JP2021025413A - Intake manifold - Google Patents
Intake manifold Download PDFInfo
- Publication number
- JP2021025413A JP2021025413A JP2019140610A JP2019140610A JP2021025413A JP 2021025413 A JP2021025413 A JP 2021025413A JP 2019140610 A JP2019140610 A JP 2019140610A JP 2019140610 A JP2019140610 A JP 2019140610A JP 2021025413 A JP2021025413 A JP 2021025413A
- Authority
- JP
- Japan
- Prior art keywords
- cylinder
- branch passage
- introduction path
- exhaust
- internal combustion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Exhaust-Gas Circulating Devices (AREA)
Abstract
Description
本発明は、内燃機関に設けられるインテークマニホールドに関する。 The present invention relates to an intake manifold provided in an internal combustion engine.
内燃機関の燃焼室に連通する吸気ポートに接続される分岐通路と、分岐通路内に開口しており当該分岐通路内に排気を導入する排気導入路とを備えるインテークマニホールドが知られている(特許文献1など)。 An intake manifold having a branch passage connected to an intake port communicating with a combustion chamber of an internal combustion engine and an exhaust introduction passage that is open in the branch passage and introduces exhaust gas into the branch passage is known (patented). Reference 1 etc.).
ところで、排気導入路から分岐通路内に導入された排気が分岐通路や吸気ポートの壁面に衝突すると、分岐通路や吸気ポートを流れる吸気の流線が乱れる。吸気の流線が乱れると、気筒内に向かって吸気がスムーズに流れにくくなるため、タンブル比が小さくなる。このようにしてタンブル比が低下すると、混合気の均一な燃焼が阻害されて燃焼状態は悪化するおそれがある。 By the way, when the exhaust introduced into the branch passage from the exhaust introduction path collides with the wall surface of the branch passage or the intake port, the streamline of the intake air flowing through the branch passage or the intake port is disturbed. If the flow line of the intake air is disturbed, it becomes difficult for the intake air to flow smoothly toward the inside of the cylinder, so that the tumble ratio becomes small. When the tumble ratio is lowered in this way, the uniform combustion of the air-fuel mixture may be hindered and the combustion state may be deteriorated.
上記課題を解決するインテークマニホールドは、内燃機関の燃焼室に開口する開口部を有する吸気ポートに接続される分岐通路と、前記分岐通路内に開口しており当該分岐通路内に排気を導入する排気導入路とを備える。そして、前記内燃機関に当該インテークマニホールドが組み付けられた状態において、前記排気導入路の中心線が延びる方向に前記吸気ポートの前記開口部が存在するように前記排気導入路は設けられている。 The intake manifold that solves the above problems includes a branch passage connected to an intake port having an opening that opens in the combustion chamber of the internal combustion engine, and an exhaust that opens in the branch passage and introduces exhaust gas into the branch passage. It has an introduction path. Then, in a state where the intake manifold is assembled to the internal combustion engine, the exhaust introduction path is provided so that the opening of the intake port exists in the direction in which the center line of the exhaust introduction path extends.
同構成では、排気導入路の中心線が延びる方向に吸気ポートの開口部が存在するように排気導入路は設けられている。従って、排気導入路から分岐通路内に導入された直後の排気の流れ方向と、排気導入路近傍を通過して上記開口部に向かう吸気の流れ方向とはほぼ同じになるため、排気導入路から分岐通路内に導入された排気が分岐通路や吸気ポートの壁面に衝突することは抑制される。このようにして分岐通路や吸気ポートの壁面に対する排気の衝突が抑えられることにより、分岐通路や吸気ポートを流れる吸気の流線の乱れが抑えられるようになり、その結果、混合気の燃焼状態の悪化を抑制することができるようになる。 In the same configuration, the exhaust introduction path is provided so that the opening of the intake port exists in the direction in which the center line of the exhaust introduction path extends. Therefore, the flow direction of the exhaust immediately after being introduced into the branch passage from the exhaust introduction path is almost the same as the flow direction of the intake gas passing near the exhaust introduction path and toward the opening. It is suppressed that the exhaust introduced into the branch passage collides with the wall surface of the branch passage or the intake port. By suppressing the collision of the exhaust gas with the wall surface of the branch passage or the intake port in this way, the turbulence of the streamline of the intake air flowing through the branch passage or the intake port can be suppressed, and as a result, the combustion state of the air-fuel mixture is suppressed. It becomes possible to suppress the deterioration.
