JP2021025476A - Centrifugal pump and impeller for centrifugal pump - Google Patents

Centrifugal pump and impeller for centrifugal pump Download PDF

Info

Publication number
JP2021025476A
JP2021025476A JP2019144776A JP2019144776A JP2021025476A JP 2021025476 A JP2021025476 A JP 2021025476A JP 2019144776 A JP2019144776 A JP 2019144776A JP 2019144776 A JP2019144776 A JP 2019144776A JP 2021025476 A JP2021025476 A JP 2021025476A
Authority
JP
Japan
Prior art keywords
impeller
blade
flow path
centrifugal pump
curved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019144776A
Other languages
Japanese (ja)
Inventor
敦史 奥瀬
Atsushi Okuse
敦史 奥瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2019144776A priority Critical patent/JP2021025476A/en
Publication of JP2021025476A publication Critical patent/JP2021025476A/en
Pending legal-status Critical Current

Links

Abstract

To provide a centrifugal pump with a low specific speed, capable of improving pump efficiency.SOLUTION: In a centrifugal pump with a low specific speed in which the specific speed Ns is set to 50≤Ns<100, a negative pressure surface part 42 of an impeller blade 36 constituting a groove flow path 37 of an impeller 23 comprises a first curved part 42a, a straight part 42b and a second curved part 42c from a radial inside end part 36a, and is formed in a surface shape in which the straight part 42b and the first curved part 42a widens the width of the groove flow path 37 from the extension line of the second curved part 42c when viewed from the second curved part 42c side.SELECTED DRAWING: Figure 4

Description

本発明は、遠心ポンプ及び遠心ポンプ用羽根車に関する。 The present invention relates to a centrifugal pump and an impeller for a centrifugal pump.

遠心ポンプは、複数の羽根翼を有する羽根車がポンプケース内に配置され、軸中心側から導入した作動流体を羽根車の回転に基づく遠心力にて各羽根翼間の溝流路を介して径方向外側に吐出するように動作するものである(例えば特許文献1参照)。 In the centrifugal pump, an impeller having a plurality of blades is arranged in the pump case, and the working fluid introduced from the axis center side is subjected to centrifugal force based on the rotation of the impeller through the groove flow path between the blades. It operates so as to discharge outward in the radial direction (see, for example, Patent Document 1).

ところで、遠心ポンプでは、ポンプ特性を表す比速度Nsが100以上となるように羽根車等を設定して構成するのが一般的である。しかしながら、比速度Nsの設定が100未満のポンプに遠心ポンプを用いたいとの要望もあり、こうした低比速度の遠心ポンプの検討もなされている。 By the way, in a centrifugal pump, it is common to set an impeller or the like so that the specific speed Ns representing the pump characteristics is 100 or more. However, there is also a request to use a centrifugal pump for a pump having a specific speed Ns setting of less than 100, and such a low specific speed centrifugal pump is also being studied.

特開2004−278311号公報Japanese Unexamined Patent Publication No. 2004-278311

遠心ポンプのポンプ効率は、比速度の低下とともに低下していく。つまり、上記したような低比速度に設定される遠心ポンプでは、ポンプ効率が低くなりがちとなる中、いかにして効率向上を図るかが検討課題の一つとしてあった。 The pump efficiency of a centrifugal pump decreases as the specific speed decreases. That is, in the centrifugal pump set to the low specific speed as described above, the pump efficiency tends to be low, and how to improve the efficiency has been one of the issues to be examined.

本発明の目的は、ポンプ効率の向上が期待できる低比速度の遠心ポンプ及び遠心ポンプ用羽根車を提供することにある。 An object of the present invention is to provide a low specific speed centrifugal pump and an impeller for a centrifugal pump, which can be expected to improve pump efficiency.

上記課題を解決する遠心ポンプは、周方向に所定間隔で配設される複数の羽根翼(36)と、隣接の前記羽根翼間に構成される複数の溝流路(37)とを有し、作動流体を径方向内側の導入口(39)から前記溝流路を介して径方向外側の吐出口(40)に向けて吐出させる羽根車(23)を備えるものであり、比速度Nsが50≦Ns<100に設定される低比速度の遠心ポンプ(10)であって、前記羽根車の羽根翼は、径方向内側端部(36a)よりも径方向外側端部(36b)が回転方向下流側に位置する後向き羽根構造をなし、前記溝流路から見て前記羽根翼の一方側面に形成される圧力面部(41)と、隣接の前記羽根翼の他方側面に形成される負圧面部(42)とがそれぞれ略一様の湾曲形状をなして構成されるものであり、前記負圧面部は、前記羽根翼の前記径方向内側端部から第1湾曲部(42a)、直線部(42b)及び第2湾曲部(42c)を含み、前記第2湾曲部側から見て前記第2湾曲部の延長線から前記直線部及び前記第1湾曲部が前記溝流路の幅を広げる態様の面形状にて構成される。 A centrifugal pump that solves the above problems has a plurality of blade blades (36) arranged at predetermined intervals in the circumferential direction, and a plurality of groove flow paths (37) formed between the adjacent blade blades. The impeller (23) is provided with an impeller (23) for discharging the working fluid from the introduction port (39) on the inner side in the radial direction toward the discharge port (40) on the outer side in the radial direction via the groove flow path, and the specific velocity Ns is high. A low specific velocity centrifugal pump (10) set to 50 ≦ Ns <100, in which the vane of the impeller rotate the radial outer end (36b) more than the radial inner end (36a). It has a rearward blade structure located on the downstream side in the direction, and has a pressure surface portion (41) formed on one side surface of the blade blade when viewed from the groove flow path, and a negative pressure formed on the other side surface of the adjacent blade blade. The surface portion (42) is configured to have a substantially uniform curved shape, and the negative pressure surface portion is a first curved portion (42a) and a straight portion from the radial inner end portion of the blade blade. (42b) and the second curved portion (42c) are included, and the straight portion and the first curved portion widen the width of the groove flow path from the extension line of the second curved portion when viewed from the second curved portion side. It is composed of the surface shape of the aspect.

上記課題を解決する遠心ポンプ用羽根車は、周方向に所定間隔で配設される複数の羽根翼(36)と、隣接の前記羽根翼間に構成される複数の溝流路(37)とを有し、作動流体を径方向内側の導入口(39)から前記溝流路を介して径方向外側の吐出口(40)に向けて吐出させるものであり、比速度Nsが50≦Ns<100に設定される低比速度の遠心ポンプ用羽根車(23)であって、前記羽根車の羽根翼は、径方向内側端部(36a)よりも径方向外側端部(36b)が回転方向下流側に位置する後向き羽根構造をなし、前記溝流路から見て前記羽根翼の一方側面に形成される圧力面部(41)と、隣接の前記羽根翼の他方側面に形成される負圧面部(42)とがそれぞれ略一様の湾曲形状をなして構成されるものであり、前記負圧面部は、前記羽根翼の前記径方向内側端部から第1湾曲部(42a)、直線部(42b)及び第2湾曲部(42c)を含み、前記第2湾曲部側から見て前記第2湾曲部の延長線から前記直線部及び前記第1湾曲部が前記溝流路の幅を広げる態様の面形状にて構成される。 An impeller for a centrifugal pump that solves the above problems includes a plurality of blade blades (36) arranged at predetermined intervals in the circumferential direction, and a plurality of groove flow paths (37) formed between the adjacent blade blades. The working fluid is discharged from the introduction port (39) on the inner side in the radial direction toward the discharge port (40) on the outer side in the radial direction through the groove flow path, and the specific velocity Ns is 50 ≦ Ns <. An impeller (23) for a centrifugal pump having a low specific velocity set to 100, and the impeller blades of the impeller have a radial outer end (36b) in a rotation direction rather than a radial inner end (36a). A pressure surface portion (41) having a rearward blade structure located on the downstream side and formed on one side surface of the blade blade when viewed from the groove flow path, and a negative pressure surface portion formed on the other side surface of the adjacent blade blade. (42) and (42) are each formed to have a substantially uniform curved shape, and the negative pressure surface portion includes a first curved portion (42a) and a straight portion (42a) from the radial inner end portion of the blade blade. 42b) and the second curved portion (42c) are included, and the straight portion and the first curved portion widen the width of the groove flow path from the extension line of the second curved portion when viewed from the second curved portion side. It is composed of the surface shape of.

