JP7059988B2 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP7059988B2
JP7059988B2 JP2019140856A JP2019140856A JP7059988B2 JP 7059988 B2 JP7059988 B2 JP 7059988B2 JP 2019140856 A JP2019140856 A JP 2019140856A JP 2019140856 A JP2019140856 A JP 2019140856A JP 7059988 B2 JP7059988 B2 JP 7059988B2
Authority
JP
Japan
Prior art keywords
positive electrode
current collector
electrode current
collector layer
electric resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019140856A
Other languages
Japanese (ja)
Other versions
JP2021026807A (en
Inventor
あずさ 月ヶ瀬
匠昭 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2019140856A priority Critical patent/JP7059988B2/en
Publication of JP2021026807A publication Critical patent/JP2021026807A/en
Application granted granted Critical
Publication of JP7059988B2 publication Critical patent/JP7059988B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本明細書で開示する発明は、二次電池に関する。 The invention disclosed herein relates to a secondary battery.

従来、二次電池としては、炭素質ハニカム構造体の外表面を含むセルの隔壁表面に窒化チタン膜を被着したハニカム構造集電体を用いたもの(特許文献1)や、電解質を含むリチウムイオン供給コア部と、リチウムイオン供給コア部の外面を囲んで形成された内部電極と、内部電極の外面を囲んで形成された分離層と、分離層の外面を囲んで形成された外部電極とを備えたもの(特許文献2)などが知られている。また、エネルギー密度の高い二次電池としては、複数の柱状負極と、各柱状負極の周囲を囲うように設けられた分離膜と、隣合う分離膜同士の間を埋めるように設けられた正極とを備えたものが知られている(特許文献3)。この二次電池は、分離膜で周囲を囲われた柱状負極が正極内に配置された構造である。この二次電池の正極は、正六角柱からなる柱状正極を空間充填して得られたものであり、分離膜で囲われた柱状負極が、柱状正極の中心孔に配置されている。 Conventionally, as a secondary battery, a battery using a honeycomb structure current collector in which a titanium nitride film is adhered to the partition wall surface of a cell including the outer surface of the carbonaceous honeycomb structure (Patent Document 1), or lithium containing an electrolyte. An internal electrode formed by surrounding the outer surface of the ion supply core portion and the lithium ion supply core portion, a separation layer formed by surrounding the outer surface of the internal electrode, and an external electrode formed by surrounding the outer surface of the separation layer. (Patent Document 2) and the like are known. Further, as a secondary battery having a high energy density, a plurality of columnar negative electrodes, a separation film provided so as to surround each columnar negative electrode, and a positive electrode provided so as to fill the space between adjacent separation films. Is known (Patent Document 3). This secondary battery has a structure in which a columnar negative electrode surrounded by a separation membrane is arranged in the positive electrode. The positive electrode of this secondary battery is obtained by spatially filling a columnar positive electrode made of a regular hexagonal column, and the columnar negative electrode surrounded by a separation membrane is arranged in the central hole of the columnar positive electrode.

特開2001-126736号公報Japanese Unexamined Patent Publication No. 2001-126736 特表2014-532277号公報Japanese Patent Publication No. 2014-532277 特開2018-152229号公報Japanese Unexamined Patent Publication No. 2018-152229

しかしながら、特許文献3の二次電池では、正極集電構造は柱状正極の一方の端面を金属製の集電板に接続するものであったため、集電を効率的に行うことができず、重量エネルギー密度や体積エネルギー密度が十分高いとはいえなかった。 However, in the secondary battery of Patent Document 3, since the positive electrode current collecting structure is such that one end face of the columnar positive electrode is connected to the metal collecting plate, the current collecting cannot be performed efficiently and the weight is heavy. It could not be said that the energy density and the volume energy density were sufficiently high.

本開示は、このような課題に鑑みなされたものであり、分離膜で周囲を囲われた柱状負極が正極内に配置された二次電池において、エネルギー密度を十分高めることを主目的とする。 The present disclosure has been made in view of such a problem, and an object of the present disclosure is to sufficiently increase the energy density in a secondary battery in which a columnar negative electrode surrounded by a separation membrane is arranged in a positive electrode.

上述した目的を達成するために、本発明者らは、分離膜で周囲を囲われた柱状負極が正極内に配置された二次電池において、正極集電構造を工夫することによりエネルギー密度を十分高めることができることを見い出し、本明細書で開示する発明を完成するに至った。 In order to achieve the above-mentioned object, the present inventors sufficiently improve the energy density by devising the positive electrode current collecting structure in the secondary battery in which the columnar negative electrode surrounded by the separation film is arranged in the positive electrode. We have found that it can be enhanced, and have completed the invention disclosed in the present specification.

即ち、本明細書で開示する二次電池は、
負極活物質を含む複数の柱状負極と、
各柱状負極の周囲を囲うように設けられた分離膜と、
正極活物質を含み、隣合う前記分離膜同士の間を埋めるように設けられた正極と、
前記正極の内部で前記柱状負極と交差する方向に配列された複数の正極導電性パターンと、
前記正極のうち前記正極導電性パターンの一方の端面が露出している露出面を覆うように設けられた第1正極集電層と、
前記第1正極集電層上に間欠的に設けられた複数の第2正極集電層と、
前記第1正極集電層と接触せず、前記第2正極集電層を架け渡すように設けられ、前記第2集電層よりも少ない数の第3集電層と、
を備え、
前記第1正極集電層の電流経路の電気抵抗Rc1と、前記第2正極集電層の電流経路の電気抵抗Rc2と、前記第3正極集電層の電流経路の電気抵抗Rc3は、Rc1>Rc2>Rc3の関係を満たす、
ものである。
That is, the secondary battery disclosed in this specification is
Multiple columnar negative electrodes containing negative electrode active material,
A separation membrane provided so as to surround each columnar negative electrode,
A positive electrode containing a positive electrode active material and provided so as to fill the space between adjacent separation membranes,
A plurality of positive electrode conductive patterns arranged in a direction intersecting the columnar negative electrode inside the positive electrode, and
A first positive electrode current collector layer provided so as to cover an exposed surface on which one end surface of the positive electrode conductive pattern of the positive electrode is exposed.
A plurality of second positive electrode current collector layers intermittently provided on the first positive electrode current collector layer, and
A third current collector layer, which is provided so as to bridge the second positive electrode current collector layer without contacting the first positive electrode current collector layer, and has a smaller number than the second current collector layer.
Equipped with
The electric resistance Rc1 of the current path of the first positive electrode current collector layer, the electric resistance Rc2 of the current path of the second positive electrode current collector layer, and the electric resistance Rc3 of the current path of the third positive electrode current collector layer are Rc1>. Satisfy the relationship of Rc2> Rc3,
It is a thing.

この二次電池によれば、正極の集電を効率的に行うことができるため、重量エネルギー密度や体積エネルギー密度を十分高くすることができる。正極集電構造を第1正極集電層のみとした場合には、第1正極集電層を電流が流れる経路の電気抵抗が高いためすべての正極導電性パターンからの電流を実用的な電圧低下範囲で流すのは難しい。しかし、ここでは、正極集電構造を、第1正極集電層と、第1正極集電層の上に間欠的に設けられた低抵抗な第2正極集電層と、第2正極集電層の上に設けられたより低抵抗な第3正極集電層とで構成したため、すべての正極導電性パターンからの電流を第1正極集電層、第2正極集電層及び第3正極集電層の順に経由して比較的低い電気抵抗で集電することができる。その結果、すべての正極導電性パターンからの電流を実用的な電圧低下範囲で流すことができる。したがって、分離膜で周囲を囲われた柱状負極が正極内に配置された二次電池において、エネルギー密度を十分高めることできる。 According to this secondary battery, since the positive electrode can be efficiently collected, the weight energy density and the volume energy density can be sufficiently increased. When the positive electrode current collecting structure is only the first positive electrode current collecting layer, the electric resistance of the path through which the current flows through the first positive electrode current collecting layer is high, so that the current from all the positive electrode conductive patterns is practically reduced in voltage. It is difficult to flow in the range. However, here, the positive electrode current collecting structure is provided with a first positive electrode current collecting layer, a low resistance second positive electrode current collecting layer intermittently provided on the first positive electrode current collecting layer, and a second positive electrode current collecting layer. Since it is composed of a third positive electrode current collector layer having a lower resistance provided on the layer, currents from all the positive electrode conductive patterns are collected from the first positive electrode current collector layer, the second positive electrode current collector layer, and the third positive electrode current collector. Current can be collected with relatively low electrical resistance via the layers in that order. As a result, currents from all positive electrode conductive patterns can flow within a practical voltage drop range. Therefore, in a secondary battery in which a columnar negative electrode surrounded by a separation membrane is arranged in the positive electrode, the energy density can be sufficiently increased.

