ra1を求める方法の説明図である。なお、本実施形態で上下方向、左右方向及び前後方向は図1及び図2に示すとおりとするが、これらは相対的な位置関係を表すために便宜上用いたに過ぎない。 Next, the secondary battery 10 disclosed in the present embodiment will be described with reference to the drawings. Here, for convenience of explanation, a lithium ion secondary battery having a lithium ion as a carrier will be described below as an example. FIG. 1 is a perspective view showing a schematic configuration of a secondary battery 10, FIG. 2 is a perspective view of a positive electrode 16 obtained by spatially filling a columnar positive electrode 26, and FIG. 3 is a columnar positive electrode having a columnar negative electrode 12 with a separation membrane 14. 26 is a perspective view, and FIG. 4 is an explanatory diagram of a method for obtaining the electric resistance Ra1 of the path Pa1 of the first negative electrode current collector layer 21. In the present embodiment, the vertical direction, the horizontal direction, and the front-back direction are as shown in FIGS. 1 and 2, but these are merely used for convenience in order to show the relative positional relationship.

二次電池10は、柱状負極12と、分離膜14と、正極16と、負極集電体20と、正極集電体30とを備えている。 The secondary battery 10 includes a columnar negative electrode 12, a separation membrane 14, a positive electrode 16, a negative electrode current collector 20, and a positive electrode current collector 30.

柱状負極12は、負極活物質を含む円柱体である。二次電池10は、複数の柱状負極12を有している。柱状負極12は、負極活物質である炭素繊維を束ねたものとしてもよいし、炭素繊維を撚ったものとしてもよい。柱状負極12は、二次電池10全体の負極容量の1/n(nは2以上の整数、以下同じ)の容量を有し、n本が負極集電体20の第1負極集電層21に並列接続されている。柱状負極12は、長手方向に垂直な断面の直径が10μm以上200μm以下の範囲であることが好ましい。この直径が10μm以上であれば、電極構造体としての強度を担保することができ安定した充放電ができる。また、この直径が200μm以下であれば、キャリアのイオンの移動距離が長くなりすぎず、高出力性能が得られる。また、この直径がこの範囲であれば、単位体積あたりのエネルギー密度をより高めることができる。あるいは、この範囲であれば、キャリアのイオンの移動距離をより短くすることができ、より大きな電流で充放電を行うことができる。この炭素繊維の長手方向の長さは、二次電池10の用途などに応じて適宜定めることができ、例えば、20mm以上200mm以下の範囲などとしてもよい。炭素繊維の長さが20mm以上であれば、電池容量をより高めることができ好ましく、200mm以下であれば、柱状負極12の電気抵抗をより低減することができ好ましい。柱状負極12の上端面12aは、正極16の上端面に設けられた絶縁層18から露出するように設けられている。すなわち、絶縁層18は、すべての柱状負極12の上端面12aが露出するように設けられている。絶縁層18は、例えば電気絶縁性ポリマーで形成されている。柱状負極12の上端面12aは、絶縁層18に格子状になるように周期的に配置され、左右方向にi個(iは2以上の整数)、前後方向にj個(jは2以上の整数)並んでいる。 The columnar negative electrode 12 is a columnar body containing a negative electrode active material. The secondary battery 10 has a plurality of columnar negative electrodes 12. The columnar negative electrode 12 may be a bundle of carbon fibers, which is a negative electrode active material, or a twisted carbon fiber. The columnar negative electrode 12 has a capacity of 1 / n (n is an integer of 2 or more, the same applies hereinafter) of the negative electrode capacity of the entire secondary battery 10, and n of them are the first negative electrode current collector layer 21 of the negative electrode current collector 20. Is connected in parallel to. The columnar negative electrode 12 preferably has a cross-sectional diameter perpendicular to the longitudinal direction in the range of 10 μm or more and 200 μm or less. When this diameter is 10 μm or more, the strength of the electrode structure can be ensured and stable charging / discharging can be performed. Further, when this diameter is 200 μm or less, the moving distance of the carrier ions does not become too long, and high output performance can be obtained. Further, if this diameter is in this range, the energy density per unit volume can be further increased. Alternatively, within this range, the moving distance of the carrier ions can be made shorter, and charging / discharging can be performed with a larger current. The length of the carbon fiber in the longitudinal direction can be appropriately determined depending on the intended use of the secondary battery 10, and may be, for example, in the range of 20 mm or more and 200 mm or less. When the length of the carbon fiber is 20 mm or more, the battery capacity can be further increased, and when it is 200 mm or less, the electric resistance of the columnar negative electrode 12 can be further reduced, which is preferable. The upper end surface 12a of the columnar negative electrode 12 is provided so as to be exposed from the insulating layer 18 provided on the upper end surface of the positive electrode 16. That is, the insulating layer 18 is provided so that the upper end surfaces 12a of all the columnar negative electrodes 12 are exposed. The insulating layer 18 is made of, for example, an electrically insulating polymer. The upper end surfaces 12a of the columnar negative electrode 12 are periodically arranged on the insulating layer 18 in a grid pattern, i in the left-right direction (i is an integer of 2 or more), and j in the front-back direction (j is 2 or more). Integer) lined up.

