JPS61201826A - Intake device of internal-combustion engine - Google Patents

Intake device of internal-combustion engine

Info

Publication number
JPS61201826A
JPS61201826A JP60043533A JP4353385A JPS61201826A JP S61201826 A JPS61201826 A JP S61201826A JP 60043533 A JP60043533 A JP 60043533A JP 4353385 A JP4353385 A JP 4353385A JP S61201826 A JPS61201826 A JP S61201826A
Authority
JP
Japan
Prior art keywords
intake
fuel
valve
air
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60043533A
Other languages
Japanese (ja)
Inventor
Shigeo Muranaka
村中 重夫
Kozaburo Okawa
大川 晃三郎
Shigeru Kamegaya
亀ケ谷 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP60043533A priority Critical patent/JPS61201826A/en
Publication of JPS61201826A publication Critical patent/JPS61201826A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • F02B31/06Movable means, e.g. butterfly valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B2031/006Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air intake valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To improve the combustion stability of an internal-combustion engine by forming a siamese shape of intake sections for light and heavy loads, and providing a closing valve for a heavy load side at the junction of the above suction sections and arranging a fuel injection valve pointing to the center of both the intake sections. CONSTITUTION:A low speed suction port 30A and a high speed suction port 30B are arranged opposite to each other with a partition 30D at the center of both the suction ports to be formed into a siamese shape. Their junction 30C is provided with an suction control valve 31 to close the high speed port 30B at low speed running and a fuel injection valve 33 to inject fuel toward the partition 30D mounted at the center of both the ports. An intake being up a throttle valve 1 is guided through a tube 38 to be perpendicularly blowed to the above fuel jet. When the opening of the throttle valve 1 is narrow, the negative pressure of the intake closes the suction control valve 31, and causes a strong suction jet to blow out of the tube 38. Thus the fuel jet is turned toward the low speed port 30A, and violently swirled with the improved atomization of the fuel.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は内燃機関の吸気装置、特に燃焼室にサイアミ
ーズ構造の吸気ポートを連通ずるものに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an intake system for an internal combustion engine, and particularly to one in which a Siamese-structured intake port is communicated with a combustion chamber.

(従来の技術) 機関低負荷時はもともと燃焼が悪化し易いことから吸気
絞り弁下流の吸気通路の途中に該吸気通路を開1別する
吸気制御弁を設け、この吸気制御弁を低負荷時に全閉に
保持し、この吸気制御弁の一部に設けた切欠!1部ある
いは吸気制御弁周囲に設けた間隙のみから吸気を導入し
て吸気流速を速めることにより燃焼室内に強力なスワー
ルを生起させ、燃焼改善を行うようにした装置が各種提
案されている。
(Prior art) Since combustion tends to deteriorate when the engine load is low, an intake control valve is provided midway in the intake passage downstream of the intake throttle valve to open and separate the intake passage. A cutout in a part of this intake control valve keeps it fully closed! Various devices have been proposed that improve combustion by introducing intake air only through a portion or a gap provided around the intake control valve and increasing the intake air flow velocity to generate a strong swirl within the combustion chamber.

この上うなりtraには、例えば第10図に示すような
ものがある(特開昭59−82523号公報参照)。こ
れについて説明すると、吸気絞り弁1下流のマニホール
ドコレクタ部2から吸気通路を2つの吸気通路3.4に
独立分岐して燃焼室5に開口させ、一方の吸気通路4に
機関負荷に応動する吸気制御弁6を設けるとともに、他
方の吸気通路3に吸気流量に応じて噴射量が制御される
燃料噴射弁7を配設している。なお、8 A、8 Bは
吸気弁、9 A、9 I3は排気弁である。
For example, there is a beat tra as shown in FIG. 10 (see Japanese Patent Application Laid-open No. 82523/1983). To explain this, the intake passage from the manifold collector section 2 downstream of the intake throttle valve 1 is independently branched into two intake passages 3.4 that open into the combustion chamber 5, and one intake passage 4 is provided with an intake passage that responds to the engine load. A control valve 6 is provided, and a fuel injection valve 7 whose injection amount is controlled according to the intake air flow rate is provided in the other intake passage 3. Note that 8 A and 8 B are intake valves, and 9 A and 9 I3 are exhaust valves.

このため、高負荷域では吸気制御弁6の開作動により2
つの吸気通路3,4がともに開かれることになり、燃焼
室5に供給される吸気流量が増大して充填効率を高め、
このときの負荷に応じた大きな機関出力が得られる。
Therefore, in the high load range, the opening operation of the intake control valve 6 causes
Both intake passages 3 and 4 are opened, and the flow rate of intake air supplied to the combustion chamber 5 increases, increasing charging efficiency.
A large engine output corresponding to the load at this time can be obtained.