上記インテークマニホールドにおいて、前記内燃機関は3気筒以上の多気筒内燃機関であって、気筒毎に接続される複数の前記分岐通路を備えており、気筒配列方向の両端に位置する各気筒を端部気筒とし、端部気筒間に配設される気筒を中間気筒としたときに、前記中間気筒に接続される前記分岐通路の前記排気導入路の直径は、前記端部気筒に接続される前記分岐通路の前記排気導入路の直径よりも小さくしてもよい。 In the intake manifold, the internal combustion engine is a multi-cylinder internal combustion engine having three or more cylinders, includes a plurality of the branch passages connected to each cylinder, and ends each cylinder located at both ends in the cylinder arrangement direction. When the cylinder is a cylinder and the cylinder arranged between the end cylinders is an intermediate cylinder, the diameter of the exhaust introduction path of the branch passage connected to the intermediate cylinder is the branch connected to the end cylinder. It may be smaller than the diameter of the exhaust introduction path of the passage.
機関負荷が高くなると気筒のボア変形が起きやすくなるが、3気筒以上の多気筒内燃機関では、上記中間気筒が上記端部気筒よりも楕円状に変形しやすく変形量も大きくなる傾向がある。このようにボアの変形量が大きくなる中間気筒では、排気導入時の混合気の燃焼状態が端部気筒よりも悪化しやすい傾向がある。この点、同構成では、中間気筒に接続される分岐通路の排気導入路の直径は、端部気筒に接続される分岐通路の排気導入路の直径よりも小さくされているため、中間気筒に導入される排気の量は、端部気筒に導入される排気の量よりも少なくなる。従って、中間気筒における混合気の燃焼状態の悪化を抑えることができる。 When the engine load is high, the bore deformation of the cylinder is likely to occur, but in a multi-cylinder internal combustion engine having three or more cylinders, the intermediate cylinder is more likely to be deformed into an elliptical shape than the end cylinder, and the amount of deformation tends to be large. In the intermediate cylinder in which the amount of deformation of the bore is large in this way, the combustion state of the air-fuel mixture at the time of introducing the exhaust tends to be worse than that in the end cylinder. In this respect, in the same configuration, the diameter of the exhaust introduction path of the branch passage connected to the intermediate cylinder is smaller than the diameter of the exhaust introduction path of the branch passage connected to the end cylinder, so that the exhaust passage is introduced to the intermediate cylinder. The amount of exhaust produced will be less than the amount of exhaust introduced into the end cylinder. Therefore, deterioration of the combustion state of the air-fuel mixture in the intermediate cylinder can be suppressed.
以下、インテークマニホールドの一実施形態について、図1〜図4を参照して説明する。本実施形態のインテークマニホールドは、直列4気筒の内燃機関に組み付けられる。
図1に示すように、インテークマニホールド10には、組み付け対象の内燃機関の気筒配列方向(矢印L方向)に延びるサージタンク30が設けられている。サージタンク30の外壁には複数のリブ80が形成されている。
Hereinafter, one embodiment of the intake manifold will be described with reference to FIGS. 1 to 4. The intake manifold of this embodiment is assembled to an in-line 4-cylinder internal combustion engine.
As shown in FIG. 1, the intake manifold 10 is provided with a surge tank 30 extending in the cylinder arrangement direction (arrow L direction) of the internal combustion engine to be assembled. A plurality of ribs 80 are formed on the outer wall of the surge tank 30.
気筒配列方向に延びるサージタンク30の長手方向(図1に示す矢印L方向と同一方向)における一方の端部にはスロットル用フランジ32が設けられており、このスロットル用フランジ32には、スロットルバルブを備えたスロットルボディが接続される。 A throttle flange 32 is provided at one end in the longitudinal direction of the surge tank 30 extending in the cylinder arrangement direction (the same direction as the arrow L direction shown in FIG. 1), and the throttle flange 32 is provided with a throttle valve. Throttle body with is connected.