上記遠心ポンプ及び遠心ポンプ用羽根車によれば、羽根車の溝流路を構成する羽根翼の負圧面部は、径方向内側端部から第1湾曲部、直線部及び第2湾曲部を含み、第2湾曲部側から見て第2湾曲部の延長線から直線部及び第1湾曲部が溝流路の幅を広げる態様の面形状にて構成される。これにより、溝流路の入口側部分の作動流体の流速が好適に低下して溝流路を流れる作動流体の壁面摩擦損失の低減効果等が得られることから、遠心ポンプの全圧の向上が期待できる(図5(b)等参照)。 According to the centrifugal pump and the impeller for the centrifugal pump, the negative pressure surface portion of the blade blade constituting the groove flow path of the impeller includes the first curved portion, the straight portion and the second curved portion from the radial inner end portion. The straight portion and the first curved portion are formed in a surface shape in which the width of the groove flow path is widened from the extension line of the second curved portion when viewed from the second curved portion side. As a result, the flow velocity of the working fluid at the inlet side of the groove flow path is suitably reduced, and the effect of reducing the wall friction loss of the working fluid flowing through the groove flow path can be obtained, so that the total pressure of the centrifugal pump can be improved. It can be expected (see FIG. 5 (b) and the like).

一実施形態における遠心ポンプの概略構成図。The schematic block diagram of the centrifugal pump in one Embodiment. (a)は一実施形態の羽根車の斜視図、(b)はその側面図。(A) is a perspective view of the impeller of one embodiment, and (b) is a side view thereof. 一実施形態の羽根車の詳細構成を説明するための平面図。The plan view for demonstrating the detailed structure of the impeller of one Embodiment. 一実施形態の羽根車の詳細構成を説明するための図3の一部拡大図。A partially enlarged view of FIG. 3 for explaining a detailed configuration of an impeller of one embodiment. (a)は一実施形態の羽根車の詳細構成を説明するための図4の一部拡大図、(b)はその羽根車を用いた場合のポンプ特性を説明するためのグラフ。(A) is a partially enlarged view of FIG. 4 for explaining the detailed configuration of the impeller of one embodiment, and (b) is a graph for explaining the pump characteristics when the impeller is used. (a)は一実施形態の羽根車の詳細構成を説明するための図3の一部拡大図、(b)はその羽根車を用いた場合の流体の流れを説明するための模式図。(A) is a partially enlarged view of FIG. 3 for explaining the detailed configuration of the impeller of one embodiment, and (b) is a schematic diagram for explaining the flow of fluid when the impeller is used. (a)は比較例の羽根車の詳細構成を説明するための図6と同等の拡大図、(b)はその羽根車を用いた場合の流体の流れを説明するための模式図。(A) is an enlarged view equivalent to FIG. 6 for explaining the detailed configuration of the impeller of the comparative example, and (b) is a schematic view for explaining the fluid flow when the impeller is used. (a)は一実施形態の羽根車の詳細構成を説明するための縦断面図、(b)はその羽根車を用いた場合のポンプ特性を説明するためのグラフ。(A) is a vertical sectional view for explaining the detailed configuration of the impeller of one embodiment, and (b) is a graph for explaining the pump characteristics when the impeller is used. (a)は一実施形態の羽根車の詳細構成を説明するための側面図、(b)はその羽根車を用いた場合のポンプ特性を説明するためのグラフ。(A) is a side view for explaining the detailed configuration of the impeller of one embodiment, and (b) is a graph for explaining the pump characteristics when the impeller is used. (a)は一実施形態の羽根車の詳細構成を説明するための図3の一部拡大図、(b)はその羽根車を用いた場合のポンプ特性を説明するためのグラフ。(A) is a partially enlarged view of FIG. 3 for explaining the detailed configuration of the impeller of one embodiment, and (b) is a graph for explaining the pump characteristics when the impeller is used.

以下、遠心ポンプ及び遠心ポンプ用羽根車の一実施形態について説明する。
図1に示す本実施形態の遠心ポンプ10は、作動流体としてエアを吐出するエアポンプである。遠心ポンプ10は、電動モータにて構成されるモータ部11と、モータ部11により駆動されてエアを送給するポンプ部21とを備え、モータ部11とポンプ部21とが一体に構成されている。
Hereinafter, an embodiment of the centrifugal pump and the impeller for the centrifugal pump will be described.
The centrifugal pump 10 of the present embodiment shown in FIG. 1 is an air pump that discharges air as a working fluid. The centrifugal pump 10 includes a motor unit 11 composed of an electric motor and a pump unit 21 driven by the motor unit 11 to supply air, and the motor unit 11 and the pump unit 21 are integrally configured. There is.

モータ部11は、モータケース12、ステータ13及びロータ14を備える。モータ部11は、モータケース12内にステータ13とロータ14とが収容されてなる。モータケース12は、ポンプ部21のポンプケース22に固定されている。モータ部11は、ステータ13への給電に基づいてロータ14が回転し、ロータ14とともに回転軸15が回転する。回転軸15は、ポンプ部21側に突出するように設けられてポンプ部21側に回転力を伝達する。 The motor unit 11 includes a motor case 12, a stator 13, and a rotor 14. The motor unit 11 includes a stator 13 and a rotor 14 in a motor case 12. The motor case 12 is fixed to the pump case 22 of the pump unit 21. In the motor unit 11, the rotor 14 rotates based on the power supplied to the stator 13, and the rotating shaft 15 rotates together with the rotor 14. The rotating shaft 15 is provided so as to project toward the pump portion 21 side, and transmits the rotational force to the pump portion 21 side.

ポンプ部21は、ポンプケース22及び羽根車23を備える。ポンプ部21は、ポンプケース22内に羽根車23が収容されてなる。すなわち、ポンプケース22は、羽根車23が回転可能に収容されるポンプ室24を備える。羽根車23は、自身の軸方向に対して扁平な略円盤形状をなしている。またこれに対応して、ポンプ室24についても、軸方向に対して扁平な略円形空間をなしている。 The pump unit 21 includes a pump case 22 and an impeller 23. The pump unit 21 includes an impeller 23 in the pump case 22. That is, the pump case 22 includes a pump chamber 24 in which the impeller 23 is rotatably housed. The impeller 23 has a substantially disk shape that is flat with respect to its own axial direction. Correspondingly, the pump chamber 24 also has a substantially circular space flat in the axial direction.

ポンプケース22は、ポンプ室24と連通する軸挿入孔25を備える。軸挿入孔25には、モータ部11から突出する回転軸15の先端部が挿入される。回転軸15の先端部はポンプ室24まで到達し、ポンプ室24に配置される羽根車23の支持、及び羽根車23と一体回転可能に連結される。 The pump case 22 includes a shaft insertion hole 25 that communicates with the pump chamber 24. The tip of the rotating shaft 15 protruding from the motor portion 11 is inserted into the shaft insertion hole 25. The tip of the rotating shaft 15 reaches the pump chamber 24 and is rotatably connected to the support of the impeller 23 arranged in the pump chamber 24 and the impeller 23.

