JP2021025433A - Water supply system and control method for water supply system - Google Patents

Water supply system and control method for water supply system Download PDF

Info

Publication number
JP2021025433A
JP2021025433A JP2019141502A JP2019141502A JP2021025433A JP 2021025433 A JP2021025433 A JP 2021025433A JP 2019141502 A JP2019141502 A JP 2019141502A JP 2019141502 A JP2019141502 A JP 2019141502A JP 2021025433 A JP2021025433 A JP 2021025433A
Authority
JP
Japan
Prior art keywords
pressure
pressure sensor
deviation
water
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019141502A
Other languages
Japanese (ja)
Other versions
JP6805299B1 (en
Inventor
哲則 坂谷
Tetsunori Sakatani
哲則 坂谷
英明 柳川
Hideaki Yanagawa
英明 柳川
英吾 山下
Eigo Yamashita
英吾 山下
智大 伊藤
Tomohiro Ito
智大 伊藤
章太 渡邉
Shota Watanabe
章太 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamoto Pump Mfg Co Ltd
Original Assignee
Kawamoto Pump Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamoto Pump Mfg Co Ltd filed Critical Kawamoto Pump Mfg Co Ltd
Priority to JP2019141502A priority Critical patent/JP6805299B1/en
Application granted granted Critical
Publication of JP6805299B1 publication Critical patent/JP6805299B1/en
Publication of JP2021025433A publication Critical patent/JP2021025433A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Non-Positive-Displacement Pumps (AREA)

Abstract

To provide a water supply system capable of shifting to automatic operation using a normal pressure sensor by promptly and surely detecting abnormality of a pressure sensor, and a control method for the water supply system.SOLUTION: A water supply system detects/stores every time a small water quantity time operation frequency f0 in the case where each of pump devices is stopped in a small water quantity state. In the case where the quantity of supplied water is decreased and an operating pump is to be stopped in the small water quantity state, a pressure deviation that is a deviation of signal levels between a first pressure sensor and a second pressure sensor is calculated. In the case where the pressure deviation is equal to or greater than a predetermined pressure deviation ▵h decided beforehand, a frequency deviation (f) between the small water quantity time operation frequency f0 and an initial small water quantity time operation frequency f0' of the pump is further calculated. In the case where the frequency deviation (f) is equal to or greater than a predetermined frequency deviation ▵f decided beforehand, sensor switch processing is performed for controlling operation of the pump device using a second discharge pressure which is detected by the second pressure sensor.SELECTED DRAWING: Figure 8

Description

本発明は、給水装置及び給水装置の制御方法に関する。 The present invention relates to a water supply device and a method for controlling the water supply device.

住宅などへ送水する給水装置において、インバータにより、ポンプ装置を駆動するモータの回転速度を制御するものが知られている。例えば給水装置は、吸込側の流路が受水槽に接続され、吐出側の流路が給水先の複数の水道機器に接続される。給水装置において、例えば吐出管に配置された圧力センサにより吐出圧力を検出し、検出した吐出圧力と目標圧力とに基づき、吐出圧力一定制御方式や推定末端圧一定制御方式等の制御方式により、モータへの出力周波数を制御している。 In a water supply device that sends water to a house or the like, an inverter is known to control the rotation speed of a motor that drives a pump device. For example, in a water supply device, a flow path on the suction side is connected to a water tank, and a flow path on the discharge side is connected to a plurality of water supply devices at a water supply destination. In the water supply device, for example, the discharge pressure is detected by a pressure sensor arranged in the discharge pipe, and based on the detected discharge pressure and the target pressure, the motor is operated by a control method such as a constant discharge pressure control method or an estimated constant end pressure control method. The output frequency to is controlled.

特開2017−106363号公報JP-A-2017-106363

このような給水装置において、例えば圧力センサの信号レベルが、予め定めた範囲を外れた場合に、圧力センサの故障と判断し、一定間隔毎にポンプを始動するバックアップ運転に移行する制御を行っている。このような給水装置は、圧力センサの信号が定格出力範囲から外れた場合を故障条件としており、圧力センサの損壊が深刻な状態になるまで故障検出が遅れるといった問題があり、複数の圧力センサを有している給水装置の場合も、同一仕様の圧力センサを同一条件で使用している場合、それぞれの故障発生確率は同じである。従って、いずれの圧力センサが故障しているか不明であるため、予備の圧力センサを基準として使用中の圧力センサの故障を判定すると誤検出となりうるといった問題がある。したがって、迅速かつ確実に、使用しているメインの圧力センサの故障を検出し、サブの圧力センサによるバックアップ運転に移行できる給水装置及び給水装置の制御方法が求められている。 In such a water supply device, for example, when the signal level of the pressure sensor deviates from a predetermined range, it is determined that the pressure sensor has failed, and control is performed to shift to a backup operation in which the pump is started at regular intervals. There is. Such a water supply device has a failure condition when the signal of the pressure sensor is out of the rated output range, and there is a problem that the failure detection is delayed until the pressure sensor is seriously damaged. Therefore, a plurality of pressure sensors are used. Even in the case of the water supply device, if the pressure sensors of the same specifications are used under the same conditions, the probability of occurrence of each failure is the same. Therefore, since it is unknown which pressure sensor is out of order, there is a problem that erroneous detection may occur if the failure of the pressure sensor in use is determined based on the spare pressure sensor. Therefore, there is a need for a water supply device and a control method for the water supply device that can quickly and surely detect a failure of the main pressure sensor in use and shift to a backup operation using the sub pressure sensor.

実施形態にかかる給水装置は、ポンプ装置と、前記ポンプ装置の吐出側に接続された吐出側配管を有する配管ユニットと、前記吐出側配管の圧力を検出する第1圧力センサ及び第2圧力センサを有する圧力検出ユニットと、所定の設定圧力P1を目標圧力とした吐出圧力一定制御、もしくは所定の設定圧力P1と推定末端圧力P2との間の値を目標圧力とした推定末端圧一定制御にて、前記第1圧力センサで検出される第1吐出圧力が前記目標圧力になるよう、前記ポンプ装置を運転制御し、各ポンプ装置が小水量停止した際の小水量時運転周波数f0を、毎回、検出・記憶するとともに、前記第1圧力センサにて運転している状態において、給水量が減少して運転ポンプを小水量停止する際に、第1圧力センサと第2圧力センサからの信号レベルの偏差である圧力偏差を算出し、当該圧力偏差が予め定めた所定の圧力偏差△h以上であった場合、さらに、小水量時運転周波数f0と、該当ポンプの初回小水量時運転周波数f0’との周波数偏差fを算出し、当該周波数偏差fが予め定めた所定の周波数偏差△f以上であった場合に、第1圧力センサの異常を外部に送出するとともに、前記第2圧力センサで検出される第2吐出圧力を用いて前記ポンプ装置の運転制御を行うセンサ切替処理を行う、制御部と、を備える。 The water supply device according to the embodiment includes a pump device, a piping unit having a discharge side pipe connected to the discharge side of the pump device, and a first pressure sensor and a second pressure sensor for detecting the pressure of the discharge side pipe. With the pressure detection unit having and the constant discharge pressure control with the predetermined set pressure P1 as the target pressure, or with the estimated terminal pressure constant control with the value between the predetermined set pressure P1 and the estimated terminal pressure P2 as the target pressure. The pump device is operated and controlled so that the first discharge pressure detected by the first pressure sensor becomes the target pressure, and the operation frequency f0 at the time of a small amount of water when each pump device stops the small amount of water is detected every time. -In addition to being memorized, when the amount of water supplied decreases and the operation pump is stopped with a small amount of water while operating with the first pressure sensor, the deviation of the signal level from the first pressure sensor and the second pressure sensor. If the pressure deviation is greater than or equal to a predetermined pressure deviation Δh, the operating frequency f0 at the time of small water volume and the operating frequency f0'at the initial small water volume of the corresponding pump are further calculated. The frequency deviation f is calculated, and when the frequency deviation f is equal to or greater than a predetermined frequency deviation Δf, an abnormality of the first pressure sensor is sent to the outside and detected by the second pressure sensor. It includes a control unit that performs a sensor switching process that controls the operation of the pump device using the second discharge pressure.

本発明によれば、迅速かつ確実に故障判断を行い、正常な圧力センサによる自動運転に移行可能な給水装置及び給水装置の制御方法を提供できる。 According to the present invention, it is possible to provide a water supply device and a control method of a water supply device that can quickly and surely determine a failure and shift to automatic operation by a normal pressure sensor.

第1実施形態にかかる給水装置の構成を示す側面図。The side view which shows the structure of the water supply device which concerns on 1st Embodiment. 同給水装置の構成を示す正面図。The front view which shows the structure of the water supply device. 同給水装置の構成を示す説明図。Explanatory drawing which shows the structure of the water supply device. 同給水装置の構成の一部を示す正面図。The front view which shows a part of the structure of the water supply device. 同給水装置の各基準値と揚程及び電圧との対応を示す説明図。Explanatory drawing which shows the correspondence between each reference value of the water supply device, a head and a voltage. 同給水装置の各基準値と運転周波数との対応を示す説明図。An explanatory diagram showing the correspondence between each reference value of the water supply device and the operating frequency. 同給水装置の制御方法を示すフローチャート。The flowchart which shows the control method of the water supply device. 同給水装置の制御方法を示すフローチャート。The flowchart which shows the control method of the water supply device. 同給水装置の制御方法を示すフローチャート。The flowchart which shows the control method of the water supply device. 他の実施形態にかかる給水装置の構成の一部を示す説明図。Explanatory drawing which shows a part of the structure of the water supply device which concerns on other embodiment. 他の実施形態にかかる給水装置の構成の一部を示す説明図。Explanatory drawing which shows a part of the structure of the water supply device which concerns on other embodiment.