本明細書で開示する二次電池において、前記電気抵抗Rc1は、前記第2正極集電層と重複していない前記正極導電性パターンの前記端面から前記第1正極集電層を経由して前記第2正極集電層(例えば第2正極集電層の中心線)に至る最短経路の電気抵抗であり、前記電気抵抗Rc2は、前記第2正極集電層の端部から前記第2正極集電層を経由して前記第3正極集電層(例えば第3正極集電層の中心線)に至る経路の電気抵抗であり、前記電気抵抗Ra3は、前記第3正極集電層の一端から他端に至る経路の電気抵抗としてもよい。 In the secondary battery disclosed herein, the electrical resistance Rc1 is said to pass from the end face of the positive electrode conductive pattern that does not overlap with the second positive electrode current collector layer via the first positive electrode current collector layer. It is the electric resistance of the shortest path to the second positive electrode current collecting layer (for example, the center line of the second positive electrode collecting layer), and the electric resistance Rc2 is the second positive electrode collecting from the end of the second positive electrode collecting layer. It is the electric resistance of the path from the electric layer to the third positive electrode current collecting layer (for example, the center line of the third positive electrode collecting layer), and the electric resistance Ra3 is from one end of the third positive electrode collecting layer. It may be the electrical resistance of the path leading to the other end.

本明細書で開示する二次電池において、前記電気抵抗Rc1に対する前記電気抵抗Rc2の比は0.1以下であり、前記電気抵抗Rc2に対する前記電気抵抗Rc3の比は0.1以下であることが好ましい。こうすれば、エネルギー密度を一層高めることができる。 In the secondary battery disclosed in the present specification, the ratio of the electric resistance Rc2 to the electric resistance Rc1 is 0.1 or less, and the ratio of the electric resistance Rc3 to the electric resistance Rc2 is 0.1 or less. preferable. In this way, the energy density can be further increased.

本明細書で開示する二次電池において、前記正極導電性パターンの前記端面は、前記露出面に周期的に配置され、前記第2正極集電層は、同一直線上に並んだ複数の前記正極導電性パターンの前記端面と平行になるように且つ隣合う前記第2正極集電層同士の間隔が一定になるように設けられていてもよい。こうすれば、第2正極集電層は周期的な構造になるため作製しやすくなる。 In the secondary battery disclosed in the present specification, the end face of the positive electrode conductive pattern is periodically arranged on the exposed surface, and the second positive electrode current collecting layer is a plurality of the positive electrodes arranged in the same straight line. It may be provided so as to be parallel to the end surface of the conductive pattern and to keep the distance between the second positive electrode current collecting layers adjacent to each other constant. By doing so, the second positive electrode current collector layer has a periodic structure and is easy to manufacture.

本明細書で開示する二次電池において、前記第3正極集電層は、前記第2正極集電層を架け渡すように設けられた1本の導電線であってもよい。こうすれば、第3正極集電層が複数本存在する場合に比べて構成が簡素化される。 In the secondary battery disclosed in the present specification, the third positive electrode current collector layer may be a single conductive wire provided so as to bridge the second positive electrode current collector layer. By doing so, the configuration is simplified as compared with the case where a plurality of third positive electrode current collector layers are present.

本明細書で開示する二次電池において、前記正極は、空間充填可能な正多角柱からなる複数の柱状正極を空間充填して得られたものであり、前記分離膜で囲われた前記柱状負極は、前記柱状正極の中心孔に配置されていてもよい。こうすれば、正極を比較的容易に作製することができる。なお、「空間充填」とは、空間内を3次元形状の物体で隙間なく埋め尽くすことをいう。 In the secondary battery disclosed in the present specification, the positive electrode is obtained by space-filling a plurality of columnar positive electrodes composed of positive polygonal columns that can be space-filled, and the columnar negative electrode surrounded by the separation film. May be arranged in the central hole of the columnar positive electrode. In this way, the positive electrode can be manufactured relatively easily. In addition, "space filling" means filling the space with a three-dimensional object without any gaps.

本明細書で開示する二次電池は、固体電解質を用いた全固体電池としてもよいし、電解質液を用いた二次電池としてもよい。 The secondary battery disclosed in the present specification may be an all-solid-state battery using a solid electrolyte, or may be a secondary battery using an electrolyte solution.

二次電池10の概略構成を示す斜視図。The perspective view which shows the schematic structure of the secondary battery 10. 柱状正極26を空間充填して得られた正極16の斜視図。The perspective view of the positive electrode 16 obtained by space-filling the columnar positive electrode 26. 分離膜14付きの柱状負極12を有する柱状正極26の斜視図。FIG. 3 is a perspective view of a columnar positive electrode 26 having a columnar negative electrode 12 with a separation membrane 14. 一列に並べた分離膜14付きの柱状負極12の斜視図。The perspective view of the columnar negative electrode 12 with the separation membrane 14 arranged in a row. 第1正極集電層31の経路Pc1の電気抵抗Rc1を求める方法の説明図。It is explanatory drawing of the method of obtaining the electric resistance Rc1 of the path Pc1 of the 1st positive electrode current collector layer 31.

次に、本実施形態で開示する二次電池10について図面を用いて説明する。ここでは、説明の便宜のため、リチウムイオンをキャリアとするリチウムイオン二次電池を一例として以下に説明する。図1は二次電池10の概略構成を示す斜視図、図2は柱状正極26を空間充填して得られた正極16の斜視図、図3は分離膜14付きの柱状負極12を有する柱状正極26の斜視図、図4は一列に並べた分離膜14付きの柱状負極12の斜視図、図5は第1正極集電層31の経路Pc1の電気抵抗Rc1を求める方法の説明図である。なお、本実施形態で上下方向、左右方向及び前後方向は図1、図2及び図4に示すとおりとするが、これらは相対的な位置関係を表すために便宜上用いたに過ぎない。 Next, the secondary battery 10 disclosed in the present embodiment will be described with reference to the drawings. Here, for convenience of explanation, a lithium ion secondary battery having a lithium ion as a carrier will be described below as an example. FIG. 1 is a perspective view showing a schematic configuration of a secondary battery 10, FIG. 2 is a perspective view of a positive electrode 16 obtained by spatially filling a columnar positive electrode 26, and FIG. 3 is a columnar positive electrode having a columnar negative electrode 12 with a separation film 14. 26 is a perspective view, FIG. 4 is a perspective view of a columnar negative electrode 12 having a separation film 14 arranged in a row, and FIG. 5 is an explanatory diagram of a method for obtaining an electric resistance Rc1 of a path Pc1 of a first positive electrode current collector layer 31. In the present embodiment, the vertical direction, the horizontal direction, and the front-back direction are as shown in FIGS. 1, 2, and 4, but these are merely used for convenience in order to show the relative positional relationship.

二次電池10は、柱状負極12と、分離膜14と、正極16と、負極集電体20と、正極集電体30とを備えている。 The secondary battery 10 includes a columnar negative electrode 12, a separation film 14, a positive electrode 16, a negative electrode current collector 20, and a positive electrode current collector 30.

