JP2021022490A - Structure of hydrogen conduit and manufacturing method - Google Patents

Structure of hydrogen conduit and manufacturing method Download PDF

Info

Publication number
JP2021022490A
JP2021022490A JP2019138406A JP2019138406A JP2021022490A JP 2021022490 A JP2021022490 A JP 2021022490A JP 2019138406 A JP2019138406 A JP 2019138406A JP 2019138406 A JP2019138406 A JP 2019138406A JP 2021022490 A JP2021022490 A JP 2021022490A
Authority
JP
Japan
Prior art keywords
metal plate
carbon film
hydrogen
plate
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019138406A
Other languages
Japanese (ja)
Other versions
JP7250408B2 (en
Inventor
宏二 平永
Koji Hiranaga
宏二 平永
明夫 林
Akio Hayashi
明夫 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2019138406A priority Critical patent/JP7250408B2/en
Publication of JP2021022490A publication Critical patent/JP2021022490A/en
Application granted granted Critical
Publication of JP7250408B2 publication Critical patent/JP7250408B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Laser Beam Processing (AREA)
  • Fuel Cell (AREA)

Abstract

To improve the quality of laser welding, by preventing hydrogen embrittlement of a hydrogen conduit.SOLUTION: In a manufacture method of a hydrogen conduit passing gas containing hydrogen gas by welding two metal plates, a carbon film is formed on the metal plate surface of the hydrogen conduit, the two metal plates have a concave part and a flat part for the hydrogen conduit, the concave parts and the flat parts of the two metal plates are aligned, and then the weld zone around the concave part is laser welded along the concave part. Prior to carbon film formation, micro irregularities are formed on the metal surface by laser irradiation, and the carbon film is formed by CVD method and the like. The laser welded parts on the flat part of the metal plate exist at three points on one side of the concave, one structure of the laser welded part is a metal plate A, a carbon film on the metal plate A, a carbon film on the metal plate B laminated on the surface of another metal plate B in contact with the carbon film on the metal plate A, and a metal plate B, the other one is the metal plate A, a carbon film on the metal plate A or a carbon film on the metal plate B, and the metal plate B, and the remaining structure of the weld zone is the metal plate A and the metal plate B.SELECTED DRAWING: Figure 1

Description

本発明は、水素ガスを含む気体が通る導管の構造およびその作製方法に関する。 The present invention relates to a structure of a conduit through which a gas containing hydrogen gas passes and a method for producing the same.

自動車、船舶や飛行機の燃料には、ガソリン・軽油・重油等の炭化水素を主成分とする化石液体燃料が主として使用されている。また、人間生活に必要な電気もこれらの液体燃料、石炭や天然ガス等の炭化水素系燃料が主として用いられている。しかし、これらの炭化水素系燃料を燃焼させるとニ酸化炭素が発生し、地球温暖化の原因となるので、近年はこれらの炭化水素系燃料の消費を大幅に削減するための種々の提案がなされている。その中で最も有望なものが水素を燃料とする燃料電池である。 Fossil liquid fuels containing hydrocarbons such as gasoline, light oil, and heavy oil are mainly used as fuels for automobiles, ships, and airplanes. In addition, these liquid fuels and hydrocarbon fuels such as coal and natural gas are mainly used for electricity necessary for human life. However, when these hydrocarbon fuels are burned, carbon dioxide is generated and causes global warming. Therefore, in recent years, various proposals have been made to significantly reduce the consumption of these hydrocarbon fuels. ing. The most promising of these are hydrogen-fueled fuel cells.

燃料電池の発電原理は、水の電気分解と逆反応であり、電解質を挟んだ2つの電極に酸素ガスと水素ガスを供給して電気を発生させる。図4は、固体高分子形燃料電池の構造の一例を示す図である。水素(H)ガスが通り、燃料電池21へ水素ガスを供給する水素(ガス)導管17および燃料電池から排出される未反応水素ガスが流れる導管19は、2枚の金属板11および金属板12(金属合板13)が合わさり形成される。燃料電池21において、固体電解質24の両側にアノード電極(燃料極)25およびカソード電極(空気極)23が配置され、さらにアノード電極(燃料極)25の外側には水素供給ライン26が、カソード電極(空気極)23の外側には空気供給ライン22が配置されている。 The power generation principle of a fuel cell is a reaction opposite to the electrolysis of water, and oxygen gas and hydrogen gas are supplied to two electrodes sandwiching an electrolyte to generate electricity. FIG. 4 is a diagram showing an example of the structure of a polymer electrolyte fuel cell. The hydrogen (gas) conduit 17 through which hydrogen (H 2 ) gas passes and supplies hydrogen gas to the fuel cell 21 and the conduit 19 through which unreacted hydrogen gas discharged from the fuel cell flows are two metal plates 11 and a metal plate. 12 (metal plywood 13) are put together to form. In the fuel cell 21, an anode electrode (fuel electrode) 25 and a cathode electrode (air electrode) 23 are arranged on both sides of the solid electrolyte 24, and a hydrogen supply line 26 is provided outside the anode electrode (fuel electrode) 25. An air supply line 22 is arranged outside the (air electrode) 23.

空気(O+N)または酸素(O)を供給する導管(空気導管)18および燃料電池21から排出される水(HO)と未反応空気が流れる導管20は、2枚の金属板14および金属板15(金属合板16)が合わさり形成される。図4に示すように、水素導管17、その排出導管19、および空気導管18、その排出導管20は凸形状であるから、金属合板13および16を重ねていくとそれらの間に空間ができるので、この空間に燃料電池21を配置すると、多数の燃料電池を組み込んだ燃料電池モジュールを作製できる。上下方向には燃料電池が交互に逆に配置されており、1つの水素導管17から上下の水素電池21の水素供給ライン26に入り、それらの水素供給ライン26から排出される未反応水素は排出導管19へ入る。また1つの空気導管18から上下の水素電池21の空気供給ライン22に入り、それらの空気供給ライン22から排出される水および未反応空気は排出導管20へ入る。尚、図4において気体の流れは矢印記号⇒で示している。 The conduit (air conduit) 18 that supplies air (O 2 + N 2 ) or oxygen (O 2 ) and the conduit 20 through which water (H 2 O) discharged from the fuel cell 21 and unreacted air flow are made of two metals. The plate 14 and the metal plate 15 (metal plywood 16) are put together to form. As shown in FIG. 4, the hydrogen conduit 17, its discharge conduit 19, the air conduit 18, and its discharge conduit 20 have a convex shape, so that when the metal plywoods 13 and 16 are stacked, a space is created between them. By arranging the fuel cell 21 in this space, a fuel cell module incorporating a large number of fuel cells can be manufactured. Fuel cells are alternately arranged in the vertical direction in the opposite direction, and one hydrogen conduit 17 enters the hydrogen supply lines 26 of the upper and lower hydrogen batteries 21, and unreacted hydrogen discharged from the hydrogen supply lines 26 is discharged. Enter conduit 19. Further, one air conduit 18 enters the air supply lines 22 of the upper and lower hydrogen batteries 21, and the water and unreacted air discharged from the air supply lines 22 enter the discharge conduit 20. In FIG. 4, the gas flow is indicated by the arrow symbol ⇒.

リン酸形燃料電池も、図4における固体電解質24をリン酸(液体形電解質)に変更すれば図4と同様な構造で構成できる。溶融炭酸塩形燃料電池の場合も、図4における固体電解質24を(LiCO+KCO)電解質に変更し、空気導管に酸化剤ガス(O+CO)が通るだけであるから、図4と同様な構造で構成できる。このように、燃料電池の殆どにおいて、水素を供給する水素導管が必要であり、2枚の金属板を用いて図4に示すような燃料モジュール構造を作製できる。 The phosphoric acid fuel cell can also be configured with the same structure as that of FIG. 4 by changing the solid electrolyte 24 in FIG. 4 to phosphoric acid (liquid electrolyte). In the case of the molten carbonate fuel cell as well, the solid electrolyte 24 in FIG. 4 is changed to the electrolyte (Li 2 CO 3 + K 2 CO 3 ), and the oxidant gas (O 2 + CO 2 ) only passes through the air conduit. , Can be configured with the same structure as in FIG. As described above, most of the fuel cells require a hydrogen conduit for supplying hydrogen, and a fuel module structure as shown in FIG. 4 can be produced by using two metal plates.

水素脆性と金属材料の安全性{水素エネルギーシステムvol.22 No.2(1997)}Hydrogen embrittlement and safety of metallic materials {Hydrogen energy system vol.22 No.2 (1997)}

上述したように、水素燃料電池では、水素が通る水素(ガス)導管が必須であり、その導管材料としてSUS304等のステンレス鋼が主として用いられている。図4では、水素導管17を構成する金属板11および12が相当する。しかし、ステンレス鋼の内表面に水素(H)ガスが長期間接触すると、水素がステンレス鋼中に侵入してステンレス鋼が脆くなるという現象(水素脆性)が発生する。特にステンレス鋼で応力が集中する部分(図4では、たとえば水素導管17の角部)で顕著に現れる。燃料電池は高価なものであるから、コスト低減のためには燃料電池の長寿命化が必要であるが、このステンレス鋼の水素脆性による劣化が燃料電池の長寿命化の妨げとなっている。また、燃料電池では電気発生の際に化学反応で発熱する場合が多いので水素導管も温度が高くなり水素脆性が促進される。(非特許文献1) As described above, in a hydrogen fuel cell, a hydrogen (gas) conduit through which hydrogen passes is indispensable, and stainless steel such as SUS304 is mainly used as the conduit material. In FIG. 4, the metal plates 11 and 12 constituting the hydrogen conduit 17 correspond to each other. However, when hydrogen (H 2 ) gas comes into contact with the inner surface of stainless steel for a long period of time, a phenomenon (hydrogen brittleness) occurs in which hydrogen invades the stainless steel and makes the stainless steel brittle. In particular, it appears remarkably in the portion of stainless steel where stress is concentrated (for example, the corner of the hydrogen conduit 17 in FIG. 4). Since a fuel cell is expensive, it is necessary to extend the life of the fuel cell in order to reduce the cost. However, deterioration of the stainless steel due to hydrogen embrittlement hinders the extension of the life of the fuel cell. Further, in a fuel cell, heat is often generated by a chemical reaction when electricity is generated, so that the temperature of the hydrogen conduit also rises and hydrogen embrittlement is promoted. (Non-Patent Document 1)

本発明者は、SUS304等のステンレス鋼の金属板表面に炭素膜を付着すると水素脆性を防止できることを発見し、2枚の金属板の凹状部分の両側をレーザー溶接して水素を通る導管(水素(ガス)導管)の作製に適用した。具体的には以下の特徴を有する。
(1)本発明は、2枚の金属板を溶接して水素ガスを含む気体を通す空間(水素導管という)を形成する方法(作製方法)であって、水素導管の内側となる金属板表面(金属板内表面という)、または、水素導管の外側となる金属板表面(金属板外表面という)に炭素膜を形成することを特徴とし、2枚の金属板はそれぞれ水素導管用の凹状部分および平坦部分を有し、2枚の金属板の凹状部分および平坦部分を合わせて、凹状部分の周囲の平坦部分(溶接部位という)を凹状部分に沿ってレーザー溶接し、凹状部分を水素導管とすることを特徴とする。
(2)本発明は、(1)に加えて、炭素膜形成前に、炭素膜を形成する金属表面(金属板内表面および/または外表面)にレーザー照射により微小な凹凸を形成し、炭素膜は、CVD法、PVD法、またはメッキ法により形成されることを特徴とする。
The present inventor has discovered that hydrogen embrittlement can be prevented by adhering a carbon film to the surface of a stainless steel metal plate such as SUS304, and laser welding both sides of the concave portion of the two metal plates to pass hydrogen (hydrogen). (Gas) conduit) was applied to the fabrication. Specifically, it has the following features.
(1) The present invention is a method (manufacturing method) of welding two metal plates to form a space (called a hydrogen conduit) through which a gas containing hydrogen gas passes, and the surface of the metal plate inside the hydrogen conduit. It is characterized by forming a carbon film on the surface of the metal plate (called the inner surface of the metal plate) or the surface of the metal plate outside the hydrogen conduit (called the outer surface of the metal plate), and each of the two metal plates is a concave portion for the hydrogen conduit. And has a flat part, the concave part and the flat part of the two metal plates are combined, the flat part (called the welded part) around the concave part is laser welded along the concave part, and the concave part is used as a hydrogen conduit. It is characterized by doing.
(2) In addition to (1), the present invention forms minute irregularities on the metal surface (inner surface and / or outer surface of the metal plate) forming the carbon film by laser irradiation before forming the carbon film, and carbon. The film is characterized by being formed by a CVD method, a PVD method, or a plating method.

(3)本発明は、(1)または(2)に加えて、2枚の金属板のレーザー溶接する部位(溶接部位という)の構造は、2枚の金属板のうちの1枚の金属板(金属板Aという)、金属板A内表面に積層した炭素膜(金属板A上炭素膜という)、前記金属板A上炭素膜と接触した他の1枚の金属板(金属板Bという)内表面に積層した炭素膜(金属板B上炭素膜という)および金属板Bであるか、または金属板A、金属板A上炭素膜または金属板B上炭素膜、および金属板Bであるか、または金属板Aおよび金属板Bであることを特徴とする。
(4)本発明は、(1)または(2)に加えて、金属板の平坦部のレーザー溶接個所(溶接部位という)は、凹部のそれぞれ片側に3か所存在し、前記3か所のレーザー溶接部位の構造の1つは、2枚の金属板のうちの1枚の金属板(金属板A)、金属板A内表面に積層した炭素膜(金属板A上炭素膜)、前記金属板A上炭素膜と接触した他の1枚の金属板(金属板B)内表面に積層した炭素膜(金属板B上炭素膜)および金属板Bであり、前記3か所のレーザー溶接部位の構造の他の1つは、金属板A、金属板A上炭素膜または金属板B上炭素膜、および金属板Bであり、および前記3か所のレーザー溶接部位の構造の残り1つは、金属板Aおよび金属板Bであることを特徴とする。
(3) In the present invention, in addition to (1) or (2), the structure of the laser-welded portion (referred to as the welded portion) of the two metal plates is one of the two metal plates. (Referred to as metal plate A), carbon film laminated on the inner surface of metal plate A (referred to as carbon film on metal plate A), and another metal plate in contact with the carbon film on metal plate A (referred to as metal plate B). Whether it is a carbon film (referred to as a carbon film on the metal plate B) and a metal plate B laminated on the inner surface, or a metal plate A, a carbon film on the metal plate A or a carbon film on the metal plate B, and a metal plate B. , Or a metal plate A and a metal plate B.
(4) In the present invention, in addition to (1) or (2), there are three laser welded parts (referred to as welded parts) on the flat portion of the metal plate on one side of each of the recesses, and the above three parts. One of the structures of the laser welded portion is one metal plate (metal plate A) of two metal plates, a carbon film laminated on the inner surface of the metal plate A (carbon film on the metal plate A), and the metal. A carbon film (carbon film on the metal plate B) and a metal plate B laminated on the inner surface of another metal plate (metal plate B) in contact with the carbon film on the plate A, and the three laser-welded portions. The other one of the structures of the metal plate A, the carbon film on the metal plate A or the carbon film on the metal plate B, and the metal plate B, and the remaining one of the structures of the three laser welded parts is , A metal plate A and a metal plate B.

(5)本発明は、(1)〜(4)に加えて、2枚の金属板を合わせてレーザー溶接する場合において、レーザー照射する側の、水素導管となる金属板の複数の凸部同士を透明治具で押さえて、前記透明治具を通して金属板の溶接する部位(溶接部位という)にレーザーを照射して、前記溶接部位において、金属板Aおよび金属板Bを溶融接合することを特徴とし、透明治具、金属板の凸部および金属板で囲まれた、レーザーが照射する領域を含む空間(溶接空間Aという)は、シールドガスで充満されていることを特徴とする。
(6)本発明は、(1)〜(5)に加えて、2枚の金属板を合わせてレーザー溶接する場合において、レーザー照射しない側の、水素導管となる金属板の複数の凸部同士を押さえ治具または台座で押さえて、金属板の溶接する部位(溶接部位という)において、2枚の金属板を溶融接合することを特徴とし、押さえ治具または台座、金属板の凸部および金属板で囲まれた空間(溶接空間Bという)は、シールドガスで充満されており、前記溶接空間のシールドガスによる圧力は、大気圧より大きいか周囲圧力より大きく、シールドガスは、ヘリウム(He)ガス、アルゴン(Ar)ガス、ネオン(Ne)ガスおよび窒素(N)ガスから選択される少なくとも1つのガスであることを特徴とする。
(5) In the present invention, in addition to (1) to (4), when two metal plates are combined and laser welded, a plurality of convex portions of the metal plate serving as a hydrogen conduit on the laser irradiation side are connected to each other. Is pressed by a transparent jig, and a laser is irradiated to a welded portion (called a welded portion) of the metal plate through the transparent jig to melt-join the metal plate A and the metal plate B at the welded portion. The space (referred to as welding space A) including the area to be irradiated by the laser, which is surrounded by the transparent jig, the convex portion of the metal plate, and the metal plate, is characterized in that it is filled with the shield gas.
(6) In the present invention, in addition to (1) to (5), when two metal plates are combined and laser welded, a plurality of convex portions of the metal plates serving as hydrogen conduits on the side not irradiated with the laser are connected to each other. Is held down by a holding jig or a pedestal, and two metal plates are melt-joined at a portion to be welded (called a welded part) of the metal plate, and the holding jig or pedestal, a convex portion of the metal plate, and metal The space surrounded by the plates (called the welding space B) is filled with the shield gas, the pressure of the shield gas in the welding space is larger than the atmospheric pressure or the ambient pressure, and the shield gas is helium (He). It is characterized by being at least one gas selected from gas, argon (Ar) gas, neon (Ne) gas and nitrogen (N 2 ) gas.