[第1実施形態]
以下、本発明の一実施の形態に係る給水装置について、図1乃至図7を用いて説明する。図1乃至図4は本発明の一実施の形態に係る給水装置の構成を示す。図1は給水装置の側面図、図2は正面図、図3は吐出側の配管ユニットを正面から見た説明図である。図4は給水装置の一部を示す説明図であり、図5は各基準値と揚程及び電圧との対応を示す説明図であり、図6は各基準値と運転周波数との対応を示す説明図であり、図7乃至図9は給水装置の制御方法を示すフローチャートである。なお、説明のため、各図において適宜構成を省略して示している。
[First Embodiment]
Hereinafter, the water supply device according to the embodiment of the present invention will be described with reference to FIGS. 1 to 7. 1 to 4 show the configuration of a water supply device according to an embodiment of the present invention. FIG. 1 is a side view of the water supply device, FIG. 2 is a front view, and FIG. 3 is an explanatory view of the discharge side piping unit as viewed from the front. FIG. 4 is an explanatory diagram showing a part of the water supply device, FIG. 5 is an explanatory diagram showing the correspondence between each reference value and the head and voltage, and FIG. 6 is an explanation showing the correspondence between each reference value and the operating frequency. 7 to 9 are flowcharts showing a control method of the water supply device. For the sake of explanation, the configurations are omitted in each figure as appropriate.

図1乃至図4に示すように、給水装置10は、ベース11と、複数のポンプ装置12と、配管ユニット13と、複数のインバータや制御基板を備える制御盤14と、を備え、例えば建物などの複数の給水先に送水する。給水装置10の一次側の吸込側配管は、受水槽に接続される。 As shown in FIGS. 1 to 4, the water supply device 10 includes a base 11, a plurality of pump devices 12, a piping unit 13, and a control panel 14 including a plurality of inverters and control boards, for example, a building or the like. Water is sent to multiple water supply destinations. The suction side pipe on the primary side of the water supply device 10 is connected to the water receiving tank.

ベース11は、複数のポンプ装置12と配管ユニット13とが搭載される防振架台11bと、制御盤14が搭載される制御盤架台11cとを、所定の設置箇所に支持する。 The base 11 supports a vibration-proof pedestal 11b on which a plurality of pump devices 12 and a piping unit 13 are mounted, and a control panel pedestal 11c on which a control panel 14 is mounted at a predetermined installation location.

各ポンプ装置12は、モータ21と、モータ21に接続されたインペラを有する1段または複数段のポンプ部22と、を備え、流体を増圧して二次側に圧送する。本実施形態においては3台のポンプ装置12が防振架台11b上に縦置きで第1方向に並んで設置されている。 Each pump device 12 includes a motor 21 and a one-stage or multiple-stage pump unit 22 having an impeller connected to the motor 21, and boosts the fluid to pump it to the secondary side. In the present embodiment, three pump devices 12 are installed vertically on the anti-vibration stand 11b side by side in the first direction.

モータ21は例えばブラシレスモータである。モータ21はそれぞれケーブルによって制御盤14に接続される。モータ21はインバータを介して制御基板に接続され、制御基板に搭載された制御部41の制御によって回転数制御される。 The motor 21 is, for example, a brushless motor. Each of the motors 21 is connected to the control panel 14 by a cable. The motor 21 is connected to the control board via an inverter, and the rotation speed is controlled by the control of the control unit 41 mounted on the control board.

ポンプ部22は、例えば1以上のインペラと、ポンプ吸込口及びポンプ吐出口を備えるケーシングと、を備えるタービンポンプである。 The pump unit 22 is, for example, a turbine pump including one or more impellers and a casing having a pump suction port and a pump discharge port.

ポンプ装置12は、モータ21の回転に伴ってケーシング24内のインペラが回転することにより、水道配管に接続されたポンプ吸込口から液体を吸込み、給水先に接続されるポンプ吐出口から吐出する。複数のポンプ装置12は同等の揚水性能を有する。例えば本実施形態において、3台のポンプ装置12として、同じ揚水性能を有する、同機種の多段タービンポンプを用いた。 The pump device 12 sucks the liquid from the pump suction port connected to the water pipe and discharges it from the pump discharge port connected to the water supply destination by rotating the impeller in the casing 24 with the rotation of the motor 21. The plurality of pump devices 12 have the same pumping performance. For example, in the present embodiment, as the three pump devices 12, a multi-stage turbine pump of the same model having the same pumping performance was used.

配管ユニット13は、各ポンプ装置12の一次側に接続された複数の吸込側配管31と、各ポンプ装置12の二次側に接続された吐出側配管32と、を備える。 The piping unit 13 includes a plurality of suction-side pipes 31 connected to the primary side of each pump device 12, and a discharge-side pipe 32 connected to the secondary side of each pump device 12.

吸込側配管31は、一端が水道配管に接続され、他端側が各ポンプ装置12のポンプ吸込口に接続される。 One end of the suction side pipe 31 is connected to the water pipe, and the other end is connected to the pump suction port of each pump device 12.

吐出側配管32は、複数の個別吐出管33と、複数の個別吐出管33同士を連結する吐出連結管34と、を備える。吐出側配管32の二次側は、複数に分岐して複数の給水先の水道機器に接続される。 The discharge side pipe 32 includes a plurality of individual discharge pipes 33 and a discharge connecting pipe 34 that connects the plurality of individual discharge pipes 33 to each other. The secondary side of the discharge side pipe 32 is branched into a plurality of parts and connected to a plurality of water supply destination water supply devices.

複数の個別吐出管33はそれぞれ、一端側が複数のポンプ装置12のポンプ吐出口に接続され、他端側が共通の吐出連結管34に接続される。個別吐出管33には、連結曲管35a、流量センサ35b、逆止弁36、ボール弁37(開閉弁)が、それぞれ設けられている。複数の個別吐出管33は、吐出連結管34に接続され、他のポンプ装置12の個別吐出管33に連通する。 One end of each of the plurality of individual discharge pipes 33 is connected to the pump discharge ports of the plurality of pump devices 12, and the other end side is connected to a common discharge connecting pipe 34. The individual discharge pipe 33 is provided with a connecting curved pipe 35a, a flow rate sensor 35b, a check valve 36, and a ball valve 37 (open / close valve), respectively. The plurality of individual discharge pipes 33 are connected to the discharge connecting pipe 34 and communicate with the individual discharge pipes 33 of the other pump device 12.

流量センサ35bは、各ポンプ吐出口の二次側における連結曲管35aの所定箇所に設けられている。流量センサ35bは、ポンプ個別に設けられ、上昇流を検出するように取り付けられている流量センサ35bは、回転羽根車式の流量センサを用いる。流量センサ35bは、例えば水流方向に直交する回転軸を有するボディと、水流によって回転可能に設けられた磁石部を有する羽根車と、磁気検出素子である交番検知タイプのホールICと、がボディ内に磁石の外周に対向配置して設けられている。流量センサ35bは、信号線を介して制御部41に接続されている。流量センサ35bは、各ポンプの流量を検出し、検出流量に比例したパルス信号を制御部41に送信する。流量センサ35bは、検出流量に比例した電圧もしくは電流、パルス信号を出力するカルマン渦式流量センサなど、他の構成を用いてもよい。 The flow rate sensor 35b is provided at a predetermined position on the connecting curved pipe 35a on the secondary side of each pump discharge port. The flow rate sensor 35b is provided individually for each pump, and the flow rate sensor 35b attached so as to detect an ascending flow uses a rotary impeller type flow rate sensor. The flow sensor 35b includes, for example, a body having a rotation axis orthogonal to the water flow direction, an impeller having a magnet portion rotatably provided by the water flow, and an alternation detection type Hall IC which is a magnetic detection element. Is provided so as to face the outer periphery of the magnet. The flow rate sensor 35b is connected to the control unit 41 via a signal line. The flow rate sensor 35b detects the flow rate of each pump and transmits a pulse signal proportional to the detected flow rate to the control unit 41. The flow rate sensor 35b may use another configuration such as a Karman vortex flow rate sensor that outputs a voltage or current proportional to the detected flow rate or a pulse signal.

逆止弁36は、各個別吐出管33の、流量センサ35bの二次側であって吐出連結管34との合流部よりも一次側に、それぞれ設けられている。逆止弁36は、個別吐出管内の流路の流れを、一次側から二次側に向かう1方向となるように規制する。 The check valve 36 is provided on each of the individual discharge pipes 33 on the secondary side of the flow rate sensor 35b and on the primary side of the confluence with the discharge connecting pipe 34. The check valve 36 regulates the flow of the flow path in the individual discharge pipes in one direction from the primary side to the secondary side.