柱状負極12は、負極活物質を含む円柱体である。二次電池10は、複数の柱状負極12を有している。柱状負極12は、負極活物質である炭素繊維を束ねたものとしてもよいし、炭素繊維を撚ったものとしてもよい。柱状負極12は、二次電池10全体の負極容量の1/n(nは2以上の整数、以下同じ)の容量を有し、n本が負極集電体20に並列接続されている。柱状負極12は、長手方向に垂直な断面の直径が10μm以上200μm以下の範囲であることが好ましい。この直径が10μm以上であれば、電極構造体としての強度を担保することができ安定した充放電ができる。また、この直径が200μm以下であれば、キャリアのイオンの移動距離が長くなりすぎず、高出力性能が得られる。また、この直径がこの範囲であれば、単位体積あたりのエネルギー密度をより高めることができる。あるいは、この範囲であれば、キャリアのイオンの移動距離をより短くすることができ、より大きな電流で充放電を行うことができる。この炭素繊維の長手方向の長さは、二次電池10の用途などに応じて適宜定めることができ、例えば、20mm以上200mm以下の範囲などとしてもよい。炭素繊維の長さが20mm以上であれば、電池容量をより高めることができ好ましく、200mm以下であれば、柱状負極12の電気抵抗をより低減することができ好ましい。柱状負極12の上端面12aは、正極16の上端面に設けられた絶縁層18から露出するように設けられている。すなわち、絶縁層18は、すべての柱状負極12の上端面12aが露出するように設けられている。絶縁層18は、例えば電気絶縁性ポリマーで形成されている。柱状負極12の上端面12aは、絶縁層18に格子状になるように周期的に配置され、左右方向にi個(iは2以上の整数)、前後方向にj個(jは2以上の整数)並んでいる。 The columnar negative electrode 12 is a columnar body containing a negative electrode active material. The secondary battery 10 has a plurality of columnar negative electrodes 12. The columnar negative electrode 12 may be a bundle of carbon fibers, which is a negative electrode active material, or a twisted carbon fiber. The columnar negative electrode 12 has a capacity of 1 / n (n is an integer of 2 or more, the same applies hereinafter) of the negative electrode capacity of the entire secondary battery 10, and n of them are connected in parallel to the negative electrode current collector 20. The columnar negative electrode 12 preferably has a cross-sectional diameter perpendicular to the longitudinal direction in the range of 10 μm or more and 200 μm or less. When this diameter is 10 μm or more, the strength of the electrode structure can be ensured and stable charging / discharging can be performed. Further, when this diameter is 200 μm or less, the moving distance of the carrier ions does not become too long, and high output performance can be obtained. Further, if this diameter is in this range, the energy density per unit volume can be further increased. Alternatively, within this range, the moving distance of the carrier ions can be made shorter, and charging / discharging can be performed with a larger current. The length of the carbon fiber in the longitudinal direction can be appropriately determined depending on the intended use of the secondary battery 10, and may be, for example, in the range of 20 mm or more and 200 mm or less. When the length of the carbon fiber is 20 mm or more, the battery capacity can be further increased, and when it is 200 mm or less, the electric resistance of the columnar negative electrode 12 can be further reduced, which is preferable. The upper end surface 12a of the columnar negative electrode 12 is provided so as to be exposed from the insulating layer 18 provided on the upper end surface of the positive electrode 16. That is, the insulating layer 18 is provided so that the upper end surfaces 12a of all the columnar negative electrodes 12 are exposed. The insulating layer 18 is made of, for example, an electrically insulating polymer. The upper end surfaces 12a of the columnar negative electrode 12 are periodically arranged on the insulating layer 18 in a grid pattern, and i pieces (i is an integer of 2 or more) in the left-right direction and j pieces (j is 2 or more) in the front-back direction. Integer) lined up.

分離膜14は、柱状負極12の外周面及び下端面を囲うように設けられている。分離膜14は、柱状負極12の上端面12aには設けられていない。分離膜14は、キャリアであるイオン(本実施形態ではリチウムイオン)のイオン伝導性を有し、柱状負極12と正極16とを絶縁するものである。分離膜14としては、イオン伝導性と絶縁性とを有するポリマーが好適である。この分離膜14は、例えば、ポリフッ化ビニリデン(PVdF)とヘキサフルオロプロピレン(HFP)との共重合体や、ポリメタクリル酸メチル(PMMA)、及びPMMAとアクリルポリマーとの共重合体などが挙げられる。例えば、PVdFとHFPとの共重合体では、電解液の一部がこの膜を膨潤ゲル化し、イオン伝導膜となる。この分離膜14の厚さは、例えば、絶縁性を確保することを考慮すると、0.5μm以上であることが好ましく、2μm以上であることがより好ましく、5μm以上であるものとしてもよい。また、分離膜14の厚さは、イオン伝導性の低下を抑制することを考慮すると、20μm以下であることが好ましく、10μm以下であることがより好ましい。そのため、分離膜14の厚さは、0.5~20μmの範囲であることが、イオン伝導性と絶縁性とを両立させる上で好適である。この分離膜14は、例えば、原料を含む溶液へ柱状負極12を浸漬させてその表面にコートすることにより形成されるものとしてもよい。 The separation membrane 14 is provided so as to surround the outer peripheral surface and the lower end surface of the columnar negative electrode 12. The separation membrane 14 is not provided on the upper end surface 12a of the columnar negative electrode 12. The separation membrane 14 has ionic conductivity of ions (lithium ions in this embodiment) as carriers, and insulates the columnar negative electrode 12 and the positive electrode 16. As the separation membrane 14, a polymer having ionic conductivity and insulating property is suitable. Examples of the separation film 14 include a copolymer of polyvinylidene fluoride (PVdF) and hexafluoropropylene (HFP), methyl polymethacrylate (PMMA), and a copolymer of PMMA and an acrylic polymer. .. For example, in a copolymer of PVdF and HFP, a part of the electrolytic solution swells and gels this membrane to become an ionic conduction membrane. The thickness of the separation membrane 14 is preferably 0.5 μm or more, more preferably 2 μm or more, and may be 5 μm or more, for example, in consideration of ensuring insulating properties. Further, the thickness of the separation membrane 14 is preferably 20 μm or less, more preferably 10 μm or less, in consideration of suppressing a decrease in ion conductivity. Therefore, it is preferable that the thickness of the separation membrane 14 is in the range of 0.5 to 20 μm in order to achieve both ionic conductivity and insulating property. The separation membrane 14 may be formed, for example, by immersing the columnar negative electrode 12 in a solution containing a raw material and coating the surface thereof.

電解液は、本実施形態では、非水系溶媒にリチウムイオンを含む支持塩を溶解したもの(非水系電解液)とした。非水系溶媒としては、例えば、カーボネート類、エステル類、エーテル類、ニトリル類、フラン類、スルホラン類及びジオキソラン類などが挙げられ、これらを単独又は混合して用いることができる。具体的には、カーボネート類としてエチレンカーボネート(EC)やプロピレンカーボネート、ビニレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネートなどの環状カーボネート類や、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート、エチル-n-ブチルカーボネート、メチル-t-ブチルカーボネート、ジ-i-プロピルカーボネート、t-ブチル-i-プロピルカーボネートなどの鎖状カーボネート類、γ-ブチルラクトン、γ-バレロラクトンなどの環状エステル類、ギ酸メチル、酢酸メチル、酢酸エチル、酪酸メチルなどの鎖状エステル類、ジメトキシエタン、エトキシメトキシエタン、ジエトキシエタンなどのエーテル類、アセトニトリル、ベンゾニトリルなどのニトリル類、テトラヒドロフラン、メチルテトラヒドロフラン、などのフラン類、スルホラン、テトラメチルスルホランなどのスルホラン類、1,3-ジオキソラン、メチルジオキソランなどのジオキソラン類などが挙げられる。支持塩としては、例えば、LiPF6、LiBF4、LiAsF6、LiCF3SO3、LiN(CF3SO22、LiC(CF3SO23、LiSbF6、LiSiF6、LiAlF4、LiSCN、LiClO4、LiCl、LiF、LiBr、LiI、LiAlCl4などが挙げられる。このうち、LiPF6、LiBF4、LiClO4などの無機塩、及びLiCF3SO3、LiN(CF3SO22、LiC(CF3SO23などの有機塩からなる群より選ばれる1種又は2種以上の塩を組み合わせて用いることが電気特性の点から見て好ましい。この支持塩は、電解液中の濃度が0.1mol/L以上5mol/L以下であることが好ましく、0.5mol/L以上2mol/L以下であることがより好ましい。 In the present embodiment, the electrolytic solution is a non-aqueous solvent in which a supporting salt containing lithium ions is dissolved (non-aqueous electrolytic solution). Examples of the non-aqueous solvent include carbonates, esters, ethers, nitriles, furans, sulfolanes, dioxolanes and the like, and these can be used alone or in combination. Specifically, as carbonates, cyclic carbonates such as ethylene carbonate (EC), propylene carbonate, vinylene carbonate, butylene carbonate, and chloroethylene carbonate, dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), diethyl carbonate, and ethyl. Chain carbonates such as -n-butyl carbonate, methyl-t-butyl carbonate, di-i-propyl carbonate, t-butyl-i-propyl carbonate, cyclic esters such as γ-butyl lactone and γ-valerolactone, Chain esters such as methyl formate, methyl acetate, ethyl acetate, methyl butyrate, ethers such as dimethoxyethane, ethoxymethoxy ethane, diethoxyethane, nitriles such as acetonitrile and benzonitrile, furan such as tetrahydrofuran and methyl tetrahydrofuran, etc. Classes, sulfolanes such as sulfolane and tetramethylsulfolane, and dioxolanes such as 1,3-dioxolane and methyldioxolan. Examples of the supporting salt include LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiSbF 6 , LiSiF 6 , LiAlF 4 , LiSCN, and the like. Examples thereof include LiClO 4 , LiCl, LiF, LiBr, LiI, and LiAlCl 4 . Of these, 1 selected from the group consisting of inorganic salts such as LiPF 6 , LiBF 4 , and LiClO 4 , and organic salts such as LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , and LiC (CF 3 SO 2 ) 3 . It is preferable to use a seed or a combination of two or more kinds of salts from the viewpoint of electrical characteristics. The concentration of this supporting salt in the electrolytic solution is preferably 0.1 mol / L or more and 5 mol / L or less, and more preferably 0.5 mol / L or more and 2 mol / L or less.