一方゛、低負荷域になると、吸気制御弁6が全閉となり
、吸気は一方の吸気通路3のみを介して燃焼室5に供給
されることになる。このため、流路が絞られるので、吸
気流速が高くなり、この−吸気流速を利用して燃焼室5
内に強力なスワールが生起され、燃焼効率が改善される
。これによりこの運転域での燃費向上が図られる。
On the other hand, in a low load range, the intake control valve 6 is fully closed, and intake air is supplied to the combustion chamber 5 through only one intake passage 3. For this reason, the flow path is narrowed, so the intake air flow rate increases, and this - intake air flow rate is used to increase the combustion chamber.
A strong swirl is generated within the combustion chamber, improving combustion efficiency. This improves fuel efficiency in this driving range.

(発明が解決しようとする問題、α) このような装置では、マニホールドコレクタ部2下流の
吸気通路が2.系統に独立しており、かつ燃料噴射弁7
が一方の吸気通路3に配設されるので、吸気制御弁6が
開弁する高負術時には他方の吸気通路4からは、空気の
みが燃焼室5に流入する。 このため、燃焼室5内での
均一な混合気の形成がなされにくく、部分的に濃い処の
ある不均一な混合気となる。こうした不均一な混合気に
点火されると、部分的に濃い混合気の処では燃焼性状が
悪いことから燃焼効率を悪化させ、両方の吸気ポートか
ら燃料を分散して供給する場合と比べ機関出力の低下や
未燃HCの増大を招き、またノッキングも生じやすくな
る。
(Problem to be solved by the invention, α) In such a device, the intake passage downstream of the manifold collector portion 2 is 2. It is independent from the system and the fuel injection valve 7
is disposed in one intake passage 3, so that only air flows into the combustion chamber 5 from the other intake passage 4 during a high-pressure operation when the intake control valve 6 is opened. For this reason, it is difficult to form a uniform air-fuel mixture within the combustion chamber 5, resulting in a non-uniform air-fuel mixture that is partially rich. When such an uneven air-fuel mixture is ignited, the partially rich air-fuel mixture has poor combustion properties, resulting in a deterioration of combustion efficiency, resulting in engine output compared to when fuel is distributed and supplied from both intake ports. This results in a decrease in the amount of unburned HC and an increase in unburned HC, and also makes knocking more likely to occur.

この発明はこのような従来の問題点に着目してなされた
もので、低負荷時には強いスワ、−ルに基づく燃焼効率
の改善を図ると同時に、高負荷時には混合気の均一化を
図る吸気装置を提供することを目的とする。
This invention was made by focusing on these conventional problems, and provides an intake system that improves combustion efficiency based on strong swirl at low loads, and at the same time homogenizes the air-fuel mixture at high loads. The purpose is to provide

(問題点を解決するための手段) この発明は、低負荷側ポート部と高負荷側ポート部の2
つのポート部を有するサイアミーズ溝造の吸気ポートと
、該吸気ポートの集合部に介装され機関負荷に応じて吸
気ポートをrfIg閉する吸気制御弁と、ポート部間の
隔壁中心近傍を指向して燃料噴射を行う燃料噴射弁と、
噴射弁の噴孔近傍に開口し噴射燃料の噴射方向を偏向さ
せる補助空気通路とを設ける。
(Means for solving the problem) The present invention provides two ports, a low load side port section and a high load side port section.
An intake port of Siamese groove structure having two port sections, an intake control valve that is interposed in the gathering section of the intake ports and closes the intake port according to the engine load, and an intake control valve that is oriented near the center of the partition wall between the port sections. a fuel injection valve that injects fuel;
An auxiliary air passage that opens near the injection hole of the injection valve and deflects the injection direction of the injected fuel is provided.

(作用) このように構成すれば、高負荷時には燃料噴射弁からポ
ート部間の隔壁中心近傍を指向して燃料が噴射されるの
で、噴射燃料は2つのポート部に均等に分配され、この
噴射燃料は、吸気制御弁の開弁により吸気流量の増大し
た吸気と速やかに混合して燃焼室に供給される。このた
め、一方の吸気通路のみから噴射燃料が供給されるもの
と異なり、燃焼室内での均一な混合気の形成が容易であ
り、この燃焼性状の改善により機関出力や燃費の向上並
びに排気エミッシヨンの低減を図ることができる。
(Function) With this configuration, when the load is high, fuel is injected from the fuel injection valve toward the center of the partition wall between the port sections, so the injected fuel is evenly distributed to the two port sections, and this injection The fuel is quickly mixed with the intake air whose intake flow rate has increased by opening the intake control valve, and the fuel is supplied to the combustion chamber. Therefore, unlike injected fuel that is supplied from only one intake passage, it is easy to form a uniform air-fuel mixture in the combustion chamber, and this improvement in combustion properties improves engine output and fuel efficiency, as well as reduces exhaust emissions. It is possible to reduce the

また、低負荷時に吸気制御弁が閉弁すると、この閉弁に
より吸気は制御弁の一部に設けられた切欠さ郁あるいは
制御弁周囲の間隙を介して流入するため吸気流速が増加
するとともに、吸気制御弁前後に大きな差圧が生じ、こ
の差圧あるいは分岐流に応じて噴射弁の噴孔近傍に開口
した補助空気通路から空気が噴流する。
In addition, when the intake control valve closes during low load, the intake air flows through a notch provided in a part of the control valve or a gap around the control valve, so the intake flow rate increases. A large pressure difference occurs before and after the intake control valve, and air is jetted from an auxiliary air passage opened near the injection hole of the injection valve in response to this pressure difference or the branched flow.