(7)本発明は、(1)〜(6)に加えて、レーザー照射する側の金属板外表面上の炭素膜はレーザー溶接後に形成し、レーザー照射しない側の金属板外表面上の炭素膜はレーザー溶接後に形成するし、金属板は、SUS304またはステンレス鋼または鉄系材料であることを特徴とする。
(8)本発明は、2枚の金属板を溶接して作製した水素ガスを含む気体を通す空間である水素素導管の金属板表面構造は、金属板表面上に炭素膜が積層した構造であることを特徴とする水素導管であり、水素導管の内側および/または外側となる金属板表面上に炭素膜が積層した構造であり、また金属板の両表面上に炭素膜が積層した構造であり、前記炭素膜は、CVD炭素膜、PVD炭素膜またはメッキ炭素膜であり、金属板は、SUS304またはステンレス鋼または鉄系材料であることを特徴とする。
(7) In the present invention, in addition to (1) to (6), the carbon film on the outer surface of the metal plate on the laser irradiation side is formed after laser welding, and the carbon on the outer surface of the metal plate on the side not irradiated with the laser is formed. The film is formed after laser welding, and the metal plate is SUS304 or stainless steel or iron-based material.
(8) In the present invention, the metal plate surface structure of the hydrogen conduit, which is a space for passing a gas containing hydrogen gas produced by welding two metal plates, has a structure in which a carbon film is laminated on the surface of the metal plate. It is a hydrogen conduit characterized by being present, and has a structure in which a carbon film is laminated on the surface of a metal plate inside and / or outside the hydrogen conduit, and a structure in which carbon films are laminated on both surfaces of the metal plate. The carbon film is a CVD carbon film, a PVD carbon film or a plated carbon film, and the metal plate is SUS304 or a stainless steel or iron-based material.

本発明は、水素導管を構成するSUS304等の金属板内外面(水素導管の内外側金属表面)にCVD炭素膜等を積層するので、水素導管中の水素(H)が金属板中に侵入することを防止できる。この結果水素脆性を抑制することができ、水素導管の寿命を延ばすことができる。金属板内外表面をレーザーで凹凸を形成するので、CVD炭素膜等の密着性も向上する。水素導管は2枚の凸状部分を有する2枚の金属板の凸状部分の外側をレーザー溶接して形成するので、作製が容易である。凸状部分は透明板材および平板の押さえ板で押し付けて溶接部位における2枚の金属板の接触を確実に確保できるので、溶接部位の品質も向上することが可能となる。 In the present invention, since a CVD carbon film or the like is laminated on the inner and outer surfaces of a metal plate such as SUS304 (the inner and outer metal surfaces of the hydrogen conduit) constituting the hydrogen conduit, hydrogen (H 2 ) in the hydrogen conduit penetrates into the metal plate. Can be prevented from doing so. As a result, hydrogen embrittlement can be suppressed and the life of the hydrogen conduit can be extended. Since the inner and outer surfaces of the metal plate are formed with a laser, the adhesion of the CVD carbon film or the like is also improved. Since the hydrogen conduit is formed by laser welding the outside of the convex portions of the two metal plates having the two convex portions, it is easy to manufacture. Since the convex portion can be pressed by the transparent plate material and the flat plate holding plate to ensure the contact between the two metal plates at the welded portion, the quality of the welded portion can be improved.

図1は、本発明の水素導管の構造および作製方法を示す図である。FIG. 1 is a diagram showing the structure and manufacturing method of the hydrogen conduit of the present invention. 図2は、本発明の水素導管を含むワーク(ワーク上板+ワーク下板)の斜視図である。FIG. 2 is a perspective view of a work (work upper plate + work lower plate) including the hydrogen conduit of the present invention. 図3は、炭素膜を積層した金属板のワーク上板およびワーク下板をレーザー溶接する別の方法を示す図である。FIG. 3 is a diagram showing another method of laser welding the work upper plate and the work lower plate of the metal plate on which the carbon film is laminated. 図4は、固体高分子形燃料電池の構造の一例を示す図である。FIG. 4 is a diagram showing an example of the structure of a polymer electrolyte fuel cell. 図5は、ワーク押さえ板を用いてワークを押さえる実施形態を示す図である。FIG. 5 is a diagram showing an embodiment in which a work is pressed by using a work holding plate. 図6は、水素導管の配置状態を示す図である。FIG. 6 is a diagram showing an arrangement state of hydrogen conduits. 図7は、ワーク板の表側(外表面)にも炭素膜を形成したワーク板を示す図である。FIG. 7 is a diagram showing a work plate having a carbon film formed on the front side (outer surface) of the work plate.

本発明者は、金属板表面に炭素膜を付着すると水素脆性を防止できることを発見した。本発明の水素導管において、金属製の平板(金属板)に凹状部分を形成して、凹状部分を形成した金属板2枚を凹状部分が合わさるように重ねて、凹状部分の両側の平坦部分を溶接することにより、水素が通る空間(空間は管のような閉空間となっているので、水素(ガス)導管または水素(ガス)通管とも記載する)を作製する。図1は、本発明の水素導管の構造および作製方法を示す図である。金属板の凹状部分は曲げ加工や深絞り加工により形成する。金属表面への炭素膜の形成は、図1(a)に示すように、金属板11に凹状部分17(17−1、17−2)を形成した後に、金属板表面(凹状部分がある側)に炭素膜32を形成する。あるいは、平坦な金属板11の表面に炭素膜32を形成した後に、曲げ加工や深絞り加工により金属板11に凹状部分17を形成することもできる。金属板の材質は、たとえばSUS304やその他各種ステンレス鋼、鉄を主成分とする鉄系材料、アルミニウムやアルミ合金、銅を主成分とする銅系材料、亜鉛を主成分とする亜鉛系材料、ニッケルを主成分とするニッケル系材料あるいはチタン(Ti)を主成分とするチタン系材料である。 The present inventor has discovered that hydrogen embrittlement can be prevented by adhering a carbon film to the surface of a metal plate. In the hydrogen conduit of the present invention, a concave portion is formed on a metal flat plate (metal plate), and two metal plates having the concave portion formed are stacked so that the concave portions meet, and the flat portions on both sides of the concave portion are formed. By welding, a space through which hydrogen passes (since the space is a closed space like a pipe, it is also referred to as a hydrogen (gas) conduit or a hydrogen (gas) pipe) is created. FIG. 1 is a diagram showing the structure and manufacturing method of the hydrogen conduit of the present invention. The concave portion of the metal plate is formed by bending or deep drawing. As shown in FIG. 1A, the carbon film is formed on the metal surface after the concave portions 17 (17-1, 17-2) are formed on the metal plate 11 and then the metal plate surface (the side having the concave portions). ) Is formed with a carbon film 32. Alternatively, after the carbon film 32 is formed on the surface of the flat metal plate 11, the concave portion 17 can be formed on the metal plate 11 by bending or deep drawing. The materials of the metal plate are, for example, SUS304 and other various stainless steels, iron-based materials mainly composed of iron, aluminum and aluminum alloys, copper-based materials mainly composed of copper, zinc-based materials mainly composed of zinc, and nickel. It is a nickel-based material containing as a main component or a titanium-based material containing titanium (Ti) as a main component.

本発明の水素導管表面への炭素膜の形成方法は、化学気相成長法(CVD法)やスパッター・蒸着等の物理気相成長法(PVD法)やメッキ法等がある。CVD法として、アセチレン・メタン・ベンゼン等の炭化水素ガス、アルコール(たとえば、エタノール)等の炭素源ガスを用いた常圧CVD法、減圧CVD法、プラズマCVD法や光CVD法等が挙げられる。炭素膜の構造は、グラフェン、カーボンナノチューブ、ダイヤモンド、ダイヤモンドライク、アモルファス等であり、いずれの構造でも水素脆性には効果があるが、特にカーボンナノチューブ、ダイヤモンド、ダイヤモンドライクは、膜が緻密で強固なため好適である。炭素源ガスは水素を含有しているためCVD炭素膜には水素が含まれている。(約5〜30at%)このCVD炭素膜に含まれた水素は炭素膜の中に存在しているが、炭素にも結合していると考えられ、燃料電池が発熱する温度(たとえば、100℃〜800℃)では炭素膜から水素が分離せず、金属膜中には侵入しない。また、水素導管中の水素も炭素膜には侵入することは困難であり、かつCVD膜の場合は既に膜中に水素が存在しており、水素導管中の水素はCVD炭素膜には殆ど侵入することは困難である。この結果、CVD炭素膜は特に水素脆性に対して耐性が強いと考えられる。 Examples of the method for forming a carbon film on the surface of a hydrogen conduit of the present invention include a chemical vapor deposition method (CVD method), a physical vapor deposition method (PVD method) such as sputtering and vapor deposition, and a plating method. Examples of the CVD method include a normal pressure CVD method using a hydrocarbon gas such as acetylene, methane and benzene, and a carbon source gas such as alcohol (for example, ethanol), a reduced pressure CVD method, a plasma CVD method, an optical CVD method and the like. The structure of the carbon film is graphene, carbon nanotube, diamond, diamond-like, amorphous, etc., and any structure is effective for hydrogen brittleness, but carbon nanotubes, diamond, diamond-like in particular have a dense and strong film. Therefore, it is suitable. Since the carbon source gas contains hydrogen, the CVD carbon film contains hydrogen. (Approximately 5 to 30 at%) Hydrogen contained in this CVD carbon film is present in the carbon film, but it is considered that it is also bonded to carbon, and the temperature at which the fuel cell generates heat (for example, 100 ° C.) ~ 800 ° C.), hydrogen does not separate from the carbon film and does not penetrate into the metal film. Further, it is difficult for hydrogen in the hydrogen conduit to penetrate into the carbon film, and in the case of the CVD film, hydrogen already exists in the film, and most of the hydrogen in the hydrogen conduit penetrates into the CVD carbon film. It's difficult to do. As a result, the CVD carbon film is considered to be particularly resistant to hydrogen embrittlement.

PVD炭素膜として、スパッター装置中でたとえば炭素ターゲット板をArガスでスパッターして、金属板の表面に炭素膜を成長させることができる。金属板(11、12)は平板でも良いし、凹状部分17を有しても良い。(ここで凹状と記載しているが、裏側から見ると凸状であるから、凸状と記載することもできる。)当然凹状部分17が炭素ターゲット板側を向くようにスパッター装置に配置する必要があり、凹状部分17の側面および底面に厚みが均一になるように金属板(11、12)を回転させても良い。100%炭素の炭素ターゲット板であれば金属板表面に積層する炭素膜には水素が含まれないので、CVD炭素膜のような水素の侵入を抑制する効果は小さくなるが、積層される炭素膜は緻密で強固なので水素が炭素膜を通して金属側に侵入することは抑制され、水素脆性現象はかなり防止される。炭素ターゲット中に水素を予め含有させ(たとえば、10〜40at%)たり、あるいはスパッタガスであるアルゴン(Ar)ガスとともに水素ガスを混合して(たとえば、1〜10Vol%)おけば、金属板表面に積層する炭素膜中に水素が取り込まれるので、CVD炭素膜と同様な水素侵入防止効果を増大させることができ、金属板の水素脆性現象を大幅に抑制することができる。 As the PVD carbon film, for example, a carbon target plate can be sputtered with Ar gas in a sputtering device to grow a carbon film on the surface of the metal plate. The metal plates (11, 12) may be flat plates or may have a concave portion 17. (Although it is described as concave here, it can also be described as convex because it is convex when viewed from the back side.) Naturally, it is necessary to arrange the concave portion 17 in the sputter device so that it faces the carbon target plate side. The metal plate (11, 12) may be rotated so that the thickness is uniform on the side surface and the bottom surface of the concave portion 17. If it is a 100% carbon carbon target plate, the carbon film laminated on the surface of the metal plate does not contain hydrogen, so the effect of suppressing the invasion of hydrogen like the CVD carbon film is small, but the laminated carbon film Since is dense and strong, hydrogen is suppressed from entering the metal side through the carbon film, and the hydrogen brittle phenomenon is considerably prevented. If hydrogen is pre-containing in the carbon target (for example, 10 to 40 at%), or if hydrogen gas is mixed with argon (Ar) gas, which is a sputter gas (for example, 1 to 10 Vol%), the surface of the metal plate Since hydrogen is incorporated into the carbon film laminated on the metal plate, the hydrogen intrusion prevention effect similar to that of the CVD carbon film can be increased, and the hydrogen embrittlement phenomenon of the metal plate can be significantly suppressed.

金属板の表面に炭素メッキ膜も積層できる。たとえば、溶融塩としてLiCl-KClおよびLiCl-KCl-CaCl2を用い炭素源としてCaC2を添加して、約400℃〜600℃で過熱し、この溶融塩中に金属板を作用極として、対極にアルミニウム板を用いて、金属板表面にメッキ膜を積層することもできる。この炭素膜も金属板の水素脆性耐性を高めることができる。炭素メッキの場合も、金属板に凹状部分があっても、その凹状部分の底面および側面に均一に炭素膜を積層することができる。あるいは、平坦な金属板の表面に炭素膜をメッキ法で積層した後に、金属板に凹状部分を形成することもできるし、平坦な金属板に凹状部分に形成した後に、金属板の平坦部や凹状部分に炭素メッキ膜を積層することもできる。尚、平坦な金属板に凹状部分を形成した後に、金属板の平坦部や凹状部分にCVD炭素膜、PVD炭素膜、および炭素メッキ膜を積層した方が、凹状部分における(特に角部)炭素膜の内部応力を小さくできるので、炭素膜の信頼性が増大し長寿命化をはかることができる。 A carbon plating film can also be laminated on the surface of the metal plate. For example, LiCl-KCl and LiCl-KCl-CaCl 2 are used as molten salts, CaC 2 is added as a carbon source, and the mixture is heated at about 400 ° C. to 600 ° C., and a metal plate is used as a working electrode in the molten salt to counter electrode. It is also possible to laminate a plating film on the surface of a metal plate by using an aluminum plate. This carbon film can also enhance the hydrogen embrittlement resistance of the metal plate. In the case of carbon plating, even if the metal plate has a concave portion, the carbon film can be uniformly laminated on the bottom surface and the side surface of the concave portion. Alternatively, after laminating a carbon film on the surface of a flat metal plate by a plating method, a concave portion can be formed on the metal plate, or after forming a concave portion on a flat metal plate, a flat portion of the metal plate or A carbon plating film can also be laminated on the concave portion. After forming a concave portion on a flat metal plate, it is better to laminate a CVD carbon film, a PVD carbon film, and a carbon plating film on the flat portion or the concave portion of the metal plate to obtain carbon in the concave portion (particularly the corner portion). Since the internal stress of the film can be reduced, the reliability of the carbon film can be increased and the life of the carbon film can be extended.

金属表面にCVD炭素膜、PVD炭素膜、およびメッキ炭素膜を金属板表面へ積層する場合、金属板表面にレーザーを照射して微小な凹凸を形成することにより、金属板表面への炭素膜の密着性を向上することができる。たとえば、凹凸構造の凹部の深さは約30〜10μm、幅は約30〜120μmとし、凸部を山形形状にするのが良い。凸部の幅は約5〜50μmとするのが良い。このような形状により、炭素膜と金属表面との接触面積が増大するので、金属板と炭素膜との密着強度が増大する。レーザー光を生じるレーザー発振器は、シリコン基板の表面に溝を形成することができれば特に限定されず、公知の発振器を使用することができる。例えば、エキシマレーザー、COレーザー、YAGレーザー等のレーザー光照射で金属板表面部分を融解できるレーザー発振器が挙げられる。レーザー光の照射条件は、所望の形状の溝を形成できるように適宜調整する。たとえば、4×10〜1×10W/cmのエネルギー密度になるように、波長、周波数、照射形状等の条件が調整される。 When a CVD carbon film, a PVD carbon film, and a plated carbon film are laminated on a metal surface, the metal plate surface is irradiated with a laser to form minute irregularities, whereby the carbon film is formed on the metal plate surface. Adhesion can be improved. For example, it is preferable that the depth of the concave portion of the concave-convex structure is about 30 to 10 μm, the width is about 30 to 120 μm, and the convex portion has a chevron shape. The width of the convex portion is preferably about 5 to 50 μm. Due to such a shape, the contact area between the carbon film and the metal surface is increased, so that the adhesion strength between the metal plate and the carbon film is increased. The laser oscillator that generates the laser light is not particularly limited as long as a groove can be formed on the surface of the silicon substrate, and a known oscillator can be used. For example, a laser oscillator capable of melting a metal plate surface portion by laser light irradiation such as an excimer laser, a CO 2 laser, or a YAG laser can be mentioned. The irradiation conditions of the laser beam are appropriately adjusted so that a groove having a desired shape can be formed. For example, conditions such as wavelength, frequency, and irradiation shape are adjusted so that the energy density is 4 × 10 4 to 1 × 10 6 W / cm 2 .