分離膜14は、柱状負極12の外周面及び下端面を囲うように設けられている。分離膜14は、柱状負極12の上端面12aには設けられていない。分離膜14は、キャリアであるイオン(本実施形態ではリチウムイオン)のイオン伝導性を有し、柱状負極12と正極16とを絶縁するものである。分離膜14としては、イオン伝導性と絶縁性とを有するポリマーが好適である。この分離膜14は、例えば、ポリフッ化ビニリデン(PVdF)とヘキサフルオロプロピレン(HFP)との共重合体や、ポリメタクリル酸メチル(PMMA)、及びPMMAとアクリルポリマーとの共重合体などが挙げられる。例えば、PVdFとHFPとの共重合体では、電解液の一部がこの膜を膨潤ゲル化し、イオン伝導膜となる。この分離膜14の厚さは、例えば、絶縁性を確保することを考慮すると、0.5μm以上であることが好ましく、2μm以上であることがより好ましく、5μm以上であるものとしてもよい。また、分離膜14の厚さは、イオン伝導性の低下を抑制することを考慮すると、20μm以下であることが好ましく、10μm以下であることがより好ましい。そのため、分離膜14の厚さは、0.5〜20μmの範囲であることが、イオン伝導性と絶縁性とを両立させる上で好適である。この分離膜14は、例えば、原料を含む溶液へ柱状負極12を浸漬させてその表面にコートすることにより形成されるものとしてもよい。 The separation membrane 14 is provided so as to surround the outer peripheral surface and the lower end surface of the columnar negative electrode 12. The separation membrane 14 is not provided on the upper end surface 12a of the columnar negative electrode 12. The separation membrane 14 has ionic conductivity of ions (lithium ions in this embodiment) as carriers, and insulates the columnar negative electrode 12 and the positive electrode 16. As the separation membrane 14, a polymer having ionic conductivity and insulating property is suitable. Examples of the separation film 14 include a copolymer of polyvinylidene fluoride (PVdF) and hexafluoropropylene (HFP), methyl polymethacrylate (PMMA), and a copolymer of PMMA and an acrylic polymer. .. For example, in a copolymer of PVdF and HFP, a part of the electrolytic solution swells and gels this membrane to become an ionic conduction membrane. The thickness of the separation membrane 14 is preferably 0.5 μm or more, more preferably 2 μm or more, and may be 5 μm or more, for example, in consideration of ensuring insulating properties. Further, the thickness of the separation membrane 14 is preferably 20 μm or less, more preferably 10 μm or less, in consideration of suppressing a decrease in ionic conductivity. Therefore, it is preferable that the thickness of the separation membrane 14 is in the range of 0.5 to 20 μm in order to achieve both ionic conductivity and insulating property. The separation membrane 14 may be formed, for example, by immersing the columnar negative electrode 12 in a solution containing a raw material and coating the surface thereof.

電解液は、本実施形態では、非水系溶媒にリチウムイオンを含む支持塩を溶解したもの(非水系電解液)とした。非水系溶媒としては、例えば、カーボネート類、エステル類、エーテル類、ニトリル類、フラン類、スルホラン類及びジオキソラン類などが挙げられ、これらを単独又は混合して用いることができる。具体的には、カーボネート類としてエチレンカーボネート(EC)やプロピレンカーボネート、ビニレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネートなどの環状カーボネート類や、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート、エチル−n−ブチルカーボネート、メチル−t−ブチルカーボネート、ジ−i−プロピルカーボネート、t−ブチル−i−プロピルカーボネートなどの鎖状カーボネート類、γ−ブチルラクトン、γ−バレロラクトンなどの環状エステル類、ギ酸メチル、酢酸メチル、酢酸エチル、酪酸メチルなどの鎖状エステル類、ジメトキシエタン、エトキシメトキシエタン、ジエトキシエタンなどのエーテル類、アセトニトリル、ベンゾニトリルなどのニトリル類、テトラヒドロフラン、メチルテトラヒドロフラン、などのフラン類、スルホラン、テトラメチルスルホランなどのスルホラン類、1,3−ジオキソラン、メチルジオキソランなどのジオキソラン類などが挙げられる。支持塩としては、例えば、LiPF6、LiBF4、LiAsF6、LiCF3SO3、LiN(CF3SO22、LiC(CF3SO23、LiSbF6、LiSiF6、LiAlF4、LiSCN、LiClO4、LiCl、LiF、LiBr、LiI、LiAlCl4などが挙げられる。このうち、LiPF6、LiBF4、LiClO4などの無機塩、及びLiCF3SO3、LiN(CF3SO22、LiC(CF3SO23などの有機塩からなる群より選ばれる1種又は2種以上の塩を組み合わせて用いることが電気特性の点から見て好ましい。この支持塩は、電解液中の濃度が0.1mol/L以上5mol/L以下であることが好ましく、0.5mol/L以上2mol/L以下であることがより好ましい。 In the present embodiment, the electrolytic solution is a non-aqueous solvent in which a supporting salt containing lithium ions is dissolved (non-aqueous electrolytic solution). Examples of the non-aqueous solvent include carbonates, esters, ethers, nitriles, furans, sulfolanes, dioxolanes and the like, and these can be used alone or in combination. Specifically, as carbonates, cyclic carbonates such as ethylene carbonate (EC), propylene carbonate, vinylene carbonate, butylene carbonate, and chloroethylene carbonate, dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), diethyl carbonate, and ethyl. Chain carbonates such as -n-butyl carbonate, methyl-t-butyl carbonate, di-i-propyl carbonate, t-butyl-i-propyl carbonate, cyclic esters such as γ-butyl lactone and γ-valerolactone, Chain esters such as methyl formate, methyl acetate, ethyl acetate, methyl butyrate, ethers such as dimethoxyethane, ethoxymethoxy ethane, diethoxyethane, nitriles such as acetonitrile and benzonitrile, furan such as tetrahydrofuran and methyl tetrahydrofuran, etc. Examples thereof include sulfolanes such as sulfolane and tetramethylsulfolane, and dioxolanes such as 1,3-dioxolane and methyldioxolane. Examples of the supporting salt include LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiSbF 6 , LiSiF 6 , LiAlF 4 , LiSCN, and the like. Examples thereof include LiClO 4 , LiCl, LiF, LiBr, LiI, and LiAlCl 4. Of these, 1 selected from the group consisting of inorganic salts such as LiPF 6 , LiBF 4 , and LiClO 4 , and organic salts such as LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , and LiC (CF 3 SO 2 ) 3. It is preferable to use a seed or a combination of two or more kinds of salts from the viewpoint of electrical characteristics. The concentration of this supporting salt in the electrolytic solution is preferably 0.1 mol / L or more and 5 mol / L or less, and more preferably 0.5 mol / L or more and 2 mol / L or less.