図1及び図2に示すように、インテークマニホールド10には、サージタンク30から分岐した湾曲状の分岐通路20が4つ設けられている。各分岐通路20は気筒配列方向に並んで設けられている。そして図2に示すように、各分岐通路20は、内燃機関100の各気筒の燃焼室130に開口する開口部115を有する吸気ポート110にそれぞれ接続される。なお、図4に示すように、本実施形態では、吸気ポート110が途中から2つに分かれており、吸気ポート110の上記開口部115は、1つの気筒において2つ設けられている。 As shown in FIGS. 1 and 2, the intake manifold 10 is provided with four curved branch passages 20 branched from the surge tank 30. The branch passages 20 are provided side by side in the cylinder arrangement direction. Then, as shown in FIG. 2, each branch passage 20 is connected to an intake port 110 having an opening 115 that opens into a combustion chamber 130 of each cylinder of the internal combustion engine 100. As shown in FIG. 4, in the present embodiment, the intake port 110 is divided into two from the middle, and the opening 115 of the intake port 110 is provided in two in one cylinder.
図1に示すように、分岐通路20の吸気下流端には、シリンダヘッド120に固定されるフランジ形状の固定部21が設けられている。この固定部21には、ボルトが挿入されるボルト孔22が複数設けられており、この固定部21をシリンダヘッド120にボルト締結することにより、インテークマニホールド10は内燃機関100に固定される。 As shown in FIG. 1, a flange-shaped fixing portion 21 fixed to the cylinder head 120 is provided at the intake downstream end of the branch passage 20. The fixing portion 21 is provided with a plurality of bolt holes 22 into which bolts are inserted, and the intake manifold 10 is fixed to the internal combustion engine 100 by bolting the fixing portion 21 to the cylinder head 120.
なお、内燃機関の各気筒を気筒配列方向の順に第1気筒、第2気筒、第3気筒、及び第4気筒としたときに、以下では、第1気筒に接続される分岐通路20を第1分岐通路20Aといい、第2気筒に接続される分岐通路20を第2分岐通路20Bという。また、第3気筒に接続される分岐通路20を第3分岐通路20Cといい、第4気筒に接続される分岐通路20を第4分岐通路20Dという。また、第1分岐通路20A、第2分岐通路20B、第3分岐通路20C、及び第4分岐通路20Dのうちの任意の分岐通路を説明する場合には、単に分岐通路20という。 When each cylinder of the internal combustion engine is the first cylinder, the second cylinder, the third cylinder, and the fourth cylinder in the order of the cylinder arrangement direction, in the following, the branch passage 20 connected to the first cylinder is the first. The branch passage 20A is referred to as a branch passage 20A, and the branch passage 20 connected to the second cylinder is referred to as a second branch passage 20B. Further, the branch passage 20 connected to the third cylinder is referred to as a third branch passage 20C, and the branch passage 20 connected to the fourth cylinder is referred to as a fourth branch passage 20D. Further, when explaining any branch passage among the first branch passage 20A, the second branch passage 20B, the third branch passage 20C, and the fourth branch passage 20D, it is simply referred to as the branch passage 20.
図2に示すように、インテークマニホールド10の上部には、内燃機関100の排気通路から分岐した排気還流配管90が接続される排気取り込み部45が設けられている。
図1及び図2に示すように、各分岐通路20の湾曲部における上部には、分岐通路20内に開口しており各分岐通路20内に排気を導入する排気導入路43が形成されている。この排気導入路43には、インテークマニホールド10内に設けられた通路を介して排気取り込み部45から排気が供給される。
As shown in FIG. 2, an exhaust intake portion 45 to which an exhaust return pipe 90 branched from the exhaust passage of the internal combustion engine 100 is connected is provided on the upper portion of the intake manifold 10.
As shown in FIGS. 1 and 2, an exhaust introduction path 43 that is open in the branch passage 20 and introduces exhaust gas into each branch passage 20 is formed at the upper portion of the curved portion of each branch passage 20. .. Exhaust gas is supplied to the exhaust gas introduction path 43 from the exhaust intake unit 45 via a passage provided in the intake manifold 10.