図1(a)に示すように、凹状部分17(17−1)および平坦部分を含む金属板12の表面に炭素膜31を積層したもの(これをワーク上板33と呼ぶ)と、凹状部分17(17−2)および平坦部分を含む金属板11の表面に炭素膜32を積層したもの(これをワーク下板34と呼ぶ)とを凹状部分17(17−1、2)同士を重ね、閉空間17が形成されるように合わせる。ワーク上板33とワーク下板34は表裏の関係にある同形状のワーク板であるから、凹状部分17(17−1、2)とその他の平坦部分はほぼ完全に一致して合わせることができる。尚、閉空間17と記載したが、図1の左右方向では閉空間となっているが、後に(図2で)示すように閉空間17は水素ガスが通る水素導管であるから、紙面に対して略垂直方向に空間が伸びている。水素導管17を図4に示すような燃料電池に使用する場合は、燃料電池を取り囲むように配置されても良い。 As shown in FIG. 1A, a carbon film 31 is laminated on the surface of a metal plate 12 including a concave portion 17 (17-1) and a flat portion (this is referred to as a work upper plate 33) and a concave portion. 17 (17-2) and a metal plate 11 including a flat portion in which a carbon film 32 is laminated (this is called a work lower plate 34) and concave portions 17 (17-1, 2) are overlapped with each other. It is adjusted so that the closed space 17 is formed. Since the work upper plate 33 and the work lower plate 34 are work plates having the same shape on the front and back sides, the concave portion 17 (17-1, 2) and the other flat portions can be aligned almost completely. .. Although it is described as a closed space 17, it is a closed space in the left-right direction of FIG. 1, but as shown later (in FIG. 2), the closed space 17 is a hydrogen conduit through which hydrogen gas passes, so that the space is relative to the paper surface. The space extends in the almost vertical direction. When the hydrogen conduit 17 is used for a fuel cell as shown in FIG. 4, it may be arranged so as to surround the fuel cell.

次に図1(b)に示すように、凹状部分17の左右にあるワーク上板33およびワーク下板34の部分(溶接部位という)35にワーク上板33の上方からレーザー光36を照射して、溶接部位35でワーク上板33とワーク下板34を溶融接合させる。溶接部位35においてワーク上板33とワーク下板34は炭素膜(31、32)同士で接触している。炭素膜の融点は、約3000℃〜3600℃(炭素結合の強さにより変化する)であるから、炭素膜同士が接触する部分で上記温度以上になるようにレーザーパワーを調節すれば炭素膜が溶融し、また金属板は上記温度では溶融しているから、溶接部位35においてワーク上板33とワーク下板34は完全に溶融接合させることができる。あるいは、炭素膜は金属板よりかなり薄い(たとえば、金属板1mm、炭素膜1〜10〜100μm)ので、金属板(特にワーク上板側)を溶融する温度になるようにレーザーパワーを調節すれば、炭素膜は金属板に固溶していき、やはり溶接部位35においてワーク上板33とワーク下板34は完全に溶融接合させることができる。特にSUS304等のステンレス鋼や鉄系材料の場合、容易に炭素が固溶される。炭素膜は熱伝導性が良いので、ワーク上板33側の金属板12が溶融すれば、ワーク下板34側の溶接部位35の接触部分側における金属板11も溶融するので、充分な溶融接合を実現できる。金属板がステンレス鋼SUS304の場合は、融点は約1420℃であるから、この温度以上になるようにレーザーパワーを調節してレーザーを照射すれば、ワーク上板33側のステンレス板12およびワーク下板34側のステンレス板11の一部(上側、すなわち接触部分側)が溶融し、それらの間に挟まれた炭素膜31および32は溶融したステンレス中に固溶していき固溶層を形成して強固に溶融接合する。 Next, as shown in FIG. 1 (b), the work upper plate 33 and the work lower plate 34 (referred to as welded parts) 35 on the left and right of the concave portion 17 are irradiated with laser light 36 from above the work upper plate 33. Then, the work upper plate 33 and the work lower plate 34 are melt-joined at the welded portion 35. At the welded portion 35, the work upper plate 33 and the work lower plate 34 are in contact with each other by carbon films (31, 32). Since the melting point of the carbon film is about 3000 ° C to 3600 ° C (varies depending on the strength of the carbon bond), if the laser power is adjusted so that the temperature is higher than the above temperature at the portion where the carbon films come into contact with each other, the carbon film can be formed. Since the metal plate is melted and the metal plate is melted at the above temperature, the work upper plate 33 and the work lower plate 34 can be completely melt-bonded at the welded portion 35. Alternatively, since the carbon film is considerably thinner than the metal plate (for example, metal plate 1 mm, carbon film 1 to 10 to 100 μm), the laser power may be adjusted so as to melt the metal plate (particularly the work upper plate side). The carbon film dissolves in the metal plate, and the work upper plate 33 and the work lower plate 34 can be completely melt-bonded at the welded portion 35. In particular, in the case of stainless steel or iron-based materials such as SUS304, carbon is easily dissolved. Since the carbon film has good thermal conductivity, if the metal plate 12 on the work upper plate 33 side melts, the metal plate 11 on the contact portion side of the welded portion 35 on the work lower plate 34 side also melts, so that sufficient melt bonding is sufficient. Can be realized. When the metal plate is stainless steel SUS304, the melting point is about 1420 ° C. Therefore, if the laser power is adjusted so as to exceed this temperature and the laser is irradiated, the stainless plate 12 on the work upper plate 33 side and the work lower A part of the stainless steel plate 11 on the plate 34 side (upper side, that is, the contact portion side) is melted, and the carbon films 31 and 32 sandwiched between them are solid-solved in the molten stainless steel to form a solid-dissolved layer. And firmly melt-join.

図1(c)は、溶接部位35の構造を変化させた場合の溶接方法を示す図である。溶接部位35−4は、図1(b)に示す構造と同じである。溶接部位35−1は、レーザー照射側のワーク上板33の炭素膜31を除去している。従って、溶接部位35−1の構造は、金属板12(ワーク上板33側)/炭素膜32(ワーク下板34側)/金属板11(ワーク上板34側)の3層構造となっているので、溶接部位35−4の構造の場合に比べて、炭素膜が少ない分レーザーパワーや照射時間を少し少なくでき、かつレーザー照射条件の余裕度が大きい。溶接部位35−2は、レーザー照射と反対側のワーク下板34の炭素膜32を除去している。従って、溶接部位35−2の構造は、金属板12(ワーク上板33側)/炭素膜31(ワーク上板33側)/金属板11(ワーク下板34側)の3層構造となっているので、溶接部位35−4の構造の場合に比べて、炭素膜が少ない分レーザーパワーや照射時間を少し少なくでき、かつレーザー照射条件の余裕度が大きい。溶接部位35−3は、レーザー照射側のワーク上板33の炭素膜31およびレーザー照射と反対側のワーク下板34の炭素膜32を除去している。すなわち、溶接部位35−3において、炭素膜は存在しない。従って、溶接部位35−3の構造は、金属板12(ワーク上板33側)/金属板11(ワーク下板34側)の2層構造となっているので、溶接部位35−1、2、4の構造の場合に比べて、炭素膜がなくなっている分レーザーパワーや照射時間を少なくでき、かつレーザー照射条件の余裕度を大きくできる。溶接部位35−3では、金属板同士の溶接とほぼ同じ条件でレーザー照射できる。 FIG. 1C is a diagram showing a welding method when the structure of the welded portion 35 is changed. The welded portion 35-4 has the same structure as shown in FIG. 1 (b). The welded portion 35-1 removes the carbon film 31 of the work upper plate 33 on the laser irradiation side. Therefore, the structure of the welded portion 35-1 is a three-layer structure of the metal plate 12 (work upper plate 33 side) / carbon film 32 (work lower plate 34 side) / metal plate 11 (work upper plate 34 side). Therefore, as compared with the case of the structure of the welded portion 35-4, the laser power and the irradiation time can be slightly reduced due to the small amount of the carbon film, and the margin of the laser irradiation condition is large. The welded portion 35-2 removes the carbon film 32 of the work lower plate 34 on the opposite side to the laser irradiation. Therefore, the structure of the welded portion 35-2 is a three-layer structure of the metal plate 12 (work upper plate 33 side) / carbon film 31 (work upper plate 33 side) / metal plate 11 (work lower plate 34 side). Therefore, as compared with the case of the structure of the welded portion 35-4, the laser power and the irradiation time can be slightly reduced due to the small amount of the carbon film, and the margin of the laser irradiation condition is large. The welded portion 35-3 removes the carbon film 31 of the work upper plate 33 on the laser irradiation side and the carbon film 32 of the work lower plate 34 on the opposite side of the laser irradiation. That is, there is no carbon film at the welded portion 35-3. Therefore, since the structure of the welded portion 35-3 is a two-layer structure of the metal plate 12 (work upper plate 33 side) / metal plate 11 (work lower plate 34 side), the welded portions 35-1, 2, Compared with the case of the structure of 4, the laser power and the irradiation time can be reduced because the carbon film is eliminated, and the margin of the laser irradiation condition can be increased. At the welded portion 35-3, laser irradiation can be performed under substantially the same conditions as welding of metal plates.

凹状部分17には炭素膜が必要であるから、溶接部位35の部分において炭素膜を付着させないか、または除去する方法について説明する。一例として、金属板の溶接部位となる領域に予めマスキングしておき、その後で炭素膜を積層する。CVD炭素膜やPVD炭素膜の場合は、マスキングした状態で炭素膜を積層するとマスキング領域にも炭素膜が積層するので、炭素膜を積層した後にマスキング部材を除去すれば、マスキング領域における炭素膜はマスキング部材とともに除去されて、金属板の溶接部位となる領域には炭素膜が存在しない。たとえば、プラズマCVD炭素膜はたとえば約400℃〜800℃で積層されるので、マスキング部材はこれらの温度でも変形や反応しない部材である必要がある。たとえば、金属板がSUS304ステンレス鋼である場合は、ステンレステープ(SUS304でも良いし、それ以外でも良い)を金属板の溶接部位となる領域に貼り付けて、プラズマCVD炭素膜を積層後、そのステンレステープを剥がせば良い。スパッター炭素膜の場合は、スパッター温度が約100℃以下であるから、たとえば、アルミニウムテープを金属板の溶接部位となる領域に貼り付けて、スパッター炭素膜を積層後、そのステンレステープを剥がせば良い。スパッター温度が常温である場合は、アルミニウムテープの代わりにプラスチックテープでも良い。尚、マスキングテープを使用した場合、マスキングテープの側面にも炭素膜が付着するので、マスキングテープを剥がしたときにその境目の側面(エッジ部)の炭素膜も剥がれる可能性がある。それを防止するために、金属板に炭素膜を積層した後、マスキングテープを付着した状態で、酸素(O)プラズマで軽く炭素膜エッチングすると、側面(エッジ部)の炭素膜の膜質は平坦部分よりも弱いので、平坦部分の炭素膜が殆どエッチングされない間に、側面(エッジ部)の炭素膜がエッチング初期段階でエッチングされてしまう。側面(エッジ部)の炭素膜がエッチングされたら、酸素(O2)プラズマ装置から出すと、マスキングテープと平坦部分の炭素膜は分離されているので、マスキングテープを剥がしても平坦部分の炭素膜に影響を与えないようにすることができる。 Since a carbon film is required for the concave portion 17, a method for preventing or removing the carbon film at the welded portion 35 will be described. As an example, a region to be a welded portion of a metal plate is masked in advance, and then a carbon film is laminated. In the case of a CVD carbon film or PVD carbon film, if the carbon film is laminated in the masked state, the carbon film is also laminated in the masking region. Therefore, if the masking member is removed after laminating the carbon film, the carbon film in the masking region can be obtained. There is no carbon film in the region that is removed together with the masking member and becomes the welded part of the metal plate. For example, since the plasma CVD carbon film is laminated at, for example, about 400 ° C. to 800 ° C., the masking member needs to be a member that does not deform or react even at these temperatures. For example, when the metal plate is SUS304 stainless steel, a stainless tape (SUS304 or other) is attached to the area to be the welded part of the metal plate, the plasma CVD carbon film is laminated, and then the stainless steel. Just peel off the tape. In the case of a spatter carbon film, the sputter temperature is about 100 ° C or less. For example, if an aluminum tape is attached to the area to be the welded part of the metal plate, the sputter carbon film is laminated, and then the stainless tape is peeled off. good. If the spatter temperature is room temperature, plastic tape may be used instead of aluminum tape. When the masking tape is used, the carbon film also adheres to the side surface of the masking tape, so that when the masking tape is peeled off, the carbon film on the side surface (edge portion) of the boundary may also be peeled off. In order to prevent this, after laminating a carbon film on a metal plate, lightly etching the carbon film with oxygen (O 2 ) plasma with the masking tape attached, the film quality of the carbon film on the side surface (edge) becomes flat. Since it is weaker than the portion, the carbon film on the side surface (edge portion) is etched at the initial stage of etching while the carbon film on the flat portion is hardly etched. When the carbon film on the side surface (edge part) is etched and taken out from the oxygen (O2) plasma device, the masking tape and the carbon film on the flat part are separated, so even if the masking tape is peeled off, the carbon film on the flat part becomes It can be prevented from affecting.

他の例として、金属板表面全体に炭素膜を積層後、溶接部位となる領域以外の部分をマスキングしておき、溶接部位となる領域において露出した炭素膜をエッチング除去することもできる。たとえば、溶接部位となる領域以外の部分にアルミニウムテープやステンレステープを付着させて、プラズマエッチング装置にワークを配置して、酸素プラズマで炭素膜をエッチング除去すれば良い。炭素膜は酸素プラズマでCOまたはCOとして除去される。基材の金属板(たとえば、SUS304)は酸素プラズマではエッチグされないので、溶接部位となる領域に存在した炭素膜を完全に除去できる。また、マスキング材のアルミニウムテープやステンレステープも酸素プラズマでは殆どエッチングされないので、炭素膜の除去後マスキング材のアルミニウムテープやステンレステープを剥がせば、溶接部位となる領域以外の部分には炭素膜が存在し、溶接部位となる領域において炭素膜のない状態を有する金属板を作製できる。尚、溶接部位となる領域における炭素膜を除去する場合は、凹状部分に炭素膜が存在すれば良いので、凹状部分だけをマスキングして溶接部位となる領域以外の領域(たとえば、平坦部分)における炭素膜を除去することもできる。炭素膜を除去した部分の隙間の高さ(これは炭素膜の厚みでもある)は約1〜10〜100μm程度であるから、レーザー光が照射されて金属板が溶融すれば即座にこの隙間が充填されるので、溶接品質に影響を与えることはない。ここで、溶接品質とは、たとえば溶接部位におけるワーク板同士(上板、下板)の接触が不十分であったり、溶接部位において酸化等が生じたり、あるいはレーザー溶接条件が不十分であったりするなどして、溶融接合が十分でなく接合の寿命が短くなったり、溶融接合の溶接強度が弱いなどの現象である。 As another example, after laminating a carbon film on the entire surface of the metal plate, a portion other than the region to be the welded portion may be masked, and the exposed carbon film in the region to be the welded portion may be removed by etching. For example, an aluminum tape or a stainless tape may be attached to a portion other than the region to be a welded portion, a work may be arranged in a plasma etching apparatus, and the carbon film may be etched and removed by oxygen plasma. The carbon film is removed as CO or CO 2 by oxygen plasma. Since the metal plate of the base material (for example, SUS304) is not etched by oxygen plasma, the carbon film existing in the region to be the welded portion can be completely removed. Also, since the aluminum tape and stainless tape of the masking material are hardly etched by oxygen plasma, if the aluminum tape and stainless tape of the masking material are peeled off after removing the carbon film, the carbon film will be formed in the part other than the welded part. A metal plate that exists and has no carbon film in the region to be a welded portion can be produced. When removing the carbon film in the region to be the welded part, it is sufficient that the carbon film exists in the concave part. Therefore, only the concave part is masked in the region other than the region to be the welded part (for example, a flat part). The carbon film can also be removed. Since the height of the gap in the portion where the carbon film is removed (this is also the thickness of the carbon film) is about 1 to 10 to 100 μm, this gap is immediately formed when the metal plate is melted by irradiation with laser light. Since it is filled, it does not affect the welding quality. Here, the welding quality means, for example, insufficient contact between work plates (upper plate, lower plate) at the welded portion, oxidation or the like at the welded portion, or insufficient laser welding conditions. This is a phenomenon in which the melt-bonding is not sufficient and the life of the joint is shortened, or the welding strength of the melt-joint is weak.