また、ポンプケース22は、ポンプ室24から軸挿入孔25とは軸方向反対側に延びて開口するエア導入のための導入流路26を備える。導入流路26は、軸挿入孔25と同軸上、この場合羽根車23の同軸上に設けられている。さらに、ポンプケース22は、ポンプ室24から軸直交方向の一方側、この場合羽根車23の周方向外側方向に延びて開口するエア吐出のための吐出流路27を備える。吐出流路27は、エアの送給を受ける例えば図示略の車両用エア清掃装置等にホースを介して接続される。 Further, the pump case 22 includes an introduction flow path 26 for introducing air, which extends from the pump chamber 24 on the side opposite to the shaft insertion hole 25 in the axial direction and opens. The introduction flow path 26 is provided coaxially with the shaft insertion hole 25, in this case coaxially with the impeller 23. Further, the pump case 22 includes a discharge flow path 27 for air discharge that extends from the pump chamber 24 on one side in the direction orthogonal to the axis, in this case, extends outward in the circumferential direction of the impeller 23. The discharge flow path 27 is connected to, for example, a vehicle air cleaning device (not shown) that receives air supply via a hose.

図1、図2(a)(b)及び図3に示すように、羽根車23は、羽根車本体31、閉塞板32及び連結部材33を備える。羽根車本体31及び閉塞板32は例えば樹脂材料、連結部材33は例えば金属材料にて作製されている。羽根車本体31は、円形板状をなす底板部35の一側面上に、例えば11個の同形状の羽根翼36が周方向等間隔に並設されてなる。隣接の羽根翼36間は、エアの溝流路37として構成されている。各羽根翼36は、羽根車23の軽量化等の目的により適度に肉抜部38が設けられている。なお、各羽根翼36及び各溝流路37の詳細形状については後述する。 As shown in FIGS. 1, 2 (a), 2 (b) and 3, the impeller 23 includes an impeller body 31, a closing plate 32, and a connecting member 33. The impeller body 31 and the closing plate 32 are made of, for example, a resin material, and the connecting member 33 is made of, for example, a metal material. The impeller body 31 is formed by, for example, 11 blade blades 36 having the same shape arranged side by side at equal intervals in the circumferential direction on one side surface of a bottom plate portion 35 having a circular plate shape. The space between the adjacent blades 36 is configured as an air groove flow path 37. Each blade blade 36 is appropriately provided with a lightening portion 38 for the purpose of reducing the weight of the impeller 23. The detailed shapes of each blade blade 36 and each groove flow path 37 will be described later.

羽根車本体31の底板部35の中央部には、円筒状をなす連結部材33が相対回転不能に組み付けられる。この円筒状の連結部材33は、モータ部11の回転軸15の先端部が内嵌され、回転軸15と一体回転するように固定される。つまり、モータ部11の回転駆動により回転軸15が回転すると、連結部材33を介して羽根車本体31、すなわち羽根車23が一体回転するようになっている。 A cylindrical connecting member 33 is assembled to the central portion of the bottom plate portion 35 of the impeller body 31 so as not to rotate relative to each other. The tip of the rotating shaft 15 of the motor portion 11 is internally fitted into the cylindrical connecting member 33, and is fixed so as to rotate integrally with the rotating shaft 15. That is, when the rotating shaft 15 is rotated by the rotational drive of the motor unit 11, the impeller body 31, that is, the impeller 23 is integrally rotated via the connecting member 33.

閉塞板32は、底板部35と略同径の円形板状をなしている。閉塞板32の中央部には、円形状の導入口39が設けられている。そして、このような閉塞板32は、羽根車本体31の底板部35と平行となるように各羽根翼36の上面と当接するようにして羽根車本体31と一体的に組み付けられている。これにより、羽根車本体31の単体で上方が開口していた各溝流路37が閉塞板32の装着にて閉塞される、所謂クローズ型構造の羽根車23として構成されている。各溝流路37は、閉塞板32の中央部の導入口39と溝流路37の径方向外側に開口する吐出口40とを除く部分が閉塞板32にて閉塞されることで、径方向内側の導入口39から径方向外側の吐出口40に向けて隣接同士で独立した各溝流路37が確立されるようになっている。 The closing plate 32 has a circular plate shape having substantially the same diameter as the bottom plate portion 35. A circular introduction port 39 is provided at the center of the block plate 32. Then, such a closing plate 32 is integrally assembled with the impeller body 31 so as to be in contact with the upper surface of each blade blade 36 so as to be parallel to the bottom plate portion 35 of the impeller body 31. As a result, the impeller body 23 is configured as a so-called closed type impeller 23 in which each groove flow path 37, which has been opened upward by itself, is closed by mounting the closing plate 32. Each groove flow path 37 has a radial direction because a portion other than the introduction port 39 at the center of the closing plate 32 and the discharge port 40 that opens radially outward of the groove flow path 37 is closed by the closing plate 32. Independent groove flow paths 37 are established adjacent to each other from the inner introduction port 39 toward the outer discharge port 40 in the radial direction.

このような羽根車23は、自身の導入口39がポンプケース22の導入流路26と常時対向し、自身の吐出口40が吐出流路27と対向可能となるようにポンプ室24内に回転可能に配置される。そして、モータ部11の回転駆動、この場合単一方向の回転駆動に基づいて羽根車23が回転すると、導入流路26から導入口39に導入されたエアが羽根車23の遠心力に基づいて各溝流路37から吐出口40、吐出流路27を介して吐出され、図示略の車載装置にエアの送給がなされるようになっている。 Such an impeller 23 rotates in the pump chamber 24 so that its own introduction port 39 always faces the introduction flow path 26 of the pump case 22 and its own discharge port 40 faces the discharge flow path 27. Arranged as possible. Then, when the impeller 23 rotates based on the rotational drive of the motor unit 11, in this case, the rotary drive in one direction, the air introduced from the introduction flow path 26 to the introduction port 39 is based on the centrifugal force of the impeller 23. Air is discharged from each groove flow path 37 via the discharge port 40 and the discharge flow path 27, and air is supplied to an in-vehicle device (not shown).

[本実施形態の羽根車23の羽根翼36及び溝流路37の詳細構成について]
前提として、本実施形態の羽根車23を用いる遠心ポンプ10は、ポンプ特性を表す比速度Nsが50以上100未満、すなわち50≦Ns<100の一般的な遠心ポンプよりも低比速度に設定されている。なお、比速度Nsは、ポンプ特性を表す周知の指標であり、次式で表される。
[Detailed configuration of blade blade 36 and groove flow path 37 of impeller 23 of the present embodiment]
As a premise, the centrifugal pump 10 using the impeller 23 of the present embodiment is set to have a specific speed Ns representing pump characteristics of 50 or more and less than 100, that is, a lower specific speed than a general centrifugal pump of 50 ≦ Ns <100. ing. The specific speed Ns is a well-known index showing the pump characteristics, and is expressed by the following equation.