なお、以下では、第1分岐通路20Aに設けられた排気導入路43を第1排気導入路43Aといい、第2分岐通路20Bに設けられた排気導入路43を第2排気導入路43Bという。また、第3分岐通路20Cに設けられた排気導入路43を第3排気導入路43Cといい、第4分岐通路20Dに設けられた排気導入路43を第4排気導入路43Dという。また、第1排気導入路43A、第2排気導入路43B、第3排気導入路43C、第4排気導入路43Dのうちの任意の排気導入路を説明する場合には、単に排気導入路43という。 In the following, the exhaust introduction path 43 provided in the first branch passage 20A will be referred to as the first exhaust introduction path 43A, and the exhaust introduction path 43 provided in the second branch passage 20B will be referred to as the second exhaust introduction path 43B. Further, the exhaust introduction path 43 provided in the third branch passage 20C is referred to as a third exhaust introduction path 43C, and the exhaust introduction path 43 provided in the fourth branch passage 20D is referred to as a fourth exhaust introduction path 43D. Further, when explaining an arbitrary exhaust introduction path among the first exhaust introduction path 43A, the second exhaust introduction path 43B, the third exhaust introduction path 43C, and the fourth exhaust introduction path 43D, it is simply referred to as the exhaust introduction path 43. ..
図2及び図3に示すように、各分岐通路20の内壁面24には突出部25が設けられており、この突出部25に排気導入路43は形成されている。
そして、図2に示すように、内燃機関100にインテークマニホールド10が組み付けられた状態において、排気導入路43の中心線CLが延びる方向に吸気ポート110の上記開口部115が存在するように排気導入路43は設けられている。
As shown in FIGS. 2 and 3, a protruding portion 25 is provided on the inner wall surface 24 of each branch passage 20, and an exhaust introduction path 43 is formed in the protruding portion 25.
Then, as shown in FIG. 2, when the intake manifold 10 is assembled to the internal combustion engine 100, the exhaust gas is introduced so that the opening 115 of the intake port 110 exists in the direction in which the center line CL of the exhaust gas introduction path 43 extends. The road 43 is provided.
図3に示すように、上述した各突出部25は、各分岐通路20の内壁面24の上部であって気筒配列方向(矢印L方向)における中央部分(図3に示すP部)に形成されている。 As shown in FIG. 3, each of the above-mentioned protruding portions 25 is formed in the upper portion of the inner wall surface 24 of each branch passage 20 and at the central portion (P portion shown in FIG. 3) in the cylinder arrangement direction (arrow L direction). ing.
また、気筒配列方向の両端に位置する各気筒を端部気筒とし、端部気筒間に配設される気筒を中間気筒とする。本実施形態では、内燃機関100の第1気筒及び第4気筒が端部気筒になり、内燃機関100の第2気筒及び第3気筒が中間気筒になる。 Further, each cylinder located at both ends in the cylinder arrangement direction is an end cylinder, and a cylinder arranged between the end cylinders is an intermediate cylinder. In the present embodiment, the first and fourth cylinders of the internal combustion engine 100 are end cylinders, and the second and third cylinders of the internal combustion engine 100 are intermediate cylinders.
図3に示すように、それら中間気筒に接続される第2分岐通路20B及び第3分岐通路20Cの各排気導入路43の直径は、端部気筒に接続される第1分岐通路20A及び第4分岐通路20Dの各排気導入路43の直径よりも小さくされている。つまり、第2排気導入路43B及び第3排気導入路43Cの直径は、第1排気導入路43A及び第4排気導入路43Dの直径よりも小さくされている。なお、本実施形態では、第2排気導入路43B及び第3排気導入路43Cの直径は同じになっているが、異ならせてもよい。また、第1排気導入路43A及び第4排気導入路43Dの直径は同じになっているが、異ならせてもよい。 As shown in FIG. 3, the diameters of the exhaust introduction passages 43 of the second branch passage 20B and the third branch passage 20C connected to the intermediate cylinders are the first branch passage 20A and the fourth branch passage 20A connected to the end cylinder. It is made smaller than the diameter of each exhaust introduction path 43 of the branch passage 20D. That is, the diameters of the second exhaust introduction path 43B and the third exhaust introduction path 43C are smaller than the diameters of the first exhaust introduction path 43A and the fourth exhaust introduction path 43D. In the present embodiment, the diameters of the second exhaust introduction path 43B and the third exhaust introduction path 43C are the same, but may be different. Further, although the diameters of the first exhaust introduction path 43A and the fourth exhaust introduction path 43D are the same, they may be different.