図1(d)は、ワーク板を押さえるワーク押さえ板を用いてレーザー照射する方法を示す図である。レーザー溶接部位35の品質を向上するために、レーザー照射時に溶接部位35において上下のワーク板(ワーク上板およびワーク下板)が密着して接触している必要がある。ワーク上板33およびワーク下板34とも外側に凸状になった部分(すなわち、凹状部分17の裏返し)が存在し、かつ複数の凸状になった部分の高さは同じであるから、平板で上下から押さえて、ワーク上板33は上方からワーク下板34は下方から押し付けることにより、レーザー溶接部位35を密着して接触させることができる。レーザーを照射する側(ワーク上板33側)の平板の押さえ板(ワーク押さえ(上)板、または(ワーク上板)押さえ治具ともいう)37をレーザー光36に対して透明な(透過率が高い)部材(透明板、または透明板材または透明治具とも記載する)とする。反対側のワーク下板34を押さえる平板の押さえ板(ワーク押さえ下板、または(ワーク下板)押さえ治具ともいう)38はワーク下板34を確実に押さえる部材であれば良い。たとえば、金属板(たとえば、SUS304等のステンレス鋼)、鉄を主成分とする鉄系材料、各種金属材料やセラミック板でも良いし、あるいはワークを載せる平坦で変形しない台座または基台でも良い。図1(d)に示すように、ワーク上板33およびワーク下板34を上下から押さえて溶接部位を確実に接触させた状態で、レーザー光36は透明板材37を通して溶接部位35に照射して、ワーク上板33およびワーク下板34を溶接部位35でレーザー溶融接合する。この結果溶接部位35の溶融接合の品質が向上し、水素導管となる閉空間17は左右の外側に対して完全密閉の状態ができ、かつ長寿命の閉空間を作製できる。透明板材37は、またレーザー光により損傷等しない材料が望ましい。たとえば、YAGレーザーを使用する場合は、透明板材37はたとえば石英、石英ガラス、ホウケイ酸ガラス等の耐熱ガラス、コランダム(以下、石英ガラス等と言う)が良い。炭酸ガス(CO)レーザーの場合は、透明部材はたとえばジンクセレン(ZnSe)が良い。 FIG. 1D is a diagram showing a method of irradiating a laser using a work holding plate that holds the work plate. In order to improve the quality of the laser welded portion 35, it is necessary that the upper and lower work plates (work upper plate and work lower plate) are in close contact with each other at the welded portion 35 during laser irradiation. Both the work upper plate 33 and the work lower plate 34 have an outwardly convex portion (that is, the concave portion 17 is turned inside out), and the heights of the plurality of convex portions are the same. By pressing the work upper plate 33 from above and the work lower plate 34 from below by pressing from above and below, the laser welded portion 35 can be brought into close contact with each other. The flat plate holding plate (also referred to as the work holding (upper) plate or (work upper plate) holding jig) 37 on the laser irradiation side (work upper plate 33 side) is transparent (transmittance) to the laser beam 36. (High) member (also referred to as a transparent plate, transparent plate material, or transparent jig). The flat plate holding plate (also referred to as a work holding lower plate or a (work lower plate) holding jig) 38 that holds the work lower plate 34 on the opposite side may be a member that securely holds the work lower plate 34. For example, a metal plate (for example, stainless steel such as SUS304), an iron-based material containing iron as a main component, various metal materials or a ceramic plate may be used, or a flat and non-deformable pedestal or base on which a work is placed may be used. As shown in FIG. 1D, the laser beam 36 irradiates the welded portion 35 through the transparent plate member 37 in a state where the work upper plate 33 and the work lower plate 34 are pressed from above and below to ensure that the welded portion is in contact with each other. , The work upper plate 33 and the work lower plate 34 are laser melt-bonded at the welded portion 35. As a result, the quality of the melt-bonding of the welded portion 35 is improved, and the closed space 17 serving as a hydrogen conduit can be completely sealed to the left and right outside, and a closed space having a long life can be produced. The transparent plate material 37 is preferably a material that is not damaged by laser light. For example, when a YAG laser is used, the transparent plate material 37 is preferably heat-resistant glass such as quartz, quartz glass, or borosilicate glass, or corundum (hereinafter referred to as quartz glass or the like). In the case of a carbon dioxide (CO 2 ) laser, the transparent member is, for example, zinc selenium (ZnSe).

水素導管17(17−1、2)同士の間と透明なワーク押さえ板37の間の空間39は、レーザー光36が通る空間であるから、溶接空間(レーザー照射側)39と呼ぶ。溶接部位35はレーザー照射により高温になるので、溶接空間39の雰囲気が空気であると、溶接空間39に露出したワーク上板33の金属板12の溶接部位35およびその周囲は酸化されてしまう。特にレーザー照射により金属板12が溶融する場合は酸化が急速に進む。その結果、酸化された溶接部位35の劣化が進み、ワーク上板33の寿命が短くなる。また溶接部位35における溶接品質も悪くなり、溶接部位35から水素導管17の水素が漏れる可能性もある。そこで、溶接空間39をシールドガス雰囲気として、溶接部位35にレーザー照射しても溶接部位35が酸化されないようにする。水素導管17が溶接空間39を取り囲んでいる場合は、ワーク押さえ板37でワーク上板33を押さえたときに閉空間になるが、このときにワーク押さえ板37にシールドガス導入孔71を設けて、このシールドガス導入孔71からシールドガスを溶接空間39へ導入して溶接空間39をシールドガス雰囲気にすることができる。ワーク押さえ板37にシールドガス排出孔72も設けておけば、ワーク押さえ板37でワーク上板33を押さえる前に溶接空間39に存在した空気がシールドガス排出孔72から排出されて溶接空間39をシールドガスで完全に充填することができる。 Since the space 39 between the hydrogen conduits 17 (17-1, 2) and the transparent work holding plate 37 is a space through which the laser beam 36 passes, it is called a welding space (laser irradiation side) 39. Since the welded portion 35 becomes hot due to laser irradiation, if the atmosphere of the welded space 39 is air, the welded portion 35 of the metal plate 12 of the work upper plate 33 exposed in the welded space 39 and its surroundings are oxidized. In particular, when the metal plate 12 is melted by laser irradiation, oxidation proceeds rapidly. As a result, the oxidized welded portion 35 is deteriorated, and the life of the work upper plate 33 is shortened. In addition, the welding quality at the welded portion 35 also deteriorates, and hydrogen in the hydrogen conduit 17 may leak from the welded portion 35. Therefore, the welding space 39 is set as a shield gas atmosphere so that the welding portion 35 is not oxidized even if the welding portion 35 is irradiated with a laser. When the hydrogen conduit 17 surrounds the welding space 39, the space is closed when the work upper plate 33 is pressed by the work holding plate 37. At this time, the work holding plate 37 is provided with a shield gas introduction hole 71. , The shield gas can be introduced into the welding space 39 from the shield gas introduction hole 71 to make the welding space 39 a shield gas atmosphere. If the work holding plate 37 is also provided with the shield gas discharge hole 72, the air existing in the welding space 39 before the work holding plate 37 presses the work upper plate 33 is discharged from the shield gas discharge hole 72 to create the welding space 39. It can be completely filled with shield gas.

シールドガス(アシストガスとも言う)として、不活性ガス(たとえば、ヘリウム(He)ガス、アルゴン(Ar)ガス、ネオン(Ne)ガス等の希ガスや窒素(N)ガスが挙げられる)、炭素系ガス(たとえばCO、や炭化水素系ガス)、その他のガス(たとえば、H)やこれらの混合ガスが挙げられる。あるいは、溶接空間39を低圧(大気圧以下または外側圧力以下)または真空にしても、溶接空間39の空気がなくなるので、レーザー照射時の金属板12の酸化を防止することができる。たとえば、孔71や72に真空ポンプを接続して溶接空間39の空気を抜けば溶接空間39を低圧または真空にすることができる。溶接空間39を低圧または真空にすると、ワーク押さえ板37は大気圧または外気圧で外側から押されるので、ワーク上板33も上方から押されて、ワーク下板34とワーク上板33の密着性も良くなる。ワーク押さえ板37が可視光に対しても透明な場合(石英ガラス等はそれに該当する)は、ワーク上板33とワーク下板34の合わせや溶接部位を肉眼や拡大鏡で確認できるので、ワーク上板33とワーク下板34の合わせ精度を高め、溶接部位へ正確にレーザー照射することも可能となる。 Shield gas (also called assist gas) includes inert gas (for example, rare gas such as helium (He) gas, argon (Ar) gas, neon (Ne) gas, nitrogen (N 2 ) gas), and carbon. Examples include system gases (for example, CO 2 and hydrocarbon gas), other gases (for example, H 2 ), and mixed gases thereof. Alternatively, even if the welding space 39 is made low pressure (atmospheric pressure or less or outside pressure or less) or vacuum, the air in the welding space 39 disappears, so that oxidation of the metal plate 12 at the time of laser irradiation can be prevented. For example, if a vacuum pump is connected to the holes 71 and 72 to release air from the welding space 39, the welding space 39 can be made low pressure or vacuum. When the welding space 39 is made low pressure or vacuum, the work holding plate 37 is pushed from the outside by atmospheric pressure or outside pressure, so that the work upper plate 33 is also pushed from above, and the adhesion between the work lower plate 34 and the work upper plate 33 is achieved. Will also get better. When the work holding plate 37 is transparent to visible light (quartz glass or the like corresponds to this), the alignment of the work upper plate 33 and the work lower plate 34 and the welded portion can be confirmed with the naked eye or a magnifying glass. It is also possible to improve the alignment accuracy of the upper plate 33 and the work lower plate 34 and accurately irradiate the welded portion with a laser.

水素導管17(17−1、2)同士の間とワーク押さえ板38の間の空間40は、レーザー光36が通る空間ではないが、溶接する領域に面しているからこちらも溶接空間(レーザー照射裏側)40と呼ぶ。レーザー照射する側と反対側におけるワーク下板34の金属板11の溶接部位35およびその周辺もレーザー溶接時は高温になるので、溶接空間40の雰囲気が空気である場合は、溶接部位35およびその周辺の金属板11もやはり酸化する。この酸化を防止するために、溶接空間40もシールドガス雰囲気にすることが望ましい。水素導管17が溶接空間40を取り囲んでいる場合は、ワーク押さえ板38でワーク下板34を押さえたときに閉空間になるが、このときにワーク押さえ板38にシールドガス導入孔73を設けて、このシールドガス導入孔73からシールドガスを溶接空間40へ導入して溶接空間40をシールドガス雰囲気にすることができる。ワーク押さえ板38にシールドガス排出孔74も設けておけば、ワーク押さえ板38でワーク上板34を押さえる前に溶接空間40に存在した空気がシールドガス排出孔74から排出されて溶接空間40をシールドガスで完全に充填することができる。ワーク押さえ板38が台座や基台等である場合は、台座や基台から溶接空間40にシールドガスが導入できるラインやそれを排出するラインを設けておけば良い。溶接空間40を低圧(大気圧以下または外側圧力以下)または真空にしても、溶接空間40の空気がなくなるので、レーザー照射時の金属板11の酸化を防止することができる。(金属板11が高温になるので、空気があると酸化が促進される。)たとえば、孔73や74に真空ポンプを接続して溶接空間40の空気を抜けば溶接空間40を低圧または真空にすることができる。溶接空間40を低圧または真空にすると、ワーク押さえ板38は大気圧または外気圧で外側から押されるので、ワーク下板34も上方から押されて、ワーク下板34とワーク上板33の密着性も良くなる。 The space 40 between the hydrogen conduits 17 (17-1, 2) and the work holding plate 38 is not a space through which the laser beam 36 passes, but it also faces the welding region, so this is also a welding space (laser). (Back side of irradiation) 40. The welded portion 35 of the metal plate 11 of the work lower plate 34 on the side opposite to the laser irradiation side and its surroundings also become hot during laser welding. Therefore, if the atmosphere of the welding space 40 is air, the welded portion 35 and its surroundings The surrounding metal plate 11 also oxidizes. In order to prevent this oxidation, it is desirable that the welding space 40 also has a shield gas atmosphere. When the hydrogen conduit 17 surrounds the welding space 40, the space is closed when the work lower plate 34 is pressed by the work holding plate 38. At this time, the work holding plate 38 is provided with a shield gas introduction hole 73. , The shield gas can be introduced into the welding space 40 from the shield gas introduction hole 73 to make the welding space 40 a shield gas atmosphere. If the work holding plate 38 is also provided with the shield gas discharge hole 74, the air existing in the welding space 40 before the work holding plate 38 presses the work upper plate 34 is discharged from the shield gas discharge hole 74 to create the welding space 40. It can be completely filled with shield gas. When the work holding plate 38 is a pedestal, a base, or the like, a line capable of introducing the shield gas from the pedestal or the base into the welding space 40 and a line for discharging the shield gas may be provided. Even if the welding space 40 is made low pressure (atmospheric pressure or less or outside pressure or less) or vacuum, the air in the welding space 40 disappears, so that oxidation of the metal plate 11 at the time of laser irradiation can be prevented. (Since the metal plate 11 becomes hot, oxidation is promoted when there is air.) For example, if a vacuum pump is connected to the holes 73 and 74 and the air in the welding space 40 is removed, the welding space 40 is reduced to low pressure or vacuum. can do. When the welding space 40 is made low pressure or vacuum, the work holding plate 38 is pushed from the outside by atmospheric pressure or outside pressure, so that the work lower plate 34 is also pushed from above, and the adhesion between the work lower plate 34 and the work upper plate 33 is achieved. Will also get better.

ワーク押さえ(上)板37でワーク上板33を押さえる方法として、ワーク押さえ(上)板37の上方から押し付ける方法、たとえばプレスで押す方法やワーク押さえ(上)板37の上方から全体へ圧力をかける方法があるが、他の種々の方法も採用することができる。ワーク押さえ(下)板38でワーク下板34を押さえる方法として、ワーク押さえ(下)板38の下方から押し付ける方法、たとえばプレスで押す方法やワーク押さえ(下)板38の下方から全体へ圧力をかける方法があるが、他の種々の方法も採用することができる。台座や基台の場合にはワーク押さえ(上)板37からの反作用力でワーク下板34を押さえることができる。溶接空間39へ導入したシールドガスの圧力を高めることによっても、溶接部位35においてワーク上板33を押さえることができ(この場合は、ワーク上板33の平坦部全体を押し付ける)、溶接部位35においてワーク上板33とワーク下板34を確実に密着でき、溶接品質を増大することができる。同様に、溶接空間40へ導入したシールドガスの圧力を高めることによっても、溶接部位35においてワーク下板34を押さえることができ(この場合は、ワーク下板34の平坦部全体を押し付ける)、溶接部位35においてワーク上板33とワーク下板34を確実に密着でき、溶接品質を増大することができる。尚、溶接空間の圧力を高める場合は、ワーク押さえ板が外れないように、溶接空間の圧力以上の力でワーク押さえ板を外側から押さえる必要がある。 As a method of pressing the work upper plate 33 with the work holding (upper) plate 37, a method of pressing from above the work holding (upper) plate 37, for example, a method of pressing with a press or a method of pressing the work holding (upper) plate 37 from above to the whole. There is a method of applying, but various other methods can also be adopted. As a method of pressing the work lower plate 34 with the work holding (lower) plate 38, a method of pressing from below the work holding (lower) plate 38, for example, a method of pressing with a press or a method of pressing the work holding (lower) plate 38 from below to the whole. There is a method of applying, but various other methods can also be adopted. In the case of a pedestal or a base, the work lower plate 34 can be pressed by the reaction force from the work holding (upper) plate 37. By increasing the pressure of the shield gas introduced into the welding space 39, the work upper plate 33 can be pressed at the welded portion 35 (in this case, the entire flat portion of the work upper plate 33 is pressed), and at the welded portion 35. The work upper plate 33 and the work lower plate 34 can be reliably brought into close contact with each other, and the welding quality can be improved. Similarly, by increasing the pressure of the shield gas introduced into the welding space 40, the work lower plate 34 can be pressed at the welded portion 35 (in this case, the entire flat portion of the work lower plate 34 is pressed), and welding is performed. The work upper plate 33 and the work lower plate 34 can be reliably brought into close contact with each other at the portion 35, and the welding quality can be improved. When increasing the pressure in the welding space, it is necessary to press the work holding plate from the outside with a force equal to or higher than the pressure in the welding space so that the work holding plate does not come off.