ボール弁37は、各個別吐出管の、流量センサ35b及び逆止弁36よりも二次側であって吐出連結管34との合流部よりも一次側に、それぞれ設けられている。ボール弁37は回転により流路を開閉するボールと、ボールを回転させるレバーと、を備え、レバーの回動操作によって、流路を開閉する開閉弁である。 The ball valve 37 is provided on each individual discharge pipe on the secondary side of the flow rate sensor 35b and the check valve 36 and on the primary side of the confluence with the discharge connecting pipe 34. The ball valve 37 is an on-off valve that includes a ball that opens and closes the flow path by rotation and a lever that rotates the ball, and opens and closes the flow path by rotating the lever.

吐出連結管34は、複数の個別吐出管33内の個別吐出流路に連通する連結流路を形成する配管であり、個別吐出管33と交差する第1方向に延びる。吐出連結管34は給水先である蛇口等の水道機器に接続される。吐出連結管34には、圧力検出ユニット38及び複数のアキュムレータ39がそれぞれ設けられている。 The discharge connecting pipe 34 is a pipe that forms a connecting flow path that communicates with the individual discharge flow paths in the plurality of individual discharge pipes 33, and extends in the first direction that intersects with the individual discharge pipes 33. The discharge connecting pipe 34 is connected to a water supply device such as a faucet which is a water supply destination. The discharge connecting pipe 34 is provided with a pressure detection unit 38 and a plurality of accumulators 39, respectively.

圧力検出ユニット38は、第1圧力センサ38aと、第2圧力センサ38bと、圧力計38cと、を備える。圧力センサ38a,38bは、例えばダイヤフラム式のセンサであり、吐出連結管34の流路の圧力を検出する。圧力センサ38a、38bは、信号線を介して制御盤14の制御部41に接続され、検出した圧力信号を制御部41に送信する。 The pressure detection unit 38 includes a first pressure sensor 38a, a second pressure sensor 38b, and a pressure gauge 38c. The pressure sensors 38a and 38b are, for example, diaphragm type sensors, and detect the pressure in the flow path of the discharge connecting pipe 34. The pressure sensors 38a and 38b are connected to the control unit 41 of the control panel 14 via a signal line, and transmit the detected pressure signal to the control unit 41.

第1圧力センサ38aと第2圧力センサ38bは、水平に延びる吐出連結管34に対して、垂直な方向に向けて配されている。例えば第1圧力センサ38aと第2圧力センサ38bは、吐出連結管34の上方に配され、下方に向き、吐出連結管34の周壁部における上側部分に接続される。第1圧力センサ38a及び第2圧力センサ38bは、同方向を向き、並列配置される。例えば本実施形態において、吐出連結管34の一端が閉止フランジ34bによって閉塞され、当該閉止フランジ34b側から、圧力計38c、第2圧力センサ38b、第1圧力センサ38aの順に並んで接続される。 The first pressure sensor 38a and the second pressure sensor 38b are arranged in a direction perpendicular to the horizontally extending discharge connecting pipe 34. For example, the first pressure sensor 38a and the second pressure sensor 38b are arranged above the discharge connecting pipe 34, face downward, and are connected to an upper portion of the peripheral wall portion of the discharge connecting pipe 34. The first pressure sensor 38a and the second pressure sensor 38b face in the same direction and are arranged in parallel. For example, in the present embodiment, one end of the discharge connecting pipe 34 is closed by the closing flange 34b, and the pressure gauge 38c, the second pressure sensor 38b, and the first pressure sensor 38a are connected side by side from the closing flange 34b side.

制御部41は、ポンプの運転制御に使用する対象センサを切替えるセンサ切替え制御を行う。一例として、制御部41は、複数の圧力センサ38a,38bの一方を、通常状態においてポンプ運転制御に用いるメインセンサとし、メインセンサの故障検出時に用いるサブセンサとして、ポンプの運転制御に用いる。言い換えると、故障条件を満たさない場合にはメインセンサを対象センサとしてポンプの運転制御を行い、故障条件を満たす場合にはサブセンサを対象センサとしてポンプの運転制御を行う。 The control unit 41 performs sensor switching control for switching the target sensor used for pump operation control. As an example, the control unit 41 uses one of the plurality of pressure sensors 38a and 38b as a main sensor used for pump operation control in a normal state, and as a sub-sensor used when detecting a failure of the main sensor, for pump operation control. In other words, if the failure condition is not satisfied, the operation control of the pump is performed using the main sensor as the target sensor, and if the failure condition is satisfied, the operation control of the pump is performed using the sub sensor as the target sensor.

圧力計38cは、吐出連結管34の流路の圧力をブルドン管などの機械式機構によって測定された圧力測定結果を表示する。 The pressure gauge 38c displays the pressure measurement result obtained by measuring the pressure in the flow path of the discharge connecting pipe 34 by a mechanical mechanism such as a Bourdon pipe.

本実施形態においては、個別吐出管と吐出連結管34との合流点よりも一方側の管部に、2つの圧力センサ38a,38bと圧力計38cがそれぞれ接続され、2つの圧力センサ38a,38bと圧力計38cは吐出連結管34の延出方向において順番に並んで配置されている。 In the present embodiment, two pressure sensors 38a and 38b and a pressure gauge 38c are connected to a pipe portion on one side of the confluence of the individual discharge pipe and the discharge connecting pipe 34, respectively, and the two pressure sensors 38a and 38b are connected. And the pressure sensor 38c are arranged side by side in order in the extension direction of the discharge connecting pipe 34.

アキュムレータ39は、複数、例えば本実施形態においては2つ設けられ、吐出連結管34における二次側に配される2つの各個別吐出管33の、吐出連結管34との合流点に、それぞれ接続される。 A plurality of accumulators 39, for example, two in the present embodiment, are provided, and are connected to the confluence points of the two individual discharge pipes 33 arranged on the secondary side of the discharge connection pipe 34 with the discharge connection pipe 34, respectively. Will be done.

制御盤14は、制御ボックスと、制御ボックス内に収容された制御基板と、インバータと、を備える。また、制御ボックス内には、漏電遮断器、直流リアクトルと、電源端子台、ノイズフィルタ等の、各種制御機器が設けられている。また、拡張基板を増設することも可能である。例えば制御基板、インバータ、漏電遮断器、直流リアクトル及び電源端子台、及びノイズフィルタは、複数のポンプ装置12にそれぞれ対応して、複数設けられる。 The control panel 14 includes a control box, a control board housed in the control box, and an inverter. Further, various control devices such as an earth leakage breaker, a DC reactor, a power terminal block, and a noise filter are provided in the control box. It is also possible to add an expansion board. For example, a plurality of control boards, inverters, earth leakage breakers, DC reactors and power terminal blocks, and noise filters are provided corresponding to each of the plurality of pump devices 12.

制御基板は、回路基板であり、例えば記憶装置としてのRAM(Random Access Memory)・ROM(Read Only Memory)や、制御部41等の各種制御機器が搭載されている。 The control board is a circuit board, and is equipped with various control devices such as a RAM (Random Access Memory) / ROM (Read Only Memory) as a storage device and a control unit 41.

記憶装置は、例えばプログラムメモリやRAM、書き換え可能なROMを備える。記憶装置には、例えば、制御に必要な情報として、各種プログラム、算出式、データテーブル、基準値、閾値等が記憶されている。 The storage device includes, for example, a program memory, RAM, and a rewritable ROM. In the storage device, for example, various programs, calculation formulas, data tables, reference values, threshold values, and the like are stored as information necessary for control.

制御部41はプロセッサを備える。制御部41は、流量センサ35bや圧力センサ38a,38b等の各種検出装置によって検知した情報に基づき、予め記憶装置に記憶された各種プログラムに従って、複数のポンプ装置12の動作を制御する。具体的には、制御部41は、複数のインバータに制御信号を送信し、各ポンプ装置12に対応するインバータを制御する。 The control unit 41 includes a processor. The control unit 41 controls the operation of the plurality of pump devices 12 according to various programs stored in the storage device in advance based on the information detected by various detection devices such as the flow rate sensor 35b and the pressure sensors 38a and 38b. Specifically, the control unit 41 transmits a control signal to a plurality of inverters and controls the inverters corresponding to each pump device 12.

例えば制御部41は、各種センサ38a,38b,35bによって検出される検出値に基づき、各種の演算処理を行い、インバータの周波数制御により、ポンプ装置12のモータ21を変速運転し、または停止させる。具体的には、制御部41は、圧力センサ38a,38bのいずれかの対象センサで検出される吐出圧力が所定の目標圧力Hになるように、吐出し圧力一定制御もしくは推定末端圧一定制御を行い、圧力フィードバック制御にて、回転数制御及び運転停止制御をする。 For example, the control unit 41 performs various arithmetic processes based on the detected values detected by the various sensors 38a, 38b, and 35b, and shifts the motor 21 of the pump device 12 or stops it by controlling the frequency of the inverter. Specifically, the control unit 41 performs constant discharge pressure control or constant estimated terminal pressure control so that the discharge pressure detected by the target sensor of any of the pressure sensors 38a and 38b becomes a predetermined target pressure H. Then, the pressure feedback control is used to control the rotation speed and stop operation.