本実施形態の作用及び効果を説明する。
(1)図2に示したように、排気導入路43の中心線CLが延びる方向に吸気ポート110の開口部115が存在するように排気導入路43は設けられている。従って、排気導入路43から分岐通路20内に導入された直後の排気の流れ方向EDと、排気導入路43の近傍を通過して上記開口部115に向かう吸気の流れ方向GDとはほぼ同じになるため、排気導入路43から分岐通路20内に導入された排気が分岐通路20や吸気ポート110の壁面に衝突することは抑制される。このようにして分岐通路20や吸気ポート110の壁面に対する排気の衝突が抑えられることにより、分岐通路20や吸気ポート110を流れる吸気の流線の乱れが抑えられるようになる。こうして吸気の流線の乱れが抑えられると、気筒内に向かって吸気がスムーズに流れるようになるため、吸気の流線が乱れる場合と比較してタンブル比は低下しにくくなる。従って、混合気の均一な燃焼が促されるようになり、燃焼状態の悪化を抑制することができる。
The operation and effect of this embodiment will be described.
(1) As shown in FIG. 2, the exhaust introduction path 43 is provided so that the opening 115 of the intake port 110 exists in the direction in which the center line CL of the exhaust introduction path 43 extends. Therefore, the exhaust flow direction ED immediately after being introduced into the branch passage 20 from the exhaust introduction path 43 and the intake flow direction GD passing near the exhaust introduction path 43 and heading toward the opening 115 are almost the same. Therefore, it is possible to prevent the exhaust gas introduced into the branch passage 20 from the exhaust introduction path 43 from colliding with the wall surface of the branch passage 20 or the intake port 110. By suppressing the collision of the exhaust gas with the wall surface of the branch passage 20 and the intake port 110 in this way, the turbulence of the streamline of the intake air flowing through the branch passage 20 and the intake port 110 can be suppressed. When the turbulence of the intake streamline is suppressed in this way, the intake air flows smoothly into the cylinder, so that the tumble ratio is less likely to decrease as compared with the case where the intake streamline is turbulent. Therefore, uniform combustion of the air-fuel mixture is promoted, and deterioration of the combustion state can be suppressed.
(2)機関負荷が高くなると気筒のボア変形が起きやすくなるが、3気筒以上の多気筒内燃機関では、上述した中間気筒(具体的には第2気筒及び第3気筒)が端部気筒(具体的には第1気筒及び第4気筒)よりも楕円状に変形しやすく変形量も大きくなる傾向がある。このようにボアの変形量が大きくなる中間気筒では、混合気の均一な燃焼が阻害されやすく、排気導入時の混合気の燃焼状態が端部気筒よりも悪化しやすい傾向がある。この点、本実施形態では、図3に示したように、中間気筒に接続される第2分岐通路20Bの第2排気導入路43B及び第3分岐通路20Cの第3排気導入路43Cの直径は、端部気筒に接続される第1分岐通路20Aの第1排気導入路43A及び第4分岐通路20Dの第4排気導入路43Dの直径よりも小さくされている。そのため、中間気筒に導入される排気の量は、端部気筒に導入される排気の量よりも少なくなる。従って、排気導入時における中間気筒での混合気の燃焼状態の悪化を抑えることができる。 (2) When the engine load is high, the bore deformation of the cylinder is likely to occur, but in a multi-cylinder internal combustion engine with three or more cylinders, the above-mentioned intermediate cylinder (specifically, the second cylinder and the third cylinder) is the end cylinder (specifically, the second cylinder and the third cylinder). Specifically, it is more likely to be deformed into an elliptical shape than the first cylinder and the fourth cylinder), and the amount of deformation tends to be large. In the intermediate cylinder in which the amount of deformation of the bore is large in this way, uniform combustion of the air-fuel mixture tends to be hindered, and the combustion state of the air-fuel mixture at the time of introducing exhaust gas tends to be worse than in the end cylinder. In this regard, in the present embodiment, as shown in FIG. 3, the diameters of the second exhaust introduction passage 43B of the second branch passage 20B and the third exhaust introduction passage 43C of the third branch passage 20C connected to the intermediate cylinder are , The diameter is smaller than the diameter of the first exhaust introduction passage 43A of the first branch passage 20A and the fourth exhaust introduction passage 43D of the fourth branch passage 20D connected to the end cylinder. Therefore, the amount of exhaust gas introduced into the intermediate cylinder is smaller than the amount of exhaust gas introduced into the end cylinder. Therefore, it is possible to suppress deterioration of the combustion state of the air-fuel mixture in the intermediate cylinder when the exhaust gas is introduced.