ワーク上板33およびワーク下板34の溶接する部材全体をシールドガス雰囲気中に配置する方法もある。たとえば、レーザー装置も含めた全体をシールドガス雰囲気中の容器の中に入れて、レーザー照射をすれば良い。あるいは、上面がレーザー光に透明なふたを有する容器中にワーク上板33およびワーク下板34、ワーク押さえ上板33およびワーク押さえ下板34をその容器中に入れて、容器内をシールドガス雰囲気にして、レーザー光を透明なふたを通してワークに照射する。凸状の水素導管17が溶接空間39、40を取り囲んでいる場合は、ワーク押さえ板37、38でワーク板33、34を押さえたときに溶接空間39、40が閉空間となるので、シールドガスで溶接空間39、40を充填できるが、凸状の水素導管17が溶接空間39、40を一部でも取り囲んでいない場合は、ワーク押さえ板37、38でワーク板33、34を押さえたときに溶接空間39、40が閉空間とならない。そのときは、上記のワーク上板33およびワーク下板34の溶接する部材全体をシールドガス雰囲気中に配置する方法により、シールドガスで溶接空間39、40を充填できる。他の方法として、ワーク押さえ板33、34の一部がワーク上板33およびワーク下板34の平坦部にも合うような形状にすれば、ワーク押さえ板37、38でワーク板33、34を押さえたときに溶接空間39、40が閉空間とすることができる。 There is also a method of arranging the entire members to be welded of the work upper plate 33 and the work lower plate 34 in a shield gas atmosphere. For example, the entire body including the laser device may be placed in a container in a shield gas atmosphere and laser irradiation may be performed. Alternatively, the work upper plate 33 and the work lower plate 34, the work holding upper plate 33 and the work holding lower plate 34 are placed in the container having a lid whose upper surface is transparent to the laser beam, and the inside of the container is filled with a shield gas atmosphere. Then, the laser beam is applied to the work through the transparent lid. When the convex hydrogen conduit 17 surrounds the welding spaces 39 and 40, the welding spaces 39 and 40 become a closed space when the work plates 33 and 34 are pressed by the work holding plates 37 and 38, so that the shield gas However, when the convex hydrogen conduit 17 does not surround the welding spaces 39 and 40 at all, when the work plates 33 and 34 are pressed by the work holding plates 37 and 38. Welding spaces 39 and 40 are not closed spaces. At that time, the welding spaces 39 and 40 can be filled with the shield gas by the method of arranging the entire members to be welded of the work upper plate 33 and the work lower plate 34 in the shield gas atmosphere. As another method, if a part of the work holding plates 33 and 34 is shaped so as to fit the flat portions of the work upper plate 33 and the work lower plate 34, the work holding plates 37 and 38 can be used to form the work plates 33 and 34. When pressed, the welding spaces 39 and 40 can be closed spaces.

図5(a)は、ワーク押さえ板を用いてワークを押さえる別の実施形態を示す図である。ワーク押さえ板にはワーク押さえ部材が取り付けられており、実際にはワーク押さえ板ではなくワーク押さえ部材でワークを押さえる。たとえば、ワーク押さえ上板37は平坦な平板(な透明板)となっており、そのワーク押さえ上板37に水素導管17やワーク上板33の平坦部を押さえるワーク押さえ部材81が取り付けられている。ワーク押さえ部材81−1は水素導管17−1の凸形状に適合するような凹形状をした部材であり、ワーク押さえ部材81−1の凹形状部分に水素導管17−1の凸形状部分を入れて、ワーク押さえ上板37を上方から押すと、ワーク押さえ部材81−1がワーク上板33の凸状の水素導管17部を押し付けることができる。ワーク押さえ部材81−1の下部はワーク上板33の平坦部にも接触しているので、ワーク上板33の平坦部も押し付けることができる。ワーク押さえ部材81−1の下部でワーク上板33の平坦部に接触している部分は、溶接部位35に近いので、ワーク押さえ上板37だけでワーク上板33を押し付ける場合に比べて、溶接部位35におけるワーク上板33とワーク下板34をより密着させることができ、その結果レーザー溶接の溶接品質を向上させることができる。ワーク押さえ部材81−2についてもワーク押さえ部材81−1と同様の効果を有する。ワーク押さえ部材81−3は、水素導管17には接触せずワーク上板33の平坦部に接触するような形状および大きさとなっており、ワーク押さえ部材81−1、2をワーク上板33の水素導管部に嵌めて合わせたときにワーク上板33の平坦部に接触する。そしてワーク押さえ上板37を押すとワーク押さえ部材81−3はワーク上板33の平坦部を押し付けることができる。ワーク押さえ部材81−3をレーザー溶接部位35に近づけて配置すれば、ワーク押さえ部材81−3の下部でワーク上板33の平坦部に接触している部分は、溶接部位35に近いので、ワーク押さえ上板37だけでワーク上板33を押し付ける場合に比べて、溶接部位35におけるワーク上板33とワーク下板34をより密着させることができ、その結果レーザー溶接の溶接品質を向上させることができる。 FIG. 5A is a diagram showing another embodiment in which the work is pressed by using the work holding plate. A work holding member is attached to the work holding plate, and the work is actually held by the work holding member instead of the work holding plate. For example, the work holding upper plate 37 is a flat flat plate (transparent plate), and the work holding member 81 for holding the hydrogen conduit 17 and the flat portion of the work upper plate 33 is attached to the work holding upper plate 37. .. The work holding member 81-1 is a member having a concave shape that matches the convex shape of the hydrogen conduit 17-1, and the convex portion of the hydrogen conduit 17-1 is inserted into the concave portion of the work holding member 81-1. When the work holding upper plate 37 is pushed from above, the work holding member 81-1 can press the convex hydrogen conduit 17 portion of the work holding plate 33. Since the lower portion of the work holding member 81-1 is also in contact with the flat portion of the work upper plate 33, the flat portion of the work upper plate 33 can also be pressed. Since the portion of the lower part of the work holding member 81-1 that is in contact with the flat portion of the work upper plate 33 is close to the welded portion 35, welding is performed as compared with the case where the work upper plate 33 is pressed only by the work holding upper plate 37. The work upper plate 33 and the work lower plate 34 at the portion 35 can be brought into close contact with each other, and as a result, the welding quality of laser welding can be improved. The work holding member 81-2 also has the same effect as the work holding member 81-1. The work holding member 81-3 has a shape and a size that does not come into contact with the hydrogen conduit 17 but comes into contact with the flat portion of the work upper plate 33, and the work holding members 81-1 and 2 are attached to the work upper plate 33. When fitted into the hydrogen conduit portion, it comes into contact with the flat portion of the work upper plate 33. Then, when the work holding upper plate 37 is pushed, the work holding member 81-3 can press the flat portion of the work holding upper plate 33. If the work holding member 81-3 is arranged close to the laser welded portion 35, the portion of the lower part of the work holding member 81-3 that is in contact with the flat portion of the work upper plate 33 is close to the welded portion 35. Compared with the case where the work upper plate 33 is pressed only by the pressing upper plate 37, the work upper plate 33 and the work lower plate 34 at the welded portion 35 can be brought into close contact with each other, and as a result, the welding quality of laser welding can be improved. it can.

ワーク押さえ下板38は平坦な平板となっているが、ワーク押さえ下板38にも水素導管17の凸形状に適合する形状のワーク押さえ部材82−1、2およびワーク下板34の平坦部に接触するワーク押さえ部材82−3が取り付けられている。これらのワーク押さえ部材82−1、2、3の作用や効果はワーク押さえ部材81−1、2、3の作用や効果と同様であるが、上下方向からワーク上板33およびワーク下板34を押し付けるので、それらの作用効果はさらに増大する。図5(a)に示すようなワーク押さえ部材81−1、2、3やワーク押さえ部材82−1、2、3を用いると、溶接空間39や40をそれらのワーク押さえ部材の間に設けることができるので、溶接空間39や40はワーク押さえ板37、38、ワーク押さえ部材81、82、ワーク板33、34で囲まれた閉空間とすることができる。従って、溶接空間39や40につながるシールドガス導入孔やその排出孔をワーク押さえ板37、38、ワーク押さえ部材に設けることによって、溶接空間39や40をシールドガスで充填することもでき、また溶接空間の圧力を高めることも容易である。すなわち、ワーク押さえ部材の外側の気圧(たとえば、大気圧)や周囲圧力よりも溶接空間の圧力を高めれば、溶接部位においてワーク板を押し付けてワーク板同士(ワーク上板とワーク下板)の接触を確実にして、溶接品質を高めることができる。あるいは、溶接空間39や40を低圧または真空にしても、前述したような効果を得ることができる。 The work holding lower plate 38 is a flat flat plate, but the work holding lower plate 38 also has a shape suitable for the convex shape of the hydrogen conduit 17 on the work holding members 82-1 and 2 and the flat portion of the work lower plate 34. A work holding member 82-3 that comes into contact is attached. The actions and effects of the work holding members 82-1 and 2 and 3 are the same as the actions and effects of the work holding members 81-1 and 2 and 3, but the work upper plate 33 and the work lower plate 34 are formed from the vertical direction. As they are pressed, their effects are further enhanced. When the work holding members 81-1, 2 and 3 and the work holding members 82-1 and 2 and 3 as shown in FIG. 5A are used, welding spaces 39 and 40 are provided between the work holding members. Therefore, the welding space 39 or 40 can be a closed space surrounded by the work holding plates 37 and 38, the work holding members 81 and 82, and the work plates 33 and 34. Therefore, the welding spaces 39 and 40 can be filled with the shield gas by providing the work holding plates 37 and 38 and the work holding members with shield gas introduction holes and their discharge holes connected to the welding spaces 39 and 40, and welding. It is also easy to increase the pressure in the space. That is, if the pressure in the welding space is higher than the pressure outside the work holding member (for example, atmospheric pressure) or the ambient pressure, the work plates are pressed at the welded portion and the work plates (work upper plate and work lower plate) come into contact with each other. Can be ensured and the welding quality can be improved. Alternatively, even if the welding spaces 39 and 40 are made low pressure or vacuum, the above-mentioned effect can be obtained.

水素導管17は複数存在し、それらの複数の水素導管17の上面(または下面)にワーク押さえ板37、38に取り付けたワーク押さえ部材81、82に接触するわけであるが、水素導管17の高さがばらつく場合には複数の水素導管17の中でワーク押さえ部材81、82に接触しないことも考えられる。特にワーク押さえ上板に用いられる石英ガラス等は柔軟性を殆ど有しないので、問題となる(もちろん水素導管のバラツキを小さくすればこの問題も小さくなる)。そこで、ワーク押さえ部材の材質を柔軟性材料とすれば、水素導管17の高さがばらついてもワーク押さえ部材を水素導管に接触させることができる。柔軟性材料として、高さ方向に変形(伸縮)可能なたとえばゴムや弾性プラスチックや柔軟性のある金属や合金等が挙げられる。レーザー溶接部位は高温になるので、ゴムや弾性プラスチックの場合は耐熱性を持つ材料が望ましい。ワーク押さえ部材81−3や82−3のようなワーク板の平坦部に接触する場合も同様であり、これらを柔軟性材料とすることにより、容易にワーク押さえ部材とワーク板との接触を確実に実現することができる。尚、柔軟性材料と言ってもある程度押し付けた時にワーク板を押し付けることができるように、水素導管の高さばらつきや柔軟性材料の選定をする必要がある。また、ワーク押さえ部材に柔軟性材料を用いることによって、隙間をなくすことができるので、溶接空間の密閉度も格段に向上する。 There are a plurality of hydrogen conduits 17, and the upper surface (or lower surface) of the plurality of hydrogen conduits 17 comes into contact with the work holding members 81 and 82 attached to the work holding plates 37 and 38, but the height of the hydrogen conduit 17 is high. If the hydrogen conduit 17 varies, it is possible that the work holding members 81 and 82 do not come into contact with each other. In particular, quartz glass or the like used for the work holding upper plate has almost no flexibility, which poses a problem (of course, if the variation in the hydrogen conduit is reduced, this problem also becomes smaller). Therefore, if the material of the work holding member is a flexible material, the work holding member can be brought into contact with the hydrogen conduit even if the height of the hydrogen conduit 17 varies. Examples of the flexible material include rubber, elastic plastic, flexible metal and alloy, which can be deformed (expanded and contracted) in the height direction. Since the laser welded part becomes hot, a heat-resistant material is desirable in the case of rubber or elastic plastic. The same applies to the case of contacting the flat portion of the work plate such as the work holding member 81-3 or 82-3, and by using these as flexible materials, the contact between the work holding member and the work plate can be easily ensured. Can be realized. It should be noted that it is necessary to select the flexible material and the height variation of the hydrogen conduit so that the work plate can be pressed when the flexible material is pressed to some extent. Further, by using a flexible material for the work holding member, a gap can be eliminated, so that the degree of sealing of the welding space is remarkably improved.

ワーク押さえ部材がワーク板と接触する部分に柔軟性材料を用いても一定の効果がある。たとえば、ワーク押さえ部材の本体を石英等または金属等で構成して、ワーク板との接触部に柔軟性材料を付着する方法もある。図5(b)は、ワーク押さえ板を用いてワークを押さえるさらに別の実施形態を示す図である。図5(b)では、ワーク板の凸部となる水素導管17の凸部のみにワーク押さえ部材83、84を配置して、これらのワーク押さえ部材83、84の材質を柔軟性材料とするものである。すなわち、ワーク押さえ上板の水素導管17の凸部に接触する部分にワーク押さえ部材83を配置し、ワーク押さえ下板の水素導管17の凸部に接触する部分にワーク押さえ部材84を配置する。ワーク押さえ部材83、84の形状は単純な直方体形状で良いし、ワーク押さえ部材83、84が水素導管17に接触すれば良いので位置合わせが容易(たとえば、水素導管17の凸部上面より大きめにワーク押さえ部材83、84を作製して付着させれば、ワーク押さえ部材83、84は水素導管17の凸部上面に必ず接触する)であるから作製費用がかなり安くなる。ワーク押さえ部材83、84は柔軟性部材であるから、水素導管17の高さばらつきが多少あってもワーク押さえ板37、38で押していくことによって、水素導管17の上面(または下面)がワーク押さえ部材83、84は柔軟性部材に接触してワーク板を押し付けることができる。 Even if a flexible material is used for the portion where the work holding member comes into contact with the work plate, there is a certain effect. For example, there is also a method in which the main body of the work holding member is made of quartz or the like or metal, and a flexible material is attached to the contact portion with the work plate. FIG. 5B is a diagram showing still another embodiment in which the work is pressed by using the work holding plate. In FIG. 5B, the work holding members 83 and 84 are arranged only on the convex portion of the hydrogen conduit 17 which is the convex portion of the work plate, and the material of these work holding members 83 and 84 is used as a flexible material. Is. That is, the work holding member 83 is arranged at the portion of the work holding upper plate that contacts the convex portion of the hydrogen conduit 17, and the work holding member 84 is arranged at the portion of the work holding lower plate that contacts the convex portion of the hydrogen conduit 17. The shape of the work holding members 83, 84 may be a simple rectangular parallelepiped shape, and the work holding members 83, 84 may be in contact with the hydrogen conduit 17, so that the alignment is easy (for example, larger than the upper surface of the convex portion of the hydrogen conduit 17). If the work holding members 83 and 84 are manufactured and attached to the work holding members 83 and 84, the work holding members 83 and 84 always come into contact with the upper surface of the convex portion of the hydrogen conduit 17), so that the manufacturing cost is considerably reduced. Since the work holding members 83 and 84 are flexible members, the upper surface (or lower surface) of the hydrogen conduit 17 can be pressed by the work holding plates 37 and 38 even if the height of the hydrogen conduit 17 varies slightly. The members 83 and 84 can come into contact with the flexible member and press the work plate.