制御部41は、通常運転処理として、流量センサ35bや圧力センサ38a,38b等の各種検出装置で検出した圧力値及び流量値を検出し、流量や圧力に基づくフィードバック制御を行う。具体的には、制御部41は、吐出流路にて検出される吐出圧力と、目標圧力Hに基づいて、各インバータに制御信号を出力することで、1台以上のポンプ装置12を駆動する。インバータは制御信号に応じた所定の周波数を出力することで、ポンプ装置12のモータ21を所定の回転速度で回転させる。 As a normal operation process, the control unit 41 detects the pressure value and the flow rate value detected by various detection devices such as the flow rate sensor 35b and the pressure sensors 38a and 38b, and performs feedback control based on the flow rate and the pressure. Specifically, the control unit 41 drives one or more pump devices 12 by outputting a control signal to each inverter based on the discharge pressure detected in the discharge flow path and the target pressure H. .. The inverter outputs a predetermined frequency according to the control signal to rotate the motor 21 of the pump device 12 at a predetermined rotation speed.

ポンプ装置12の運転制御の一例として、制御部41は、所定の設定圧力P1を目標圧力Hとして、吐出圧力一定制御を行う。あるいは、制御部41は通常運転制御の他の一例として、推定末端圧力P2と、予め定められた設定圧力P1との間の変動値を目標圧力Hとして、推定末端圧一定制御を行う。 As an example of the operation control of the pump device 12, the control unit 41 performs constant discharge pressure control with a predetermined set pressure P1 as the target pressure H. Alternatively, as another example of the normal operation control, the control unit 41 performs the estimated terminal pressure constant control with the fluctuation value between the estimated terminal pressure P2 and the preset set pressure P1 as the target pressure H.

また、制御部41は、ポンプ装置12の運転制御において、複数の前記ポンプ装置12のいずれかのポンプ装置12を運転中に、所定の増台条件を満たす場合、例えば運転周波数が所定の上限周波数となった場合に、待機中のポンプ装置12を起動して増台する増台処理を行う。また、制御部41は、所定の減台条件を満たす場合、例えば複数の流量センサ35bにより検出された給水量が所定の流量以下となった場合に、先発ポンプを停止して減台する減台処理を行う。さらに制御部41は、所定の停止条件を満たす場合に、ポンプの回転を停止する。例えばポンプ1台の単独運転時に、個別吐出管33に設けられた流量センサ35bによって検出されたポンプ装置12毎の吐出流量が、予め定められた停止流量を下回ると、ポンプを小水量停止する。 Further, in the operation control of the pump device 12, the control unit 41 satisfies a predetermined increase condition while operating the pump device 12 of any of the plurality of pump devices 12, for example, the operating frequency is a predetermined upper limit frequency. In the case of, the standby pump device 12 is activated to increase the number of units. Further, the control unit 41 stops the starting pump and reduces the number of units when the predetermined reduction of units condition is satisfied, for example, when the amount of water supplied detected by the plurality of flow rate sensors 35b becomes equal to or less than the predetermined flow rate. Perform processing. Further, the control unit 41 stops the rotation of the pump when a predetermined stop condition is satisfied. For example, when one pump is independently operated and the discharge flow rate of each pump device 12 detected by the flow rate sensor 35b provided on the individual discharge pipe 33 is lower than the predetermined stop flow rate, the pump is stopped by a small amount of water.

また、本実施形態においては、制御部41は、単独運転していた各ポンプ装置が小水量停止した際の小水量時運転周波数f0を、毎回、検出しており、各ポンプの電源投入後の初回小水量時運転周波数f0’を記憶し、さらに、各ポンプが2回目以降に、小水量停止した際の小水量時運転周波数f0を記憶・更新している。 Further, in the present embodiment, the control unit 41 detects the operation frequency f0 at the time of a small amount of water when each pump device that has been independently operated stops at a small amount of water every time, and after the power of each pump is turned on. The operation frequency f0'at the time of the first small amount of water is stored, and further, the operation frequency f0 at the time of the small amount of water when each pump stops the small amount of water is stored / updated after the second time.

制御部41は、ポンプ装置12の運転制御に用いる圧力センサを切替えるセンサ切替え制御を行う。センサ切替え制御として、例えば制御部41は、複数の圧力センサ38a,38bの一方を、メインセンサ、他方をサブセンサと設定し、通常時、例えば所定の故障条件を満たさない場合には、メインセンサの測定結果を用いてポンプ装置12の運転制御を行い、所定の故障条件を満たす故障時には、サブセンサの測定結果を用いてポンプ装置12の運転制御を行うように、切替える。 The control unit 41 performs sensor switching control for switching the pressure sensor used for the operation control of the pump device 12. As sensor switching control, for example, the control unit 41 sets one of the plurality of pressure sensors 38a and 38b as a main sensor and the other as a sub sensor, and in a normal state, for example, when a predetermined failure condition is not satisfied, the main sensor The operation control of the pump device 12 is performed using the measurement result, and when a failure satisfying a predetermined failure condition is performed, the operation control of the pump device 12 is performed using the measurement result of the sub-sensor.

例えば本実施形態においては、第1圧力センサ38aをメインセンサ、第2圧力センサ38bをサブセンサとし、制御部41は、メインセンサである第1圧力センサ38aで検出される第1吐出圧力Ps1にて運転制御を行っている状態において、まず、給水量が減少して運転ポンプを小水量停止する際に、サブセンサである第2圧力センサ38bからの信号レベルと比較して、第1圧力センサ38aもしくは第2圧力センサ38bに故障が発生したと判断する。 For example, in the present embodiment, the first pressure sensor 38a is the main sensor, the second pressure sensor 38b is the sub sensor, and the control unit 41 is the first discharge pressure Ps1 detected by the first pressure sensor 38a, which is the main sensor. In the state of operation control, first, when the amount of water supplied decreases and the operation pump is stopped by a small amount of water, the first pressure sensor 38a or the first pressure sensor 38a is compared with the signal level from the second pressure sensor 38b which is a sub sensor. It is determined that a failure has occurred in the second pressure sensor 38b.

例えば、制御部41は、サブセンサにおける検出圧力である第2吐出圧力Ps2と第1圧力センサ38aで検出される第1吐出圧力Ps1との差が、所定の圧力偏差△h以上の場合に、第1圧力センサ38aもしくは第2圧力センサ38bに故障が発生したと判断する。 For example, when the difference between the second discharge pressure Ps2, which is the detection pressure in the sub sensor, and the first discharge pressure Ps1 detected by the first pressure sensor 38a, the control unit 41 is a predetermined pressure deviation Δh or more. 1 It is determined that a failure has occurred in the pressure sensor 38a or the second pressure sensor 38b.

圧力偏差△hは、制御部41に設定された圧力を基準として設定される。例えば、本実施形態においては、例えば目標圧力Hに用いた推定末端圧力P2に、所定の係数k1(例えば0.02〜0.10)を乗じた値とする。 The pressure deviation Δh is set with reference to the pressure set in the control unit 41. For example, in the present embodiment, for example, the estimated terminal pressure P2 used for the target pressure H is multiplied by a predetermined coefficient k1 (for example, 0.02 to 0.10.).

図5は各基準値の設定の一例と、揚程及び電圧との対応を示す説明図である。本実施形態において、圧力センサ38a,38bとして、例えば最高使用圧力3MPa(=306m)のセンサを用いた。また、設定圧力P1は250m、推定末端圧力P2は225m、係数k1を0.03とした。この場合、圧力偏差△hは7m(偏差電圧0.09V)、上限基準値の揚程232m、入力電圧は4.03Vとなり、下限基準値の揚程218m、入力電圧は3.85Vとなる。したがって、圧力センサの測定上限の入力電圧である5.000Vを、圧力センサの故障検出の閾値基準とした従来の故障検出方法と比べて、早期に故障検出が可能となる。さらに、制御部41は、小水量停止時の運転周波数に基づいて、いずれの圧力センサが故障したかを決定する。制御部41は、該当ポンプを停止する前の小水量時運転周波数f0を検出し、該当ポンプの初回小水量時運転周波数f0’との偏差を算出し、当該周波数偏差fが予め定めた所定の周波数偏差△f以上であった場合に、第1圧力センサ38aの故障と判定する。 FIG. 5 is an explanatory diagram showing an example of setting each reference value and the correspondence between the head and the voltage. In this embodiment, as the pressure sensors 38a and 38b, for example, a sensor having a maximum working pressure of 3 MPa (= 306 m) was used. The set pressure P1 was 250 m, the estimated terminal pressure P2 was 225 m, and the coefficient k1 was 0.03. In this case, the pressure deviation Δh is 7 m (deviation voltage 0.09 V), the upper limit reference value lift is 232 m, the input voltage is 4.03 V, the lower limit reference value lift is 218 m, and the input voltage is 3.85 V. Therefore, the failure detection can be performed earlier than the conventional failure detection method in which 5.000V, which is the input voltage of the upper limit of the measurement of the pressure sensor, is used as the threshold reference for the failure detection of the pressure sensor. Further, the control unit 41 determines which pressure sensor has failed based on the operating frequency when the small amount of water is stopped. The control unit 41 detects the operating frequency f0 at the time of small water volume before stopping the corresponding pump, calculates the deviation from the operating frequency f0'at the first small water volume of the corresponding pump, and the frequency deviation f is a predetermined predetermined value. When the frequency deviation is Δf or more, it is determined that the first pressure sensor 38a has failed.

周波数偏差△fは、電源投入後に、各ポンプが最初に小水量停止したときの運転周波数f0’を基準として設定される。例えば、本実施形態においては、周波数偏差△fは、例えば初回小水量停止時運転周波数f0’に、所定の係数k2(例えば0.01〜0.05)を乗じた値とする。 The frequency deviation Δf is set with reference to the operating frequency f0'when each pump first stops with a small amount of water after the power is turned on. For example, in the present embodiment, the frequency deviation Δf is, for example, a value obtained by multiplying the operation frequency f0'when the first small amount of water is stopped by a predetermined coefficient k2 (for example, 0.01 to 0.05).