正極16は、正極活物質を含み、隣合う分離膜14同士の間を埋めるように設けられている。正極16は、例えば図2に示すように、正六角柱からなる複数の柱状正極26を空間充填して得られたものとしてもよい。柱状正極26の中心孔26aには、外周面及び下端面が分離膜14で囲われた柱状負極12が配置されている。中心孔26aは、柱状正極26の中心軸に沿って柱状正極26の上端面から下端面の手前まで設けられた有底筒状の孔である。そのため、柱状負極12の外周面及び下端面と、柱状正極26の中心孔26aの内壁及び底面とは、分離膜14によって絶縁されている。図3に、分離膜14付きの柱状負極12を有する柱状正極26の斜視図を示す。 The positive electrode 16 contains a positive electrode active material and is provided so as to fill the space between adjacent separation films 14. As shown in FIG. 2, for example, the positive electrode 16 may be obtained by spatially filling a plurality of columnar positive electrodes 26 made of regular hexagonal prisms. In the central hole 26a of the columnar positive electrode 26, a columnar negative electrode 12 whose outer peripheral surface and lower end surface are surrounded by a separation film 14 is arranged. The central hole 26a is a bottomed cylindrical hole provided along the central axis of the columnar positive electrode 26 from the upper end surface to the lower end surface of the columnar positive electrode 26. Therefore, the outer peripheral surface and the lower end surface of the columnar negative electrode 12 and the inner wall and the bottom surface of the central hole 26a of the columnar positive electrode 26 are insulated by the separation film 14. FIG. 3 shows a perspective view of a columnar positive electrode 26 having a columnar negative electrode 12 with a separation membrane 14.

正極16は、正極活物質を含んでいるが、正極活物質が導電性を有さない場合は、導電性を有する導電材を混合して成形したものとしてもよい。正極16は、例えば、正極活物質と、必要に応じて導電材と、結着材とを混合し成形したものとしてもよい。正極活物質は、例えば、キャリアであるリチウムを吸蔵放出可能な材料が挙げられる。正極活物質としては、リチウムと遷移金属とを有する化合物が挙げられる。こうした化合物としては、例えば、リチウムと遷移金属元素とを含む酸化物やリチウムと遷移金属元素とを含むリン酸化合物などが挙げられる。具体的には、基本組成式をLi(1-x)MnO2(0≦x≦1など、以下同じ)やLi(1-x)Mn24などとするリチウムマンガン複合酸化物、基本組成式をLi(1-x)CoO2などとするリチウムコバルト複合酸化物、基本組成式をLi(1-x)NiO2などとするリチウムニッケル複合酸化物、基本組成式をLi(1-x)CoaNibMnc2(a>0、b>0、c>0、a+b+c=1)、Li(1-x)CoaNibMnc4(0<a<1、0<b<1、1≦c<2、a+b+c=2)などとするリチウムコバルトニッケルマンガン複合酸化物、基本組成式をLiV23などとするリチウムバナジウム複合酸化物、基本組成式をV25などとする遷移金属酸化物などを用いることができる。また、基本組成式をLiFePO4とするリン酸鉄リチウム化合物などを正極活物質として用いることができる。これらのうち、リチウムコバルトニッケルマンガン複合酸化物、例えば、LiCo1/3Ni1/3Mn1/32やLiNi0.4Co0.3Mn0.32などが好ましい。なお、「基本組成式」とは、他の元素、例えば、AlやMgなどの成分を含んでもよい趣旨である。 The positive electrode 16 contains a positive electrode active material, but when the positive electrode active material does not have conductivity, it may be formed by mixing a conductive material having conductivity. The positive electrode 16 may be formed by mixing, for example, a positive electrode active material, a conductive material, and a binder, if necessary. Examples of the positive electrode active material include a material capable of occluding and releasing lithium as a carrier. Examples of the positive electrode active material include compounds having lithium and a transition metal. Examples of such a compound include an oxide containing lithium and a transition metal element, a phosphoric acid compound containing lithium and a transition metal element, and the like. Specifically, a lithium manganese composite oxide having a basic composition formula of Li (1-x) MnO 2 (0 ≦ x ≦ 1, etc., the same applies hereinafter) or Li (1-x) Mn 2 O 4 or the like, basic composition. Lithium-cobalt composite oxide with formula Li (1-x) CoO 2 , etc., lithium nickel composite oxide with basic composition formula Li (1-x) NiO 2 , etc., basic composition formula Li (1-x) Co a Ni b Mn c O 2 (a> 0, b> 0, c> 0, a + b + c = 1), Li (1-x) Co a Ni b Mn c O 4 (0 <a <1, 0 <b) <1, 1 ≦ c <2, a + b + c = 2), etc., lithium cobalt nickel manganese composite oxide, basic composition formula is LiV 2 O 3 , etc., lithium vanadium composite oxide, basic composition formula is V 2 O 5 , etc. A transition metal oxide or the like can be used. Further, a lithium iron phosphate compound having a basic composition formula of LiFePO 4 or the like can be used as the positive electrode active material. Of these, lithium cobalt nickel-manganese composite oxides such as LiCo 1/3 Ni 1/3 Mn 1/3 O 2 and LiNi 0.4 Co 0.3 Mn 0.3 O 2 are preferable. The "basic composition formula" means that other elements such as Al and Mg may be contained.

正極16に導電材を含ませる場合、その導電材は、電池性能に悪影響を及ぼさない電子伝導性材料であれば特に限定されず、例えば、天然黒鉛(鱗状黒鉛、鱗片状黒鉛)や人造黒鉛などの黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラック、カーボンウィスカ、ニードルコークス、炭素繊維、金属(銅、ニッケル、アルミニウム、銀、金など)などの1種又は2種以上を混合したものを用いることができる。正極16に結着材を含ませる場合、その結着材は、活物質粒子や導電材粒子を繋ぎ止めて所定の形状を保つ役割を果たすものであれば特に限定されず、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素ゴム等の含フッ素樹脂、或いはポリプロピレン、ポリエチレン等の熱可塑性樹脂、エチレンプロピレンジエンモノマー(EPDM)ゴム、スルホン化EPDMゴム、天然ブチルゴム(NBR)等を単独で、あるいは2種以上の混合物として用いることができる。また、水系バインダーであるセルロース系やスチレンブタジエンゴム(SBR)の水分散体等を用いることもできる。一般的な正極活物質は導電性を有さないため、通常、正極16は導電材を混合して作製される。しかし、導電材が混合されるとしても、その導電性は炭素繊維を束ねた柱状負極12に比べて低い。そのため、正極16の内部には、正極導電性パターン17が柱状負極12と接触することなく交差(例えば直交)する方向に複数配列されている。 When the positive electrode 16 contains a conductive material, the conductive material is not particularly limited as long as it is an electron conductive material that does not adversely affect the battery performance, and is, for example, natural graphite (scaly graphite, scaly graphite), artificial graphite, or the like. Use one or a mixture of graphite, acetylene black, carbon black, ketjen black, carbon whisker, needle coke, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.). Can be done. When the positive electrode 16 contains a binder, the binder is not particularly limited as long as it serves to hold the active material particles and the conductive material particles together to maintain a predetermined shape, and is not particularly limited, for example, polytetrafluoro. Fluororesin such as ethylene (PTFE), polyvinylidene fluoride (PVdF), fluororubber, thermoplastic resin such as polypropylene, polyethylene, ethylenepropylene diene monomer (EPDM) rubber, sulfonated EPDM rubber, natural butyl rubber (NBR), etc. Can be used alone or as a mixture of two or more. Further, an aqueous dispersion of cellulose-based binder or styrene-butadiene rubber (SBR), which is an aqueous binder, can also be used. Since a general positive electrode active material does not have conductivity, the positive electrode 16 is usually manufactured by mixing a conductive material. However, even if the conductive material is mixed, its conductivity is lower than that of the columnar negative electrode 12 in which carbon fibers are bundled. Therefore, a plurality of positive electrode conductive patterns 17 are arranged inside the positive electrode 16 in a direction in which they intersect (for example, orthogonally) without contacting the columnar negative electrode 12.