図2は、本発明の水素導管を含むワーク(ワーク上板+ワーク下板)60の斜視図である。ワーク上板33およびワーク下板34の凹状部分が合わさり、水素導管17を形成している。ワーク上板33およびワーク下板34は溶接部位35でレーザー溶接されて水素導管17は閉空間となる。ワーク上板33の表面において、溶接部位35は溶接ライン61として線状に現れる。すなわち、レーザーは水素導管17を閉空間にするためにワーク上板33上を走査して溶接ライン61が形成される。図2では、溶接ライン61は直線状に描写されているが、水素導管17の配置状態により曲線状に形成されても良い。溶接部位35において、溶接部分はワーク下板35の金属板11の内部で終点して金属板11を貫かないようにするのが良い。溶接部分が金属板11を貫くとワークが変形する可能性があるからである。水素導管17の部分は凸部62(ワーク上板33側)と凸部63(ワーク下板34側)となり、凸部62同士の間は凹部となり凹部の底部は平坦面64となる。燃料電池を作製する場合、水素導管含有基板60を重ねていく。すなわち、凸部62(ワーク上板33側)の上に凸部63(ワーク下板34側)を配置して、それらの間の凹部で形成される空間の平坦面64に燃料電池を配置していく。水素導管17の側面65の一部から燃料電池へ水素(H)ガスまたは空気(この場合は、空気導管と言うべきであるが便宜上水素導管とする)が供給され、燃料電池から対向する側の水素導管(この場合は排気導管または排出導管と言うべきであるが便宜上水素導管とする)へ排出され、この間に電荷交換されて電気が発生する。 FIG. 2 is a perspective view of a work (work upper plate + work lower plate) 60 including a hydrogen conduit of the present invention. The concave portions of the work upper plate 33 and the work lower plate 34 are combined to form a hydrogen conduit 17. The work upper plate 33 and the work lower plate 34 are laser-welded at the welded portion 35, and the hydrogen conduit 17 becomes a closed space. On the surface of the work upper plate 33, the welded portion 35 appears linearly as a welding line 61. That is, the laser scans the work upper plate 33 to make the hydrogen conduit 17 a closed space, and a welding line 61 is formed. Although the welding line 61 is drawn in a straight line in FIG. 2, it may be formed in a curved line depending on the arrangement state of the hydrogen conduit 17. At the welded portion 35, it is preferable that the welded portion ends inside the metal plate 11 of the work lower plate 35 and does not penetrate the metal plate 11. This is because the work may be deformed if the welded portion penetrates the metal plate 11. The portion of the hydrogen conduit 17 is a convex portion 62 (work upper plate 33 side) and a convex portion 63 (work lower plate 34 side), and a concave portion is formed between the convex portions 62, and the bottom portion of the concave portion is a flat surface 64. When manufacturing a fuel cell, the hydrogen conduit-containing substrates 60 are stacked. That is, the convex portion 63 (work lower plate 34 side) is arranged on the convex portion 62 (work upper plate 33 side), and the fuel cell is arranged on the flat surface 64 of the space formed by the concave portion between them. To go. Hydrogen (H 2 ) gas or air (in this case, it should be called an air conduit, but for convenience, a hydrogen conduit) is supplied from a part of the side surface 65 of the hydrogen conduit 17 to the fuel cell, and the side facing the fuel cell. It is discharged to the hydrogen conduit (in this case, it should be called an exhaust conduit or an exhaust conduit, but for convenience, a hydrogen conduit), during which charge is exchanged and electricity is generated.

図3は、炭素膜を積層した金属板のワーク上板およびワーク下板をレーザー溶接する別の方法を示す図である。図1(c)において炭素膜の有無の構造を1つの図で示したが、図1(b)は同じ炭素膜構造にしたワーク上板およびワーク下板を同じ条件でレーザー溶接するものである。図3は、ワーク上板およびワーク下板に異なる炭素膜構造を作り、レーザー溶接するものである。たとえば、水素導管17(17−1)の右側に溶接部位51、52、53の3か所を設けて、溶接部位51の構造はワーク上板およびワーク下板とも炭素膜があり、その隣の溶接部位52の構造はワーク上板には炭素膜があるがワーク下板には炭素膜がない構造であり、その外側の溶接部位53の構造はワーク上板およびワーク下板とも炭素膜がない構造である。レーザー光の直径は約0.1mm〜1mm程度に絞ることができるので、レーザー照射条件を調節すれば、溶接部位同士を約1mm〜3mm程度離しておくことにより隣と干渉せずにレーザー溶接することができる。レーザー照射位置の誤差も考慮すれば隣接する溶接部位を約5mm〜1cm程度離しておけば充分である。このようにお互いに干渉しない程度の距離で離間させて3か所の溶接部位を配置して、それぞれの炭素構造の条件に合わせ、照射条件を調節したレーザー光41、42、43を照射してそれぞれの溶接部位を溶融接合する。このように3か所でレーザー溶接すると、1か所で不十分な接合があっても他で補うことができ、水素導管17(17−1)を確実に閉空間とすることができ、水素導管から水素が漏れることがなくなる。 FIG. 3 is a diagram showing another method of laser welding the work upper plate and the work lower plate of the metal plate on which the carbon film is laminated. The structure with and without the carbon film is shown in FIG. 1 (c), and FIG. 1 (b) shows laser welding of the work upper plate and the work lower plate having the same carbon film structure under the same conditions. .. In FIG. 3, different carbon film structures are formed on the work upper plate and the work lower plate and laser welded. For example, three welded parts 51, 52, and 53 are provided on the right side of the hydrogen conduit 17 (17-1), and the structure of the welded parts 51 has a carbon film on both the work upper plate and the work lower plate, and next to them. The structure of the welded portion 52 is a structure in which the work upper plate has a carbon film but the work lower plate has no carbon film, and the structure of the welded portion 53 on the outside thereof has no carbon film on both the work upper plate and the work lower plate. It is a structure. The diameter of the laser beam can be narrowed down to about 0.1 mm to 1 mm, so if the laser irradiation conditions are adjusted, the welded parts can be separated from each other by about 1 mm to 3 mm to perform laser welding without interfering with the neighbors. be able to. Considering the error of the laser irradiation position, it is sufficient to separate the adjacent welded parts by about 5 mm to 1 cm. In this way, three welded parts are arranged at a distance that does not interfere with each other, and laser beams 41, 42, and 43 whose irradiation conditions are adjusted according to the conditions of each carbon structure are irradiated. Each weld is melt-joined. By laser welding at three locations in this way, even if there is insufficient bonding at one location, it can be supplemented by the other, and the hydrogen conduit 17 (17-1) can be reliably closed, and hydrogen can be used. Hydrogen does not leak from the conduit.

水素導管17(17−2)の左側にも3か所の溶接部位54、55、56を設けて、溶接部位54の構造はワーク上板およびワーク下板とも炭素膜があり、その隣の溶接部位55の構造はワーク上板には炭素膜がなくワーク下板には炭素膜がある構造であり、その外側の溶接部位53の構造はワーク上板およびワーク下板とも炭素膜がない構造である。この場合もお互いに干渉しない程度の距離で離間させて3か所の溶接部位を配置して、それぞれの炭素構造の条件に合わせて照射条件を調節したレーザー光44、45、46を照射してそれぞれの溶接部位を溶融接合する。尚、図3に示すように、溶接部位を3か所配置する場合、水素導管17に近い方に炭素膜が両方ともある構造とし、中間部分は炭素膜が片方だけある構造とし、外側の溶接部位は炭素膜が両方ない構造とするのが良い。炭素膜がある構造の場合は溶接条件が厳しくなるからであり、水素導管17に近い溶接部位51や54で仮に溶接が不十分でも、次の溶接部位52や54で溶接が十分に行われ、さらに外側の溶接部位53や55で確実に溶接を行なうことができる。図1に示すように水素導管17の周囲1か所で溶接する場合に比べて、図3に示す方法により水素導管17を確実に閉空間にすることができるという点で信頼性を格段に向上させることができる。尚、余裕があれば隣接する溶接部位は上記の離間距離よりも大きくしても良い。 Welding sites 54, 55, and 56 are also provided on the left side of the hydrogen conduit 17 (17-2), and the structure of the welding sites 54 has a carbon film on both the work upper plate and the work lower plate, and welding next to them. The structure of the portion 55 is a structure in which the work upper plate has no carbon film and the work lower plate has a carbon film, and the structure of the welded portion 53 on the outside thereof is a structure in which neither the work upper plate nor the work lower plate has a carbon film. is there. In this case as well, three welded parts are arranged at a distance that does not interfere with each other, and the laser beams 44, 45, and 46 whose irradiation conditions are adjusted according to the conditions of each carbon structure are irradiated. Each weld is melt-joined. As shown in FIG. 3, when three welding sites are arranged, a structure having both carbon films near the hydrogen conduit 17 and a structure having only one carbon film in the middle portion, and welding on the outside. The site should have a structure without both carbon films. This is because the welding conditions become strict in the case of a structure having a carbon film, and even if welding is insufficient at the welding sites 51 and 54 near the hydrogen conduit 17, welding is sufficiently performed at the next welding sites 52 and 54. Further, welding can be reliably performed at the outer welded portions 53 and 55. Compared with the case of welding at one place around the hydrogen conduit 17 as shown in FIG. 1, the reliability is significantly improved in that the hydrogen conduit 17 can be surely made into a closed space by the method shown in FIG. Can be made to. If there is a margin, the adjacent welded portion may be larger than the above-mentioned separation distance.

溶接部位57は、3種類の炭素膜構造を近接して配置して、1回のレーザー照射47で3種類の溶接部位それぞれにおいて溶融接合させるものである。3種類の炭素膜構造は、水素導管17(17−1)に近い側を炭素膜が両方ともある構造であり、中間部をワーク上板が炭素膜がない構造として、その外側を両方とも炭素膜がない構造とする。レーザー照射条件をうまく調節することによって、1度の照射により3種類の炭素膜構造部分のそれぞれで溶融接合することができ、狭い幅で良好な接合を実現して水素漏れのない閉空間となる水素導管17(17−1)を作製できる。溶接部位58も、3種類の炭素膜構造を近接して配置して、1回のレーザー照射48で3種類の溶接部位それぞれにおいて溶融接合させるものである。3種類の炭素膜構造は、水素導管17(17−2)に近い側を炭素膜が両方ともある構造であり、中間部をワーク下板の炭素膜がない構造として、その外側を両方とも炭素膜がない構造とする。レーザー照射条件をうまく調節することによって、1度の照射により3種類の炭素膜構造部分のそれぞれで溶融接合することができ、狭い幅で良好な接合を実現して水素漏れのない閉空間となる水素導管17(17−2)を作製できる。このように炭素膜で水素導管を被覆したワークをレーザー溶接する場合、3種類の炭素膜構造部分を近接して配置することによって、1回のレーザー照射で確実に溶融接合でき、レーザー溶接の作業性も向上することもできる。溶接部位57および58の場合、水素導管17から約1〜5mm以上離しておけば、レーザー溶接の際水素導管17に影響を与えることはない。また、両方炭素膜がない領域を約0.5mm〜2mm、すぐ隣に炭素膜の一方がない領域を約0.5mm〜2mm、すぐ隣に両方に炭素膜のない領域を約0.5mm〜2mmとして、全体で約1.5mm〜8mmの溶接部位領域とすれば良い。図3では、種々の構造のものを記載したが、炭素膜構造を作製する作業性を考慮し、またレーザー照射条件は少ない方が作業性は良いので、どれか一つの構造を採用して、どの溶接部位も同じ構造とすれば品質レベルも安定する。 The welded portion 57 is such that three types of carbon film structures are arranged in close proximity to each other and melt-bonded at each of the three types of welded portions with a single laser irradiation 47. The three types of carbon film structures are structures in which both carbon films are present on the side close to the hydrogen conduit 17 (17-1), the intermediate portion is a structure in which the work upper plate has no carbon film, and both outsides are carbon. The structure has no membrane. By properly adjusting the laser irradiation conditions, it is possible to perform melt bonding at each of the three types of carbon film structure parts with a single irradiation, achieving good bonding with a narrow width and creating a closed space without hydrogen leakage. Hydrogen conduit 17 (17-1) can be made. The welded portion 58 also has three types of carbon film structures arranged close to each other, and is fused and bonded at each of the three types of welded portions by one laser irradiation 48. The three types of carbon film structures are structures in which both carbon films are present on the side close to the hydrogen conduit 17 (17-2), the intermediate portion is a structure without a carbon film on the lower plate of the work, and both outsides are carbon. The structure has no membrane. By properly adjusting the laser irradiation conditions, it is possible to perform melt bonding at each of the three types of carbon film structure parts with a single irradiation, achieving good bonding with a narrow width and creating a closed space without hydrogen leakage. Hydrogen conduit 17 (17-2) can be made. When laser welding a work whose hydrogen conduit is covered with a carbon film in this way, by arranging three types of carbon film structural parts in close proximity, it is possible to reliably melt and join with a single laser irradiation, and laser welding work. It can also improve sex. In the case of the welded portions 57 and 58, if the distance from the hydrogen conduit 17 is about 1 to 5 mm or more, the hydrogen conduit 17 will not be affected during laser welding. In addition, the region without both carbon films is about 0.5 mm to 2 mm, the region without one of the carbon films immediately next to it is about 0.5 mm to 2 mm, and the region without carbon films immediately next to both is about 0.5 mm to. It may be 2 mm, and the welded portion region may be about 1.5 mm to 8 mm in total. Although various structures have been described in FIG. 3, the workability is better when the workability for producing the carbon film structure is taken into consideration and the laser irradiation conditions are smaller. Therefore, one of the structures is adopted. If all welds have the same structure, the quality level will be stable.

図2では、水素導管(一方は水素または空気等が流れるライン、他方(対向する方)はその排出ラインとなる)は平行に走っているため、水素導管同士の平坦面には燃料電池が並んで配置されていく。従って、溶接ライン61は水素導管に沿って直線的である。ただし、終点で溶接ライン61同士を結んで閉曲線としても良い。閉曲線とすることにより、2枚の金属板同士を確実に結合することができる。この場合、水素導管17の一方側からガス(水素や空気)が流れ、他方側から出ていく。図6は、別の水素導管の配置方法を示す図である。図6は水素導管の配置状態が分かるように平面的に描写している。水素導管95、96はコの字を作りながら配置され、隣の水素導管(95と96)とコの字の部分合わさって配置されている。95を水素導管(空気の場合は空気導管と呼んでも良い)とすれば、96はその排出導管となる。コの字の終点部分では水素導管95、96同士は近接して平行に走り、その間に溶接ライン92が走っている。コの字で囲まれた部分97は燃料電池が配置される領域である。またコの字で囲まれた部分97には水素導管95および96で囲まれるように溶接ライン91が配置されている。ここで溶接ライン91は閉曲線となっているので、レーザーの照射は一筆書きで描写できる。これらの溶接ライン91同士を結ぶのが溶接ライン92となる。水素導管95、96は溶接ライン91および92に挟まれて閉空間となり、外側に水素等が漏れることはない。尚、図3で示したように3か所にレーザーを照射する場合は、溶接ラインは3本となる。2か所ならば2本である。図6は、燃料電池モジュールの一部を示したものであるから、これらを多数接続していくことにより、より多数の燃料電池を搭載した燃料電池モジュールを作製できる。図1から分かるように、これらを縦(高さ)方向に積層することもできるので、さらに多数の燃料電池を搭載した燃料電池モジュールを作製できる。図6に示すように水素導管をコの字形に配置することにより、多数の燃料電池を配置することができるとともに、個々の燃料電池が独立しているため、仮に1個の燃料電池が故障して動かなくなっても、他の燃料電池に影響を与えることがないので、信頼性の高い燃料電池(モジュール)を実現できる。 In FIG. 2, since the hydrogen conduits (one is the line through which hydrogen or air flows and the other (the opposite side) is the discharge line) run in parallel, the fuel cells are lined up on the flat surfaces of the hydrogen conduits. Will be placed in. Therefore, the welding line 61 is straight along the hydrogen conduit. However, the welding lines 61 may be connected to each other at the end point to form a closed curve. By making it a closed curve, the two metal plates can be reliably joined to each other. In this case, gas (hydrogen or air) flows from one side of the hydrogen conduit 17 and exits from the other side. FIG. 6 is a diagram showing a method of arranging another hydrogen conduit. FIG. 6 is drawn in a plane so that the arrangement state of the hydrogen conduit can be understood. The hydrogen conduits 95 and 96 are arranged so as to form a U-shape, and are arranged so as to be partially aligned with the adjacent hydrogen conduits (95 and 96). If 95 is a hydrogen conduit (in the case of air, it may be called an air conduit), 96 is its discharge conduit. At the end point of the U-shape, the hydrogen conduits 95 and 96 run close to each other in parallel, and the welding line 92 runs between them. The portion 97 surrounded by a U-shape is an area where the fuel cell is arranged. A welding line 91 is arranged in the portion 97 surrounded by the U shape so as to be surrounded by the hydrogen conduits 95 and 96. Here, since the welding line 91 has a closed curve, the laser irradiation can be described with a single stroke. The welding line 92 connects these welding lines 91 to each other. The hydrogen conduits 95 and 96 are sandwiched between the welding lines 91 and 92 to form a closed space, and hydrogen or the like does not leak to the outside. When irradiating the laser at three places as shown in FIG. 3, the number of welding lines is three. If there are two places, there are two. Since FIG. 6 shows a part of the fuel cell module, a fuel cell module equipped with a larger number of fuel cells can be manufactured by connecting a large number of the fuel cell modules. As can be seen from FIG. 1, since these can be stacked in the vertical (height) direction, a fuel cell module equipped with a larger number of fuel cells can be manufactured. By arranging the hydrogen conduits in a U shape as shown in FIG. 6, a large number of fuel cells can be arranged, and since each fuel cell is independent, one fuel cell may fail. Even if it stops working, it does not affect other fuel cells, so a highly reliable fuel cell (module) can be realized.