正極16は、正極活物質を含み、隣合う分離膜14同士の間を埋めるように設けられている。正極16は、例えば図2に示すように、正六角柱からなる複数の柱状正極26を空間充填して得られたものとしてもよい。柱状正極26の中心孔26aには、外周面及び下端面が分離膜14で囲われた柱状負極12が配置されている。中心孔26aは、柱状正極26の中心軸に沿って柱状正極26の上端面から下端面の手前まで設けられた有底筒状の孔である。そのため、柱状負極12の外周面及び下端面と、柱状正極26の中心孔26aの内壁及び底面とは、分離膜14によって絶縁されている。図3に、分離膜14付きの柱状負極12を有する柱状正極26の斜視図を示す。 The positive electrode 16 contains a positive electrode active material and is provided so as to fill the space between adjacent separation films 14. As shown in FIG. 2, for example, the positive electrode 16 may be obtained by spatially filling a plurality of columnar positive electrodes 26 made of regular hexagonal prisms. In the central hole 26a of the columnar positive electrode 26, a columnar negative electrode 12 whose outer peripheral surface and lower end surface are surrounded by a separation film 14 is arranged. The central hole 26a is a bottomed cylindrical hole provided along the central axis of the columnar positive electrode 26 from the upper end surface to the lower end surface of the columnar positive electrode 26. Therefore, the outer peripheral surface and the lower end surface of the columnar negative electrode 12 and the inner wall and the bottom surface of the central hole 26a of the columnar positive electrode 26 are insulated by the separation film 14. FIG. 3 shows a perspective view of a columnar positive electrode 26 having a columnar negative electrode 12 with a separation membrane 14.

正極16は、正極活物質を含んでいるが、正極活物質が導電性を有さない場合は、導電性を有する導電材を混合して成形したものとしてもよい。正極16は、例えば、正極活物質と、必要に応じて導電材と、結着剤とを混合し成形したものとしてもよい。正極活物質は、例えば、キャリアであるリチウムを吸蔵放出可能な材料が挙げられる。正極活物質としては、リチウムと遷移金属とを有する化合物が挙げられる。こうした化合物としては、例えば、リチウムと遷移金属元素とを含む酸化物やリチウムと遷移金属元素とを含むリン酸化合物などが挙げられる。具体的には、基本組成式をLi(1-x)MnO2(0≦x≦1など、以下同じ)やLi(1-x)Mn24などとするリチウムマンガン複合酸化物、基本組成式をLi(1-x)CoO2などとするリチウムコバルト複合酸化物、基本組成式をLi(1-x)NiO2などとするリチウムニッケル複合酸化物、基本組成式をLi(1-x)CoaNibMnc2(a>0、b>0、c>0、a+b+c=1)、Li(1-x)CoaNibMnc4(0<a<1、0<b<1、1≦c<2、a+b+c=2)などとするリチウムコバルトニッケルマンガン複合酸化物、基本組成式をLiV23などとするリチウムバナジウム複合酸化物、基本組成式をV25などとする遷移金属酸化物などを用いることができる。また、基本組成式をLiFePO4とするリン酸鉄リチウム化合物などを正極活物質として用いることができる。これらのうち、リチウムコバルトニッケルマンガン複合酸化物、例えば、LiCo1/3Ni1/3Mn1/32やLiNi0.4Co0.3Mn0.32などが好ましい。なお、「基本組成式」とは、他の元素、例えば、AlやMgなどの成分を含んでもよい趣旨である。 The positive electrode 16 contains a positive electrode active material, but when the positive electrode active material does not have conductivity, it may be formed by mixing a conductive material having conductivity. The positive electrode 16 may be formed by mixing, for example, a positive electrode active material, a conductive material, and a binder, if necessary. Examples of the positive electrode active material include a material capable of occluding and releasing lithium as a carrier. Examples of the positive electrode active material include compounds having lithium and a transition metal. Examples of such a compound include an oxide containing lithium and a transition metal element, a phosphoric acid compound containing lithium and a transition metal element, and the like. Specifically, a lithium manganese composite oxide having a basic composition formula of Li (1-x) MnO 2 (0 ≦ x ≦ 1, etc., the same applies hereinafter) or Li (1-x) Mn 2 O 4 or the like, basic composition. Lithium-cobalt composite oxide with formula Li (1-x) CoO 2, etc., lithium nickel composite oxide with basic composition formula Li (1-x) NiO 2, etc., basic composition formula Li (1-x) Co a Ni b Mn c O 2 (a> 0, b> 0, c> 0, a + b + c = 1), Li (1-x) Co a Ni b Mn c O 4 (0 <a <1, 0 <b) <1, 1 ≦ c <2, a + b + c = 2), etc., lithium cobalt nickel manganese composite oxide, basic composition formula is LiV 2 O 3, etc., lithium vanadium composite oxide, basic composition formula is V 2 O 5, etc. A transition metal oxide or the like can be used. Further, a lithium iron phosphate compound having a basic composition formula of LiFePO 4 or the like can be used as the positive electrode active material. Of these, lithium cobalt nickel-manganese composite oxides such as LiCo 1/3 Ni 1/3 Mn 1/3 O 2 and LiNi 0.4 Co 0.3 Mn 0.3 O 2 are preferable. The "basic composition formula" means that other elements such as Al and Mg may be contained.