正極導電性パターン17は、上下方向及び前後方向にそれぞれ間欠的に設けられている。正極導電性パターン17は、帯状のパターンであり、図1で左右方向に並んだ複数の柱状負極12を1つのグループとして、各グループの前面側において上下方向に間欠的にk列(kは2以上の整数)配列されている。正極導電性パターン17の端面17aは、図1に示すように正極16の左側面に格子状になるように周期的に配置され、前後方向にm個(mは2以上の整数)、上下方向にk個設けられている。正極導電性パターン17は、正極16に比べて導電性が良好な材料で形成されており、そうした材料としては例えば導電材として例示した材料が挙げられる。図2に示す正極16を作製する場合には、例えば図4に示すように、左右方向に一列に並んだ複数の柱状正極26(分離膜14付きの柱状負極12を中心孔26aに挿入されたもの)を左右から圧縮して1つのグループとし、そのグループの前面側において左右方向に延びる正極導電性パターン17を上下方向に間欠的に形成し、このように正極導電性パターン17が形成されたグループを前後方向に多数並べた状態で前後から圧縮して正極16としてもよい。 The positive electrode conductive pattern 17 is provided intermittently in the vertical direction and the front-back direction, respectively. The positive electrode conductive pattern 17 is a band-shaped pattern, and a plurality of columnar negative electrodes 12 arranged in the left-right direction in FIG. 1 are regarded as one group, and k rows (k is 2) intermittently in the vertical direction on the front side of each group. The above integers) are arranged. As shown in FIG. 1, the end faces 17a of the positive electrode conductive pattern 17 are periodically arranged on the left side surface of the positive electrode 16 in a grid pattern, and m pieces (m is an integer of 2 or more) in the front-rear direction and the up-down direction. K are provided in. The positive electrode conductive pattern 17 is formed of a material having better conductivity than the positive electrode 16, and examples of such a material include materials exemplified as a conductive material. When the positive electrode 16 shown in FIG. 2 is manufactured, for example, as shown in FIG. 4, a plurality of columnar positive electrodes 26 (columnar negative electrodes 12 with a separation film 14) arranged in a row in the left-right direction are inserted into the center hole 26a. The positive electrode conductive pattern 17 extending in the left-right direction was intermittently formed in the vertical direction on the front side of the group by compressing the positive electrode conductive pattern 17 from the left and right. A large number of groups may be arranged in the front-rear direction and compressed from the front and back to form the positive electrode 16.

負極集電体20は、導電性を有する部材であり、図1に示すように、二次電池10の上部に配置されている。負極集電体20は、絶縁層18から露出したすべての柱状負極12の上端面12aと絶縁層18の表面とを覆うように設けられている。つまり、負極集電体20には、n本の柱状負極12の上端面12aが並列接続されている。負極集電体20の材料としては、例えば、カーボンペーパー、アルミニウム、銅、チタン、ステンレス鋼、ニッケル、鉄、白金、焼成炭素、導電性高分子、導電性ガラスなどのほか、接着性、導電性及び耐酸化性(還元性)を向上させる目的で、アルミニウムや銅などの表面をカーボン、ニッケル、チタン、銀、白金、金などで処理したものも用いることができる。負極集電体20の形状は、本実施形態では板状とした。 The negative electrode current collector 20 is a member having conductivity, and is arranged above the secondary battery 10 as shown in FIG. The negative electrode current collector 20 is provided so as to cover the upper end surface 12a of all the columnar negative electrodes 12 exposed from the insulating layer 18 and the surface of the insulating layer 18. That is, the upper end surfaces 12a of the n columnar negative electrodes 12 are connected in parallel to the negative electrode current collector 20. Examples of the material of the negative electrode current collector 20 include carbon paper, aluminum, copper, titanium, stainless steel, nickel, iron, platinum, calcined carbon, conductive polymer, conductive glass, and the like, as well as adhesiveness and conductivity. Further, for the purpose of improving the oxidation resistance (reducing property), those having the surface of aluminum, copper or the like treated with carbon, nickel, titanium, silver, platinum, gold or the like can also be used. The shape of the negative electrode current collector 20 is a plate shape in this embodiment.

正極集電体30は、図1に示すように、第1正極集電層31と、第2正極集電層32と、第3正極集電層33とを備えたものであり、二次電池10の一側面に配置されている。正極集電体30と負極集電体20とは、電気的に絶縁されている。 As shown in FIG. 1, the positive electrode current collector 30 includes a first positive electrode current collector layer 31, a second positive electrode current collector layer 32, and a third positive electrode current collector layer 33, and is a secondary battery. It is arranged on one side of 10. The positive electrode current collector 30 and the negative electrode current collector 20 are electrically insulated from each other.

第1正極集電層31は、正極16のうち正極導電性パターン17の一方の端面17aが露出している露出面(図1で左側面)の全面を覆うように、例えば蒸着、スパッタ、印刷などで形成されている。そのため、第1正極集電層31には、複数の正極導電性パターン17の端面17aが並列接続されている。第1正極集電層31の材料としては、例えば、カーボンペーパー、アルミニウム、銅、チタン、ステンレス鋼、ニッケル、鉄、白金、焼成炭素、導電性高分子、導電性ガラスなどのほか、接着性、導電性及び耐酸化性(還元性)を向上させる目的で、アルミニウムや銅などの表面をカーボン、ニッケル、チタン、銀、白金、金などで処理したものも用いることができる。第1正極集電層31の形状は、本実施形態では板状とした。なお、図2の正極16に第1正極集電層31を形成する場合には、図2の正極16のジグザグに折れ曲がった左側面に第1正極集電層31が形成されるため、第1正極集電層31もジグザグに折れ曲がった面になる。 The first positive electrode current collector layer 31 is, for example, vapor-deposited, sputtered, or printed so as to cover the entire surface of the exposed surface (left side surface in FIG. 1) where one end surface 17a of the positive electrode conductive pattern 17 of the positive electrode 16 is exposed. It is formed of. Therefore, the end faces 17a of the plurality of positive electrode conductive patterns 17 are connected in parallel to the first positive electrode current collector layer 31. Examples of the material of the first positive electrode current collector layer 31 include carbon paper, aluminum, copper, titanium, stainless steel, nickel, iron, platinum, calcined carbon, conductive polymer, conductive glass, and the like, as well as adhesiveness. For the purpose of improving conductivity and oxidation resistance (reducing property), those having a surface of aluminum, copper or the like treated with carbon, nickel, titanium, silver, platinum, gold or the like can also be used. The shape of the first positive electrode current collector layer 31 is a plate shape in this embodiment. When the first positive electrode current collector layer 31 is formed on the positive electrode 16 of FIG. 2, the first positive electrode current collector layer 31 is formed on the left side surface of the positive electrode 16 of FIG. 2 bent in a zigzag manner. The positive electrode current collector layer 31 also has a zigzag bent surface.

第2正極集電層32は、第1正極集電層31上に間欠的に設けられた線状又は板状の部材である。第2正極集電層32は、図1に示すように、上下方向の同一直線上に並んだ複数の正極導電性パターン17の端面17aと平行になるように且つ隣合う第2正極集電層32同士の間隔が一定になるように設けられていることが好ましい。図1では、第2正極集電層32は、同一直線上に並んだ複数の正極導電性パターン17の端面17aと重なるように設けられており、第2正極集電層32の前後方向のピッチは、正極導電性パターン17の端面17aの前後方向のピッチの2倍になっている。そのため、上下方向の同一直線上に並んだ複数の正極導電性パターン17の端面17aは、第2正極集電層32と重なるものと重ならないものとが前後方向に交互に存在する。第2正極集電層32の材料としては、第1正極集電層31で例示した材料の中から適宜使用することができ、第1正極集電層31と同じ材料であってもよいし異なる材料であってもよい。なお、図2の正極16に第2正極集電層32を形成する場合には、図2の正極16のジグザグに折れ曲がった左側面から左方に突き出た上下方向に延びる辺に沿って線状に第2正極集電層32を形成する。 The second positive electrode current collector layer 32 is a linear or plate-shaped member intermittently provided on the first positive electrode current collector layer 31. As shown in FIG. 1, the second positive electrode current collector layer 32 is a second positive electrode current collector layer that is parallel to and adjacent to the end faces 17a of a plurality of positive electrode conductive patterns 17 arranged on the same straight line in the vertical direction. It is preferable that the 32s are provided so that the distance between them is constant. In FIG. 1, the second positive electrode current collector layer 32 is provided so as to overlap the end faces 17a of a plurality of positive electrode conductive patterns 17 arranged on the same straight line, and the pitch in the front-rear direction of the second positive electrode current collector layer 32. Is twice the pitch in the front-rear direction of the end face 17a of the positive electrode conductive pattern 17. Therefore, in the end faces 17a of the plurality of positive electrode conductive patterns 17 arranged on the same straight line in the vertical direction, those overlapping with the second positive electrode current collecting layer 32 and those not overlapping exist alternately in the front-rear direction. As the material of the second positive electrode current collector layer 32, any of the materials exemplified in the first positive electrode current collector layer 31 can be appropriately used, and the same material as the first positive electrode current collector layer 31 may or may not be used. It may be a material. When the second positive electrode current collector layer 32 is formed on the positive electrode 16 in FIG. 2, it is linear along a side extending in the vertical direction protruding to the left from the zigzag bent left side surface of the positive electrode 16 in FIG. The second positive electrode current collector layer 32 is formed on the surface.