ワーク押さえ板37は透明部材と説明したが、全体が必ずしも透明でなくても良い。レーザー光が通る部分が少なくとも透明であれば良い。たとえば、レーザー光が通る部分だけに透明部材、たとえば石英ガラス等板を配置したワーク押さえ板であり、それ以外を他の材料、たとえばSUS304等のステンレス鋼や鉄を主成分とする鉄系材料、アルミニウム系材料、銅系材料等の金属板、あるいはポリプロピレンやアクリル等の各種プラスチック材料としても良い。あるいは、レーザー光を通る部分に孔があいたワーク押さえ板でも良い。孔があいたワーク押さえ板の場合、溶接空間を完全密閉にすることは難しいが、ワーク押さえ板を含む全体をシールドガスで充満できる容器内に配置するとか、レーザー装置全体をシールドガス雰囲気にするなどの方法もある。また、ワーク押さえ板37は平板と記載したが、ワーク押さえ板37が複数の水素導管17に接触するワーク押さえ板下面が、それらの複数部分で同じ高さであれば、(あるいは、水素導管の高さに応じて、ワーク押さえ板37の各所がほぼ同時にそれらの複数の水素導管に接触できれば)、ワーク押さえ板37は必ずしも平板でなくても良い。言い換えれば、本発明で平板と記載した場合、このようなケースも含まれる。また、図5(a)では、水素導管17の形状に合わせたワーク押さえ部材81、82はワーク板33、34の平坦部に接触しているが、上部のみが水素導管17の形状に合わせた形状であり下部は必ずしもワーク板33、34の平坦部に接触していなくても良い。尚、ワーク押さえ下板に関しても同様である。 Although the work holding plate 37 has been described as a transparent member, the entire work holding plate 37 does not necessarily have to be transparent. It suffices if the part through which the laser light passes is at least transparent. For example, a work holding plate in which a transparent member, for example, a plate such as quartz glass is arranged only in a portion through which laser light passes, and other materials such as stainless steel such as SUS304 or an iron-based material containing iron as a main component. It may be a metal plate such as an aluminum-based material or a copper-based material, or various plastic materials such as polypropylene and acrylic. Alternatively, a work holding plate having a hole in a portion through which the laser beam passes may be used. In the case of a work holding plate with holes, it is difficult to completely seal the welding space, but the entire area including the work holding plate may be placed in a container that can be filled with shield gas, or the entire laser device may have a shield gas atmosphere. There is also the method of. Further, although the work holding plate 37 is described as a flat plate, if the lower surface of the work holding plate in which the work holding plate 37 contacts the plurality of hydrogen conduits 17 has the same height at the plurality of portions (or of the hydrogen conduit). The work holding plate 37 does not necessarily have to be a flat plate (as long as the various parts of the work holding plate 37 can contact the plurality of hydrogen conduits at almost the same time depending on the height). In other words, when described as a flat plate in the present invention, such a case is also included. Further, in FIG. 5A, the work holding members 81 and 82 that match the shape of the hydrogen conduit 17 are in contact with the flat portions of the work plates 33 and 34, but only the upper portion matches the shape of the hydrogen conduit 17. It has a shape, and the lower portion does not necessarily have to be in contact with the flat portions of the work plates 33 and 34. The same applies to the work holding lower plate.

ワーク上板の厚みは、レーザー光が通れば比較手的厚くても良い。たとえば、1mm〜1cm、またはこれ以上でも良い。ワーク下板の厚みは特に限定されないが、ワーク上板と代替可能とすれば作製しやすい。水素導管の高さは、燃料電池の大きさに合わせて選定できる。ただし、本発明では図4に示すように燃料電池の大きさにより水素導管の高さは高くなる。余り高くなるとその導管を流す水素量が増大するので、燃料電池に必要な水素量を確保できる程度の高さとするのが良い。その場合、水素導管の高さと燃料電池の大きさと合わせるために、ダミーを水素導管の上面に取り付けても良い。ただし、レーザー溶接する場合は、このダミーは必要ない。また、燃料電池の構造を工夫すれば、このダミーをなくすこともでき、燃料電池により適宜変更すれば良い。ワーク押さえ上板の厚みは、押さえる強さに耐える厚みである必要があるが、石英や石英ガラスである場合は約0.1mm〜1cm、またはそれ以上でも良い。ワーク押さえ下板の圧みも押さえる強さに耐える厚みである必要があるが、ステンレス板の場合は約1mm〜1cm、またはそれ以上でも良い。ワーク板およびワーク押さえ板の幅(縦、横)は、燃料電池の大きさに合わせて適宜変更すれば良い。ただし、これらが変形しないようにそれらの大きさに合わせて厚みを変更することは当然である。さらに、レーザー光がワーク上板と下板の接触部分まで溶融させる必要があるので、ワーク板が厚い場合は、ワーク板(特にワーク上板)の溶接部位の厚みを薄くして(たとえば、溝部を作る)置く必要もある。 The thickness of the work top plate may be comparatively thick as long as the laser beam passes through it. For example, it may be 1 mm to 1 cm or more. The thickness of the work lower plate is not particularly limited, but it is easy to manufacture if it can be replaced with the work upper plate. The height of the hydrogen conduit can be selected according to the size of the fuel cell. However, in the present invention, as shown in FIG. 4, the height of the hydrogen conduit increases depending on the size of the fuel cell. If it becomes too high, the amount of hydrogen flowing through the conduit will increase, so it is better to set the height so that the amount of hydrogen required for the fuel cell can be secured. In that case, a dummy may be attached to the upper surface of the hydrogen conduit in order to match the height of the hydrogen conduit with the size of the fuel cell. However, this dummy is not necessary for laser welding. Further, if the structure of the fuel cell is devised, this dummy can be eliminated, and it may be appropriately changed depending on the fuel cell. The thickness of the work holding upper plate needs to be a thickness that can withstand the holding strength, but in the case of quartz or quartz glass, it may be about 0.1 mm to 1 cm or more. The thickness must be sufficient to withstand the pressure of the work holding lower plate, but in the case of a stainless steel plate, it may be about 1 mm to 1 cm or more. The widths (vertical and horizontal) of the work plate and the work holding plate may be appropriately changed according to the size of the fuel cell. However, it is natural to change the thickness according to their size so that they are not deformed. Further, since the laser beam needs to be melted to the contact portion between the work upper plate and the lower plate, when the work plate is thick, the thickness of the welded portion of the work plate (particularly the work upper plate) is reduced (for example, the groove portion). You also need to put it.

図7は、ワーク板の表側(すなわち、内表面ではなく外表面)にも炭素膜を形成したワーク板を示す図である。図2や図4から分かるように、ワーク(板)60の外表面の平坦部64に燃料電池21が配置され、水素供給ライン26を水素等が流れる。すなわち、ワーク(板)60の外表面と水素等が接触する場合がある。図1等で示したワーク(板)60の外表面側は、金属板11や金属板12であるから、燃料電池は発熱して温度が高くなった場合に、ワーク(板)60の外表面である金属板11や金属板12の(外)表面側でから水素が金属板中に拡散して水素脆性を起こす可能性がある。そこで、図7に示すように、金属板11や金属板12の外表面にも炭素膜を積層する。炭素膜は、金属板11や金属板12の内表面側と同じ方法、すなわちCVD法、PVD法およびメッキ法で形成できる。金属板11および金属板12の両面(外表面となる側および内表面なる側)に炭素膜85および86を積層した後、図1に示した方法と同様に、金属板11および金属板12を凹部が合うように合わせて、レーザー照射する。炭素膜は薄いので、炭素膜を通してレーザー光が金属板内に入り金属板が溶融したときに炭素膜も金属中へ固溶する。あるいはワーク外表面(特にレーザーが照射される側の金属板12の外表面)の溶接部位35における炭素膜を予め除去しておいても良い。尚、この場合のワーク上板33は、金属板12の両表面に炭素膜31、85を形成した構造であり、ワーク下板34は、金属板11の両表面に炭素膜32、86を形成した構造となる。 FIG. 7 is a diagram showing a work plate having a carbon film formed on the front side (that is, the outer surface instead of the inner surface) of the work plate. As can be seen from FIGS. 2 and 4, the fuel cell 21 is arranged on the flat portion 64 on the outer surface of the work (plate) 60, and hydrogen or the like flows through the hydrogen supply line 26. That is, hydrogen or the like may come into contact with the outer surface of the work (plate) 60. Since the outer surface side of the work (plate) 60 shown in FIG. 1 or the like is a metal plate 11 or a metal plate 12, the outer surface of the work (plate) 60 when the fuel cell generates heat and the temperature rises. There is a possibility that hydrogen diffuses into the metal plate from the (outer) surface side of the metal plate 11 or the metal plate 12 to cause hydrogen brittleness. Therefore, as shown in FIG. 7, a carbon film is also laminated on the outer surfaces of the metal plate 11 and the metal plate 12. The carbon film can be formed by the same method as the inner surface side of the metal plate 11 or the metal plate 12, that is, the CVD method, the PVD method, and the plating method. After laminating the carbon films 85 and 86 on both sides (the side that becomes the outer surface and the side that becomes the inner surface) of the metal plate 11 and the metal plate 12, the metal plate 11 and the metal plate 12 are formed in the same manner as in the method shown in FIG. Align the recesses so that they fit, and irradiate the laser. Since the carbon film is thin, when the laser beam enters the metal plate through the carbon film and the metal plate melts, the carbon film also dissolves in the metal. Alternatively, the carbon film at the welded portion 35 on the outer surface of the work (particularly the outer surface of the metal plate 12 on the side irradiated with the laser) may be removed in advance. In this case, the work upper plate 33 has a structure in which carbon films 31 and 85 are formed on both surfaces of the metal plate 12, and the work lower plate 34 has carbon films 32 and 86 formed on both surfaces of the metal plate 11. The structure is as follows.

金属板の表面に炭素膜85、86の積層は、炭素膜31、32と同様に、金属板に凹状(逆から見れば凸状)部分17を形成する前に積層することもできるし、形成後に積層することもできる。炭素膜85、86の膜厚は約10μm〜100μm以下が望ましいので、レーザー光36は炭素膜85を突き抜けて溶接部位35における金属板12および11(一部が望ましい)を溶融して金属板12および11を溶接できるが、レーザー照射前に、溶接部位35における炭素膜85を除去しても良い。炭素膜の除去方法は前述した図1(c)の溶接部位35−1、2,3で説明した方法と同様で良い。あるいは、金属板12を溶かさないような条件で溶接部位35における炭素膜85にレーザー照射して炭素膜を除去しても良い。炭素膜85は、レーザー照射により加熱されて空気中の酸素と反応してCOまたはCOとなり、除去される。炭素膜31を除去しなくてもレーザー照射後は炭素膜85は金属板12中へ固溶されるので、溶接部位35において金属板12上の炭素膜85はなくなるので、この部分から水素が侵入する可能性がある。 Similar to the carbon films 31 and 32, the carbon films 85 and 86 can be laminated on the surface of the metal plate before forming the concave (convex when viewed from the opposite side) portion 17 on the metal plate. It can also be laminated later. Since the thickness of the carbon films 85 and 86 is preferably about 10 μm to 100 μm or less, the laser beam 36 penetrates the carbon film 85 and melts the metal plates 12 and 11 (partially desirable) at the welded portion 35 to melt the metal plate 12 And 11 can be welded, but the carbon film 85 at the welded portion 35 may be removed before laser irradiation. The method for removing the carbon film may be the same as the method described for the welded portions 35-1, 2 and 3 in FIG. 1 (c) described above. Alternatively, the carbon film 85 at the welded portion 35 may be irradiated with a laser to remove the carbon film under conditions that do not melt the metal plate 12. The carbon film 85 is heated by laser irradiation and reacts with oxygen in the air to become CO or CO 2 , which is removed. Even if the carbon film 31 is not removed, the carbon film 85 is dissolved in the metal plate 12 after laser irradiation, so that the carbon film 85 on the metal plate 12 disappears at the welded portion 35, and hydrogen invades from this portion. there's a possibility that.

そこで、図1に示すように金属板12の外表面には炭素膜85を形成せずに、レーザー溶接後に炭素膜85を金属板12の表面に形成することもできる。溶接後のワーク(図2においては60)をCVD装置、PVD装置やメッキ装置へセットして炭素膜を積層すれば良い。この方法によれば、レーザー溶接後に金属板12の全表面(凸部および平坦部等)に均一に炭素膜を形成することができる。特に溶接部位35における金属板12の表面にも炭素膜を積層できるので、水素が金属板内への侵入を防止することができ、その結果水素脆性の発生を防ぐことができる。金属板11側は、レーザー照射されないので、レーザー照射前に炭素膜32を積層しても特に問題はないが、レーザー照射前には炭素膜32を形成せずに、レーザー照射後に炭素膜86を積層しても良い。 Therefore, as shown in FIG. 1, the carbon film 85 may be formed on the surface of the metal plate 12 after laser welding without forming the carbon film 85 on the outer surface of the metal plate 12. The work after welding (60 in FIG. 2) may be set in a CVD device, a PVD device, or a plating device, and a carbon film may be laminated. According to this method, a carbon film can be uniformly formed on the entire surface (convex portion, flat portion, etc.) of the metal plate 12 after laser welding. In particular, since the carbon film can be laminated on the surface of the metal plate 12 at the welded portion 35, hydrogen can be prevented from entering the metal plate, and as a result, the occurrence of hydrogen embrittlement can be prevented. Since the metal plate 11 side is not irradiated with the laser, there is no particular problem even if the carbon film 32 is laminated before the laser irradiation, but the carbon film 86 is formed after the laser irradiation without forming the carbon film 32 before the laser irradiation. It may be laminated.

以上詳細に説明した様に、本発明の炭素膜を内面に積層した水素導管は水素脆性耐性が大きく、水素導管の寿命や信頼性を向上することができる。水素導管は2枚の金属板をレーザー溶接で作製するが、本発明のワーク押さえ板を用いれば良好な溶接品質を得ることもできる。本発明を用いて作製した水素導管は燃料電池に使用できるが、燃料電池の長寿命化に大きく寄与できる。尚、図4は燃料電池の一例で便宜上冷却ラインを省略したが、本発明の水素導管の作製方法と同様の方法を用いて冷却ラインを作製して図4に示す燃料電池に組み込むことができる。たとえば、導管を作製した後金属板の平坦部をくり抜いて水素導管17と空気導管18の間に組み込むことができる。冷却方法としては、冷却水を流す方法や冷却ガス(たとえば、冷却したCO2や冷却した不活性ガス)を流す方法が挙げられる。また、水素導管17と空気導管18は互いに垂直に交叉させることもできる。このように、本発明の水素導管を用いれば、種々の燃料電池の大きさや構造に対応できる。また、燃料電池は図4に示す構造以外の種々の構造があるが、どのような構造においても水素導管は必須なので、本発明の水素導管を採用することができる。尚、本明細書において、明細書のある部分に記載し説明した内容について記載しなかった他の部分においても矛盾なく適用できることに関しては、当該他の部分に当該内容を適用できることは言うまでもない。また、本出願文書で記載した実施例や実施形態等の内容は、他の実施例や実施形態等の内容と組み合わせて使用できることも当然である。さらに、前記実施形態は一例であり、要旨を逸脱しない範囲内で種々変更して実施でき、本発明の権利範囲が前記実施形態に限定されないことも言うまでもない。 As described in detail above, the hydrogen conduit in which the carbon film of the present invention is laminated on the inner surface has high hydrogen embrittlement resistance, and can improve the life and reliability of the hydrogen conduit. The hydrogen conduit is made by laser welding two metal plates, but good welding quality can also be obtained by using the work holding plate of the present invention. The hydrogen conduit produced by using the present invention can be used for a fuel cell, but can greatly contribute to extending the life of the fuel cell. Although the cooling line is omitted for convenience in FIG. 4 as an example of the fuel cell, a cooling line can be manufactured by the same method as the method for manufacturing the hydrogen conduit of the present invention and incorporated into the fuel cell shown in FIG. .. For example, after the conduit is made, the flat portion of the metal plate can be hollowed out and incorporated between the hydrogen conduit 17 and the air conduit 18. Examples of the cooling method include a method of flowing cooling water and a method of flowing cooling gas (for example, cooled CO2 or cooled inert gas). Further, the hydrogen conduit 17 and the air conduit 18 can be crossed perpendicularly to each other. As described above, by using the hydrogen conduit of the present invention, it is possible to cope with various sizes and structures of fuel cells. Further, the fuel cell has various structures other than the structure shown in FIG. 4, but since the hydrogen conduit is indispensable in any structure, the hydrogen conduit of the present invention can be adopted. It goes without saying that the content can be applied to the other part of the specification without any contradiction as to the fact that the content described and explained in the specification can be applied to the other part without contradiction. In addition, it is natural that the contents of the examples and embodiments described in the present application document can be used in combination with the contents of other examples and embodiments. Further, it goes without saying that the embodiment is an example and can be modified in various ways without departing from the gist, and the scope of rights of the present invention is not limited to the embodiment.