一方、この運転域にも燃料噴射弁からはポート部間の隔
壁中心近傍を指向して燃料が均等に分配噴射されるので
あるが、この空気の噴流により噴射燃料の噴射方向が低
負荷側ポート部に偏向され、大部分の噴射燃料は低負荷
側ポート部から流速の増した吸気により燃焼室に流入す
る。
On the other hand, even in this operating range, the fuel is evenly distributed and injected from the fuel injection valve toward the center of the partition wall between the ports, but due to this jet of air, the injection direction of the injected fuel is directed to the low-load side port. Most of the injected fuel flows into the combustion chamber from the low-load side port as intake air with increased flow velocity.

このため、この運転域に対応する少ない燃料が分散され
ることな(低負荷側ポート部に集中され、この集中され
た噴射燃料と速い吸気とは、燃焼室内に強いスワールを
生起して燃焼性状を改善する。
For this reason, the small amount of fuel corresponding to this operating range is not dispersed (concentrated in the low-load side port section, and this concentrated injected fuel and fast intake air create a strong swirl in the combustion chamber, resulting in poor combustion properties. improve.

この燃焼性状の改善により燃焼安定性あるいは機関安定
性が図られる。
Combustion stability or engine stability is achieved by improving combustion properties.

(実施例) 第1図は三の発明の第1実施例の要部断面図、第2図は
同じくシリンダヘッド部の一部断面平面図である。図中
20は機関本体、21はシリンダブロック、22はシリ
ンダヘッド、23は燃焼室、25は吸気マニホールド2
4等にて形成される吸気通路、26は排気通路、27 
A、27 Bは吸気弁、28は排気弁、29は点火栓で
ある。
(Embodiment) FIG. 1 is a sectional view of a main part of a first embodiment of the third aspect of the invention, and FIG. 2 is a partially sectional plan view of a cylinder head portion. In the figure, 20 is the engine body, 21 is the cylinder block, 22 is the cylinder head, 23 is the combustion chamber, and 25 is the intake manifold 2.
Intake passage formed by 4 etc., 26 is an exhaust passage, 27
A, 27B are intake valves, 28 is an exhaust valve, and 29 is a spark plug.

シリングヘッド22には低負荷側ポート部30Aと高負
荷側ポート部30Bの2つのポート部を有するサイアミ
ーズ構造の吸気ポート30が燃焼室23に連通形成され
る。
An intake port 30 having a Siamese structure and having two port sections, a low load side port section 30A and a high load side port section 30B, is formed in the sill head 22 and communicates with the combustion chamber 23.

吸気ポート30の集合部30C近傍の吸気通路25には
、吸気制御弁31が介装され、この吸気制御弁31には
低負荷側ポート部30Aの側の周縁に切欠き部31Aが
形成される。吸気制御弁31は吸入負圧(機関負荷)に
応動して開弁する。なお、32は吸気制御弁31上流の
吸入負圧を作動負圧として吸気制御弁31を作動するダ
イヤ7ラムアクチユエータである。
An intake control valve 31 is interposed in the intake passage 25 near the gathering portion 30C of the intake port 30, and the intake control valve 31 has a cutout portion 31A formed at its periphery on the low-load side port portion 30A side. . The intake control valve 31 opens in response to intake negative pressure (engine load). Note that 32 is a seven-diamond ram actuator that operates the intake control valve 31 using the intake negative pressure upstream of the intake control valve 31 as the operating negative pressure.

33は、吸気制御弁31の下流近傍位置の取り付は孔3
4に固定され吸気ボー)30に望んで設けられる燃料噴
射弁で、噴射弁軸が2つのポート部30A、30B間の
隔壁中心30Dの近傍を指向して設けられる。このため
、噴射弁33からの燃料噴霧は、円錐状に分散すること
により、2つのポート部30 A、30 Bに向けて均
等に分配供給される。
33 is a hole 3 for mounting at a position near the downstream of the intake control valve 31.
The fuel injection valve is fixed at the intake bow 30 and is fixed at the intake bow 30, with the injection valve shaft oriented near the center 30D of the partition wall between the two port portions 30A and 30B. Therefore, the fuel spray from the injection valve 33 is dispersed in a conical shape, so that it is evenly distributed and supplied toward the two port sections 30A and 30B.