図6は、各基準値と小水量停止時運転周波数との対応を示す説明図である。本実施形態において、初回小水量停止時運転周波数f0’を197.5Hzとして、係数k2を0.015とした。この場合、周波数偏差△fは3.0Hz、上限基準値f1は200.5Hz、下限基準値f2は194.5Hzとなる。なお、ポンプの発生圧力は、小水量運転時には運転周波数のほぼ2乗となるため、(1+k2)≒(1+k1)となるように、係数k1とk2を決定している。 FIG. 6 is an explanatory diagram showing the correspondence between each reference value and the operating frequency when the small amount of water is stopped. In the present embodiment, the operating frequency f0'when the first small amount of water is stopped is 197.5 Hz, and the coefficient k2 is 0.015. In this case, the frequency deviation Δf is 3.0 Hz, the upper limit reference value f1 is 200.5 Hz, and the lower limit reference value f2 is 194.5 Hz. Since the generated pressure of the pump is approximately the square of the operating frequency during small water volume operation, the coefficients k1 and k2 are determined so that (1 + k2) 2 ≈ (1 + k1).

制御部41はメインセンサである第1圧力センサ38aの故障と判定した場合には、警報信号を送出し、第1圧力センサ38aの異常を報知するとともに、サブセンサである第2圧力センサ38bにて圧力制御を行うように切替える圧力センサ切替処理を行い、以降のポンプ装置12の運転制御は、第2圧力センサ38bにて検出される第2吐出圧力Ps2を用いる。具体的には、所定の目標圧力Hと、第2吐出圧力Ps2とに基づいて、目標圧力一定制御あるいは推定末端圧一定制御を行う。 When the control unit 41 determines that the first pressure sensor 38a, which is the main sensor, has failed, it sends an alarm signal to notify the abnormality of the first pressure sensor 38a, and the second pressure sensor 38b, which is a sub sensor, notifies the abnormality. A pressure sensor switching process for switching to perform pressure control is performed, and subsequent operation control of the pump device 12 uses the second discharge pressure Ps2 detected by the second pressure sensor 38b. Specifically, the target pressure constant control or the estimated terminal pressure constant control is performed based on the predetermined target pressure H and the second discharge pressure Ps2.

また、制御部41は、小水量時運転周波数f0と初回小水量時運転周波数f0’との偏差を算出し、当該周波数偏差fが予め定めた所定の周波数偏差△f未満であった場合に、第1圧力センサ38aは正常であり、第2圧力センサ38bの故障と判定し、第2圧力センサ38bの異常を報知する。 Further, the control unit 41 calculates the deviation between the operating frequency f0 at the time of small water volume and the operating frequency f0'at the time of the initial small water volume, and when the frequency deviation f is less than a predetermined frequency deviation Δf. The first pressure sensor 38a is normal, determines that the second pressure sensor 38b has failed, and notifies the abnormality of the second pressure sensor 38b.

各インバータは、信号線によってポンプ装置12のモータ21に電気的に接続されている。インバータは制御部41からの制御信号に応じた所定の周波数を出力することで、ポンプ装置12のモータ21を所定の回転速度で回転させる。 Each inverter is electrically connected to the motor 21 of the pump device 12 by a signal line. The inverter outputs a predetermined frequency according to the control signal from the control unit 41 to rotate the motor 21 of the pump device 12 at a predetermined rotation speed.

本実施形態にかかる給水装置10によれば、圧力と運転周波数の二重チェックとしたことにより、迅速かつ確実に、使用しているメインの圧力センサの故障を検出し、サブの圧力センサによるバックアップ運転に移行できるという効果が得られる。すなわち、給水装置10では、2台の圧力センサを用い、一方の圧力センサの値と他方の圧力センサの値との偏差から、故障の発生を判定することにより、圧力信号が圧力センサの定格出力範囲から外れた場合を故障条件とした従来の方法と比べて、迅速に故障検出が開始できるという効果が得られる。また、給水装置10において、圧力センサの故障範囲を、推定末端圧力P2に基づき、推定末端圧力P2にk1(0.02〜0.10)を乗じた値に設定したため、使用する圧力センサの定格範囲が異なっても機種毎に設定する必要がないという効果が得られる。 According to the water supply device 10 according to the present embodiment, by performing a double check of pressure and operating frequency, a failure of the main pressure sensor in use is detected quickly and reliably, and backup is performed by the sub pressure sensor. The effect of being able to shift to driving can be obtained. That is, in the water supply device 10, two pressure sensors are used, and the pressure signal is the rated output of the pressure sensor by determining the occurrence of a failure from the deviation between the value of one pressure sensor and the value of the other pressure sensor. Compared with the conventional method in which the failure condition is out of the range, the effect that the failure detection can be started quickly can be obtained. Further, in the water supply device 10, the failure range of the pressure sensor is set to a value obtained by multiplying the estimated terminal pressure P2 by k1 (0.02 to 0.10) based on the estimated terminal pressure P2, and therefore the rating of the pressure sensor to be used. Even if the range is different, the effect that it is not necessary to set for each model can be obtained.

比較例として、例えば、圧力信号が圧力センサの定格出力範囲から外れた場合を故障条件とする給水装置の場合、通常の圧力センサの出力電圧範囲は、上限電圧5.0V(最高圧力時)、下限電圧1.0V(0m時)となるため、故障と判断できない電圧範囲が広すぎ、高圧による配管漏れや電力消費、断水などの不具合を検出することが困難となる。例えば、圧力センサの出力電圧が0〜306mに対して1〜5Vであると、圧力センサの出力電圧が0.5V以下、あるいは5V超で故障であると判断する場合、本来、下限値1V=0mは、揚水不能時に検出される可能性があり、圧力センサの故障ではない可能性があるが、圧力センサの出力電圧が基準の出力電圧よりも低下する場合に、圧力不足と判断して運転周波数をアップすると、小水量域で異常な高圧が発生する可能性がある。一方、故障検出の上限値5Vは圧力センサ内部の電源回路が故障に至らないと出力されない値であるが、5Vを超えた場合に圧力高と判断して周波数をダウンすると、圧力不足により断水する可能性がある。 As a comparative example, for example, in the case of a water supply device whose failure condition is when the pressure signal deviates from the rated output range of the pressure sensor, the output voltage range of the normal pressure sensor is the upper limit voltage of 5.0 V (at the maximum pressure). Since the lower limit voltage is 1.0 V (at 0 m), the voltage range that cannot be determined as a failure is too wide, and it becomes difficult to detect defects such as pipe leakage, power consumption, and water outage due to high pressure. For example, if the output voltage of the pressure sensor is 1 to 5V with respect to 0 to 306m, when it is determined that the output voltage of the pressure sensor is 0.5V or less or more than 5V, the lower limit value 1V = 0 m may be detected when the water cannot be pumped, and it may not be a failure of the pressure sensor. However, when the output voltage of the pressure sensor drops below the standard output voltage, it is judged that the pressure is insufficient and the operation is performed. Increasing the frequency can cause abnormally high pressure in the small water range. On the other hand, the upper limit value of 5V for failure detection is a value that is not output unless the power supply circuit inside the pressure sensor fails, but if it is judged that the pressure is high and the frequency is lowered when it exceeds 5V, the water is cut off due to insufficient pressure. there is a possibility.

すなわち、従来の故障検出方法の場合、その出力電圧が定格範囲外であるため確実に故障検出できるが、一方、故障を検出した時点では、電源回路が故障して高電圧が出力されている場合や、ダイヤフラムが破損して吐出し圧力をほとんど受圧していないなど、不具合が生じていた。 That is, in the case of the conventional failure detection method, since the output voltage is out of the rated range, the failure can be reliably detected, but on the other hand, when the failure is detected, the power supply circuit fails and a high voltage is output. In addition, there were problems such as the diaphragm being damaged and almost no discharge pressure being received.

本実施形態にかかる給水装置の制御方法を、図7乃至図9に示すフローチャートを用いて説明すると、まず、電源投入後、各ポンプ装置の初回の小水量停止時の運転周波数f0’を検出・記憶している(ST124)。そして、各ポンプ装置の2回目以降も、小水量停止時の運転周波数f0を検出・記憶している(ST123)。 The control method of the water supply device according to the present embodiment will be described by using the flowcharts shown in FIGS. 7 to 9. First, after the power is turned on, the operating frequency f0'at the first stop of the small amount of water of each pump device is detected. I remember (ST124). Then, the operating frequency f0 when the small amount of water is stopped is detected and stored even after the second time of each pump device (ST123).