本発明の内面に炭素膜を積層しレーザー溶接で作製する水素導管は、燃料電池以外の水素ガス管や水素を収容する容器にも使用できる。 The hydrogen conduit produced by laminating a carbon film on the inner surface of the present invention by laser welding can also be used for a hydrogen gas pipe other than a fuel cell and a container for accommodating hydrogen.

11・・・金属板、12・・・金属板、17・・・水素導管、31・・・炭素膜、32・・・炭素膜、33・・ワーク上板、34・・・ワーク下板、35・・・(レーザー)溶接部位、36・・・レーザー光、37・・・透明板材(ワーク押さえ上板)、38ワーク押さえ下板、39・・・溶接空間(レーザー照射側)、40・・・溶接空間(レーザー照射裏側)、71・・・シールドガス導入孔、72・・・シールドガス排出孔 11 ... Metal plate, 12 ... Metal plate, 17 ... Hydrogen conduit, 31 ... Carbon film, 32 ... Carbon film, 33 ... Work upper plate, 34 ... Work lower plate, 35 ... (laser) welded part, 36 ... laser light, 37 ... transparent plate material (work holding upper plate), 38 work holding lower plate, 39 ... welding space (laser irradiation side), 40.・ ・ Welding space (back side of laser irradiation), 71 ・ ・ ・ Shield gas introduction hole, 72 ・ ・ ・ Shield gas discharge hole

Claims (21)

2枚の金属板を溶接して水素ガスを含む気体を通す空間(水素導管という)を形成する方法であって、水素導管の内側となる金属板表面(金属板内表面という)に炭素膜を形成することを特徴とする、水素ガス導管の作製方法。 It is a method of welding two metal plates to form a space (called a hydrogen conduit) through which a gas containing hydrogen gas passes, and a carbon film is formed on the surface of the metal plate (called the inner surface of the metal plate) inside the hydrogen conduit. A method for producing a hydrogen gas conduit, which comprises forming. 前記水素導管の外側となる金属板表面(金属板外表面という)に炭素膜を形成することを特徴とする、請求項1に記載の水素ガス導管の作製方法。 The method for producing a hydrogen gas conduit according to claim 1, wherein a carbon film is formed on the surface of the metal plate (referred to as the outer surface of the metal plate) which is the outside of the hydrogen conduit. 2枚の金属板はそれぞれ水素導管用の凹状部分および平坦部分を有し、2枚の金属板の凹状部分および平坦部分を合わせて、凹状部分の周囲の平坦部分(溶接部位という)を凹状部分に沿ってレーザー溶接し、凹状部分を水素導管とすることを特徴とする、請求項1または2に記載の水素ガス導管の作製方法。 The two metal plates each have a concave portion and a flat portion for a hydrogen conduit, and the concave portion and the flat portion of the two metal plates are combined to form a flat portion (called a welded portion) around the concave portion. The method for producing a hydrogen gas conduit according to claim 1 or 2, wherein the concave portion is formed into a hydrogen conduit by laser welding along the above. 炭素膜形成前に、炭素膜を形成する金属表面(金属板内表面および/または外表面)にレーザー照射により微小な凹凸を形成することを特徴とする、請求項1〜3のいずれかの項に記載の水素ガス導管の作製方法。 Any of claims 1 to 3, characterized in that minute irregularities are formed on the metal surface (inner surface and / or outer surface of the metal plate) on which the carbon film is formed by laser irradiation before the formation of the carbon film. The method for producing a hydrogen gas conduit according to. 炭素膜は、CVD法、PVD法、またはメッキ法により形成されることを特徴とする、請求項1〜4のいずれかの項に記載の水素ガス導管の作製方法。 The method for producing a hydrogen gas conduit according to any one of claims 1 to 4, wherein the carbon film is formed by a CVD method, a PVD method, or a plating method. 2枚の金属板のレーザー溶接する部位(溶接部位という)の構造は、2枚の金属板のうちの1枚の金属板(金属板Aという)、金属板A内表面に積層した炭素膜(金属板A上炭素膜という)、前記金属板A上炭素膜と接触した他の1枚の金属板(金属板Bという)内表面に積層した炭素膜(金属板B上炭素膜という)および金属板Bであるか、または
金属板A、金属板A上炭素膜または金属板B上炭素膜、および金属板Bであるか、または
金属板Aおよび金属板Bであることを特徴とする、請求項1〜5のいずれかの項に記載の水素ガス導管の作製方法。
The structure of the laser-welded part (called the welded part) of the two metal plates consists of one metal plate (called the metal plate A) of the two metal plates and a carbon film laminated on the inner surface of the metal plate A (called the metal plate A). A carbon film (referred to as a carbon film on a metal plate A), a carbon film (referred to as a carbon film on a metal plate B) laminated on the inner surface of another metal plate (called a metal plate B) in contact with the carbon film on the metal plate A, and a metal. Claimed to be a plate B or a metal plate A, a carbon film on a metal plate A or a carbon film on a metal plate B, and a metal plate B, or a metal plate A and a metal plate B. Item 8. The method for producing a hydrogen gas conduit according to any one of Items 1 to 5.
金属板の平坦部のレーザー溶接個所(溶接部位という)は、凹部のそれぞれ片側に3か所存在し、前記3か所のレーザー溶接部位の構造の1つは、2枚の金属板のうちの1枚の金属板(金属板A)、金属板A内表面に積層した炭素膜(金属板A上炭素膜)、前記金属板A上炭素膜と接触した他の1枚の金属板(金属板B)内表面に積層した炭素膜(金属板B上炭素膜)および金属板Bであり、
前記3か所のレーザー溶接部位の構造の他の1つは、金属板A、金属板A上炭素膜または金属板B上炭素膜、および金属板Bであり、および
前記3か所のレーザー溶接部位の構造の残り1つは、金属板Aおよび金属板Bであることを特徴とする、請求項1〜6のいずれかの項に記載の水素ガス導管の作製方法。
There are three laser welded parts (called welded parts) on the flat part of the metal plate on each side of the recess, and one of the structures of the three laser welded parts is one of the two metal plates. One metal plate (metal plate A), a carbon film laminated on the inner surface of the metal plate A (carbon film on the metal plate A), and another metal plate (metal plate) in contact with the carbon film on the metal plate A. B) A carbon film (carbon film on the metal plate B) and a metal plate B laminated on the inner surface.
The other one of the structures of the three laser welded parts is a metal plate A, a carbon film on the metal plate A or a carbon film on the metal plate B, and a metal plate B, and laser welding at the three places. The method for producing a hydrogen gas conduit according to any one of claims 1 to 6, wherein the remaining one of the structure of the portion is a metal plate A and a metal plate B.
2枚の金属板を合わせてレーザー溶接する場合において、レーザー照射する側の、水素導管となる金属板の複数の凸部同士を透明治具で押さえて、前記透明治具を通して金属板の溶接する部位(溶接部位という)にレーザーを照射して、前記溶接部位において、2枚の金属板を溶融接合することを特徴とする、請求項1〜7のいずれかの項に記載の水素ガス導管の作製方法。 When two metal plates are combined and laser welded, a transparent jig presses a plurality of convex portions of the metal plate serving as a hydrogen conduit on the laser irradiation side, and the metal plate is welded through the transparent jig. The hydrogen gas conduit according to any one of claims 1 to 7, wherein a portion (referred to as a welded portion) is irradiated with a laser to melt-join two metal plates at the welded portion. Manufacturing method. 透明治具、金属板の凸部および金属板で囲まれた、レーザーが照射する領域を含む空間(溶接空間Aという)は、シールドガスで充満されていることを特徴とする、請求項1〜8のいずれかの項に記載の水素ガス導管の作製方法。 The space including the area to be irradiated by the laser (referred to as welding space A) surrounded by the transparent jig, the convex portion of the metal plate, and the metal plate is filled with the shield gas. 8. The method for producing a hydrogen gas conduit according to any item of 8. 2枚の金属板を合わせてレーザー溶接する場合において、レーザー照射しない側の、水素導管となる金属板の複数の凸部同士を押さえ治具または台座で押さえて、金属板の溶接する部位(溶接部位という)において、2枚の金属板を溶融接合することを特徴とする、請求項1〜9のいずれかの項に記載の水素ガス導管の作製方法。 When two metal plates are combined and laser welded, the parts to be welded (welded) of the metal plates by pressing the multiple convex parts of the metal plates that will be the hydrogen conduit on the side not irradiated with the laser with a holding jig or pedestal. The method for producing a hydrogen gas conduit according to any one of claims 1 to 9, wherein the two metal plates are weld-bonded at the site). 押さえ治具または台座、金属板の凸部および金属板で囲まれた空間(溶接空間Bという)は、シールドガスで充満されていることを特徴とする、請求項10に記載の水素ガス導管の作製方法。 The hydrogen gas conduit according to claim 10, wherein the holding jig or pedestal, the convex portion of the metal plate, and the space surrounded by the metal plate (referred to as welding space B) are filled with the shield gas. Manufacturing method. 前記溶接空間Aおよび/または前記溶接空間Bのシールドガスによる圧力は、大気圧より大きいか周囲圧力より大きいことを特徴とする、請求項9〜11のいずれかの項に記載の水素ガス導管の作製方法。 The hydrogen gas conduit according to any one of claims 9 to 11, wherein the pressure due to the shield gas in the welding space A and / or the welding space B is larger than the atmospheric pressure or the ambient pressure. Manufacturing method. シールドガスは、ヘリウム(He)ガス、アルゴン(Ar)ガス、ネオン(Ne)ガス、窒素(N)ガス、二酸化炭素ガスから選択される少なくとも1つのガスであることを特徴とする、請求項9〜12のいずれかの項に記載の水素ガス導管の作製方法。 The shield gas is claimed to be at least one gas selected from helium (He) gas, argon (Ar) gas, neon (Ne) gas, nitrogen (N 2 ) gas, and carbon dioxide gas. The method for producing a hydrogen gas conduit according to any one of 9 to 12. レーザー照射する側の金属板外表面上の炭素膜はレーザー溶接後に形成することを特徴とする、請求項1〜13のいずれかの項に記載の水素ガス導管の作製方法。 The method for producing a hydrogen gas conduit according to any one of claims 1 to 13, wherein the carbon film on the outer surface of the metal plate to be irradiated with the laser is formed after laser welding. レーザー照射しない側の金属板外表面上の炭素膜はレーザー溶接後に形成することを特徴とする、請求項1〜14のいずれかの項に記載の水素ガス導管の作製方法。 The method for producing a hydrogen gas conduit according to any one of claims 1 to 14, wherein the carbon film on the outer surface of the metal plate on the side not irradiated with the laser is formed after laser welding. 金属板は、SUS304またはステンレス鋼または鉄系材料であることを特徴とする、請求項1〜15のいずれかの項に記載の水素ガス導管の作製方法。 The method for producing a hydrogen gas conduit according to any one of claims 1 to 15, wherein the metal plate is SUS304 or stainless steel or an iron-based material. 2枚の金属板を溶接して作製した水素ガスを含む気体を通す空間である水素素導管の金属板表面構造は、金属板表面上に炭素膜が積層した構造であることを特徴とする水素導管。 The metal plate surface structure of a hydrogen conduit, which is a space for passing a gas containing hydrogen gas produced by welding two metal plates, is a structure in which a carbon film is laminated on the surface of the metal plate. conduit. 水素導管の内側となる金属板表面上に炭素膜が積層した構造であることを特徴とする、請求項17に記載の水素導管。 The hydrogen conduit according to claim 17, wherein a carbon film is laminated on the surface of a metal plate inside the hydrogen conduit. 水素導管の外側となる金属板表面上に炭素膜が積層した構造であることを特徴とする、請求項17または18に記載の水素導管。 The hydrogen conduit according to claim 17 or 18, wherein the structure is such that a carbon film is laminated on a metal plate surface outside the hydrogen conduit. 前記炭素膜は、CVD炭素膜、PVD炭素膜またはメッキ炭素膜であることを特徴とする、請求項17〜19のいずれかの項に記載の水素導管。 The hydrogen conduit according to any one of claims 17 to 19, wherein the carbon film is a CVD carbon film, a PVD carbon film, or a plated carbon film. 金属板は、SUS304またはステンレス鋼または鉄系材料であることを特徴とする、請求項17〜20のいずれかの項に記載の水素導管。
The hydrogen conduit according to any one of claims 17 to 20, wherein the metal plate is SUS304 or stainless steel or an iron-based material.
JP2019138406A 2019-07-27 2019-07-27 Hydrogen conduit structure and fabrication method Active JP7250408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019138406A JP7250408B2 (en) 2019-07-27 2019-07-27 Hydrogen conduit structure and fabrication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019138406A JP7250408B2 (en) 2019-07-27 2019-07-27 Hydrogen conduit structure and fabrication method

Publications (2)

Publication Number Publication Date
JP2021022490A true JP2021022490A (en) 2021-02-18
JP7250408B2 JP7250408B2 (en) 2023-04-03

Family

ID=74575067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019138406A Active JP7250408B2 (en) 2019-07-27 2019-07-27 Hydrogen conduit structure and fabrication method

Country Status (1)

Country Link
JP (1) JP7250408B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006027850A1 (en) * 2004-09-06 2006-03-16 Canon Machinery Inc. Method for enhancing adhesion of thin film
JP2011111381A (en) * 2009-11-30 2011-06-09 Tasohiro Sugie Method of forming conductive carbon membrane
JP2018527716A (en) * 2015-09-18 2018-09-20 レインツ デッチタングス ゲー エム ベー ハー Separator plate for electrochemical system
JP2019115928A (en) * 2017-11-08 2019-07-18 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブCommissariat A L’Energie Atomique Et Aux Energies Alternatives Method using laser for welding between two metallic materials or for sintering of powders, and use for making bipolar plates for pem fuel cells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006027850A1 (en) * 2004-09-06 2006-03-16 Canon Machinery Inc. Method for enhancing adhesion of thin film
JP2011111381A (en) * 2009-11-30 2011-06-09 Tasohiro Sugie Method of forming conductive carbon membrane
JP2018527716A (en) * 2015-09-18 2018-09-20 レインツ デッチタングス ゲー エム ベー ハー Separator plate for electrochemical system
JP2019115928A (en) * 2017-11-08 2019-07-18 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブCommissariat A L’Energie Atomique Et Aux Energies Alternatives Method using laser for welding between two metallic materials or for sintering of powders, and use for making bipolar plates for pem fuel cells

Also Published As

Publication number Publication date
JP7250408B2 (en) 2023-04-03

Similar Documents

Publication Publication Date Title
CN110421268B (en) Method and system for manufacturing lithium metal negative electrode
WO2010016182A1 (en) Sealed secondary battery, and method for manufacturing the battery
CN101404335B (en) Seal for a fuel cell support
US20190360760A1 (en) Vapor chamber
JP4908821B2 (en) HYDROGEN SEPARATION MEMBRANE WITH SUPPORT, FUEL CELL HAVING THE SAME, HYDROGEN SEPARATION DEVICE, AND METHOD FOR PRODUCING THEM
JP2016030280A (en) Method and apparatus for laser welding of metal foil
JP2007007565A (en) Reinforcing structure for hydrogen-permeable film, and its manufacturing method
JP2008147157A (en) Method of manufacturing metal separator for fuel cell
JP5377763B2 (en) Beam welding method, vacuum packaging method, and vacuum heat insulating material produced by the vacuum packaging method
JP5223272B2 (en) Method of welding metal separator for fuel cell and welding apparatus for metal separator for fuel cell
WO2018210683A1 (en) Reactor (soec) for electrolysis or co-electrolysis of water or fuel cell (sofc) operating in a pressurized operating mode and comprising a clamping system suitable for such an operating mode
JP2013097900A (en) Aluminum can body for secondary battery and manufacturing method thereof
JP2005150053A (en) Solid electrolyte fuel cell
JP2021022490A (en) Structure of hydrogen conduit and manufacturing method
JP2006114444A (en) Fuel cell stack and joining method for separator
JP6619094B2 (en) Negative electrode lead material and method of manufacturing negative electrode lead material
EP1358691B1 (en) Method for making light bipolar plates for fuel cell
EP2707920A1 (en) Fuel cell comprising manifolds having individual injector seals
JP5546997B2 (en) Welding method, battery manufacturing method, and battery
JP2006172964A (en) Stack structure of solid electrolyte fuel cell
US11648625B2 (en) Method using a laser for welding between two metallic materials or for sintering of powder(s), application for making bipolar plates for PEM fuel cells
JP5717590B2 (en) Ion source electrode and manufacturing method thereof
JP2019160558A (en) Fuel cell separator assembly and method of manufacturing fuel cell separator assembly
JP2004139827A (en) Diffusion layer separator junction, its manufacturing method, fuel cell and fuel cell stack
JPH0652868A (en) Separator masking material for molten carbonate fuel cell and manufacture thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200210

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210415

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230309

R150 Certificate of patent or registration of utility model

Ref document number: 7250408

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150