第3正極集電層33は、第1正極集電層31と接触せず、第2正極集電層32を架け渡すように設けられた線状又は板状の部材である。第3正極集電層33は、第2正極集電層32よりも少ない数であり、本実施形態では1本である。第3正極集電層33の材料としては、第1正極集電層31で例示した材料の中から適宜使用することができ、第1正極集電層31や第2正極集電層32と同じ材料であってもよいし異なる材料であってもよい。 The third positive electrode current collector layer 33 is a linear or plate-shaped member provided so as to bridge the second positive electrode current collector layer 32 without coming into contact with the first positive electrode current collector layer 31. The number of the third positive electrode current collector layer 33 is smaller than that of the second positive electrode current collector layer 32, and is one in the present embodiment. As the material of the third positive electrode current collector layer 33, any of the materials exemplified in the first positive electrode current collector layer 31 can be appropriately used, and the same as the first positive electrode current collector layer 31 and the second positive electrode current collector layer 32. It may be a material or a different material.

第1正極集電層31を電流が流れる経路の電気抵抗を、電気抵抗Rc1[Ω]とする。本実施形態では、電気抵抗Rc1は、第2正極集電層32と重ならない正極導電性パターン17の端面17aから第1正極集電層31を経由して第2正極集電層32に至る最短経路の電気抵抗とする。具体的には、電気抵抗Rc1は、図5に示すように、直上に第2正極集電層32が設けられていない正極導電性パターン17の端面17aの中心線から第1正極集電層31を経由して第2正極集電層32の中心線32cに至る経路Pc1(図5の網掛けを施した長方形部分)の電気抵抗とする。この経路Pc1は、第1正極集電層31における長さLc1[m]、幅wc1[m]、厚さtc1[m]の直方体である。第1正極集電層31の体積抵抗率をρc1[Ωm]とすると、第1正極集電層31の電気抵抗Rc1は、下記式で表される。式中、Sc1は経路Pc1の断面積(=wc1×tc1)である。
Rc1=ρc1×Lc1/Sc1
The electric resistance of the path through which the current flows through the first positive electrode current collector layer 31 is defined as the electric resistance Rc1 [Ω]. In the present embodiment, the electric resistance Rc1 is the shortest from the end face 17a of the positive electrode conductive pattern 17 that does not overlap with the second positive electrode current collector layer 32 to the second positive electrode current collector layer 32 via the first positive electrode current collector layer 31. The electrical resistance of the path. Specifically, as shown in FIG. 5, the electric resistance Rc1 is the first positive electrode current collector layer 31 from the center line of the end surface 17a of the positive electrode conductive pattern 17 in which the second positive electrode current collector layer 32 is not provided directly above. It is taken as the electric resistance of the path Pc1 (the shaded rectangular portion of FIG. 5) leading to the center line 32c of the second positive electrode current collector layer 32 via the above. This path Pc1 is a rectangular parallelepiped having a length Lc1 [m], a width wc1 [m], and a thickness tc1 [m] in the first positive electrode current collector layer 31. Assuming that the volume resistivity of the first positive electrode current collector layer 31 is ρc1 [Ωm], the electric resistance Rc1 of the first positive electrode current collector layer 31 is expressed by the following equation. In the formula, Sc1 is the cross-sectional area of the path Pc1 (= wc1 × tc1).
Rc1 = ρc1 × Lc1 / Sc1

第2正極集電層32を電流が流れる経路の電気抵抗を、電気抵抗Rc2[Ω]とする。本実施形態では、電気抵抗Rc2は、第2正極集電層32の端部から第2正極集電層32を経由して第3正極集電層33に至る経路の電気抵抗とする。具体的には、電気抵抗Rc2は、図1に示すように、第2正極集電層32の端部(右端)から第2正極集電層32を経由して第3正極集電層33の中心線33cに至る経路の電気抵抗とする。第2正極集電層32の体積抵抗率をρc2[Ωm]とすると、電気抵抗Rc2は、下記式で表される。長さLc2[m]と断面積Sc2[m2]を図1に示す。
Rc2=ρc2×Lc2/Sc2(但し、Sc2は第2正極集電層32の断面積)
The electric resistance of the path through which the current flows through the second positive electrode current collector layer 32 is defined as the electric resistance Rc2 [Ω]. In the present embodiment, the electric resistance Rc2 is the electric resistance of the path from the end of the second positive electrode current collector layer 32 to the third positive electrode current collector layer 33 via the second positive electrode current collector layer 32. Specifically, as shown in FIG. 1, the electric resistance Rc2 is the third positive electrode current collector layer 33 from the end portion (right end) of the second positive electrode current collector layer 32 via the second positive electrode current collector layer 32. Let it be the electrical resistance of the path leading to the center line 33c. Assuming that the volume resistivity of the second positive electrode current collector layer 32 is ρc2 [Ωm], the electric resistance Rc2 is expressed by the following equation. The length Lc2 [m] and the cross-sectional area Sc2 [m 2 ] are shown in FIG.
Rc2 = ρc2 × Lc2 / Sc2 (However, Sc2 is the cross-sectional area of the second positive electrode current collector layer 32).

第3正極集電層33を電流が流れる経路の電気抵抗を、電気抵抗Rc3[Ω]とする。本実施形態では、電気抵抗Rc3は、第3正極集電層33の長手方向の一端から他端に至る電気抵抗とする。第3正極集電層33の体積抵抗率をρc3[Ωm]とすると、電気抵抗Rc3は、下記式で表される。長さLc3[m]と断面積Sc3[m2]を図1に示す。
Rc3=ρc3×Lc3/Sc3(但し、Sc3は第3正極集電層33の断面積)
The electric resistance of the path through which the current flows through the third positive electrode current collector layer 33 is defined as the electric resistance Rc3 [Ω]. In the present embodiment, the electric resistance Rc3 is an electric resistance extending from one end to the other end in the longitudinal direction of the third positive electrode current collector layer 33. Assuming that the volume resistivity of the third positive electrode current collector layer 33 is ρc3 [Ωm], the electric resistance Rc3 is expressed by the following equation. The length Lc3 [m] and the cross-sectional area Sc3 [m 2 ] are shown in FIG.
Rc3 = ρc3 × Lc3 / Sc3 (However, Sc3 is the cross-sectional area of the third positive electrode current collector layer 33).

本実施形態では、電気抵抗Rc1,Rc2,Rc3は、Rc1>Rc2>Rc3の関係を満たす。また、電気抵抗Rc1に対する電気抵抗Rc2の比は0.1以下であり、電気抵抗Rc2に対する電気抵抗Rc3の比は0.1以下であることが好ましい。 In the present embodiment, the electric resistances Rc1, Rc2, and Rc3 satisfy the relationship of Rc1> Rc2> Rc3. Further, the ratio of the electric resistance Rc2 to the electric resistance Rc1 is preferably 0.1 or less, and the ratio of the electric resistance Rc3 to the electric resistance Rc2 is preferably 0.1 or less.