Ns=nQ1/2/H3/4(n:回転速度、Q:流量、H:全揚程)
なお、H=P/ρg(P:全圧、ρ:密度、g:重力加速度)

このような低比速度の本実施形態の遠心ポンプ10に用いる羽根車23の詳細構成としては、図2(a)(b)及び図3に示すように、先ず、各羽根翼36は、径方向内側端部36aが閉塞板32の導入口39の内周縁部と対応する位置、径方向外側端部36bが底板部35の外周縁部まで連続して延びるように設けられている。隣接の羽根翼36の径方向内側端部36a間は溝流路37の入口37aであり、隣接の羽根翼36の径方向外側端部36b間は溝流路37の出口37bである。溝流路37の出口37bは、羽根車23の吐出口40でもある。各羽根翼36の径方向内側端部36aよりも内側部分は、閉塞板32の導入口39と対応した略円形空間となっており、各溝流路37の入口37aがそれぞれ臨んでいる。また、各羽根翼36の径方向内側端部36aよりも内側部分の底板部35には、回転軸15と連結するための連結部材33の組み付けがなされる。

Ns = nQ 1/2 / H 3/4 (n: rotation speed, Q: flow rate, H: total head)
H = P / ρg (P: total pressure, ρ: density, g: gravitational acceleration)

As a detailed configuration of the impeller 23 used in the centrifugal pump 10 of the present embodiment having such a low specific speed, as shown in FIGS. 2 (a) and 2 (b) and 3, first, each blade blade 36 has a diameter. The directional inner end portion 36a is provided at a position corresponding to the inner peripheral edge portion of the introduction port 39 of the closing plate 32, and the radial outer end portion 36b is provided so as to continuously extend to the outer peripheral edge portion of the bottom plate portion 35. Between the radial inner ends 36a of the adjacent blades 36 is the inlet 37a of the groove flow path 37, and between the radial outer ends 36b of the adjacent blades 36 is the outlet 37b of the groove flow path 37. The outlet 37b of the groove flow path 37 is also the discharge port 40 of the impeller 23. The portion inside the radial inner end portion 36a of each blade blade 36 is a substantially circular space corresponding to the introduction port 39 of the closing plate 32, and the inlet 37a of each groove flow path 37 faces each other. Further, a connecting member 33 for connecting to the rotating shaft 15 is assembled to the bottom plate portion 35 of the radial inner end portion 36a of each blade blade 36.

各羽根翼36は、羽根車23の一方向の回転方向、すなわち図2(a)及び図3の反時計回り方向であるR1矢印方向に対し、径方向内側端部36aよりも径方向外側端部36bが下流側に位置する所謂後向き羽根構造により構成されている。各羽根翼36の反時計回り側の側壁は、溝流路37内にあるエアに対して圧力を付与する圧力面部41であり、時計回り側の側壁は、溝流路37内にあるエアの負圧が作用する負圧面部42である。各溝流路37側から見ると、反時計回り側の羽根翼36の側壁は負圧面部42であり、時計回り側の羽根翼36の側壁は圧力面部41である。圧力面部41及び負圧面部42は、底板部35及び閉塞板32に対して直交する面にて構成されている。すなわち、これらで囲まれて形成される溝流路37は、断面矩形状となっている。また、圧力面部41及び負圧面部42は、径方向内側から外側に向かって互いの間隔が広がる態様となっている。なお、圧力面部41と底板部35との間、及び負圧面部42と底板部35との間の各角部はR面としている。 Each blade blade 36 has a radial outer end than the radial inner end 36a with respect to the rotation direction of the impeller 23 in one direction, that is, the direction of the R1 arrow which is the counterclockwise direction of FIGS. The portion 36b is configured by a so-called rearward blade structure located on the downstream side. The side wall on the counterclockwise side of each blade 36 is a pressure surface portion 41 that applies pressure to the air in the groove flow path 37, and the side wall on the clockwise side is the side wall of the air in the groove flow path 37. The negative pressure surface portion 42 on which the negative pressure acts. When viewed from each groove flow path 37 side, the side wall of the blade blade 36 on the counterclockwise side is the negative pressure surface portion 42, and the side wall of the blade blade 36 on the clockwise side is the pressure surface portion 41. The pressure surface portion 41 and the negative pressure surface portion 42 are formed by surfaces orthogonal to the bottom plate portion 35 and the closing plate 32. That is, the groove flow path 37 surrounded by these has a rectangular cross section. Further, the pressure surface portion 41 and the negative pressure surface portion 42 have a mode in which the distance between the pressure surface portion 41 and the negative pressure surface portion 42 increases from the inner side in the radial direction to the outer side. Each corner between the pressure surface portion 41 and the bottom plate portion 35 and between the negative pressure surface portion 42 and the bottom plate portion 35 is an R surface.

圧力面部41は、例えばインボリュート曲線又はその近似曲線を用いた一様な湾曲形状をなしている。これに対し、負圧面部42は、図4及び図5(a)に示すように、第1区間A1、第2区間A2及び第3区間A3のそれぞれの面形状が滑らかに連続して全体として略一様な湾曲形状として構成されている。第1区間A1は、羽根翼36の径方向内側端部36aから負圧面部42全体の約1/4程度の区間であり、例えばインボリュート曲線又はその近似曲線を用いた第1湾曲部42aとしている。次いで、第2区間A2は、第1区間A1の第1湾曲部42aとの境界部42xから第1区間A1の約1/3程度の区間であり、例えば第1湾曲部42aとの境界部42xにおける接線に沿った直線部42bとしている。次いで、第3区間A3は、第2区間A2の直線部42bとの境界部42yから径方向外側に向けた残りの区間であり、例えばインボリュート曲線又はその近似曲線を用いた第2湾曲部42cとしている。なお、直線部42bは、第2湾曲部42cとの境界部42yにおける接線でもある。 The pressure surface portion 41 has a uniform curved shape using, for example, an involute curve or an approximate curve thereof. On the other hand, as shown in FIGS. 4 and 5A, the negative pressure surface portion 42 has the surface shapes of the first section A1, the second section A2, and the third section A3 smoothly and continuously as a whole. It is configured as a substantially uniform curved shape. The first section A1 is a section of about 1/4 of the entire negative pressure surface portion 42 from the radial inner end portion 36a of the blade blade 36, and is, for example, a first curved portion 42a using an involute curve or an approximate curve thereof. .. Next, the second section A2 is a section from the boundary portion 42x of the first section A1 with the first curved portion 42a to about 1/3 of the first section A1, for example, the boundary portion 42x with the first curved portion 42a. It is a straight line portion 42b along the tangent line in. Next, the third section A3 is the remaining section from the boundary portion 42y with the straight line portion 42b of the second section A2 toward the outside in the radial direction, and is, for example, a second curved portion 42c using an involute curve or an approximate curve thereof. There is. The straight line portion 42b is also a tangent line at the boundary portion 42y with the second curved portion 42c.

また、図2(a)(b)及び図6(a)(b)に示すように、羽根車23の径方向中間位置を起点位置kとして径方向内側の導入口39に向けて軸方向一方側に次第に羽根車23を膨出させる傾斜部23aが構成されている。傾斜部23aは、閉塞板32においては導入口39に向かうに連れて次第に底板部35から離間する直線状の斜面にて形成され、各羽根翼36の径方向内側部分についても閉塞板32の内側面の斜面形状に対応して次第に背高に形成されている。つまり、各溝流路37の高さが入口37a側に向けて次第に大きくなり、流路断面積も入口37a側に向けて次第に大きくなるようにしている。起点位置kから径方向外側においては、閉塞板32と閉塞板32との間隔は一定としている。 Further, as shown in FIGS. 2 (a) and 2 (b) and 6 (a) and 6 (b), the radial intermediate position of the impeller 23 is set as the starting position k, and one of the axial directions is directed toward the introduction port 39 inside the radial direction. An inclined portion 23a that gradually bulges the impeller 23 is configured on the side. The inclined portion 23a is formed in the closing plate 32 on a linear slope that gradually separates from the bottom plate portion 35 toward the introduction port 39, and the radial inner portion of each blade blade 36 is also included in the closing plate 32. It is gradually formed taller corresponding to the shape of the slope on the side surface. That is, the height of each groove flow path 37 is gradually increased toward the inlet 37a side, and the cross-sectional area of the flow path is also gradually increased toward the inlet 37a side. The distance between the block plate 32 and the block plate 32 is constant on the outer side in the radial direction from the starting point position k.