正極16に導電材を含ませる場合、その導電材は、電池性能に悪影響を及ぼさない電子伝導性材料であれば特に限定されず、例えば、天然黒鉛(鱗状黒鉛、鱗片状黒鉛)や人造黒鉛などの黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラック、カーボンウィスカ、ニードルコークス、炭素繊維、金属(銅、ニッケル、アルミニウム、銀、金など)などの1種又は2種以上を混合したものを用いることができる。正極16に結着材を含ませる場合、その結着材は、活物質粒子や導電材粒子を繋ぎ止めて所定の形状を保つ役割を果たすものであれば特に限定されず、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素ゴム等の含フッ素樹脂、或いはポリプロピレン、ポリエチレン等の熱可塑性樹脂、エチレンプロピレンジエンモノマー(EPDM)ゴム、スルホン化EPDMゴム、天然ブチルゴム(NBR)等を単独で、あるいは2種以上の混合物として用いることができる。また、水系バインダーであるセルロース系やスチレンブタジエンゴム(SBR)の水分散体等を用いることもできる。 When the positive electrode 16 contains a conductive material, the conductive material is not particularly limited as long as it is an electron conductive material that does not adversely affect the battery performance, and is, for example, natural graphite (scaly graphite, scaly graphite), artificial graphite, or the like. Use one or a mixture of graphite, acetylene black, carbon black, ketjen black, carbon whisker, needle coke, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.). Can be done. When the positive electrode 16 contains a binder, the binder is not particularly limited as long as it serves to hold the active material particles and the conductive material particles together to maintain a predetermined shape, and is not particularly limited, for example, polytetrafluoro. Fluororesin such as ethylene (PTFE), polyvinylidene fluoride (PVdF), fluororubber, thermoplastic resin such as polypropylene, polyethylene, ethylene propylene diene monomer (EPDM) rubber, sulfonated EPDM rubber, natural butyl rubber (NBR), etc. Can be used alone or as a mixture of two or more. Further, an aqueous dispersion of cellulose-based binder or styrene-butadiene rubber (SBR), which is an aqueous binder, can also be used.

負極集電体20は、図1に示すように、第1負極集電層21と、第2負極集電層22と、第3負極集電層23とを備えたものであり、二次電池10の上部に配置されている。 As shown in FIG. 1, the negative electrode current collector 20 includes a first negative electrode current collector layer 21, a second negative electrode current collector layer 22, and a third negative electrode current collector layer 23, and is a secondary battery. It is located on top of 10.

第1負極集電層21は、絶縁層18から露出したすべての柱状負極12の上端面12aと絶縁層18の表面とを覆うように、例えば蒸着、スパッタ、印刷などで形成されている。そのため、第1負極集電層21には、n本の柱状負極12の上端面12aが並列接続されている。第1負極集電層21の材料としては、例えば、カーボンペーパー、アルミニウム、銅、チタン、ステンレス鋼、ニッケル、鉄、白金、焼成炭素、導電性高分子、導電性ガラスなどのほか、接着性、導電性及び耐酸化性(還元性)を向上させる目的で、アルミニウムや銅などの表面をカーボン、ニッケル、チタン、銀、白金、金などで処理したものも用いることができる。第1負極集電層21の形状は、本実施形態では板状とした。 The first negative electrode current collector layer 21 is formed by, for example, thin-film deposition, sputtering, printing, or the like so as to cover the upper end surfaces 12a of all the columnar negative electrodes 12 exposed from the insulating layer 18 and the surface of the insulating layer 18. Therefore, the upper end surfaces 12a of the n columnar negative electrodes 12 are connected in parallel to the first negative electrode current collector layer 21. Examples of the material of the first negative electrode current collector layer 21 include carbon paper, aluminum, copper, titanium, stainless steel, nickel, iron, platinum, calcined carbon, conductive polymer, conductive glass, and the like, as well as adhesiveness. For the purpose of improving conductivity and oxidation resistance (reducing property), aluminum, copper, or the like whose surface is treated with carbon, nickel, titanium, silver, platinum, gold, or the like can also be used. The shape of the first negative electrode current collector layer 21 is a plate shape in this embodiment.

第2負極集電層22は、第1負極集電層21上に間欠的に設けられた線状又は板状の部材である。第2負極集電層22は、図1に示すように、左右方向の同一直線上に並んだ複数の柱状負極12の上端面12aと平行になるように且つ隣合う第2負極集電層22同士の間隔が一定になるように設けられていることが好ましい。図1では、第2負極集電層22は、同一直線上に並んだ複数の柱状負極12の上端面12aと重なるように設けられており、第2負極集電層22の前後方向のピッチは、柱状負極12の上端面12aの前後方向のピッチの2倍になっている。そのため、左右方向の同一直線上に並んだ複数の柱状負極12の上端面12aは、第2負極集電層22と重なるものと重ならないものとが前後方向に交互に存在する。第2負極集電層22の材料としては、第1負極集電層21で例示した材料の中から適宜使用することができ、第1負極集電層21と同じ材料であってもよいし異なる材料であってもよい。 The second negative electrode current collector layer 22 is a linear or plate-shaped member intermittently provided on the first negative electrode current collector layer 21. As shown in FIG. 1, the second negative electrode current collector layer 22 is parallel to and adjacent to the upper end surfaces 12a of a plurality of columnar negative electrode 12s arranged on the same straight line in the left-right direction. It is preferable that they are provided so that the distance between them is constant. In FIG. 1, the second negative electrode current collector layer 22 is provided so as to overlap the upper end surfaces 12a of a plurality of columnar negative electrode 12s arranged on the same straight line, and the pitch of the second negative electrode current collector layer 22 in the front-rear direction is , The pitch of the upper end surface 12a of the columnar negative electrode 12 in the front-rear direction is twice. Therefore, in the upper end surfaces 12a of the plurality of columnar negative electrodes 12 arranged on the same straight line in the left-right direction, those that overlap with the second negative electrode current collector layer 22 and those that do not overlap exist alternately in the front-rear direction. As the material of the second negative electrode current collector layer 22, any of the materials exemplified in the first negative electrode current collector layer 21 can be appropriately used, and the same material as the first negative electrode current collector layer 21 may be used. It may be a material.

第3負極集電層23は、第1負極集電層21と接触せず、第2負極集電層22を架け渡すように設けられた線状又は板状の部材である。第3負極集電層23は、第2負極集電層22よりも少ない数であり、本実施形態では1本である。第3負極集電層23の材料としては、第1負極集電層21で例示した材料の中から適宜使用することができ、第1負極集電層21や第2負極集電層22と同じ材料であってもよいし異なる材料であってもよい。 The third negative electrode current collector layer 23 is a linear or plate-shaped member provided so as to bridge the second negative electrode current collector layer 22 without coming into contact with the first negative electrode current collector layer 21. The number of the third negative electrode current collector layer 23 is smaller than that of the second negative electrode current collector layer 22, and the number is one in the present embodiment. As the material of the third negative electrode current collector layer 23, any of the materials exemplified in the first negative electrode current collector layer 21 can be appropriately used, and the same as the first negative electrode current collector layer 21 and the second negative electrode current collector layer 22. It may be a material or a different material.