(3)図3に示したように、分岐通路20の内壁面24に設けられた各突出部25は、各分岐通路20の内壁面24にあって気筒配列方向(矢印L方向)における中央部分に形成されている。従って、図4に示すように、サージタンク30から分岐通路20に流入した吸気は、突出部25を通過する際にその流線が2つに分割される。そして、流線が2つに分割された吸気は、途中で2つに分かれた吸気ポート110に向かってそれぞれスムーズに流れ込むようになるため、これによっても吸気の流線の乱れを抑えることができる。 (3) As shown in FIG. 3, each protrusion 25 provided on the inner wall surface 24 of the branch passage 20 is located on the inner wall surface 24 of each branch passage 20 and is a central portion in the cylinder arrangement direction (arrow L direction). Is formed in. Therefore, as shown in FIG. 4, the streamline of the intake air flowing into the branch passage 20 from the surge tank 30 is divided into two when passing through the protrusion 25. Then, the intake air whose streamline is divided into two flows smoothly toward the intake port 110 divided into two on the way, so that the disturbance of the intake streamline can also be suppressed. ..
(4)混合気の燃焼状態が悪化してノッキングが発生しやすくなると、一般的に内燃機関では点火時期の遅角が行われる。こうした点火時期の遅角を実施すると、機関出力は低下するため、燃費は悪化しやすくなる。この点、本実施形態では、上述したように混合気の燃焼状態の悪化を抑えることができるため、ノッキングも発生しにくくなる。従って、ノッキングを抑えるための点火時期遅角量を少なくすることも可能になり、その結果、燃費の悪化を抑えることができる。 (4) When the combustion state of the air-fuel mixture deteriorates and knocking is likely to occur, the ignition timing is generally retarded in the internal combustion engine. When such a retardation of the ignition timing is carried out, the engine output is reduced, so that the fuel consumption is likely to deteriorate. In this respect, in the present embodiment, as described above, deterioration of the combustion state of the air-fuel mixture can be suppressed, so that knocking is less likely to occur. Therefore, it is possible to reduce the amount of ignition timing retardation for suppressing knocking, and as a result, deterioration of fuel efficiency can be suppressed.
なお、本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
・全ての排気導入路43の直径を同じにしてもよい。この場合でも上記(2)以外の作用効果を得ることができる。
In addition, this embodiment can be implemented by changing as follows. The present embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
-The diameters of all the exhaust introduction paths 43 may be the same. Even in this case, an action effect other than the above (2) can be obtained.
・突出部25は、分岐通路20の内壁面24にあって気筒配列方向における中央部分に設けたが、この他の部分に設けてもよい。この場合でも上記(3)以外の作用効果を得ることができる。 The protruding portion 25 is provided on the inner wall surface 24 of the branch passage 20 at the central portion in the cylinder arrangement direction, but may be provided at another portion. Even in this case, an action effect other than the above (3) can be obtained.
・インテークマニホールド10が組み付けられる内燃機関100は、その吸気ポート110が途中から2つに分かれていた。この他、そうした分岐を省略して、燃焼室130には吸気ポート110が一本だけ繋がっている内燃機関でもよい。この場合でも上記(3)以外の作用効果を得ることができる。 The internal combustion engine 100 to which the intake manifold 10 is assembled has its intake port 110 divided into two from the middle. In addition, an internal combustion engine in which only one intake port 110 is connected to the combustion chamber 130 may be used by omitting such a branch. Even in this case, an action effect other than the above (3) can be obtained.