吸気マニホールド24に形成される各噴射弁33の噴孔
近傍には空気リング35が圧入される。
An air ring 35 is press-fitted near the injection hole of each injection valve 33 formed in the intake manifold 24 .

空気リング35は、第3図のように外周に空気溝35A
が形成され、この空気溝35Aがら空気リング35の内
周に貫通する空気噴孔35Bが貫通される。このため、
圧入状態では空気リング35の内周が噴孔35Cとして
形成され、この噴孔35Cに空気溝35Aに連通する空
気噴孔35Bが開口することになる。
The air ring 35 has an air groove 35A on the outer periphery as shown in FIG.
is formed, and an air injection hole 35B penetrating the inner periphery of the air ring 35 is passed through the air groove 35A. For this reason,
In the press-fitted state, the inner periphery of the air ring 35 is formed as a nozzle hole 35C, and an air nozzle hole 35B communicating with the air groove 35A opens in the nozzle hole 35C.

37は、気筒間を貫通して吸気マニホールド24内に形
成される連通路で、この連通路37は、各気筒毎に空気
溝35Aと連通する。38は、この連通路37と吸気絞
り弁1上流の吸気通路25とを連通する通路である。
Reference numeral 37 denotes a communication passage formed in the intake manifold 24 passing between the cylinders, and this communication passage 37 communicates with the air groove 35A for each cylinder. 38 is a passage that communicates this communication passage 37 with the intake passage 25 upstream of the intake throttle valve 1.

こうして、通路38、連通路37、空気溝35A、空気
噴孔35Bとから吸気制御弁31をバイパスして噴射弁
33の噴口近傍に開口する補助空気通路が形成される。
In this way, an auxiliary air passage that bypasses the intake control valve 31 and opens near the nozzle of the injection valve 33 is formed from the passage 38, the communication passage 37, the air groove 35A, and the air injection hole 35B.

このため、吸気制御弁31が低負荷時に閉じると、吸気
制御弁31の下流には大きな負圧が発生し、この負圧と
吸気絞り弁1上流の大気圧との差圧に応じ吸気絞り弁1
上流の空気が補助空気通路を介して空気噴孔35Bから
噴射弁軸に対しほぼ直角に噴流することとなる。この場
合、噴射弁33から燃料が噴射されると、この燃料噴霧
に空気の噴流が衝突することになり、燃料噴霧が低負荷
側ポート部30Aに偏向される。
Therefore, when the intake control valve 31 closes under low load, a large negative pressure is generated downstream of the intake control valve 31, and the intake throttle valve responds to the differential pressure between this negative pressure and the atmospheric pressure upstream of the intake throttle valve 1. 1
The upstream air flows from the air injection hole 35B through the auxiliary air passage almost perpendicularly to the injection valve axis. In this case, when fuel is injected from the injection valve 33, a jet of air collides with the fuel spray, and the fuel spray is deflected toward the low-load side port portion 30A.

なお、この偏向の方向や度合は噴孔35Cに対する空気
噴孔25Bの角度、断面積等により決定されるのである
が、この例では燃料噴霧に対しほぼ直角となり、かつ偏
向後の燃料噴霧が低負荷側ポー)8IS30Aに向かう
ように位置決めがされでいる。
The direction and degree of this deflection are determined by the angle, cross-sectional area, etc. of the air nozzle hole 25B with respect to the nozzle hole 35C, but in this example, it is approximately perpendicular to the fuel spray, and the fuel spray after deflection is low. It has been positioned so that it faces the load side port) 8IS30A.

このような構成による作用を述べると、低負荷運転状態
では、吸気絞り弁1の下流に発生する大きな吸入負圧に
応動して吸気制御弁31が閉弁する(図示状態は全閉を
示す。)。このため、吸気は低負荷側ポート部30Aの
側に形成した切欠き部31Aを介して吸気ポート3′0
へと流入するが、大半の吸気は流路面積を絞る切欠き部
31Aにより流速を増し低負荷側ポート部30Aから燃
焼室23に流入するので、燃焼室23内に強いスワール
が生起される。
To describe the effect of such a configuration, in a low-load operating state, the intake control valve 31 closes in response to a large suction negative pressure generated downstream of the intake throttle valve 1 (the illustrated state shows a fully closed state). ). Therefore, the intake air flows through the intake port 3'0 through the notch 31A formed on the side of the low load side port 30A.
However, most of the intake air increases the flow velocity by the notch 31A that narrows the flow path area and flows into the combustion chamber 23 from the low-load side port 30A, so a strong swirl is generated in the combustion chamber 23.