ここで、溝流路37の構成を検討するにあたり、例えば第2湾曲部42c側を基準としその第2湾曲部42cのみで負圧面部42を構成する図5(a)の破線にて示す比較例と、負圧面部42を第1及び第2湾曲部42a,42cを直線部42bで繋いで構成する図5(a)の実線にて示す本実施形態とを比較する。換言すると、溝流路37の出口37b側である第2湾曲部42cを基準とし、そこから溝流路37の入口37a側を見た構成の比較をしてみる。 Here, in examining the configuration of the groove flow path 37, for example, a comparison shown by a broken line in FIG. 5A in which the negative pressure surface portion 42 is formed only by the second curved portion 42c with the second curved portion 42c side as a reference. An example is compared with the present embodiment shown by the solid line in FIG. 5A, which is formed by connecting the first and second curved portions 42a and 42c with the straight portion 42b. In other words, let's compare the configurations in which the second curved portion 42c, which is the outlet 37b side of the groove flow path 37, is used as a reference, and the inlet 37a side of the groove flow path 37 is viewed from there.

溝流路37の出口37b側から入口37a側を見てみると、図5(a)の破線で示す比較例における第2湾曲部42cの延長線に対して図5(a)の実線で示す本実施形態では、溝流路37の高さのみならず幅についても直線部42bから第1湾曲部42a、すなわち入口37aに向けて若干幅広となるようにしている。これにより、図5(b)に示すように、比較例よりも本実施形態の遠心ポンプ10の方が同様の駆動を行った場合の遠心ポンプ10の全圧の向上が図れることがわかった。これは、溝流路37の入口37aから直線部42bまでの入口側部分のエアの流速が好適に低下し、溝流路37を流れるエアの壁面摩擦損失が低減できたためと推察できる。 Looking at the inlet 37a side from the outlet 37b side of the groove flow path 37, it is shown by the solid line in FIG. 5 (a) with respect to the extension line of the second curved portion 42c in the comparative example shown by the broken line in FIG. 5 (a). In the present embodiment, not only the height but also the width of the groove flow path 37 is set to be slightly wider from the straight portion 42b toward the first curved portion 42a, that is, the inlet 37a. As a result, as shown in FIG. 5B, it was found that the centrifugal pump 10 of the present embodiment can improve the total pressure of the centrifugal pump 10 when the same driving is performed as compared with the comparative example. It can be inferred that this is because the flow velocity of the air in the inlet side portion from the inlet 37a of the groove flow path 37 to the straight portion 42b is suitably reduced, and the wall friction loss of the air flowing through the groove flow path 37 can be reduced.

なお、第1及び第2湾曲部42a,42cを直線部42bで繋いで負圧面部42を構成することで、各境界部42x,42yの面形状の円滑さが悪化しかねないかが懸念されるところであるが、本実施形態では各湾曲部42a,42cの境界部42x,42yにおける共通の接線を直線部42bの形状に用いる等して円滑さを損なわないようにしている。そのため、各湾曲部42a,42c間を直線部42bで繋いだ複合面形状としていても、各溝流路37のエアの流れは円滑に維持されるものとなっている。 It should be noted that there is a concern that the smoothness of the surface shapes of the boundary portions 42x and 42y may be deteriorated by connecting the first and second curved portions 42a and 42c with the straight portion 42b to form the negative pressure surface portion 42. However, in the present embodiment, the common tangent line at the boundary portions 42x and 42y of the curved portions 42a and 42c is used for the shape of the straight portion 42b so as not to impair the smoothness. Therefore, even if the curved portions 42a and 42c are connected by a straight portion 42b to form a composite surface shape, the air flow in each groove flow path 37 is smoothly maintained.

また上記したが、本実施形態では図6(a)(b)に示すように、羽根車23の傾斜部23aの起点位置kが負圧面部42の直線部42bの出口部分である上記境界部42yよりも径方向外側に設定されている。ここで、図7(a)(b)に示すように、傾斜部23aの起点位置kが負圧面部42の直線部42bの出口部分よりも径方向内側に設定された比較例と本実施形態とを比較してみる。 Further, as described above, in the present embodiment, as shown in FIGS. 6A and 6B, the boundary portion where the starting point position k of the inclined portion 23a of the impeller 23 is the outlet portion of the straight portion 42b of the negative pressure surface portion 42. It is set to the outside in the radial direction from 42y. Here, as shown in FIGS. 7A and 7B, a comparative example and the present embodiment in which the starting point position k of the inclined portion 23a is set radially inside the outlet portion of the straight portion 42b of the negative pressure surface portion 42. Let's compare with.

図6(b)に示す本実施形態では、直線部42bの出口部分を経たエアの流れが円滑であるのに対し、図7(b)に示す比較例では、直線部42bの出口部分を経たエアの流れの中の一部に逆流渦や剥離流が見られた。逆流渦や剥離流が生じると、溝流路37が擬似的に閉塞されて実質的な流路が狭まり溝流路37を流れるエアの壁面摩擦損失の増加に繋がるため、好ましくない。これは、直線部42bの出口部分よりも径方向外側に傾斜部23aの起点位置kが設定される本実施形態では、それよりも径方向内側に起点位置kが設定される比較例よりも、起点位置kでの閉塞板32の傾斜面の変化が小さいためであることが理由の一つと推察できる。閉塞板32の傾斜面の変化が小さい本実施形態では、その形状変化にエアの流れが追従できるのに対し、閉塞板32の傾斜面の変化が大きくなる比較例では、その形状変化にエアの流れが追従し辛くなるためと考えられる。 In the present embodiment shown in FIG. 6B, the air flow through the outlet portion of the straight portion 42b is smooth, whereas in the comparative example shown in FIG. 7B, the air flows through the outlet portion of the straight portion 42b. A backflow vortex and a separation flow were observed in a part of the air flow. When a backflow vortex or a separation flow occurs, the groove flow path 37 is pseudo-blocked, the actual flow path is narrowed, and the wall friction loss of the air flowing through the groove flow path 37 is increased, which is not preferable. This is more than the comparative example in which the starting point position k of the inclined portion 23a is set radially outside the exit portion of the straight portion 42b in the present embodiment, and the starting point position k is set radially inside. It can be inferred that one of the reasons is that the change in the inclined surface of the closing plate 32 at the starting point position k is small. In the present embodiment in which the change in the inclined surface of the closing plate 32 is small, the air flow can follow the shape change, whereas in the comparative example in which the change in the inclined surface of the closing plate 32 is large, the air flow follows the shape change. This is thought to be because the flow becomes difficult to follow.

次いで、本実施形態の羽根車23の要所寸法について検討してみる。
図8(a)に示すように、羽根車23の溝流路37の入口37aにおける入口高さbと、溝流路37の出口37bにおける出口高さbとの比b/bに対する遠心ポンプ10の全圧の変化を図8(b)に示す。比b/bを「1.0」から「4.0」まで変化させる過程で、「1.4」から「2.5」の範囲X1で遠心ポンプ10の全圧が所望値x1を超えた。したがって、本実施形態の羽根車23においては、1.4≦b/b≦2.5となるように溝流路37の入口高さbと出口高さbとが設定されて、遠心ポンプ10の全圧の向上が図られている。
Next, the key dimensions of the impeller 23 of the present embodiment will be examined.
As shown in FIG. 8A, the ratio b 1 / b 2 of the inlet height b 1 at the inlet 37 a of the groove flow path 37 of the impeller 23 and the outlet height b 2 at the outlet 37 b of the groove flow path 37. The change in the total pressure of the centrifugal pump 10 with respect to the above is shown in FIG. 8 (b). In the process of changing the ratio b 1 / b 2 from "1.0" to "4.0", the total pressure of the centrifugal pump 10 becomes the desired value x 1 in the range X1 of "1.4" to "2.5". Beyond. Therefore, in the impeller 23 of the present embodiment, the inlet height b 1 and the outlet height b 2 of the groove flow path 37 are set so that 1.4 ≤ b 1 / b 2 ≤ 2.5. , The total pressure of the centrifugal pump 10 is improved.