そして、運転台数が1台の制御ルーチンにおいて(ST121)、給水量が減少して停止流量以下となり、運転ポンプを小水量停止する際に(ST122)、第2圧力センサの信号レベルを検出し(ST126)、第1圧力センサと第2圧力センサの信号レベルとの圧力偏差を算出し(ST127)、圧力偏差が所定の圧力偏差△h以上の場合に(ST128)、いずれかの圧力センサに故障が発生したと判断している。なお、圧力センサ異常フラグを設定して、第1もしくは第1圧力センサの異常を検出済み、すなわち、圧力センサ異常フラグがONである場合は(ST125のYes)、各ステップをスキップして小水量停止ステップ(ST135)へ進む。例えば、小水量停止時の第1圧力センサの信号レベルが推定末端圧力P2の225m相当であるのに、第2圧力センサの信号レベルが215m(h=10m)相当と低い場合、第2圧力センサの電源回路が劣化してその出力がドリフトしたために低圧検出している可能性もある。すなわち、この時点では第1圧力センサ、第2圧力センサのいずれが故障しているかは不明であるが、早期にいずれかの圧力センサの故障を検出可能である。 Then, in the control routine in which the number of operating units is one (ST121), the amount of water supplied decreases to be equal to or less than the stop flow rate, and when the operation pump is stopped by a small amount of water (ST122), the signal level of the second pressure sensor is detected (ST122). ST126), the pressure deviation between the signal levels of the first pressure sensor and the second pressure sensor is calculated (ST127), and when the pressure deviation is equal to or greater than the predetermined pressure deviation Δh (ST128), one of the pressure sensors fails. Is determined to have occurred. If the pressure sensor abnormality flag is set and the abnormality of the first or first pressure sensor is detected, that is, if the pressure sensor abnormality flag is ON (Yes in ST125), each step is skipped and the amount of small water is small. Proceed to the stop step (ST135). For example, when the signal level of the first pressure sensor when the small amount of water is stopped is equivalent to 225 m of the estimated terminal pressure P2, but the signal level of the second pressure sensor is as low as 215 m (h = 10 m), the second pressure sensor There is a possibility that low pressure is detected because the power supply circuit of is deteriorated and its output drifts. That is, at this point, it is unknown which of the first pressure sensor and the second pressure sensor is out of order, but the failure of either of the pressure sensors can be detected at an early stage.

そして、次のステップにおいて、第1圧力センサが正常であった該当ポンプの初回の小水量停止時の運転周波数と、同じ目標圧力に対する今回の小水量停止時の運転周波数とを比較することにより、圧力センサ故障の判断をしている。 Then, in the next step, by comparing the operating frequency at the time of the first small water amount stop of the corresponding pump in which the first pressure sensor was normal and the operating frequency at the time of the current small water amount stop for the same target pressure, Judgment of pressure sensor failure.

すなわち、初回の小水量停止時運転周波数f0’(197.5Hz)と今回の小水量停止時運転周波数f0(201Hz)との偏差f(=3.5Hz)を算出し(ST129)、予め定めた所定の周波数偏差△f(=3Hz)以上であるため、第1圧力センサ38aの故障と仮判定し、設定された第1圧力センサ異常カウンタCp1(初期値>1)より1を減算する(ST131)。なお、Cp1,Cp2の初期値は1より大きい整数である(例:3回)。 That is, the deviation f (= 3.5 Hz) between the first operation frequency f0'(197.5 Hz) when the small amount of water is stopped and the operation frequency f0 (201 Hz) when the small amount of water is stopped this time is calculated (ST129) and determined in advance. Since the frequency deviation is greater than or equal to the predetermined frequency deviation Δf (= 3 Hz), it is tentatively determined that the first pressure sensor 38a has failed, and 1 is subtracted from the set first pressure sensor abnormality counter Cp1 (initial value> 1) (ST131). ). The initial values of Cp1 and Cp2 are integers larger than 1 (example: 3 times).

そして、複数回の運転ポンプの小水量停止時毎に、上記の圧力偏差比較を実施して(ST129)、上記の第1圧力センサ異常カウンタCp1がゼロ(Cp1=0)となった時点で(ST132のYes)、第1圧力センサ38aの異常を報知する警報信号を外部に送出するとともに、以降の運転制御は、サブセンサである第2圧力センサ38bにて検出される第2吐出圧力Ps2を用いている(ST133)。 Then, the above pressure deviation comparison is performed every time the small amount of water of the operating pump is stopped a plurality of times (ST129), and when the above-mentioned first pressure sensor abnormality counter Cp1 becomes zero (Cp1 = 0) ( Yes) of ST132, an alarm signal notifying the abnormality of the first pressure sensor 38a is sent to the outside, and the subsequent operation control uses the second discharge pressure Ps2 detected by the second pressure sensor 38b which is a sub sensor. (ST133).

一方、今回の小水量停止時運転周波数f0が198.5Hzであった場合、偏差f=1.0Hzを算出し、周波数偏差△f(=3Hz)未満であるため、第2圧力センサ38bの故障と仮判定し、設定された第2圧力センサ異常カウンタCp2(初期値>1)より1を減算する(ST136)。 On the other hand, when the operating frequency f0 when the small amount of water is stopped this time is 198.5 Hz, the deviation f = 1.0 Hz is calculated and the frequency deviation is less than Δf (= 3 Hz), so that the second pressure sensor 38b fails. Is provisionally determined, and 1 is subtracted from the set second pressure sensor abnormality counter Cp2 (initial value> 1) (ST136).

そして、複数回の運転ポンプの小水量停止時毎に、上記の異なるポンプの運転周波数比較を実施して、上記の第2圧力センサ異常カウンタCp2がゼロ(Cp2=0)となった時点で(ST137のYes)、第2圧力センサ38bの異常を報知する警報信号を送出している。 Then, when the small water volume of the operating pump is stopped a plurality of times, the operating frequencies of the different pumps are compared, and when the second pressure sensor abnormality counter Cp2 becomes zero (Cp2 = 0) ( Yes) of ST137, an alarm signal for notifying an abnormality of the second pressure sensor 38b is sent.

このため、検出圧力=電圧信号のみに基づいて故障を判定するよりも、迅速かつ確実に故障判断が可能となり、正常な圧力センサによる自動運転が可能となるという効果が得られる。 Therefore, rather than determining a failure based only on the detected pressure = voltage signal, it is possible to quickly and reliably determine the failure, and it is possible to obtain an effect that automatic operation by a normal pressure sensor is possible.

なお、上記の第1圧力センサ異常カウンタCp1、または、第2圧力センサ異常カウンタCp2がゼロとなり(ST132のYes,ST137のYes)、複数回の判定処理が終了し、いずれかの圧力センサの異常が確定した時点で、圧力センサ異常が検出済であることを示す圧力センサ異常フラグをONしている(ST134)。 The first pressure sensor abnormality counter Cp1 or the second pressure sensor abnormality counter Cp2 becomes zero (Yes in ST132, Yes in ST137), the multiple determination processes are completed, and one of the pressure sensors has an abnormality. When is confirmed, the pressure sensor abnormality flag indicating that the pressure sensor abnormality has been detected is turned on (ST134).

これにより、例えば、ポンプのシール部の磨耗により漏洩量が増加した場合、発生圧力を保つために運転周波数が増加する可能性があるが、異なるポンプの運転周波数比較により検証できるため、誤判定する恐れがなくなる。 As a result, for example, if the amount of leakage increases due to wear of the seal part of the pump, the operating frequency may increase in order to maintain the generated pressure, but it can be verified by comparing the operating frequencies of different pumps, so it is erroneously determined. There is no fear.

また給水装置1の制御盤には、水道配管に直接接続され、吐出側の1台の圧力センサと吸込側の1台の圧力センサを有する直結給水装置用の制御盤の制御部を用いることができるため、製造コストを抑えることができる。 Further, for the control panel of the water supply device 1, it is possible to use the control unit of the control panel for the direct water supply device which is directly connected to the water pipe and has one pressure sensor on the discharge side and one pressure sensor on the suction side. Therefore, the manufacturing cost can be suppressed.

上述した実施形態によれば、迅速かつ確実に故障判断を行い、正常な圧力センサによる自動運転に移行可能な給水装置及び給水装置の制御方法を提供できる。 According to the above-described embodiment, it is possible to provide a water supply device and a control method of the water supply device that can quickly and surely determine a failure and shift to automatic operation by a normal pressure sensor.

なお、本発明は上記実施形態に限られるものではなく、各部の構成や、各種条件及び具体的な設定値は適宜変更して実施可能である。 The present invention is not limited to the above embodiment, and the configuration of each part, various conditions, and specific set values can be appropriately changed.

例えば上記実施形態において、常時使用するメインセンサである第1圧力センサ38aには常時通電し、検出された第1吐出圧力Ps1が目標圧力になるよう、ポンプ装置を運転制御するとともに、サブセンサである第2圧力センサ38bには、運転ポンプを小水量停止する際に通電して、第1圧力センサ38aと第2圧力センサ38bからの信号レベルの偏差を算出するようにしてもよい。これにより、第2圧力センサ38bの電源回路の稼働時間は激減するため、電気的な寿命を延長することが可能となる。 For example, in the above embodiment, the first pressure sensor 38a, which is the main sensor that is always used, is constantly energized, and the pump device is operated and controlled so that the detected first discharge pressure Ps1 becomes the target pressure, and is a sub-sensor. The second pressure sensor 38b may be energized when the operation pump is stopped by a small amount of water to calculate the deviation of the signal level from the first pressure sensor 38a and the second pressure sensor 38b. As a result, the operating time of the power supply circuit of the second pressure sensor 38b is drastically reduced, so that the electrical life can be extended.