一方、噴射弁33がらの燃料噴霧は2つのポート部30
A、30Bに均等に分配されるように噴射されるが、吸
気絞り弁1上流と吸気制御弁31下流の差圧により吸気
絞り弁1上流の空気が通路38、連通路37、空気溝3
5Aを介して噴孔35C近傍に開口する空気噴孔35B
から噴射弁33の噴射方向に対しほぼ直角方向に噴流す
る。
On the other hand, the fuel spray from the injection valve 33 flows through the two port portions 30.
A and 30B, but due to the differential pressure between the upstream of the intake throttle valve 1 and the downstream of the intake control valve 31, the air upstream of the intake throttle valve 1 is injected into the passage 38, the communication passage 37, and the air groove 3.
Air nozzle hole 35B opens near nozzle hole 35C via 5A
The jet flows from the injection valve 33 in a direction substantially perpendicular to the injection direction of the injection valve 33.

この空気の噴流により、Pt53図のように燃料噴71
39が偏向され、大半は流速を増した吸気とともに低負
荷側ポート部30Aから燃焼室23に流入すると同時に
、この空気噴流に上り噴霧燃料の微粒化と空気との混合
が促進される。この結果、低温時のような燃料の混合気
化が困難な運転条件下でも、この噴流空気が混合気化を
積極的に促進することとなり、燃焼室23内での燃料と
空気との混合が良く、かつ吸気制御弁31の閉弁による
強いスワールにより大幅な燃焼改善が図られる。
This jet of air causes the fuel injection 71 as shown in Pt53 diagram.
39 is deflected, and most of the intake air flows into the combustion chamber 23 from the low-load side port portion 30A with the increased flow velocity, and at the same time, it rises to this air jet, promoting atomization of the sprayed fuel and mixing with the air. As a result, even under operating conditions where fuel mixture vaporization is difficult, such as at low temperatures, this jet air actively promotes mixture vaporization, resulting in good mixing of fuel and air within the combustion chamber 23. In addition, the strong swirl caused by the closing of the intake control valve 31 significantly improves combustion.

こうして燃焼性状の改善された混合気においては燃焼速
度が向上して燃焼安定性を増すことから希薄混合気m焼
を行う機関あるいは低負荷時に大量に排気還流を行う機
関であっても安定した燃焼が得られ、燃費や排気エミッ
ションの向上を達成することができる。
In this way, a mixture with improved combustion properties improves the combustion speed and increases combustion stability, so even engines that perform lean mixture combustion or engines that recirculate a large amount of exhaust gas at low loads can achieve stable combustion. It is possible to achieve improvements in fuel efficiency and exhaust emissions.

これに対し、高負荷状態では吸気絞り弁1の開弁に応動
して吸気制御弁31が開弁するので(第2図の図示状態
)、吸気絞り弁1上流と吸気制御弁31下流の差圧がな
くなり、補助空気通路を介しての空気の噴流が停止する
On the other hand, in a high load state, the intake control valve 31 opens in response to the opening of the intake throttle valve 1 (the state shown in FIG. 2), so the difference between the upstream of the intake throttle valve 1 and the downstream of the intake control valve 31 is The pressure is removed and the jet of air through the auxiliary air passage stops.

このため、第4図のように、噴射弁33からの燃料噴7
339は偏向されることがないので、円錐状に分散する
燃料噴霧は2つのポート部30A。
For this reason, as shown in FIG. 4, the fuel injection 7 from the injection valve 33
339 is not deflected, so the fuel spray is dispersed in a conical manner through the two port portions 30A.

30Bに均等に分配され、吸気制御弁31のない通常の
サイアミーズ構造の2吸気弁機関と同じく、2つの吸気
弁27 A、27 Bの開弁時に空気と燃料とが均等に
吸入される。
30B, and as in a normal Siamese two-intake valve engine without an intake control valve 31, air and fuel are evenly taken in when the two intake valves 27A and 27B are opened.

この結果、従来例のように燃料が一方の吸気ポートのみ
から供給されることにより部分的に濃い混合気が形成さ
れてしまうものと異なり、混合気の形成が均一となり、
これにより燃焼効率が改善され、fi関出力の向上と排
気エミッションの低下を達成し、また耐ノツク性も向上
する。
As a result, unlike conventional examples where fuel is supplied from only one intake port and a partially rich mixture is formed, the mixture is formed uniformly.
This improves combustion efficiency, improves the fuel output and reduces exhaust emissions, and also improves knock resistance.

なお、吸気制御弁31の開弁により吸気の充填効率が高
くなるため、これが更に燃焼効率の改善に寄与して高出
力、低排気エミッション、低燃費といった効果を一段と
高める。
Note that opening the intake control valve 31 increases the intake air filling efficiency, which further contributes to improving combustion efficiency and further enhances effects such as high output, low exhaust emissions, and low fuel consumption.