第1負極集電層21を電流が流れる経路の電気抵抗を、電気抵抗Ra1[Ω]とする。本実施形態では、電気抵抗Ra1は、第2負極集電層22と重ならない柱状負極12の上端面12aから第1負極集電層21を経由して第2負極集電層22に至る最短経路の電気抵抗とする。具体的には、電気抵抗Ra1は、図4に示すように、直上に第2負極集電層22が設けられていない柱状負極12の上端面12aの中心線から第1負極集電層21を経由して第2負極集電層22の中心線22cに至る経路Pa1(図4の網掛けを施した長方形部分)の電気抵抗とする。この経路Pa1は、第1負極集電層21における長さLa1[m]、幅wa1[m]、厚さta1[m]の直方体である。第1負極集電層21の体積抵抗率をρa1[Ωm]とすると、第1負極集電層21の電気抵抗Ra1は、下記式で表される。式中、Sa1は経路Pa1の断面積(=wa1×ta1)である。
Ra1=ρa1×La1/Sa1
The electric resistance of the path through which the current flows through the first negative electrode current collector layer 21 is defined as the electric resistance Ra1 [Ω]. In the present embodiment, the electric resistance Ra1 is the shortest path from the upper end surface 12a of the columnar negative electrode 12 that does not overlap with the second negative electrode current collector layer 22 to the second negative electrode current collector layer 22 via the first negative electrode current collector layer 21. The electrical resistance of. Specifically, as shown in FIG. 4, the electric resistance Ra1 is a first negative electrode current collector layer 21 from the center line of the upper end surface 12a of the columnar negative electrode 12 in which the second negative electrode current collector layer 22 is not provided directly above. It is the electrical resistance of the path Pa1 (the shaded rectangular portion of FIG. 4) leading to the center line 22c of the second negative electrode current collector layer 22 via the electric resistance. This path Pa1 is a rectangular parallelepiped having a length La1 [m], a width wa1 [m], and a thickness ta1 [m] in the first negative electrode current collector layer 21. Assuming that the volume resistivity of the first negative electrode current collector layer 21 is ρa1 [Ωm], the electrical resistance Ra1 of the first negative electrode current collector layer 21 is expressed by the following equation. In the formula, Sa1 is the cross-sectional area (= wa1 × ta1) of the path Pa1.
Ra1 = ρa1 x La1 / Sa1

第2負極集電層22を電流が流れる経路の電気抵抗を、電気抵抗Ra2[Ω]とする。本実施形態では、電気抵抗Ra2は、第2負極集電層22の端部から第2負極集電層22を経由して第3負極集電層23に至る経路の電気抵抗とする。具体的には、電気抵抗Ra2は、図1に示すように、第2負極集電層22の端部(右端)から第2負極集電層22を経由して第3負極集電層23の中心線23cに至る経路の電気抵抗とする。第2負極集電層22の体積抵抗率をρa2[Ωm]とすると、電気抵抗Ra2は、下記式で表される。長さLa2[m]と断面積Sa2[m2]を図1に示す。
Ra2=ρa2×La2/Sa2(Sa2は第2負極集電層22の断面積)
The electric resistance of the path through which the current flows through the second negative electrode current collector layer 22 is defined as the electric resistance Ra2 [Ω]. In the present embodiment, the electric resistance Ra2 is the electric resistance of the path from the end of the second negative electrode current collector layer 22 to the third negative electrode current collector layer 23 via the second negative electrode current collector layer 22. Specifically, as shown in FIG. 1, the electric resistance Ra2 is the third negative electrode current collector layer 23 from the end portion (right end) of the second negative electrode current collector layer 22 via the second negative electrode current collector layer 22. Let it be the electrical resistance of the path leading to the center line 23c. Assuming that the volume resistivity of the second negative electrode current collector layer 22 is ρa2 [Ωm], the electric resistance Ra2 is expressed by the following equation. The length La2 [m] and the cross-sectional area Sa2 [m 2 ] are shown in FIG.
Ra2 = ρa2 × La2 / Sa2 (Sa2 is the cross-sectional area of the second negative electrode current collector layer 22).

第3負極集電層23を電流が流れる経路の電気抵抗を、電気抵抗Ra3[Ω]とする。本実施形態では、電気抵抗Ra3は、第3負極集電層23の長手方向の一端から他端に至る電気抵抗とする。第3負極集電層23の体積抵抗率をρa3[Ωm]とすると、電気抵抗Ra3は、下記式で表される。長さLa3[m]と断面積Sa3[m2]を図1に示す。
Ra3=ρa3×La3/Sa3(S3は第3負極集電層23の断面積)
The electric resistance of the path through which the current flows through the third negative electrode current collector layer 23 is defined as the electric resistance Ra3 [Ω]. In the present embodiment, the electric resistance Ra3 is an electric resistance extending from one end to the other end in the longitudinal direction of the third negative electrode current collector layer 23. Assuming that the volume resistivity of the third negative electrode current collector layer 23 is ρa3 [Ωm], the electric resistance Ra3 is expressed by the following equation. The length La3 [m] and the cross-sectional area Sa3 [m 2 ] are shown in FIG.
Ra3 = ρa3 × La3 / Sa3 (S3 is the cross-sectional area of the third negative electrode current collector layer 23).

本実施形態では、電気抵抗Ra1,Ra2,Ra3は、Ra1>Ra2>Ra3の関係を満たす。また、電気抵抗Ra1に対する電気抵抗Ra2の比は0.1以下であり、電気抵抗Ra2に対する電気抵抗Ra3の比は0.1以下であることが好ましい。 In the present embodiment, the electric resistances Ra1, Ra2, and Ra3 satisfy the relationship of Ra1> Ra2> Ra3. Further, the ratio of the electric resistance Ra2 to the electric resistance Ra1 is preferably 0.1 or less, and the ratio of the electric resistance Ra3 to the electric resistance Ra2 is preferably 0.1 or less.