例えば上記実施形態において、第1圧力センサ38a及び第2圧力センサ38bがいずれも、水平に延びる吐出連結管34に直交する鉛直方向に向き、吐出連結管34の上部に、下向きに接続される例を示したが、これに限られるものではない。 For example, in the above embodiment, both the first pressure sensor 38a and the second pressure sensor 38b are oriented in the vertical direction orthogonal to the horizontally extending discharge connecting pipe 34, and are connected downward to the upper part of the discharge connecting pipe 34. However, it is not limited to this.

例えば他の実施形態として図10に示す給水装置10Aは、水平に延びる吐出連結管34の一端が閉止され、当該閉止された一端部に、第1圧力センサ38aが、水平に取付けられている。即ち、第1圧力センサ38aは、吐出連結管34の軸方向に沿って、水平方向に向けられ、吐出連結管34の端部に接続されている。一方、第2圧力センサ38bは、第1実施形態と同様に、吐出連結管34の中途部の上方に、鉛直方向に沿って配され、吐出連結管34の周壁の上方の一部に、接続されている。 For example, in the water supply device 10A shown in FIG. 10 as another embodiment, one end of a horizontally extending discharge connecting pipe 34 is closed, and a first pressure sensor 38a is horizontally attached to the closed one end. That is, the first pressure sensor 38a is oriented in the horizontal direction along the axial direction of the discharge connecting pipe 34 and is connected to the end of the discharge connecting pipe 34. On the other hand, the second pressure sensor 38b is arranged along the vertical direction above the middle portion of the discharge connecting pipe 34 and is connected to a part of the upper part of the peripheral wall of the discharge connecting pipe 34, as in the first embodiment. Has been done.

本実施形態によれば、メインセンサである第1圧力センサ38aを水平に、サブセンサである第2圧力センサ38bを鉛直に接続することで、第1圧力センサ38aは水平姿勢であるため、吐出連結管34との間にあるボール弁の流路内にあった空気は、気泡となって流出していき、過渡的な圧力変動にも応答よく反応するようになるが、第2圧力センサ38bと吐出連結管34との間にあるボール弁の流路内の空気は流出せず、長期間にわたって空気層が残存する。したがって、この空気層により、例えばウォーターハンマーなどによる衝撃的な圧力上昇から、第2圧力センサ38bを保護することが可能となる。これにより、サブセンサである第2圧力センサ38bのダイヤフラム部などの機械的寿命を延長することが可能となる。 According to the present embodiment, by connecting the first pressure sensor 38a, which is the main sensor, horizontally and the second pressure sensor 38b, which is the sub sensor, vertically, the first pressure sensor 38a is in the horizontal posture, so that the discharge connection is established. The air in the flow path of the ball valve between the pipe 34 and the ball valve flows out as bubbles and responds well to transient pressure fluctuations, but the second pressure sensor 38b and the air flow out. The air in the flow path of the ball valve between the discharge connecting pipe 34 does not flow out, and the air layer remains for a long period of time. Therefore, this air layer makes it possible to protect the second pressure sensor 38b from a shocking pressure rise caused by, for example, a water hammer. This makes it possible to extend the mechanical life of the diaphragm portion of the second pressure sensor 38b, which is a sub-sensor.

さらに、他の実施形態として図11に示す給水装置10Bのように、第2圧力センサ38bが、アキュムレータ39の近傍に設けられていてもよい。例えば給水装置10Bにおいて、吐出連結管34は、周壁の一部から水平に分岐する接続流路34cを備え、当該接続流路34cの他端側に、ボール弁を介して、アキュムレータ39が接続されている。また、接続流路34cの他端側にはドレン管が設けられている。接続流路34cは、水平方向に延びる吐出連結管34の周壁の一部に接続され、吐出連結管34から分岐して水平に延びる小径の流路である。第2圧力センサ38bは、吐出連結管34と、アキュムレータ39との間を接続する接続流路34cの中途部に、接続される。第2圧力センサ38bは、水平に延びる接続流路34cの、上方において、鉛直方向に沿って上向きに配され、接続流路34cの周壁の上部領域に接続される。 Further, as another embodiment, the second pressure sensor 38b may be provided in the vicinity of the accumulator 39 as in the water supply device 10B shown in FIG. For example, in the water supply device 10B, the discharge connecting pipe 34 includes a connecting flow path 34c that branches horizontally from a part of the peripheral wall, and an accumulator 39 is connected to the other end side of the connecting flow path 34c via a ball valve. ing. A drain pipe is provided on the other end side of the connection flow path 34c. The connection flow path 34c is a small-diameter flow path that is connected to a part of the peripheral wall of the discharge connection pipe 34 extending in the horizontal direction, branches from the discharge connection pipe 34, and extends horizontally. The second pressure sensor 38b is connected to the middle part of the connection flow path 34c that connects the discharge connecting pipe 34 and the accumulator 39. The second pressure sensor 38b is arranged upward along the vertical direction above the horizontally extending connection flow path 34c, and is connected to the upper region of the peripheral wall of the connection flow path 34c.

一方、第1圧力センサ38aは、第1実施形態と同様に、吐出連結管34の中途部の上方に、鉛直方向に沿って配され、吐出連結管34の周壁の上方の一部に接続するか、もしくは、第2実施形態と同様に、吐出連結管34の軸方向に沿って、水平方向に向けられ、吐出連結管34の端部に接続してもよい。
また、圧力計38cは、第1実施形態と同様に、吐出連結管34の中途部の上方に、鉛直方向に沿って配され、接続されている。
On the other hand, the first pressure sensor 38a is arranged along the vertical direction above the middle portion of the discharge connecting pipe 34 and is connected to a part of the upper part of the peripheral wall of the discharge connecting pipe 34, as in the first embodiment. Alternatively, as in the second embodiment, the discharge connecting pipe 34 may be oriented in the horizontal direction along the axial direction and connected to the end of the discharge connecting pipe 34.
Further, the pressure gauge 38c is arranged and connected in the vertical direction above the middle portion of the discharge connecting pipe 34 as in the first embodiment.

本実施形態にかかる給水装置10Bでは、第2圧力センサ38bが、アキュムレータ39の近傍に配置されることにより、アキュムレータ39内の空気層により、例えばウォーターハンマーなどによる衝撃的な圧力上昇から、第2圧力センサ38bを保護することが可能となる。これにより、サブセンサである第2圧力センサ38bのダイヤフラム部などの機械的寿命を延長することが可能となる。 In the water supply device 10B according to the present embodiment, the second pressure sensor 38b is arranged in the vicinity of the accumulator 39, so that the air layer in the accumulator 39 causes a shocking pressure increase due to, for example, a water hammer. It is possible to protect the pressure sensor 38b. This makes it possible to extend the mechanical life of the diaphragm portion of the second pressure sensor 38b, which is a sub-sensor.

なお、本発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。更に、上記実施形態には種々の発明が含まれており、開示される複数の構成要件から選択された組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、課題が解決でき、効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。 The present invention is not limited to the above embodiment, and can be variously modified at the implementation stage without departing from the gist thereof. In addition, each embodiment may be carried out in combination as appropriate, in which case the combined effect can be obtained. Further, the above-described embodiment includes various inventions, and various inventions can be extracted by a combination selected from a plurality of disclosed constituent requirements. For example, even if some constituent requirements are deleted from all the constituent requirements shown in the embodiment, if the problem can be solved and the effect is obtained, the configuration in which the constituent requirements are deleted can be extracted as an invention.

10、10A、10B…給水装置、11…ベース、11b…防振架台、11c…制御盤架台、12…ポンプ装置、13…配管ユニット、14…制御盤、21…モータ、22…ポンプ部、24…ケーシング、31…吸込側配管、32…吐出側配管、33…個別吐出管、34…吐出連結管、34b…閉止フランジ、34c…接続流路、35a…連結曲管、36…逆止弁、37…ボール弁、38…圧力検出ユニット、38a…第1圧力センサ、38b…第2圧力センサ、38c…圧力計、39…アキュムレータ、41…制御部。 10, 10A, 10B ... Water supply device, 11 ... Base, 11b ... Anti-vibration stand, 11c ... Control board stand, 12 ... Pump device, 13 ... Piping unit, 14 ... Control board, 21 ... Motor, 22 ... Pump section, 24 ... Casing, 31 ... Suction side pipe, 32 ... Discharge side pipe, 33 ... Individual discharge pipe, 34 ... Discharge connecting pipe, 34b ... Closing flange, 34c ... Connecting flow path, 35a ... Connecting curved pipe, 36 ... Check valve, 37 ... ball valve, 38 ... pressure detection unit, 38a ... first pressure sensor, 38b ... second pressure sensor, 38c ... pressure gauge, 39 ... accumulator, 41 ... control unit.