また、吸気ポート30がサイアミーズ構造のものでは、
吸気絞り弁1下流の吸気通路25を独立分岐して燃焼室
23に連通するものと異なり、大幅な簡素化が可能とな
るので、生産性、歩留り、コストとも大幅に改善するこ
とができる。
In addition, if the intake port 30 has a Siamese structure,
Unlike the case where the intake passage 25 downstream of the intake throttle valve 1 is independently branched and communicated with the combustion chamber 23, it can be significantly simplified, and therefore productivity, yield, and cost can be significantly improved.

@S図はこの発明の第2実施例の要部断面図、第6図は
155図のA矢視図である。
@S figure is a sectional view of a main part of the second embodiment of the present invention, and FIG. 6 is a view taken in the direction of arrow A in FIG. 155.

この例では、補助空気通路を構成する連通路37、噴射
弁33の取り付は孔34、噴射033の噴孔42、吸気
制御弁31が介装される吸気通路部分を、吸気マニホー
ルド24に一体形成するのではなくスペーサ40の別部
品にて形成し、また空気リングにより空気噴孔を形成す
るのではなく、ドリル加工により空気噴孔41を形成す
るものである。このため、空気リングを圧入するもので
はこの圧入部位の寸法に高い製作精度が要求されるので
あるが、この例では空気噴孔41に加工が施せるため、
精度管理が容易となる。なお、43は噴射弁33固定用
のリテーナである。
In this example, the communication passage 37 constituting the auxiliary air passage, the installation of the injection valve 33, the hole 34, the injection hole 42 of the injection 033, and the intake passage portion in which the intake control valve 31 are installed are integrated into the intake manifold 24. The air injection holes 41 are formed as a separate part of the spacer 40 instead of being formed, and the air injection holes 41 are formed by drilling instead of forming the air injection holes with an air ring. For this reason, in the case where the air ring is press-fitted, high manufacturing precision is required for the dimensions of this press-fitting part, but in this example, the air nozzle hole 41 can be machined.
Accuracy control becomes easier. Note that 43 is a retainer for fixing the injection valve 33.

この例では、第1実施例の作用効果に加えて精度管理の
容易さにより生産性が向上する。
In this example, in addition to the effects of the first embodiment, productivity is improved due to ease of accuracy control.

第7図はこの発明の第3実施例の要部断面図、第8図は
この実施例のシリングヘッド部の平面図であり、第9図
はこの発明の第4実施例のシリンダヘッド部の平面図で
ある。
FIG. 7 is a sectional view of a main part of a third embodiment of the present invention, FIG. 8 is a plan view of a cylinder head of this embodiment, and FIG. 9 is a diagram of a cylinder head of a fourth embodiment of this invention. FIG.

第3実施例では吸気制御弁50の一部に切欠き部を設け
たものではなく、全閉位置(第7図の図示状!りで吸気
制御弁50の全周と吸気通路壁25Aとの闇に開隔を有
するものである。
In the third embodiment, a notch is not provided in a part of the intake control valve 50, but in the fully closed position (as shown in FIG. 7), the entire circumference of the intake control valve 50 and the intake passage wall 25A are It is something that has a gap in darkness.

また、補助空気通路は吸気制御弁50をバイパスするバ
イパス通路51にて形成する。すなわち、バイパス通路
51の一端は噴射弁33の噴孔52近傍に開口するので
あるが、開口の方向は低負荷側ボー)g30Aを指向し
て噴射弁軸に対し斜めに形成される。他端は吸気絞り弁
上流にではなく、この吸気制御弁50上流に連通される
Further, the auxiliary air passage is formed by a bypass passage 51 that bypasses the intake control valve 50. That is, one end of the bypass passage 51 opens near the nozzle hole 52 of the injection valve 33, and the opening direction is formed obliquely with respect to the injection valve axis, oriented toward the low-load side bow)g30A. The other end is communicated not with the upstream side of the intake throttle valve but with the upstream side of this intake control valve 50.

なお、この例は4弁式磯関に適用されたものて゛ある。Note that this example is applied to a four-valve type Isoseki.

一方、!@4実施例は第3実施例の吸気制御弁50とバ
イパス通路51を弁径の異なる2つの吸気弁60 A、
60 I3を有する3弁式磯関に適用したものである。
on the other hand,! In the @4 embodiment, the intake control valve 50 and bypass passage 51 of the third embodiment are replaced by two intake valves 60A with different valve diameters,
This is applied to a 3-valve Isoseki with 60 I3.

これらの第3実施例、第4実施例でも、第1実施例と同
様の作用効果を奏する。
These third and fourth embodiments also provide the same effects as the first embodiment.