正極集電体30は、導電性を有する部材であり、正極16の下面に電気的に接続されている。正極集電体30には、n本の柱状正極26(図2参照)の下端面が並列接続されている。この正極集電体30の材料としては、負極集電体20の第1負極集電層21の材料として例示したものが挙げられる。正極16の下面は正極集電体30に直接接続されている。 The positive electrode current collector 30 is a conductive member and is electrically connected to the lower surface of the positive electrode 16. The lower end surfaces of n columnar positive electrodes 26 (see FIG. 2) are connected in parallel to the positive electrode current collector 30. Examples of the material of the positive electrode current collector 30 include those exemplified as the material of the first negative electrode current collector layer 21 of the negative electrode current collector 20. The lower surface of the positive electrode 16 is directly connected to the positive electrode current collector 30.

以上詳述した本実施形態の二次電池10によれば、3層構造の負極集電体20を採用したことにより柱状負極12の集電を効率的に行うことができるため、重量エネルギー密度や体積エネルギー密度を十分高くすることができる。負極集電構造を第1負極集電層21のみとした場合には、第1負極集電層21を電流が流れる経路の電気抵抗が高いためすべての柱状負極12からの電流を実用的な電圧低下範囲で流すのは難しい。しかし、ここでは、負極集電構造を、第1負極集電層21と、第1負極集電層21の上に間欠的に設けられた低抵抗な第2負極集電層22と、更に第2負極集電層22の上に設けられたより低抵抗な第3負極集電層23とで構成したため、すべての柱状負極12からの電流を第1負極集電層21、第2負極集電層22及び第3負極集電層23の順に経由して比較的低い電気抵抗で集電することができる。その結果、すべての柱状負極12からの電流を実用的な電圧低下範囲で流すことができる。したがって、分離膜14で周囲を囲われた柱状負極12が正極16内に配置された二次電池10において、エネルギー密度を十分高めることできる。 According to the secondary battery 10 of the present embodiment described in detail above, the columnar negative electrode 12 can be efficiently collected by adopting the negative electrode current collector 20 having a three-layer structure, so that the weight energy density and the weight energy density can be increased. The volumetric energy density can be made sufficiently high. When the negative electrode current collecting structure is only the first negative electrode current collecting layer 21, the current from all the columnar negative electrodes 12 is a practical voltage because the electric resistance of the path through which the current flows through the first negative electrode current collecting layer 21 is high. It is difficult to flow in the lowered range. However, here, the negative electrode current collecting structure is further divided into the first negative electrode current collecting layer 21, the low resistance second negative electrode current collecting layer 22 intermittently provided on the first negative electrode current collecting layer 21, and the second negative electrode current collecting layer 22. 2 Since it is composed of a third negative electrode current collector layer 23 having a lower resistance provided on the negative electrode current collector layer 22, the current from all the columnar negative electrode 12 is transferred to the first negative electrode current collector layer 21 and the second negative electrode current collector layer. The current can be collected with a relatively low electric resistance via the 22 and the third negative electrode current collecting layer 23 in this order. As a result, the current from all the columnar negative electrodes 12 can flow in a practical voltage drop range. Therefore, in the secondary battery 10 in which the columnar negative electrode 12 surrounded by the separation membrane 14 is arranged in the positive electrode 16, the energy density can be sufficiently increased.

また、電気抵抗Ra1に対する電気抵抗Ra2の比は0.1以下であり、電気抵抗Ra2に対する電気抵抗Ra3の比は0.1以下であるため、エネルギー密度を一層高めることができる。 Further, since the ratio of the electric resistance Ra2 to the electric resistance Ra1 is 0.1 or less and the ratio of the electric resistance Ra3 to the electric resistance Ra2 is 0.1 or less, the energy density can be further increased.

更に、第2負極集電層22は、同一直線上に並んだ複数の柱状負極12の上端面12aと平行になるように且つ隣合う第2負極集電層22同士の間隔が一定になるように設けられている。これにより、第2負極集電層22は周期的な構造になるため形成しやすくなる。 Further, the second negative electrode current collector layer 22 is parallel to the upper end surfaces 12a of the plurality of columnar negative electrode 12s arranged on the same straight line, and the distance between the adjacent second negative electrode current collector layers 22 is constant. It is provided in. As a result, the second negative electrode current collector layer 22 has a periodic structure and is easy to form.

更にまた、第3負極集電層23は、第2負極集電層22を架け渡すように設けられた1本の導電線であるため、第3負極集電層23が複数本存在する場合に比べて構成が簡素化される。 Furthermore, since the third negative electrode current collector layer 23 is a single conductive wire provided so as to bridge the second negative electrode current collector layer 22, when a plurality of third negative electrode current collector layers 23 are present. The configuration is simplified in comparison.

そして、正極16は、正六角柱からなる複数の柱状正極26を空間充填して得られたものであり、分離膜14で囲われた柱状負極12は、柱状正極26の中心孔26aに配置されている。そのため、正極16を比較的容易に作製することができる。 The positive electrode 16 is obtained by spatially filling a plurality of columnar positive electrodes 26 made of regular hexagonal columns, and the columnar negative electrode 12 surrounded by the separation membrane 14 is arranged in the central hole 26a of the columnar positive electrode 26. There is. Therefore, the positive electrode 16 can be manufactured relatively easily.

なお、本開示は上述した実施形態に何ら限定されることはなく、本開示の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It should be noted that the present disclosure is not limited to the above-described embodiment, and it goes without saying that the present disclosure can be carried out in various embodiments as long as it belongs to the technical scope of the present disclosure.

例えば、上述した実施形態では、二次電池10のキャリアをリチウムイオンとしたが、特にこれに限定されず、ナトリウムイオンやカリウムイオンなどのアルカリ金属イオン、カルシウムイオンやマグネシウムイオンなどの2族元素イオンとしてもよい。また、正極活物質は、キャリアのイオンを含むものとすればよい。また、電解液を非水系電解液としたが、水系電解液としてもよい。 For example, in the above-described embodiment, the carrier of the secondary battery 10 is lithium ion, but the carrier is not particularly limited to this, and alkali metal ions such as sodium ion and potassium ion, and group 2 element ions such as calcium ion and magnesium ion. May be. Further, the positive electrode active material may contain carrier ions. Further, although the electrolytic solution is a non-aqueous electrolytic solution, it may be an aqueous electrolytic solution.