・内燃機関100は4気筒の内燃機関であったが、3気筒の内燃機関や、5気筒以上の内燃機関でもよい。この場合でも、上述した中間気筒に該当する気筒の排気導入路43の直径を、端部気筒に該当する気筒の排気導入路43の直径よりも小さくすることにより、上記(2)と同様な作用効果を得ることができる。 The internal combustion engine 100 is a 4-cylinder internal combustion engine, but may be a 3-cylinder internal combustion engine or a 5-cylinder or more internal combustion engine. Even in this case, the same operation as in (2) above is achieved by making the diameter of the exhaust introduction path 43 of the cylinder corresponding to the intermediate cylinder described above smaller than the diameter of the exhaust introduction path 43 of the cylinder corresponding to the end cylinder. The effect can be obtained.
・内燃機関100は4気筒の内燃機関であったが、2気筒以下の内燃機関でもよい。この場合でも、上記(2)以外の作用効果を得ることができる。 The internal combustion engine 100 was a 4-cylinder internal combustion engine, but may be an internal combustion engine having 2 or less cylinders. Even in this case, an action effect other than the above (2) can be obtained.
10…インテークマニホールド、20…分岐通路、20A…第1分岐通路、20B…第2分岐通路、20C…第3分岐通路、20D…第4分岐通路、21…固定部、22…ボルト孔、24…内壁面、25…突出部、30…サージタンク、32…スロットル用フランジ、43…排気導入路、43A…第1排気導入路、43B…第2排気導入路、43C…第3排気導入路、43D…第4排気導入路、45…排気取り込み部、80…リブ、90…排気還流配管、100…内燃機関、110…吸気ポート、115…開口部、120…シリンダヘッド、130…燃焼室。 10 ... Intake manifold, 20 ... Branch passage, 20A ... 1st branch passage, 20B ... 2nd branch passage, 20C ... 3rd branch passage, 20D ... 4th branch passage, 21 ... Fixed part, 22 ... Bolt hole, 24 ... Inner wall surface, 25 ... projecting part, 30 ... surge tank, 32 ... throttle flange, 43 ... exhaust introduction path, 43A ... first exhaust introduction path, 43B ... second exhaust introduction path, 43C ... third exhaust introduction path, 43D ... 4th exhaust introduction path, 45 ... Exhaust intake section, 80 ... Rib, 90 ... Exhaust recirculation pipe, 100 ... Internal combustion engine, 110 ... Intake port, 115 ... Opening, 120 ... Cylinder head, 130 ... Combustion chamber.
Claims (2)
前記内燃機関に当該インテークマニホールドが組み付けられた状態において、前記排気導入路の中心線が延びる方向に前記吸気ポートの前記開口部が存在するように前記排気導入路は設けられている
インテークマニホールド。 An intake manifold including a branch passage connected to an intake port having an opening opening in a combustion chamber of an internal combustion engine and an exhaust introduction passage opening in the branch passage and introducing exhaust gas into the branch passage. hand,
An intake manifold in which the exhaust intake path is provided so that the opening of the intake port exists in a direction in which the center line of the exhaust introduction path extends in a state where the intake manifold is assembled to the internal combustion engine.
気筒毎に接続される複数の前記分岐通路を備えており、
気筒配列方向の両端に位置する各気筒を端部気筒とし、端部気筒間に配設される気筒を中間気筒としたときに、前記中間気筒に接続される前記分岐通路の前記排気導入路の直径は、前記端部気筒に接続される前記分岐通路の前記排気導入路の直径よりも小さくされている
請求項1に記載のインテークマニホールド。 The internal combustion engine is a multi-cylinder internal combustion engine having three or more cylinders.
It is equipped with a plurality of the branch passages connected to each cylinder.