(発明の効果) この発明では、低負荷側ポート部と高負荷側ポート部の
2つのポート部を有するサイアミーズ構逍の吸気ポート
と、該吸気ポートの集合部に介装され機関負荷に応じて
吸気ポートを開閉する吸気制御弁と、ポート部間の隔壁
中心近傍を指向して燃料噴射を行う燃料噴射弁と、噴射
弁の噴孔近傍に開口し噴射燃料の噴射方向を偏向させる
補助空気通路とを設けたので、高負荷時には両方のポー
ト部に向けての均等な分配噴射により燃焼室内での均一
な混合気の形成が可能となり、燃焼性状の改善による機
関出力、燃費、耐ノック性の向上や排気エミンションの
低減を達成することができる。
(Effects of the Invention) This invention has a Siamese structure intake port having two port parts, a low-load side port part and a high-load side port part, and an intake port that is interposed in the gathering part of the intake ports and An intake control valve that opens and closes the intake port, a fuel injection valve that injects fuel toward the center of the partition between the ports, and an auxiliary air passage that opens near the injection hole of the injection valve and deflects the injection direction of the injected fuel. As a result, at high loads, evenly distributed injection toward both ports enables the formation of a uniform air-fuel mixture in the combustion chamber, resulting in improvements in engine output, fuel efficiency, and knock resistance due to improved combustion properties. improvement and reduction of exhaust emissions can be achieved.

また、低負荷時には吸気制御弁前後の大きな差圧や吸気
の分岐流に応じて噴射弁の噴孔近傍に開口した補助空気
通路から空気が噴流することにより噴射燃料の噴射力向
が低負荷側ポート部に偏向され、この燃料が速い吸気流
速とともに燃焼室に流入すると、強いスワールが生起さ
れることとなり、この燃焼性状の改善により燃焼安定性
が向上する。
In addition, at low loads, air is jetted from the auxiliary air passage opened near the nozzle hole of the injection valve in response to the large pressure difference before and after the intake control valve and the branched flow of intake air, and the direction of the injection force of the injected fuel is shifted to the low load side. When this fuel is deflected to the port and flows into the combustion chamber with a high intake flow velocity, a strong swirl is generated, and this improvement in combustion properties improves combustion stability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1実施例の要部断面図、第2図は
この実施例のシリングヘッド部の一部断面平面図、第3
図、第4図はそれぞれこの実施例における低負荷時、高
負荷時の燃料噴霧の状態を示す説明図である。 第5図はこの発明の第2実施例の要部断面図、第6図は
第5図のA矢視図である。第7図はこの発明の第3実施
例の要部断面図、第8図はこの実施例のシリングヘッド
部の平面図である。第9図はこの発明の第4実施例のシ
リングヘッド部の平面図である。 第10図は在米装置の概略図である。 1・・・吸気絞り弁、20・・・機関本体、22・・・
シリングヘンド、23・・・燃焼室、24・・・吸気マ
ニホールド、25・・・吸気通路、27A、27B・・
・吸気弁、28.28A、28B・・・排気弁、30・
・・吸気ポート、3OA・・・低負荷側ポート部、30
B・・・高負荷側ポート部、30C・・・集合部、31
・・・吸気制御弁、31A・・・切欠き部、32・・・
ダイヤ7ラムアクチユエータ、33・・・燃料噴射弁、
34・・・取り付は孔、35・・・空気リング、35A
・・・空気溝、35I3・・・空気噴孔、35C・・・
噴射弁の噴孔、37・・・連通路、38・・・通路、3
9・・・燃料噴霧、40・・・スペーサ、41・・・空
気噴孔、42・・・噴射弁の噴孔、43・・・リテーナ
、50・・・吸気制御弁、51・・・バイパス通路、5
2・・・噴射弁の噴孔、60 A、60 B・・・吸気
弁。 @1図   。 30A・−−イec ’@ pl ノイlj’l 7r
F−)i30C−・−1古部 第5図 第6図 第2図 第8図
FIG. 1 is a sectional view of a main part of a first embodiment of the present invention, FIG. 2 is a partially sectional plan view of a shilling head portion of this embodiment, and FIG.
4 are explanatory diagrams showing the state of fuel spray during low load and high load, respectively, in this embodiment. FIG. 5 is a sectional view of a main part of a second embodiment of the present invention, and FIG. 6 is a view taken in the direction of arrow A in FIG. FIG. 7 is a sectional view of a main part of a third embodiment of the present invention, and FIG. 8 is a plan view of a shilling head portion of this embodiment. FIG. 9 is a plan view of a shilling head portion according to a fourth embodiment of the present invention. FIG. 10 is a schematic diagram of the US-based equipment. 1... Intake throttle valve, 20... Engine body, 22...
Schilling hand, 23... Combustion chamber, 24... Intake manifold, 25... Intake passage, 27A, 27B...
・Intake valve, 28.28A, 28B...Exhaust valve, 30・
...Intake port, 3OA...Low load side port section, 30
B...High load side port part, 30C...Collection part, 31
...Intake control valve, 31A...Notch, 32...
Dia 7 ram actuator, 33... fuel injection valve,
34... Mounting hole, 35... Air ring, 35A
...Air groove, 35I3...Air nozzle hole, 35C...
Nozzle hole of injection valve, 37... Communication passage, 38... Passage, 3
9... Fuel spray, 40... Spacer, 41... Air injection hole, 42... Nozzle hole of injection valve, 43... Retainer, 50... Intake control valve, 51... Bypass aisle, 5
2... Nozzle hole of injection valve, 60 A, 60 B... Intake valve. @Figure 1. 30A・--EC'@pl Noi lj'l 7r
F-) i30C-・-1 old part Fig. 5 Fig. 6 Fig. 2 Fig. 8