上述した実施形態では、炭素繊維は、円柱形状である例を説明したが、特にこれに限定されず、四角柱や六角柱などの形状としてもよい。 In the above-described embodiment, the example in which the carbon fiber has a cylindrical shape has been described, but the carbon fiber is not particularly limited to this, and may have a shape such as a quadrangular column or a hexagonal column.

上述した実施形態では、第1負極集電層21の形状を箔状としたが、特に箔状に限定されるものではなく、例えば、板状、フィルム状、シート状、ネット状、パンチングシート、ガラス体、多孔質体、発泡体、繊維群の形成体などでもよい。第2及び第3負極集電層22,23の形状についても同様である。また、第1〜第3負極集電層21〜23は、3つとも同じ形状であってもよいし、2つが同じ形状で残り1つが異なる形状であってもよいし、3つとも異なる形状であってもよい。 In the above-described embodiment, the shape of the first negative electrode current collector layer 21 is foil-shaped, but the shape is not particularly limited to foil-like, and for example, plate-like, film-like, sheet-like, net-like, punching sheet, and the like. It may be a glass body, a porous body, a foam body, a fiber group forming body, or the like. The same applies to the shapes of the second and third negative electrode current collector layers 22 and 23. Further, the first to third negative electrode current collector layers 21 to 23 may all have the same shape, two may have the same shape, and the remaining one may have a different shape, or all three may have different shapes. It may be.

上述した実施形態では、二次電池10として電解液を用いるものを例示したが、電解液を用いない全固体電池としてもよい。 In the above-described embodiment, the secondary battery 10 using an electrolytic solution is exemplified, but an all-solid-state battery that does not use an electrolytic solution may be used.

上述した実施形態では、第2負極集電層22は、一直線上に並んだ柱状負極12の上端面12aに重なるように設けたが、特にこれに限定されるものではなく、一直線上に並んだ柱状負極12の上端面12aに重ならないように設けてもよいし、重なるものと重ならないものとを混在させてもよい。また、第2負極集電層22の前後方向のピッチは、柱状負極12の上端面12aの前後方向のピッチの2倍としたが、特に2倍に限定されるものではなく、例えば3倍とか4倍であってもよい。また、第2負極集電層22は等間隔となるように設けたが、特に等間隔である必要はなく、間欠的に設けてあればよい。 In the above-described embodiment, the second negative electrode current collector layer 22 is provided so as to overlap the upper end surface 12a of the columnar negative electrodes 12 arranged in a straight line, but the present invention is not particularly limited to this, and the second negative electrode current collector layer 22 is arranged in a straight line. It may be provided so as not to overlap the upper end surface 12a of the columnar negative electrode 12, or an overlapping one and a non-overlapping one may be mixed. Further, the pitch in the front-rear direction of the second negative electrode current collector layer 22 is twice the pitch in the front-rear direction of the upper end surface 12a of the columnar negative electrode 12, but is not particularly limited to twice, for example, three times. It may be quadrupled. Further, although the second negative electrode current collector layers 22 are provided at equal intervals, they do not have to be at equal intervals, and may be provided intermittently.

上述した実施形態では、柱状正極26を正六角柱としたが、空間充填可能な正多角柱であればよく、例えば正三角柱や正四角柱などであってもよい。 In the above-described embodiment, the columnar positive electrode 26 is a regular hexagonal prism, but any regular polygonal prism that can fill the space may be used, and for example, a regular triangular prism or a regular tetrahedron may be used.

上述した実施形態では、柱状負極12として、負極活物質である炭素繊維を束ねたものや撚ったものを例示したが、特にこれに限定されるものではなく、キャリア(例えばリチウムイオン)を吸蔵放出可能な材料を含むものであればよい。また、必要に応じて導電材や結着材を含むものとしてもよい。 In the above-described embodiment, the columnar negative electrode 12 is exemplified by a bundled or twisted carbon fiber which is a negative electrode active material, but the present invention is not particularly limited to this, and a carrier (for example, lithium ion) is occluded. Any material may be contained as long as it contains a material that can be released. Further, it may contain a conductive material or a binder material as needed.

10 二次電池、12 柱状負極、12a 上端面、14 分離膜、16 正極、18 絶縁層、20 負極集電体、21 第1負極集電層、22 第2負極集電層、22c 第2負極集電層の中心線、23 第3負極集電層、23c 第3負極集電層の中心線、26 柱状正極、26a 中心孔、30 正極集電体。 10 Secondary battery, 12 Columnar negative electrode, 12a upper end surface, 14 Separation film, 16 Positive electrode, 18 Insulation layer, 20 Negative electrode current collector, 21 First negative electrode current collector layer, 22 Second negative electrode current collector layer, 22c Second negative electrode Center line of collector layer, 23rd negative electrode current collector layer, 23c center line of third negative electrode current collector layer, 26 columnar positive electrode, 26a center hole, 30 positive electrode current collector.

Claims (5)