Claims (6)

ポンプ装置と、
前記ポンプ装置の吐出側に接続された吐出側配管を有する配管ユニットと、
前記吐出側配管の圧力を検出する第1圧力センサ及び第2圧力センサを有する圧力検出ユニットと、
所定の設定圧力P1を目標圧力とした吐出圧力一定制御、もしくは所定の設定圧力P1と推定末端圧力P2との間の値を目標圧力とした推定末端圧一定制御にて、前記第1圧力センサで検出される第1吐出圧力が前記目標圧力になるよう、前記ポンプ装置を運転制御し、各ポンプ装置が小水量停止した際の小水量時運転周波数f0を、毎回、検出・記憶するとともに、
前記第1圧力センサにて運転している状態において、給水量が減少して運転ポンプを小水量停止する際に、前記第1圧力センサと前記第2圧力センサの信号レベルの偏差である圧力偏差を算出し、当該圧力偏差が予め定めた所定の圧力偏差△h以上であった場合、さらに、小水量時運転周波数f0と、該当ポンプの初回小水量時運転周波数f0’との周波数偏差fを算出し、当該周波数偏差fが予め定めた所定の周波数偏差△f以上であった場合に、前記第1圧力センサの異常を外部に送出するとともに、
前記第2圧力センサで検出される第2吐出圧力を用いて前記ポンプ装置の運転制御を行うセンサ切替処理を行う、制御部と、を備える給水装置。
With the pump device
A piping unit having a discharge side pipe connected to the discharge side of the pump device, and
A pressure detection unit having a first pressure sensor and a second pressure sensor for detecting the pressure of the discharge side pipe,
With the first pressure sensor, the discharge pressure constant control with the predetermined set pressure P1 as the target pressure, or the estimated terminal pressure constant control with the value between the predetermined set pressure P1 and the estimated terminal pressure P2 as the target pressure. The operation of the pump device is controlled so that the detected first discharge pressure becomes the target pressure, and the operation frequency f0 at the time of a small amount of water when each pump device stops with a small amount of water is detected and stored every time.
In the state of operating with the first pressure sensor, when the amount of water supplied decreases and the operation pump is stopped by a small amount of water, the pressure deviation which is the deviation between the signal levels of the first pressure sensor and the second pressure sensor. When the pressure deviation is equal to or greater than a predetermined pressure deviation Δh, the frequency deviation f between the operating frequency f0 at the time of small water volume and the operating frequency f0'at the initial small water volume of the corresponding pump is further calculated. When the frequency deviation f is calculated and is equal to or greater than a predetermined frequency deviation Δf, the abnormality of the first pressure sensor is sent to the outside and the abnormality is sent to the outside.
A water supply device including a control unit that performs a sensor switching process for controlling the operation of the pump device using the second discharge pressure detected by the second pressure sensor.
小水量時運転周波数f0と、該当ポンプの初回小水量時運転周波数f0’との偏差を算出して、当該周波数偏差fが予め定めた所定の周波数偏差△f未満であった場合、前記第2圧力センサの異常を外部に送出する請求項1に記載の給水装置。 When the deviation between the operating frequency f0 at the time of small water volume and the operating frequency f0'at the first small water volume of the corresponding pump is calculated and the frequency deviation f is less than a predetermined frequency deviation Δf, the second The water supply device according to claim 1, wherein an abnormality of the pressure sensor is sent to the outside. 複数回の運転ポンプの小水量停止時に、前記圧力偏差の比較と前記運転周波数の比較を実施して、第1圧力センサまたは第2圧力センサの異常を判断する請求項1または2に記載の給水装置。 The water supply according to claim 1 or 2, wherein when the small amount of water of the operating pump is stopped a plurality of times, the pressure deviation is compared and the operating frequency is compared to determine the abnormality of the first pressure sensor or the second pressure sensor. apparatus. 前記第1圧力センサは、前記吐出側配管に鉛直方向に向けて取付けられ、
前記第2圧力センサは、前記吐出側配管に水平方向に向けて取付けられる、請求項1乃至3のいずれか1項に記載の給水装置。
The first pressure sensor is attached to the discharge side pipe in the vertical direction.
The water supply device according to any one of claims 1 to 3, wherein the second pressure sensor is attached to the discharge side pipe in a horizontal direction.
前記吐出側配管に接続されるアキュムレータを備え、
前記第1圧力センサは、前記吐出側配管に取付けられ、
前記第2圧力センサは、前記吐出側配管とアキュムレータとの間の接続流路に取付けられる、請求項1乃至3のいずれか1項に記載の給水装置。
Equipped with an accumulator connected to the discharge side pipe
The first pressure sensor is attached to the discharge side pipe and is attached to the discharge side pipe.
The water supply device according to any one of claims 1 to 3, wherein the second pressure sensor is attached to a connection flow path between the discharge side pipe and the accumulator.
所定の設定圧力P1を目標圧力とした吐出圧力一定制御、もしくは所定の設定圧力P1と推定末端圧力P2との間の値を目標圧力とした推定末端圧一定制御にて、
ポンプ装置の吐出側に接続された吐出流路の圧力を検出する第1圧力センサで検出される第1吐出圧力が前記目標圧力になるよう、前記ポンプ装置を運転制御し、
各ポンプ装置が小水量停止した際の小水量時運転周波数f0を、毎回、検出・記憶するとともに、前記第1圧力センサにて運転している状態において、給水量が減少して運転ポンプを小水量停止する際に、第1圧力センサと第2圧力センサからの信号レベルの偏差を算出し、当該圧力偏差が予め定めた所定の圧力偏差以上であった場合、さらに、小水量時運転周波数と、該当ポンプの初回小水量時運転周波数との周波数偏差を算出し、当該周波数偏差が予め定めた所定の周波数偏差以上であった場合に、前記第2圧力センサで検出される第2吐出圧力を用いて前記ポンプ装置の運転制御を行うセンサ切替処理を行う、給水装置の制御方法。
By constant discharge pressure control with the predetermined set pressure P1 as the target pressure, or with constant estimated terminal pressure control with the value between the predetermined set pressure P1 and the estimated terminal pressure P2 as the target pressure.
The operation of the pump device is controlled so that the first discharge pressure detected by the first pressure sensor that detects the pressure of the discharge flow path connected to the discharge side of the pump device becomes the target pressure.
The operating frequency f0 at the time of a small amount of water when each pump device stops with a small amount of water is detected and stored each time, and the amount of water supplied decreases and the operating pump is reduced in the state of being operated by the first pressure sensor. When the amount of water is stopped, the deviation of the signal level from the first pressure sensor and the second pressure sensor is calculated, and if the pressure deviation is equal to or more than a predetermined pressure deviation determined in advance, the operating frequency when the amount of water is small is further determined. , The frequency deviation from the operating frequency at the time of the first small amount of water of the corresponding pump is calculated, and when the frequency deviation is equal to or more than a predetermined frequency deviation determined in advance, the second discharge pressure detected by the second pressure sensor is calculated. A method for controlling a water supply device, which performs a sensor switching process for controlling the operation of the pump device.
JP2019141502A 2019-07-31 2019-07-31 Water supply device and control method of water supply device Active JP6805299B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019141502A JP6805299B1 (en) 2019-07-31 2019-07-31 Water supply device and control method of water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019141502A JP6805299B1 (en) 2019-07-31 2019-07-31 Water supply device and control method of water supply device

Publications (2)

Publication Number Publication Date
JP6805299B1 JP6805299B1 (en) 2020-12-23
JP2021025433A true JP2021025433A (en) 2021-02-22

Family

ID=73836152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019141502A Active JP6805299B1 (en) 2019-07-31 2019-07-31 Water supply device and control method of water supply device

Country Status (1)

Country Link
JP (1) JP6805299B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11270488A (en) * 1998-03-24 1999-10-05 Kawamoto Pump Mfg Co Ltd Automatic water supply system
JP2013127256A (en) * 2008-01-24 2013-06-27 Ebara Corp Water supply apparatus
JP2014109220A (en) * 2012-11-30 2014-06-12 Ebara Corp Water supply device and water supply method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11270488A (en) * 1998-03-24 1999-10-05 Kawamoto Pump Mfg Co Ltd Automatic water supply system
JP2013127256A (en) * 2008-01-24 2013-06-27 Ebara Corp Water supply apparatus
JP2014109220A (en) * 2012-11-30 2014-06-12 Ebara Corp Water supply device and water supply method

Also Published As

Publication number Publication date
JP6805299B1 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
US20210396238A1 (en) Pump apparatus, test operation method of pump apparatus, motor assembly and method for identifying abnormal vibration of motor assembly
JP4812327B2 (en) Water supply equipment
JP5568113B2 (en) Rotating machinery
JP2014109220A (en) Water supply device and water supply method
JP2019120145A (en) Pump device and pump device test run method
JP2006161791A (en) Water level control device for plumbing tank
JP5159187B2 (en) Variable speed water supply device
JP6805299B1 (en) Water supply device and control method of water supply device
JP2017036669A (en) Control device, control method and pump station
JP2019122065A (en) Motor assembly and pump apparatus
JP6750058B1 (en) Water supply
JP2014013027A (en) Pump bearing cleaning device and pump bearing cleaning method
JP5222203B2 (en) Pump device
JP2019120146A (en) Electric motor assembly, pump device, and method for identifying abnormal vibration of electric motor assembly
JP2018135761A (en) Pump system and drainage pumping station
EP2910787B1 (en) Water supply device
JP2019002343A (en) Boost water supply apparatus
JP6374998B2 (en) Self-priming pump operating device, liquid supply device, and self-priming pump operating method
JP6772316B2 (en) Water supply device and control method of water supply device
JP7262742B2 (en) Water supply device
JPH10205457A (en) Detecting method for abnormal operation of pump and method and device for controlling operation of pump
JP3748727B2 (en) Operation control method for water supply device
JP4804786B2 (en) Water supply equipment
JP2017218977A (en) Feed water system and operational method for feed water system
JP2012255399A (en) Automatic water feed device and control method of automatic water feed device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201203

R150 Certificate of patent or registration of utility model

Ref document number: 6805299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250