Claims (1)

【特許請求の範囲】[Claims] 低負荷側ポート部と高負荷側ポート部の2つのポート部
を有するサイアミーズ構造の吸気ポートと、該吸気ポー
トの集合部に介装され機関負荷に応じて吸気ポートを開
閉する吸気制御弁と、ポート部間の隔壁中心近傍を指向
して燃料噴射を行う燃料噴射弁と、噴射弁の噴孔近傍に
開口し噴射燃料の噴射方向を偏向させる補助空気通路と
を設けたことを特徴とする内燃機関の吸気装置。
an intake port with a Siamese structure having two port sections, a low load side port section and a high load side port section; an intake control valve that is interposed in the gathering section of the intake ports and opens and closes the intake port according to the engine load; An internal combustion engine characterized by having a fuel injection valve that injects fuel toward the center of a partition wall between ports, and an auxiliary air passage that opens near the injection hole of the injection valve and deflects the injection direction of the injected fuel. Engine intake system.
JP60043533A 1985-03-05 1985-03-05 Intake device of internal-combustion engine Pending JPS61201826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60043533A JPS61201826A (en) 1985-03-05 1985-03-05 Intake device of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60043533A JPS61201826A (en) 1985-03-05 1985-03-05 Intake device of internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS61201826A true JPS61201826A (en) 1986-09-06

Family

ID=12666377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60043533A Pending JPS61201826A (en) 1985-03-05 1985-03-05 Intake device of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS61201826A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61226563A (en) * 1985-03-29 1986-10-08 Mazda Motor Corp Fuel injection device for engine
JPH0349373U (en) * 1989-09-20 1991-05-14
JPH0349372U (en) * 1989-09-20 1991-05-14
NL1002516C2 (en) * 1996-03-04 1997-09-05 Netherlands Car Bv Combustion engine.
JP2002364472A (en) * 2002-05-22 2002-12-18 Hitachi Ltd Intake device for internal combustion engine
US9181856B2 (en) 2008-05-23 2015-11-10 Borgwarner Inc. Exhaust driven auxiliary air pump and products and methods of using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61226563A (en) * 1985-03-29 1986-10-08 Mazda Motor Corp Fuel injection device for engine
JPH0349373U (en) * 1989-09-20 1991-05-14
JPH0349372U (en) * 1989-09-20 1991-05-14
NL1002516C2 (en) * 1996-03-04 1997-09-05 Netherlands Car Bv Combustion engine.
WO1997033079A1 (en) * 1996-03-04 1997-09-12 Netherlands Car B.V. A combustion engine
JP2002364472A (en) * 2002-05-22 2002-12-18 Hitachi Ltd Intake device for internal combustion engine
US9181856B2 (en) 2008-05-23 2015-11-10 Borgwarner Inc. Exhaust driven auxiliary air pump and products and methods of using the same

Similar Documents

Publication Publication Date Title
JP3003339B2 (en) Intake system for fuel injection type internal combustion engine
US4196701A (en) Internal combustion engine intake system having auxiliary passage bypassing main throttle to produce swirl in intake port
JPS6052292B2 (en) Dual intake passage internal combustion engine
JPH0415937Y2 (en)
JPS61201826A (en) Intake device of internal-combustion engine
US4450803A (en) Internal combustion engine
JPH048606B2 (en)
JPS6232328B2 (en)
JP2961779B2 (en) Fuel supply device for stratified combustion internal combustion engine
JP3428372B2 (en) Direct in-cylinder injection spark ignition internal combustion engine
JP2501556Y2 (en) Internal combustion engine intake system
JPH0555691B2 (en)
JPH0315623A (en) Intake three-valve engine
JPH10231729A (en) Intake device for internal combustion engine
JP3591141B2 (en) In-cylinder direct injection spark ignition internal combustion engine
JPH02176115A (en) Intake control device for internal combustion engine
JPH0413415Y2 (en)
JPH0320502Y2 (en)
JP2861496B2 (en) Intake device for double intake valve type internal combustion engine
JP2523564Y2 (en) Intake device for internal combustion engine
JPH036857Y2 (en)
JPH0480231B2 (en)
JPH0861190A (en) Fuel injection type engine
JPH084537A (en) Intake control device for engine
JP2000240539A (en) Stratified charge combustion engine