また、図9(a)に示すように、羽根車23の外径Dと溝流路37の出口高さbとの比b/Dに対する遠心ポンプ10の全圧の変化を図9(b)に示す。比b/Dを「0.04」から「0.07」まで変化させる過程で、「0.045」から「0.06」の範囲X2で遠心ポンプ10の全圧が所望値x2を超えた。したがって、本実施形態の羽根車23においては、0.045≦b/D≦0.06となるように羽根車23の外径Dと溝流路37の出口高さbとが設定されて、遠心ポンプ10の全圧の向上が図られている。 Further, as shown in FIG. 9A, the change in the total pressure of the centrifugal pump 10 with respect to the ratio b 2 / D 1 of the outer diameter D 1 of the impeller 23 and the outlet height b 2 of the groove flow path 37 is shown. It is shown in 9 (b). In the process of changing the ratio b 2 / D 1 from "0.04" to "0.07", the total pressure of the centrifugal pump 10 is the desired value x2 in the range X2 of "0.045" to "0.06". Beyond. Therefore, in the impeller 23 of the present embodiment, the outer diameter D 1 of the impeller 23 and the outlet height b 2 of the groove flow path 37 are set so that 0.045 ≦ b 2 / D 1 ≦ 0.06. It is set to improve the total pressure of the centrifugal pump 10.

また、図10(a)に示すように、羽根車23の溝流路37の入口37aにおける入口幅lと、溝流路37の出口37bにおける出口幅lとの比l/lに対する遠心ポンプ10の全圧の変化を図10(b)に示す。ここで、入口幅lは、羽根翼36の径方向内側端部36aである最内点と、この最内点から隣接の羽根翼36の負圧面部42(この場合、第1湾曲部42a)に向けて直線を延ばしたときの負圧面部42の接線と直交する点との間の幅と定義する。また、出口幅lは、羽根翼36の径方向外側端部36bである最外点と、この最外点から隣接の羽根翼36の圧力面部41に向けて直線を延ばしたときの圧力面部41の接線と直交する点との間の幅と定義する。 Further, as shown in FIG. 10A, the ratio l 2 / l 1 of the inlet width l 1 at the inlet 37 a of the groove flow path 37 of the impeller 23 and the outlet width l 2 at the outlet 37 b of the groove flow path 37. The change in the total pressure of the centrifugal pump 10 with respect to the above is shown in FIG. 10 (b). Here, the inlet width l 1 is the innermost point which is the radial inner end portion 36a of the blade blade 36 and the negative pressure surface portion 42 of the blade blade 36 adjacent to the innermost point (in this case, the first curved portion 42a). ) Is defined as the width between the tangent line of the negative pressure surface portion 42 and the point orthogonal to it when the straight line is extended toward). Further, the outlet width l 2 is the outermost point which is the radial outer end portion 36b of the blade blade 36, and the pressure surface portion when a straight line is extended from this outermost point toward the pressure surface portion 41 of the adjacent blade blade 36. It is defined as the width between the tangent of 41 and the point orthogonal to it.

比l/lを「1.0」より大きく変化させる過程で、「2.0」以上の範囲X3で遠心ポンプ10の全圧が所望値x3を超えた。なお、比l/lの上限としては「3.0」が構成上の現実的数値である。また、入口幅lは、図9(a)に示す羽根車23の外径Dと羽根翼36の個数Zとの比D/Zの「0.25」倍以上、「0.5」倍以下が構成上の現実的数値である。これらから、本実施形態の羽根車23においては、0.25・D/Z≦l≦0.5・D/Zで、かつ2.0≦l/l≦3.0となるように溝流路37の入口幅lと出口幅lとが設定されて、遠心ポンプ10の全圧の向上が図られている。 In the process of changing the ratio l 2 / l 1 to be larger than "1.0", the total pressure of the centrifugal pump 10 exceeded the desired value x 3 in the range X3 of "2.0" or more. As the upper limit of the ratio l 2 / l 1 , "3.0" is a realistic numerical value in terms of composition. Further, the inlet width l 1 is "0.25" times or more, "0.5" times the ratio D 1 / Z of the outer diameter D 1 of the impeller 23 and the number Z of the blade blades 36 shown in FIG. 9 (a). "Double or less is a realistic numerical value in terms of composition. From these, in the impeller 23 of the present embodiment, 0.25 · D 1 / Z ≦ l 1 ≦ 0.5 · D 1 / Z and 2.0 ≦ l 2 / l 1 ≦ 3.0. The inlet width l 1 and the outlet width l 2 of the groove flow path 37 are set so as to be such that the total pressure of the centrifugal pump 10 is improved.

本実施形態の効果について説明する。
(1)比速度Nsが50≦Ns<100に設定される低比速度の本実施形態の遠心ポンプ10において、羽根車23の溝流路37を構成する羽根翼36の負圧面部42は、径方向内側端部36aから第1湾曲部42a、直線部42b及び第2湾曲部42cを含み、第2湾曲部42c側から見て第2湾曲部42cの延長線から直線部42b及び第1湾曲部42aが溝流路37の幅を広げる態様の面形状にて構成される。これにより、溝流路37の入口側部分のエアの流速が好適に低下して溝流路37を流れるエアの壁面摩擦損失の低減効果等が得られることから、遠心ポンプ10の全圧の向上が期待できる(図5(b)参照)。
The effect of this embodiment will be described.
(1) In the centrifugal pump 10 of the present embodiment having a low specific speed in which the specific speed Ns is set to 50 ≦ Ns <100, the negative pressure surface portion 42 of the blade blade 36 constituting the groove flow path 37 of the impeller 23 is formed. Includes the first curved portion 42a, the straight portion 42b and the second curved portion 42c from the radial inner end portion 36a, and the straight portion 42b and the first curved portion from the extension line of the second curved portion 42c when viewed from the second curved portion 42c side. The portion 42a has a surface shape that widens the width of the groove flow path 37. As a result, the flow velocity of the air at the inlet side of the groove flow path 37 is suitably reduced, and the effect of reducing the wall friction loss of the air flowing through the groove flow path 37 can be obtained. Therefore, the total pressure of the centrifugal pump 10 is improved. Can be expected (see FIG. 5 (b)).

(2)負圧面部42の直線部42bは、第1及び第2湾曲部42a,42cの各境界部42x,42yにおける共通の接線に沿って構成されている。そのため、各湾曲部42a,42c間を直線部42bで繋いだ負圧面部42の面形状は、複合面であっても円滑さが損なわれず、エアの流れを円滑に維持することができる。 (2) The straight portion 42b of the negative pressure surface portion 42 is formed along a common tangent line at the boundary portions 42x and 42y of the first and second curved portions 42a and 42c. Therefore, the surface shape of the negative pressure surface portion 42 in which the curved portions 42a and 42c are connected by the straight line portion 42b does not impair the smoothness even if it is a composite surface, and the air flow can be maintained smoothly.

(3)負圧面部42は、第1及び第2湾曲部42a,42cを直線部42bで繋いだ3つの面にて構成されている。そのため、負圧面部42の面形状を大きく複雑化することなく実現することができる。 (3) The negative pressure surface portion 42 is composed of three surfaces in which the first and second curved portions 42a and 42c are connected by a straight portion 42b. Therefore, the surface shape of the negative pressure surface portion 42 can be realized without being greatly complicated.

(4)羽根車23の傾斜部23aの起点位置kは、負圧面部42の直線部42bの出口部分である第2湾曲部42cとの境界部42yよりも径方向外側に、すなわち導入口39から離間して設定されている。つまり、傾斜部23aの傾斜形状を緩やかに設定可能で起点位置kでの傾斜面変化を小さくできるため、エアの流れをその傾斜面変化に追従させることが容易となり、エアの流れを円滑に維持することができる。 (4) The starting point position k of the inclined portion 23a of the impeller 23 is radially outside the boundary portion 42y with the second curved portion 42c, which is the outlet portion of the straight portion 42b of the negative pressure surface portion 42, that is, the introduction port 39. It is set away from. That is, since the inclined shape of the inclined portion 23a can be set gently and the change in the inclined surface at the starting point position k can be reduced, it becomes easy to make the air flow follow the change in the inclined surface, and the air flow is smoothly maintained. can do.

(5)溝流路37は、自身の入口高さbと出口高さbとの関係を適切化することによる効果等からも、遠心ポンプ10の全圧の向上が期待できる(図8(b)参照)。
(6)羽根車23の外径Dと溝流路37の出口高さbとの関係、羽根車23の外径Dと羽根翼36の個数Zとの比に対する溝流路37の入口幅lの関係、さらには溝流路37の入口幅lと出口幅lとの関係をそれぞれ適切化することによる効果等からも、遠心ポンプ10の全圧の向上が期待できる(図9(b)、図10(b)参照)。
(5) The groove flow path 37 can be expected to improve the total pressure of the centrifugal pump 10 from the effect of optimizing the relationship between its own inlet height b 1 and outlet height b 2 (FIG. 8). See (b)).
(6) of the impeller 23 the relationship between the outlet height b 2 of the outer diameter D 1 and Mizoryuro 37, the flute 37 for the ratio between the number Z of the outer diameter D 1 and the vane blade 36 of the impeller 23 relationship inlet width l 1, and even from the effects due to each appropriate the relationship between the inlet width l 1 and the outlet width l 2 of Mizoryuro 37, improvement of the total pressure of the centrifugal pump 10 can be expected ( 9 (b) and 10 (b)).

本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
・作動流体は、エア(空気)以外の他の気体、水、他の液体等であってもよい。
This embodiment can be modified and implemented as follows. The present embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
-The working fluid may be a gas other than air, water, another liquid, or the like.

・負圧面部42を構成する第1及び第2湾曲部42a,42cにインボリュート曲線又はその近似曲線を用いたが、これに限らず、他の曲線を用いてもよい。
・負圧面部42を構成する直線部42bに第1及び第2湾曲部42a,42cの各境界部42x,42yでの共通の接線を用いたが、これに限らず、他の直線を用いてもよい。
An involute curve or an approximate curve thereof is used for the first and second curved portions 42a and 42c constituting the negative pressure surface portion 42, but the present invention is not limited to this, and other curves may be used.
-For the straight line portion 42b constituting the negative pressure surface portion 42, a common tangent line at each boundary portion 42x, 42y of the first and second curved portions 42a, 42c was used, but the present invention is not limited to this, and other straight lines are used. May be good.

・負圧面部42は、第1湾曲部42a、直線部42b、第2湾曲部42cの3つの面からなる複合面にて構成したが、用いる面の数や組み合わせはこれに限らず、適宜変更してもよい。 The negative pressure surface portion 42 is composed of a composite surface composed of three surfaces, a first curved portion 42a, a straight portion 42b, and a second curved portion 42c, but the number and combinations of surfaces used are not limited to this, and may be changed as appropriate. You may.

・羽根車23は傾斜部23aを備えるものであったが、傾斜部23aの傾斜形状を適宜変更してもよく、また省略してもよい。
・上記の他、羽根車23の構成を適宜変更してもよい。
-Although the impeller 23 was provided with the inclined portion 23a, the inclined shape of the inclined portion 23a may be appropriately changed or omitted.
-In addition to the above, the configuration of the impeller 23 may be changed as appropriate.

・羽根車23を備える遠心ポンプ10の構成は一例であり、適宜変更してもよい。
上記実施形態及び変更例から把握できる技術的思想について記載する。
(イ)羽根車の外径Dと溝流路の出口高さbとの比b/Dが、
0.045≦b/D≦0.06となるように、かつ、
羽根車の外径Dと羽根翼の個数Zとの比D/Zに対する溝流路の入口幅lが、
0.25・D/Z≦l≦0.5・D/Zとなるように、かつ、
溝流路の入口幅lと出口幅lとの比l/lが、
2.0≦l/l≦3.0となるように設定されている。
The configuration of the centrifugal pump 10 including the impeller 23 is an example, and may be changed as appropriate.
The technical idea that can be grasped from the above-described embodiment and modified example will be described.
(B) The ratio b 2 / D 1 of the outer diameter D 1 of the impeller to the outlet height b 2 of the groove flow path is
0.045 ≤ b 2 / D 1 ≤ 0.06 and
The inlet width l 1 of the groove flow path with respect to the ratio D 1 / Z of the outer diameter D 1 of the impeller and the number Z of blade blades is
0.25 · D 1 / Z ≤ l 1 ≤ 0.5 · D 1 / Z, and
The ratio l 2 / l 1 of the inlet width l 1 and the outlet width l 2 of the groove flow path is
It is set so that 2.0 ≤ l 2 / l 1 ≤ 3.0.

10…遠心ポンプ、23…羽根車、23a…傾斜部、36…羽根翼、36a…径方向内側端部、36b…径方向外側端部、37…溝流路、39…導入口、40…吐出口、41…圧力面部、42…負圧面部、42x,42y…境界部、42a…第1湾曲部、42b…直線部、42c…第2湾曲部、Ns…比速度、k…起点位置、b…入口高さ、b…出口高さ。 10 ... Centrifugal pump, 23 ... Impeller, 23a ... Inclined part, 36 ... Blade blade, 36a ... Radial inner end, 36b ... Radial outer end, 37 ... Groove flow path, 39 ... Introduction port, 40 ... Discharge Outlet, 41 ... Pressure surface part, 42 ... Negative pressure surface part, 42x, 42y ... Boundary part, 42a ... First curved part, 42b ... Straight part, 42c ... Second curved part, Ns ... Specific speed, k ... Starting point position, b 1 ... entrance height, b 2 ... exit height.

Claims (6)

周方向に所定間隔で配設される複数の羽根翼(36)と、隣接の前記羽根翼間に構成される複数の溝流路(37)とを有し、作動流体を径方向内側の導入口(39)から前記溝流路を介して径方向外側の吐出口(40)に向けて吐出させる羽根車(23)を備えるものであり、
比速度Nsが50≦Ns<100に設定される低比速度の遠心ポンプ(10)であって、
前記羽根車の羽根翼は、径方向内側端部(36a)よりも径方向外側端部(36b)が回転方向下流側に位置する後向き羽根構造をなし、前記溝流路から見て前記羽根翼の一方側面に形成される圧力面部(41)と、隣接の前記羽根翼の他方側面に形成される負圧面部(42)とがそれぞれ略一様の湾曲形状をなして構成されるものであり、
前記負圧面部は、前記羽根翼の前記径方向内側端部から第1湾曲部(42a)、直線部(42b)及び第2湾曲部(42c)を含み、前記第2湾曲部側から見て前記第2湾曲部の延長線から前記直線部及び前記第1湾曲部が前記溝流路の幅を広げる態様の面形状にて構成されている、
遠心ポンプ。
It has a plurality of blades (36) arranged at predetermined intervals in the circumferential direction and a plurality of groove flow paths (37) formed between the adjacent blades, and introduces a working fluid inside in the radial direction. It is provided with an impeller (23) for discharging from a port (39) toward a discharge port (40) on the outer side in the radial direction via the groove flow path.
A low specific speed centrifugal pump (10) in which the specific speed Ns is set to 50 ≦ Ns <100.
The vane blade of the impeller has a rearward blade structure in which the radial outer end portion (36b) is located on the downstream side in the rotational direction with respect to the radial inner end portion (36a), and the vane blade is viewed from the groove flow path. The pressure surface portion (41) formed on one side surface and the negative pressure surface portion (42) formed on the other side surface of the adjacent blade blade each have a substantially uniform curved shape. ,
The negative pressure surface portion includes a first curved portion (42a), a straight portion (42b), and a second curved portion (42c) from the radial inner end portion of the blade blade, and is viewed from the second curved portion side. The straight portion and the first curved portion are formed in a surface shape in such a manner that the width of the groove flow path is widened from the extension line of the second curved portion.
Centrifugal pump.
前記直線部は、前記第1及び第2湾曲部の各境界部(42x,42y)における共通の接線に沿って構成されている、
請求項1に記載の遠心ポンプ。
The straight portion is formed along a common tangent line at each boundary portion (42x, 42y) of the first and second curved portions.
The centrifugal pump according to claim 1.
前記負圧面部は、前記第1及び第2湾曲部を前記直線部で繋いだ3つの面にて構成されている、
請求項1又は請求項2に記載の遠心ポンプ。
The negative pressure surface portion is composed of three surfaces in which the first and second curved portions are connected by the straight portion.
The centrifugal pump according to claim 1 or 2.
前記羽根車は、自身の径方向中間位置を起点位置(k)として径方向内側の前記導入口に向けて軸方向一方側に次第に羽根車を膨出させる傾斜部(23a)が構成されるものであり、
前記傾斜部の起点位置は、前記直線部の出口部分である前記第2湾曲部との境界部よりも径方向外側に設定されている、
請求項1から請求項3のいずれか1項に記載の遠心ポンプ。
The impeller is configured with an inclined portion (23a) that gradually bulges the impeller on one side in the axial direction toward the introduction port on the inner side in the radial direction with its own radial intermediate position as the starting point position (k). And
The starting point position of the inclined portion is set radially outside the boundary portion with the second curved portion, which is the exit portion of the straight portion.
The centrifugal pump according to any one of claims 1 to 3.
前記溝流路は、自身の入口高さ(b)と出口高さ(b)との比b/bが、
1.4≦b/b≦2.5となるように設定されている、
請求項1から請求項4のいずれか1項に記載の遠心ポンプ。
The groove flow path has a ratio b 1 / b 2 of its own inlet height (b 1 ) and outlet height (b 2 ).
It is set so that 1.4 ≤ b 1 / b 2 ≤ 2.5,
The centrifugal pump according to any one of claims 1 to 4.
周方向に所定間隔で配設される複数の羽根翼(36)と、隣接の前記羽根翼間に構成される複数の溝流路(37)とを有し、作動流体を径方向内側の導入口(39)から前記溝流路を介して径方向外側の吐出口(40)に向けて吐出させるものであり、
比速度Nsが50≦Ns<100に設定される低比速度の遠心ポンプ用羽根車(23)であって、
前記羽根車の羽根翼は、径方向内側端部(36a)よりも径方向外側端部(36b)が回転方向下流側に位置する後向き羽根構造をなし、前記溝流路から見て前記羽根翼の一方側面に形成される圧力面部(41)と、隣接の前記羽根翼の他方側面に形成される負圧面部(42)とがそれぞれ略一様の湾曲形状をなして構成されるものであり、
前記負圧面部は、前記羽根翼の前記径方向内側端部から第1湾曲部(42a)、直線部(42b)及び第2湾曲部(42c)を含み、前記第2湾曲部側から見て前記第2湾曲部の延長線から前記直線部及び前記第1湾曲部が前記溝流路の幅を広げる態様の面形状にて構成されている、
遠心ポンプ用羽根車。
It has a plurality of blades (36) arranged at predetermined intervals in the circumferential direction and a plurality of groove flow paths (37) formed between the adjacent blades, and introduces a working fluid inside in the radial direction. It is discharged from the port (39) toward the discharge port (40) on the outer side in the radial direction via the groove flow path.
A low specific speed centrifugal pump impeller (23) in which the specific speed Ns is set to 50 ≦ Ns <100.
The vane blade of the impeller has a rearward blade structure in which the radial outer end portion (36b) is located on the downstream side in the rotational direction with respect to the radial inner end portion (36a), and the vane blade is viewed from the groove flow path. The pressure surface portion (41) formed on one side surface and the negative pressure surface portion (42) formed on the other side surface of the adjacent blade blade each have a substantially uniform curved shape. ,
The negative pressure surface portion includes a first curved portion (42a), a straight portion (42b), and a second curved portion (42c) from the radial inner end portion of the blade blade, and is viewed from the second curved portion side. The straight portion and the first curved portion are formed in a surface shape in such a manner that the width of the groove flow path is widened from the extension line of the second curved portion.
Impeller for centrifugal pump.
JP2019144776A 2019-08-06 2019-08-06 Centrifugal pump and impeller for centrifugal pump Pending JP2021025476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019144776A JP2021025476A (en) 2019-08-06 2019-08-06 Centrifugal pump and impeller for centrifugal pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019144776A JP2021025476A (en) 2019-08-06 2019-08-06 Centrifugal pump and impeller for centrifugal pump

Publications (1)

Publication Number Publication Date
JP2021025476A true JP2021025476A (en) 2021-02-22

Family

ID=74664490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019144776A Pending JP2021025476A (en) 2019-08-06 2019-08-06 Centrifugal pump and impeller for centrifugal pump

Country Status (1)

Country Link
JP (1) JP2021025476A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114810623A (en) * 2022-04-16 2022-07-29 江苏大学流体机械温岭研究院 Vane pump health monitoring and evaluating method and device based on Mahalanobis distance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114810623A (en) * 2022-04-16 2022-07-29 江苏大学流体机械温岭研究院 Vane pump health monitoring and evaluating method and device based on Mahalanobis distance
CN114810623B (en) * 2022-04-16 2023-09-22 江苏大学流体机械温岭研究院 Marsh distance-based vane pump health monitoring and evaluating method and device

Similar Documents

Publication Publication Date Title
JP5525429B2 (en) Counter-rotating axial fan
JP2005246542A (en) Power tool
JP3872966B2 (en) Axial fluid machine
JPWO2017138199A1 (en) Centrifugal compressor
JP2006291917A (en) Impeller for centrifugal pump and centrifugal pump having the same
JP2021025476A (en) Centrifugal pump and impeller for centrifugal pump
JP2002130173A (en) Turbine type fuel pump
JP4827319B2 (en) Liquid pump impeller
CN108019363B (en) Fan device and smoke machine
JPH07279892A (en) Multi-blade fan
JP2021025477A (en) Centrifugal pump and impeller for centrifugal pump
JP2008101553A (en) Impeller of water pump
JP2005282578A (en) Vortex flow fan
JP2017020432A (en) Impeller for pump, and pump including the same
JP2568209Y2 (en) Pump with spiral wings
KR20030016175A (en) Vortex flow fan
WO2010007780A1 (en) Centrifugal pump impeller and centrifugal pump
JP5706792B2 (en) Centrifugal pump
JP4459706B2 (en) Drainage pump
US2101653A (en) Impeller for centrifugal pumps
JP5638349B2 (en) Single suction centrifugal pump
JP2019218941A (en) Centrifugal compressor and turbocharger
JP7234041B2 (en) impeller and centrifugal pump
JPH06299994A (en) Multiblade fan
RU2506462C1 (en) Vertical pulp pump with exposed impeller