負極活物質を含む複数の柱状負極と、
各柱状負極の周囲を囲うように設けられた分離膜と、
正極活物質を含み、隣合う前記分離膜同士の間を埋めるように設けられた正極と、
すべての前記柱状負極の一方の端面が露出するように設けられた絶縁層と、
前記絶縁層から露出したすべての前記柱状負極の一方の端面を覆うように設けられた第1負極集電層と、
前記第1負極集電層上に間欠的に設けられた複数の第2負極集電層と、
前記第1負極集電層と接触せず、前記第2負極集電層を架け渡すように設けられ、前記第2負極集電層よりも少ない数の第3負極集電層と、
を備え、
前記第1負極集電層の電流経路の電気抵抗Ra1と、前記第2負極集電層の電流経路の電気抵抗Ra2と、前記第3負極集電層の電流経路の電気抵抗Ra3は、Ra1>Ra2>Ra3の関係を満たす、
二次電池。
Multiple columnar negative electrodes containing negative electrode active material,
A separation membrane provided so as to surround each columnar negative electrode,
A positive electrode containing a positive electrode active material and provided so as to fill the space between adjacent separation membranes,
An insulating layer provided so that one end face of all the columnar negative electrodes is exposed,
A first negative electrode current collector layer provided so as to cover one end face of all the columnar negative electrodes exposed from the insulating layer,
A plurality of second negative electrode current collector layers intermittently provided on the first negative electrode current collector layer, and
A third negative electrode current collector layer, which is provided so as to bridge the second negative electrode current collector layer without contacting the first negative electrode current collector layer and has a smaller number than the second negative electrode current collector layer.
Equipped with
The electric resistance Ra1 of the current path of the first negative electrode current collector layer, the electric resistance Ra2 of the current path of the second negative electrode current collector layer, and the electric resistance Ra3 of the current path of the third negative electrode current collector layer are Ra1>. Satisfying the relationship Ra2> Ra3,
Secondary battery.
前記電気抵抗Ra1は、前記第2負極集電層と重複していない前記柱状負極の前記端面から前記第1負極集電層を経由して前記第2負極集電層に至る最短経路の電気抵抗であり、前記電気抵抗Ra2は、前記第2負極集電層の端部から前記第2負極集電層を経由して前記第3負極集電層に至る経路の電気抵抗であり、前記電気抵抗Ra3は、前記第3負極集電層の一端から他端に至る経路の電気抵抗である、
請求項1に記載の二次電池。
The electrical resistance Ra1 is the electrical resistance of the shortest path from the end face of the columnar negative electrode that does not overlap with the second negative electrode current collector layer to the second negative electrode current collector layer via the first negative electrode current collector layer. The electric resistance Ra2 is the electric resistance of the path from the end of the second negative electrode current collector layer to the third negative electrode current collector layer via the second negative electrode current collector layer, and is the electric resistance. Ra3 is the electrical resistance of the path from one end to the other end of the third negative electrode current collector layer.
The secondary battery according to claim 1.
前記電気抵抗Ra1に対する前記電気抵抗Ra2の比は0.1以下であり、前記電気抵抗Ra2に対する前記電気抵抗Ra3の比は0.1以下である、
請求項1又は2に記載の二次電池。
The ratio of the electric resistance Ra2 to the electric resistance Ra1 is 0.1 or less, and the ratio of the electric resistance Ra3 to the electric resistance Ra2 is 0.1 or less.
The secondary battery according to claim 1 or 2.
前記柱状負極の前記端面は、周期的に配置され、
前記第2負極集電層は、同一直線上に並んだ複数の前記柱状負極の前記端面と平行に重なるように且つ隣合う前記第2負極集電層同士の間隔が一定になるように設けられている、
請求項1〜3のいずれか1項に記載の二次電池。
The end face of the columnar negative electrode is periodically arranged.
The second negative electrode current collector layer is provided so as to overlap in parallel with the end faces of the plurality of columnar negative electrodes arranged on the same straight line and to keep the distance between adjacent second negative electrode current collector layers constant. ing,
The secondary battery according to any one of claims 1 to 3.
前記第3負極集電層は、前記第2負極集電層を架け渡すように設けられた1本の導電線である、
請求項1〜4のいずれか1項に記載の二次電池。
The third negative electrode current collector layer is a single conductive wire provided so as to bridge the second negative electrode current collector layer.
The secondary battery according to any one of claims 1 to 4.
JP2019140857A 2019-07-31 2019-07-31 Secondary battery Active JP6981452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019140857A JP6981452B2 (en) 2019-07-31 2019-07-31 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019140857A JP6981452B2 (en) 2019-07-31 2019-07-31 Secondary battery

Publications (2)

Publication Number Publication Date
JP2021026808A JP2021026808A (en) 2021-02-22
JP6981452B2 true JP6981452B2 (en) 2021-12-15

Family

ID=74663950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019140857A Active JP6981452B2 (en) 2019-07-31 2019-07-31 Secondary battery

Country Status (1)

Country Link
JP (1) JP6981452B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6981453B2 (en) * 2019-07-31 2021-12-15 株式会社豊田中央研究所 Secondary battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6598290B2 (en) * 2015-04-08 2019-10-30 日本碍子株式会社 Secondary battery using hydroxide ion conductive ceramic separator
WO2018168286A1 (en) * 2017-03-13 2018-09-20 株式会社豊田中央研究所 Secondary battery and method for producing same

Also Published As

Publication number Publication date
JP2021026808A (en) 2021-02-22

Similar Documents

Publication Publication Date Title
JP6631568B2 (en) Secondary battery and method of manufacturing the same
JP6919488B2 (en) Secondary battery and its manufacturing method
JP7059988B2 (en) Secondary battery
CN103872333A (en) Electrode
US11171389B2 (en) Secondary battery and method for producing the same
JPWO2017082083A1 (en) Lithium ion secondary battery and manufacturing method thereof
JP6930147B2 (en) Rechargeable battery
EP2919314A1 (en) Electrode laminate comprising electrodes having different areas and secondary battery comprising same
CN107836061A (en) Nonaqueous electrolyte battery and battery bag
JP6981452B2 (en) Secondary battery
JP7234853B2 (en) Electrode structure, secondary battery, and method for manufacturing electrode structure
US10897043B2 (en) Secondary battery
JP7087422B2 (en) Secondary battery
JP6981453B2 (en) Secondary battery
JP7111119B2 (en) storage device
JP7215439B2 (en) Electricity storage device and electricity storage device module
JP6991876B2 (en) Secondary battery
JP7298380B2 (en) Negative electrode for secondary battery and secondary battery using the same
JP7207348B2 (en) storage device
JP7424120B2 (en) Energy storage device
JP6991877B2 (en) Secondary battery
JP7200971B2 (en) Power storage device and method for manufacturing power storage device
JP7136150B2 (en) Electrode for power storage device and power storage device
JP2022079083A (en) Electrode structure and power storage device
JP2021166164A (en) Power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211101

R150 Certificate of patent or registration of utility model

Ref document number: 6981452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150