以上詳述した本実施形態の二次電池10によれば、3層構造の正極集電体30を採用したことにより正極16の集電を効率的に行うことができるため、重量エネルギー密度や体積エネルギー密度を十分高くすることができる。正極集電構造を第1正極集電層31のみとした場合には、第1正極集電層31を電流が流れる経路の電気抵抗が高いためすべての正極導電性パターン17からの電流を実用的な電圧低下範囲で流すのは難しい。しかし、ここでは、正極集電構造を、第1正極集電層31と、第1正極集電層31の上に間欠的に設けられた低抵抗な第2正極集電層32と、第2正極集電層32の上に設けられたより低抵抗な第3正極集電層33とで構成したため、すべての正極導電性パターン17からの電流を第1正極集電層31、第2正極集電層32及び第3正極集電層33の順に経由して比較的低い電気抵抗で集電することができる。その結果、すべての正極導電性パターン17からの電流を実用的な電圧低下範囲で流すことができる。したがって、分離膜14で周囲を囲われた柱状負極12が正極16内に配置された二次電池10において、エネルギー密度を十分高めることできる。 According to the secondary battery 10 of the present embodiment described in detail above, by adopting the positive electrode current collector 30 having a three-layer structure, the positive electrode 16 can be efficiently collected, so that the weight energy density and volume can be increased. The energy density can be made sufficiently high. When the positive electrode current collecting structure is only the first positive electrode collecting layer 31, the current from all the positive electrode conductive patterns 17 is practical because the electric resistance of the path through which the current flows through the first positive electrode collecting layer 31 is high. It is difficult to flow in a wide voltage drop range. However, here, the positive electrode current collecting structure is provided with the first positive electrode collecting layer 31, the low resistance second positive electrode collecting layer 32 intermittently provided on the first positive electrode collecting layer 31, and the second positive electrode collecting layer 32. Since it is composed of a third positive electrode current collector layer 33 having a lower resistance provided on the positive electrode current collector layer 32, the currents from all the positive electrode conductive patterns 17 are collected from the first positive electrode current collector layer 31 and the second positive electrode current collector. Current can be collected with relatively low electrical resistance via the layer 32 and the third positive electrode current collecting layer 33 in this order. As a result, the currents from all the positive electrode conductive patterns 17 can flow in a practical voltage drop range. Therefore, in the secondary battery 10 in which the columnar negative electrode 12 surrounded by the separation film 14 is arranged in the positive electrode 16, the energy density can be sufficiently increased.

また、電気抵抗Rc1に対する電気抵抗Rc2の比は0.1以下であり、電気抵抗Rc2に対する電気抵抗Rc3の比は0.1以下であるため、エネルギー密度を一層高めることができる。 Further, since the ratio of the electric resistance Rc2 to the electric resistance Rc1 is 0.1 or less and the ratio of the electric resistance Rc3 to the electric resistance Rc2 is 0.1 or less, the energy density can be further increased.

更に、正極導電性パターン17の端面17aは露出面(正極16の左側面)に周期的に配置され、第2正極集電層32は、同一直線上に並んだ複数の端面17aと平行になるように且つ隣合う第2正極集電層32同士の間隔が一定になるように設けられている。これにより、第2正極集電層32は周期的な構造になるため作製しやすくなる。 Further, the end surface 17a of the positive electrode conductive pattern 17 is periodically arranged on the exposed surface (the left side surface of the positive electrode 16), and the second positive electrode current collector layer 32 is parallel to the plurality of end surfaces 17a arranged on the same straight line. It is provided so that the distance between the adjacent second positive electrode current collector layers 32 is constant. As a result, the second positive electrode current collector layer 32 has a periodic structure and is easy to manufacture.

更にまた、第3正極集電層33は、第2正極集電層32を架け渡すように設けられた1本の導電線であるため、第3正極集電層33が複数本存在する場合に比べて構成が簡素化される。 Furthermore, since the third positive electrode current collector layer 33 is a single conductive wire provided so as to bridge the second positive electrode current collector layer 32, when a plurality of third positive electrode current collector layers 33 are present. The configuration is simplified in comparison.

そして、正極16は、正六角柱からなる複数の柱状正極26を空間充填して得られたものであり、分離膜14で囲われた柱状負極12は、柱状正極26の中心孔26aに配置されている。そのため、正極16を比較的容易に作製することができる。 The positive electrode 16 is obtained by spatially filling a plurality of columnar positive electrodes 26 made of regular hexagonal columns, and the columnar negative electrode 12 surrounded by the separation film 14 is arranged in the central hole 26a of the columnar positive electrode 26. There is. Therefore, the positive electrode 16 can be manufactured relatively easily.

なお、本開示は上述した実施形態に何ら限定されることはなく、本開示の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It should be noted that the present disclosure is not limited to the above-described embodiment, and it goes without saying that the present disclosure can be carried out in various embodiments as long as it belongs to the technical scope of the present disclosure.

例えば、上述した実施形態では、二次電池10のキャリアをリチウムイオンとしたが、特にこれに限定されず、ナトリウムイオンやカリウムイオンなどのアルカリ金属イオン、カルシウムイオンやマグネシウムイオンなどの2族元素イオンとしてもよい。また、正極活物質は、キャリアのイオンを含むものとすればよい。また、電解液を非水系電解液としたが、水系電解液としてもよい。 For example, in the above-described embodiment, the carrier of the secondary battery 10 is lithium ion, but the carrier is not particularly limited to this, and alkali metal ions such as sodium ion and potassium ion, and group 2 element ions such as calcium ion and magnesium ion. May be. Further, the positive electrode active material may contain carrier ions. Further, although the electrolytic solution is a non-aqueous electrolytic solution, it may be an aqueous electrolytic solution.

上述した実施形態では、炭素繊維は、円柱形状である例を説明したが、特にこれに限定されず、四角柱や六角柱などの形状としてもよい。 In the above-described embodiment, the example in which the carbon fiber has a cylindrical shape has been described, but the carbon fiber is not particularly limited to this, and may have a shape such as a quadrangular column or a hexagonal column.

上述した実施形態では、第1正極集電層31の形状を板状としたが、特に板状に限定されるものではなく、例えば、箔状、フィルム状、シート状、ネット状、パンチングシート、ガラス体、多孔質体、発泡体、繊維群の形成体などでもよい。第2及び第3正極集電層32,33の形状についても同様である。また、第1~第3正極集電層31~33は、3つとも同じ形状であってもよいし、2つが同じ形状で残り1つが異なる形状であってもよいし、3つとも異なる形状であってもよい。 In the above-described embodiment, the shape of the first positive electrode current collector layer 31 is plate-shaped, but the shape is not particularly limited to plate-shaped, and for example, foil-shaped, film-shaped, sheet-shaped, net-shaped, punching sheet, and the like. It may be a glass body, a porous body, a foam body, a fiber group forming body, or the like. The same applies to the shapes of the second and third positive electrode current collector layers 32 and 33. Further, the first to third positive electrode current collector layers 31 to 33 may all have the same shape, two may have the same shape, and the remaining one may have a different shape, or all three may have different shapes. It may be.

上述した実施形態では、二次電池10として電解液を用いるものを例示したが、電解液を用いない全固体電池としてもよい。 In the above-described embodiment, the secondary battery 10 using an electrolytic solution is exemplified, but an all-solid-state battery that does not use an electrolytic solution may be used.

上述した実施形態では、第2正極集電層32は、一直線上に並んだ正極導電性パターン17の端面17aに重なるように設けたが、特にこれに限定されるものではなく、一直線上に並んだ正極導電性パターン17の端面17aに重ならないように設けてもよいし、重なるものと重ならないものとを混在させてもよい。また、第2正極集電層32の前後方向のピッチは、正極導電性パターン17の端面17aの前後方向のピッチの2倍としたが、特に2倍に限定されるものではなく、例えば3倍とか4倍であってもよい。 In the above-described embodiment, the second positive electrode current collector layer 32 is provided so as to overlap the end faces 17a of the positive electrode conductive patterns 17 arranged in a straight line, but the present invention is not particularly limited thereto, and the second positive electrode current collector layer 32 is arranged in a straight line. However, it may be provided so as not to overlap the end surface 17a of the positive electrode conductive pattern 17, or a mixture of overlapping and non-overlapping may be used. Further, the pitch in the front-rear direction of the second positive electrode current collector layer 32 is twice the pitch in the front-rear direction of the end surface 17a of the positive electrode conductive pattern 17, but is not particularly limited to twice, for example, three times. Or 4 times.

上述した実施形態では、正極集電体30を二次電池10の左側面に設けたが、特にこれに限定されるものではなく、右側面に設けてもよいし、前面あるいは後面に設けてもよいし、下面に設けてもよい。 In the above-described embodiment, the positive electrode current collector 30 is provided on the left side surface of the secondary battery 10, but the present invention is not particularly limited thereto, and may be provided on the right side surface, or may be provided on the front surface or the rear surface. Alternatively, it may be provided on the lower surface.

上述した実施形態では、正六角柱の柱状正極26を用いたが、円柱状の柱状正極26をプレスして正六角柱に成形してもよい。 In the above-described embodiment, the columnar positive electrode 26 having a regular hexagonal column is used, but the columnar positive electrode 26 may be pressed to form a regular hexagonal column.

上述した実施形態では、柱状負極12として、負極活物質である炭素繊維を束ねたものや撚ったものを例示したが、特にこれに限定されるものではなく、キャリア(例えばリチウムイオン)を吸蔵放出可能な材料を含むものであればよい。また、必要に応じて導電材や結着材を含むものとしてもよい。 In the above-described embodiment, the columnar negative electrode 12 is exemplified by a bundled or twisted carbon fiber which is a negative electrode active material, but the present invention is not particularly limited to this, and a carrier (for example, lithium ion) is occluded. Any material may be contained as long as it contains a material that can be released. Further, it may contain a conductive material and a binder material as needed.

10 二次電池、12 柱状負極、12a 上端面、14 分離膜、16 正極、17 正極導電性パターン、17a 端面、18 絶縁層、20 負極集電体、26 柱状正極、26a 中心孔、30 正極集電体、31 第1正極集電層、32 第2正極集電層、32c 第2正極集電層の中心線、33 第3正極集電層、33c 第3正極集電層の中心線。 10 Secondary battery, 12 Columnar negative electrode, 12a Top surface, 14 Separation film, 16 Positive electrode, 17 Positive electrode conductive pattern, 17a End surface, 18 Insulation layer, 20 Negative electrode current collector, 26 Columnar positive electrode, 26a Central hole, 30 Positive electrode collection Electric body, 31 1st positive electrode current collector layer, 32 2nd positive electrode current collector layer, 32c center line of 2nd positive electrode current collector layer, 33 3rd positive electrode current collector layer, 33c center line of 3rd positive electrode current collector layer.

Claims (5)

負極活物質を含む複数の柱状負極と、
各柱状負極の周囲を囲うように設けられた分離膜と、
正極活物質を含み、隣合う前記分離膜同士の間を埋めるように設けられた正極と、
前記正極の内部で前記柱状負極と交差する方向に配列された複数の正極導電性パターンと、
前記正極のうち前記正極導電性パターンの一方の端面が露出している露出面を覆うように設けられた第1正極集電層と、
前記第1正極集電層上に間欠的に設けられた複数の第2正極集電層と、
前記第1正極集電層と接触せず、前記第2正極集電層を架け渡すように設けられ、前記第2正極集電層よりも少ない数の第3正極集電層と、
を備え、
前記第1正極集電層の電流経路の電気抵抗Rc1と、前記第2正極集電層の電流経路の電気抵抗Rc2と、前記第3正極集電層の電流経路の電気抵抗Rc3は、Rc1>Rc2>Rc3の関係を満たす、
二次電池。
Multiple columnar negative electrodes containing negative electrode active material,
A separation membrane provided so as to surround each columnar negative electrode,
A positive electrode containing a positive electrode active material and provided so as to fill the space between adjacent separation membranes,
A plurality of positive electrode conductive patterns arranged in a direction intersecting the columnar negative electrode inside the positive electrode, and
A first positive electrode current collector layer provided so as to cover an exposed surface on which one end surface of the positive electrode conductive pattern of the positive electrode is exposed.
A plurality of second positive electrode current collector layers intermittently provided on the first positive electrode current collector layer, and
A third positive electrode current collector layer, which is provided so as to bridge the second positive electrode current collector layer without contacting the first positive electrode current collector layer, and has a smaller number than the second positive electrode current collector layer.
Equipped with
The electric resistance Rc1 of the current path of the first positive electrode current collector layer, the electric resistance Rc2 of the current path of the second positive electrode current collector layer, and the electric resistance Rc3 of the current path of the third positive electrode current collector layer are Rc1>. Satisfy the relationship of Rc2> Rc3,
Secondary battery.
前記電気抵抗Rc1は、前記第2正極集電層と重複していない前記正極導電性パターンの前記端面から前記第1正極集電層を経由して前記第2正極集電層に至る最短経路の電気抵抗であり、前記電気抵抗Rc2は、前記第2正極集電層の端部から前記第2正極集電層を経由して前記第3正極集電層に至る経路の電気抵抗であり、前記電気抵抗R3は、前記第3正極集電層の一端から他端に至る経路の電気抵抗である、
請求項1に記載の二次電池。
The electric resistance Rc1 is the shortest path from the end face of the positive electrode conductive pattern that does not overlap with the second positive electrode current collector layer to the second positive electrode current collector layer via the first positive electrode current collector layer. It is an electric resistance, and the electric resistance Rc2 is an electric resistance of a path from an end portion of the second positive electrode current collecting layer to the third positive electrode current collecting layer via the second positive electrode collecting layer. The electric resistance R c 3 is the electric resistance of the path from one end to the other end of the third positive electrode current collector layer.
The secondary battery according to claim 1.
前記電気抵抗Rc1に対する前記電気抵抗Rc2の比は0.1以下であり、前記電気抵抗Rc2に対する前記電気抵抗Rc3の比は0.1以下である、
請求項1又は2に記載の二次電池。
The ratio of the electric resistance Rc2 to the electric resistance Rc1 is 0.1 or less, and the ratio of the electric resistance Rc3 to the electric resistance Rc2 is 0.1 or less.
The secondary battery according to claim 1 or 2.
前記正極導電性パターンの前記端面は、前記露出面に周期的に配置され、
前記第2正極集電層は、同一直線上に並んだ複数の前記正極導電性パターンの前記端面と平行になるように且つ隣合う前記第2正極集電層同士の間隔が一定になるように設けられている、
請求項1~3のいずれか1項に記載の二次電池。
The end face of the positive electrode conductive pattern is periodically arranged on the exposed surface.
The second positive electrode current collector layer is parallel to the end faces of the plurality of positive electrode conductive patterns arranged on the same straight line, and the distance between adjacent second positive electrode current collector layers is constant. It is provided,
The secondary battery according to any one of claims 1 to 3.
前記第3正極集電層は、前記第2正極集電層を架け渡すように設けられた1本の導電線である、
請求項1~4のいずれか1項に記載の二次電池。
The third positive electrode current collector layer is a single conductive wire provided so as to bridge the second positive electrode current collector layer.
The secondary battery according to any one of claims 1 to 4.
JP2019140856A 2019-07-31 2019-07-31 Secondary battery Active JP7059988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019140856A JP7059988B2 (en) 2019-07-31 2019-07-31 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019140856A JP7059988B2 (en) 2019-07-31 2019-07-31 Secondary battery

Publications (2)

Publication Number Publication Date
JP2021026807A JP2021026807A (en) 2021-02-22
JP7059988B2 true JP7059988B2 (en) 2022-04-26

Family

ID=74663958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019140856A Active JP7059988B2 (en) 2019-07-31 2019-07-31 Secondary battery

Country Status (1)

Country Link
JP (1) JP7059988B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6981453B2 (en) * 2019-07-31 2021-12-15 株式会社豊田中央研究所 Secondary battery
JP7164509B2 (en) * 2019-11-08 2022-11-01 トヨタ自動車株式会社 lithium ion battery
JP7111119B2 (en) * 2020-02-25 2022-08-02 株式会社豊田中央研究所 storage device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016201199A (en) 2015-04-08 2016-12-01 日本碍子株式会社 Secondary battery using hydroxide ion conductivity ceramics separator
WO2018168286A1 (en) 2017-03-13 2018-09-20 株式会社豊田中央研究所 Secondary battery and method for producing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016201199A (en) 2015-04-08 2016-12-01 日本碍子株式会社 Secondary battery using hydroxide ion conductivity ceramics separator
WO2018168286A1 (en) 2017-03-13 2018-09-20 株式会社豊田中央研究所 Secondary battery and method for producing same

Also Published As

Publication number Publication date
JP2021026807A (en) 2021-02-22

Similar Documents

Publication Publication Date Title
JP6631568B2 (en) Secondary battery and method of manufacturing the same
JP7059988B2 (en) Secondary battery
US11171389B2 (en) Secondary battery and method for producing the same
JP6919488B2 (en) Secondary battery and its manufacturing method
JP6930147B2 (en) Rechargeable battery
US11101456B2 (en) Secondary battery and method for manufacturing same
JP6981452B2 (en) Secondary battery
US10897043B2 (en) Secondary battery
JP7007240B2 (en) Secondary battery
JP7087422B2 (en) Secondary battery
JP6102442B2 (en) Lithium ion secondary battery
JP7111119B2 (en) storage device
JP6981453B2 (en) Secondary battery
JP6991876B2 (en) Secondary battery
JP7298380B2 (en) Negative electrode for secondary battery and secondary battery using the same
JP2021118147A (en) Power storage device and power storage device module
JP7424120B2 (en) Energy storage device
JP7200971B2 (en) Power storage device and method for manufacturing power storage device
JP7207348B2 (en) storage device
JP6991877B2 (en) Secondary battery
JP7322903B2 (en) Electric storage device electrode, electric storage device, and method for manufacturing electric storage device electrode
JP2021166164A (en) Power storage device
JP2023131247A (en) Power storage device and manufacturing method for power storage device
JP2023065025A (en) Structure, power storge device and method for manufacturing power storage device
JP2022131712A (en) Power storage device and manufacturing method for power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220328

R150 Certificate of patent or registration of utility model

Ref document number: 7059988

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150