When each cylinder located at both ends in the cylinder arrangement direction is an end cylinder and a cylinder arranged between the end cylinders is an intermediate cylinder, the exhaust introduction path of the branch passage connected to the intermediate cylinder The intake manifold according to claim 1, wherein the diameter is smaller than the diameter of the exhaust introduction path of the branch passage connected to the end cylinder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019140610A JP7176491B2 (en) | 2019-07-31 | 2019-07-31 | Intake manifold |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019140610A JP7176491B2 (en) | 2019-07-31 | 2019-07-31 | Intake manifold |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021025413A true JP2021025413A (en) | 2021-02-22 |
JP7176491B2 JP7176491B2 (en) | 2022-11-22 |
Family
ID=74664493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019140610A Active JP7176491B2 (en) | 2019-07-31 | 2019-07-31 | Intake manifold |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7176491B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7553386B2 (en) | 2021-03-17 | 2024-09-18 | ダイハツ工業株式会社 | Engine intake manifold |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0974748A2 (en) * | 1998-07-24 | 2000-01-26 | Adam Opel Ag | Reciprocating piston engine with exhaust gas recirculation |
JP2010223173A (en) * | 2009-03-25 | 2010-10-07 | Aisin Seiki Co Ltd | Exhaust gas recirculation device |
JP2012067694A (en) * | 2010-09-24 | 2012-04-05 | Toyota Motor Corp | Intake device of internal combustion engine |
JP2016017467A (en) * | 2014-07-09 | 2016-02-01 | 三菱自動車工業株式会社 | Internal combustion engine recirculated exhaust gas introduction device |
-
2019
- 2019-07-31 JP JP2019140610A patent/JP7176491B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0974748A2 (en) * | 1998-07-24 | 2000-01-26 | Adam Opel Ag | Reciprocating piston engine with exhaust gas recirculation |
JP2010223173A (en) * | 2009-03-25 | 2010-10-07 | Aisin Seiki Co Ltd | Exhaust gas recirculation device |
JP2012067694A (en) * | 2010-09-24 | 2012-04-05 | Toyota Motor Corp | Intake device of internal combustion engine |
JP2016017467A (en) * | 2014-07-09 | 2016-02-01 | 三菱自動車工業株式会社 | Internal combustion engine recirculated exhaust gas introduction device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7553386B2 (en) | 2021-03-17 | 2024-09-18 | ダイハツ工業株式会社 | Engine intake manifold |
Also Published As
Publication number | Publication date |
---|---|
JP7176491B2 (en) | 2022-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7849683B2 (en) | Multiple-cylinder internal combustion engine having cylinder head provided with centralized exhaust passageway | |
JP4728195B2 (en) | Engine intake control device | |
US9038612B2 (en) | Exhaust gas recirculation device of multi-cylinder engine | |
US10731607B2 (en) | Air intake apparatus for internal combustion engine | |
EP3517764B1 (en) | Cylinder head of engine, internal combustion engine and method of producing cylinder head | |
JP2018165478A (en) | Exhaust emission recirculation device | |
CN112145322B (en) | EGR gas distribution device | |
US20100037853A1 (en) | Intake system for an internal combustion engine | |
JP2021025413A (en) | Intake manifold | |
US20070006856A1 (en) | Internal combustion engine intake device | |
US10393075B2 (en) | Partition plate | |
US7270109B2 (en) | Internal combustion engine | |
JP7431548B2 (en) | engine | |
US7980232B2 (en) | Four stroke internal combustion engine | |
JP2013007360A (en) | Air intake device of internal combustion engine | |
JP2023037974A (en) | Cylinder head of engine with four cylinders aligned in series | |
US20100037840A1 (en) | Internal combustion engine | |
JPS61201826A (en) | Intake device of internal-combustion engine | |
JP3557352B2 (en) | Multi-cylinder engine intake port | |
JP3557314B2 (en) | Intake device for internal combustion engine | |
WO2023053346A1 (en) | Air intake device for internal combustion engine | |
JP2016188624A (en) | Internal combustion engine | |
JPH0234446Y2 (en) | ||
JP2007239708A (en) | Exhaust port structure for internal combustion engine | |
JP4760765B2 (en) | Internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210921 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220713 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220719 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220914 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221011 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221024 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7176491 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |