JP2021019509A - Closed type land-based aquaculture apparatus and land-based aquaculture method using the same - Google Patents

Closed type land-based aquaculture apparatus and land-based aquaculture method using the same Download PDF

Info

Publication number
JP2021019509A
JP2021019509A JP2019136466A JP2019136466A JP2021019509A JP 2021019509 A JP2021019509 A JP 2021019509A JP 2019136466 A JP2019136466 A JP 2019136466A JP 2019136466 A JP2019136466 A JP 2019136466A JP 2021019509 A JP2021019509 A JP 2021019509A
Authority
JP
Japan
Prior art keywords
aquaculture
cavitation
water
nozzle
aquaculture water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019136466A
Other languages
Japanese (ja)
Other versions
JP7410490B2 (en
Inventor
廣雄 武居
Hiroo Takei
廣雄 武居
啓雄 加藤
Haruo Kato
啓雄 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Risni Co Ltd
Original Assignee
Risni Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Risni Co Ltd filed Critical Risni Co Ltd
Priority to JP2019136466A priority Critical patent/JP7410490B2/en
Publication of JP2021019509A publication Critical patent/JP2021019509A/en
Application granted granted Critical
Publication of JP7410490B2 publication Critical patent/JP7410490B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Farming Of Fish And Shellfish (AREA)
  • Filtration Of Liquid (AREA)

Abstract

To provide a closed type land-based aquaculture apparatus that can stimulate aquaculture products without problems, while preventing excessive generation of fine air bubbles with cavitation processing of aquaculture water and a land-based aquaculture method using the same.SOLUTION: An oxygen concentration in aquaculture water decreased due to consumption by aquaculture products is covered by an oxygen dissolution mechanism, and the oxygen concentration of the aquaculture water is maintained in 2.5 ppm or more and 7 ppm or less being less than a saturation value. The aquaculture water is guided to a cavitation nozzle by a pump for cavitation processing through piping 181 for cavitation processing, and is circulated at a specified flow rate where a cross-sectional average flow rate in the cavitation processing unit becomes 8 m/sec or more, and thereby the cavitation processing is performed. The oxygen concentration of the aquaculture water is maintained to less than a saturation value daringly, and thereby the excessive generation of fine air bubbles with the cavitation is prevented, and also the air bubbles adhere to gills of the aquaculture products and such failures as obstruction of taking the dissolved oxygen can be prevented effectively.SELECTED DRAWING: Figure 1A

Description

この発明は、閉鎖型陸上養殖装置及びそれを用いた陸上養殖方法に関する。 The present invention relates to a closed aquaculture apparatus and a land aquaculture method using the same.

陸上の養殖池内にて養殖水を濾過循環させ、エビやカニなどの甲殻類あるいは魚類などの被養殖物を養殖する閉鎖型陸上養殖方法が種々提案されている。一方、マイクロバブルやナノバブルなどの微細気泡を養殖水中に形成しつつ養殖を行なうことで、エビなどの養殖物の成長促進を図る提案もなされている。例えば、特許文献1、2においては、絞り孔にねじ部材を配置したキャビテーションノズルを用いて微細気泡を発生させるようにしている。ここで、えら呼吸によって溶存酸素を取り込む魚類や甲殻類などの場合、養殖水中の酸素濃度はなるべく高い方が有利と認識されている。また、キャビテーションノズルは減圧沸騰により溶存酸素を消費して微細気泡化するので、粗大な気泡の浮上による溶存酸素の損失を補う意味でも、養殖水中の酸素濃度は高い方がよいと考えられている。 Various closed-type aquaculture methods have been proposed in which aquaculture water is filtered and circulated in an aquaculture pond on land to cultivate crustaceans such as shrimp and crabs or aquaculture such as fish. On the other hand, it has been proposed to promote the growth of aquaculture products such as shrimp by culturing while forming fine bubbles such as microbubbles and nanobubbles in the aquaculture water. For example, in Patent Documents 1 and 2, a cavitation nozzle in which a screw member is arranged in a throttle hole is used to generate fine bubbles. Here, in the case of fish and crustaceans that take in dissolved oxygen by gill respiration, it is recognized that it is advantageous that the oxygen concentration in the aquaculture water is as high as possible. In addition, since the cavitation nozzle consumes dissolved oxygen by boiling under reduced pressure to form fine bubbles, it is considered that the oxygen concentration in the aquaculture water should be high in order to compensate for the loss of dissolved oxygen due to the floating of coarse bubbles. ..

特許文献1、2においては、空気(酸素)ないしオゾンをアスピレータにより養殖水と気液混合し、さらにタンク内にて過飽和に加圧溶解処理した上でキャビテーションノズルに導いている。よって、養殖池内の養殖水の酸素濃度はほぼ飽和値(8ppm)に維持されていると考えられ、かつ、キャビテーションにより発生する大量の酸素を含有した微細気泡は、酸素濃度が飽和した養殖水の場合再溶解が進みにくいので、浮上により損失するまでの間は気泡の状態を保っているものと考えられる。この酸素微細気泡は、被養殖物による溶存酸素の消費を補う、いわば「酸素のリザーバ」としての機能が期待されるものである。 In Patent Documents 1 and 2, air (oxygen) or ozone is mixed with aquaculture water by an aspirator, and further subjected to supersaturation pressure dissolution treatment in a tank before being guided to a cavitation nozzle. Therefore, it is considered that the oxygen concentration of the aquaculture water in the aquaculture pond is maintained at a saturated value (8 ppm), and the fine bubbles containing a large amount of oxygen generated by cavitation are the aquaculture water having a saturated oxygen concentration. In some cases, re-dissolution does not proceed easily, so it is considered that the state of bubbles is maintained until loss due to levitation. These oxygen microbubbles are expected to function as a so-called "oxygen reservoir" that supplements the consumption of dissolved oxygen by the aquaculture product.

特開2011−240206号公報Japanese Unexamined Patent Publication No. 2011-240206 特開2012− 40448号公報Japanese Unexamined Patent Publication No. 2012-40448

「ナノバブル水中のナノバブルの解析」 Nanotech Japan Bulletin Vol. 8, No. 4, 2015"Analysis of Nano Bubbles in Nano Bubbles" Nanotech Japan Bulletin Vol. 8, No. 4, 2015

しかしながら、本発明者が詳細に検討したところ、養殖水中に大量の微細気泡が浮遊していると魚類やエビ・カニなどの被養殖物のえらに気泡が付着し、溶存酸素の取り込みが返って阻害されて、被養殖物の生育が却って妨げられ、甚だしい場合には被養殖物の少なからぬ斃死を招く場合があることが判明した。 However, as a result of detailed examination by the present inventor, when a large amount of fine bubbles are suspended in the aquaculture water, the bubbles adhere to the gills of the aquaculture such as fish, shrimp and crab, and the uptake of dissolved oxygen is returned. It has been found that the growth of the aquaculture is rather hindered by the inhibition, and in severe cases, the aquaculture may die to a considerable extent.

本発明の課題は、養殖水のキャビテーション処理に伴う微細気泡の過剰発生を防止しつつも、被養殖物の生育促進等は問題なく図ることができる閉鎖型陸上養殖装置と、それを用いた陸上養殖方法とを提供することにある。 The subject of the present invention is a closed-type aquaculture apparatus capable of promoting the growth of aquaculture products without problems while preventing excessive generation of fine bubbles due to cavitation treatment of aquaculture water, and onshore using the aquaculture apparatus. To provide aquaculture methods.

上記の課題を解決するために、本発明の閉鎖型陸上養殖装置は、養殖池内に養殖水と甲殻類又は魚類からなる被養殖動物とを収容し、主ポンプを用いて養殖池から養殖水を濾過槽に導き、養殖水中に浮遊する有機残渣を濾過しつつ養殖池内に戻して循環させながら、養殖池内に飼料を投入して被養殖動物を飼育するための閉鎖型陸上養殖装置において、養殖水の酸素濃度が2.5ppm以上7ppm以下に維持されるように養殖水に酸素含有気体を供給しつつ溶解する酸素溶解機構と、養殖池に養殖水の流入口が連通するとともに、他端側が養殖水の養殖池への戻し口とされたキャビテーション処理用配管と、キャビテーション処理用配管の途上に設けられ、一端に養殖水の入口を、他端に養殖水の出口を有するノズル流路が形成されるとともに、該ノズル流路の一部区間がキャビテーション処理部として定められたノズル本体と、キャビテーション処理部にてノズル本体に脚部先端側が流路内側に突出するように組付けられる複数のねじ部材とを備え、養殖水を養殖水入口から養殖水出口に向けて流通させ、キャビテーション処理部にてねじ部材の脚部外周面に形成されたねじ谷に養殖水を増速しつつ接触させることにより、該養殖水に対し溶存空気の減圧析出に基づくキャビテーション処理を行なうキャビテーションノズルと、キャビテーション処理用配管の途上に設けられ、キャビテーションノズルに養殖水をキャビテーション処理部における断面平均流速が8m/sec以上となる規定流量にて流通させるキャビテーション処理用ポンプとを備えたことを特徴とする。 In order to solve the above problems, the closed land aquaculture apparatus of the present invention accommodates aquaculture water and aquaculture animals consisting of shellfish or fish in the aquaculture pond, and uses a main pump to draw the aquaculture water from the aquaculture pond. Aquaculture water in a closed land-based aquaculture system for feeding aquaculture animals by feeding them into the aquaculture pond while guiding them to a filter tank and returning the organic residue floating in the aquaculture water to the aquaculture pond for circulation. An oxygen dissolution mechanism that dissolves while supplying an oxygen-containing gas to the aquaculture water so that the oxygen concentration of the aquaculture water is maintained at 2.5 ppm or more and 7 ppm or less, and the inflow port of the aquaculture water communicates with the aquaculture pond, and the other end is aquaculture. A cavitation treatment pipe that serves as a return port for water to the aquaculture pond and a nozzle flow path that is provided in the middle of the cavitation treatment pipe and has an aquaculture water inlet at one end and an aquaculture water outlet at the other end are formed. In addition, a part of the nozzle flow path is defined as a cavitation processing unit, and a plurality of screw members are assembled to the nozzle body in the cavitation processing unit so that the tip end side of the leg protrudes inside the flow path. The aquaculture water is circulated from the aquaculture water inlet to the aquaculture water outlet, and the aquaculture water is brought into contact with the screw valley formed on the outer peripheral surface of the leg of the screw member at the cavitation treatment section while accelerating. A cavitation nozzle that performs cavitation treatment based on reduced pressure precipitation of dissolved air on the aquaculture water, and a cavitation nozzle provided in the middle of the cavitation treatment pipe, the aquaculture water is supplied to the cavitation nozzle so that the average cross-sectional flow velocity in the cavitation treatment section is 8 m / sec or more. It is characterized by being equipped with a cavitation processing pump that is distributed at a specified flow rate.

また、本発明の陸上養殖方法は、上記本発明の閉鎖型陸上養殖装置を用い、養殖池内に養殖水と被養殖動物とを収容し、主ポンプを用いて養殖池から養殖水を濾過槽に導き、養殖水中に浮遊する有機残渣を濾過しつつ養殖池内に戻して循環させながら、養殖池内に飼料を投入して被養殖動物を飼育することを特徴とする。 Further, the land-based aquaculture method of the present invention uses the closed-type land-based aquaculture apparatus of the present invention to accommodate aquaculture water and aquaculture animals in the aquaculture pond, and uses a main pump to transfer the aquaculture water from the aquaculture pond to a filter tank. It is characterized in that the organic residue floating in the aquaculture water is filtered, returned to the aquaculture pond and circulated, and the feed is put into the aquaculture pond to breed the aquaculture animals.

本発明において使用可能な酸素含有気体は、例えば空気、酸素ガス、あるいは酸素を周知の酸素濃縮装置等で濃縮した酸素濃化空気などであり、酸素以外の残部は窒素等の不活性ガスで構成するのがよい。なお、酸素含有気体中の酸素濃度は、大気組成に対応する例えば20体積%以上であれば特に限定されない。 The oxygen-containing gas that can be used in the present invention is, for example, air, oxygen gas, or oxygen-enriched air obtained by concentrating oxygen with a well-known oxygen concentrator or the like, and the balance other than oxygen is composed of an inert gas such as nitrogen. It is good to do. The oxygen concentration in the oxygen-containing gas is not particularly limited as long as it corresponds to the atmospheric composition, for example, 20% by volume or more.

本発明においては、被養殖物による消費により減少する養殖水中の酸素濃度を酸素溶解機構により補うとともに、養殖水の酸素濃度を飽和値未満である2.5ppm以上7ppm以下に維持する。そして、その養殖水をキャビテーション処理用ポンプにより、キャビテーション処理用配管を通じてキャビテーションノズルに導き、キャビテーション処理部における断面平均流速が8m/sec以上となる規定流量にて流通させることによりキャビテーション処理を行なう。養殖水の酸素濃度をあえて飽和値未満に維持することで、キャビテーションに伴う微細気泡の過剰発生が抑制され、被養殖物のえらに気泡が付着して溶存酸素の取り込みが阻害される等の不具合を効果的に防止することができる。 In the present invention, the oxygen concentration in the aquaculture water, which decreases due to consumption by the aquaculture product, is supplemented by the oxygen dissolution mechanism, and the oxygen concentration in the aquaculture water is maintained at 2.5 ppm or more and 7 ppm or less, which is less than the saturation value. Then, the cavitation treatment is performed by guiding the cultured water to the cavitation nozzle through the cavitation treatment pipe by the cavitation treatment pump and circulating it at a specified flow rate at which the average cross-sectional flow velocity in the cavitation treatment section is 8 m / sec or more. By intentionally keeping the oxygen concentration of the aquaculture water below the saturation value, excessive generation of fine bubbles due to cavitation is suppressed, and bubbles adhere to the gills of the aquaculture product, which hinders the uptake of dissolved oxygen. Can be effectively prevented.

そして、断面平均流速が8m/sec以上となる規定流量をキャビテーション処理部において確保することで、養殖水の酸素濃度が従来技術よりも低く設定されているにも関わらず、被養殖物の生育促進等は問題なく図ることができる。キャビテーション処理部の流速を上記範囲に確保すれば、ねじ部材の特にねじ谷位置にて微細気泡の発生を伴うキャビテーションが確認できる。しかし、養殖水の酸素濃度が上記のように飽和値未満になっていると、キャビテーションによる強制的な減圧過飽和析出により発生した気泡(特に100nm以上の気泡径を有するもの)は、ノズルを通過して養殖池に戻された時点で再溶解が速やかに進み、周知の気泡径測定手法(例えば、レーザー散乱式粒度計を用いるもの)では、数分後には大半が観測不能となることが判明している。 Then, by securing a specified flow rate at which the average cross-sectional flow velocity is 8 m / sec or more in the cavitation processing section, the growth of the aquaculture product is promoted even though the oxygen concentration of the aquaculture water is set lower than that of the prior art. Etc. can be planned without any problem. If the flow velocity of the cavitation processing unit is secured within the above range, cavitation accompanied by the generation of fine bubbles can be confirmed especially at the screw valley position of the screw member. However, when the oxygen concentration of the aquaculture water is less than the saturation value as described above, bubbles generated by forced decompression supersaturation precipitation by cavitation (particularly those having a bubble diameter of 100 nm or more) pass through the nozzle. When it was returned to the aquaculture pond, redissolution proceeded rapidly, and it was found that most of the bubbles became unobservable after a few minutes by a well-known bubble size measurement method (for example, using a laser scattering particle size meter). ing.

このような養殖水を使用すれば、被養殖物のえらに微細気泡を付着しにくくできることは明確である。しかし、養殖水の酸素濃度の絶対値を低下させれば、被養殖物の活動活性が大幅に損なわれる懸念も一方では生ずる。しかし、本発明者らが詳細に検討した結果、酸素濃度を上記の範囲に抑制した養殖水をキャビテーション処理すると、より酸素濃度の高い通常養殖水(キャビテーション処理を行わない養殖)と比較して、これと同等以上に被養殖物の活動及び成長活性が高められ、酸欠特有の疲弊もほとんど認められないことが判明したのである。 It is clear that the use of such aquaculture water makes it difficult for fine bubbles to adhere to the gills of the aquaculture product. However, if the absolute value of the oxygen concentration in the aquaculture water is lowered, there is a concern that the activity of the aquaculture product will be significantly impaired. However, as a result of detailed studies by the present inventors, when aquaculture water in which the oxygen concentration is suppressed within the above range is cavitation-treated, it is compared with normal aquaculture water having a higher oxygen concentration (culture without cavitation treatment). It was found that the activity and growth activity of the aquaculture product were enhanced to the same extent or higher, and that the exhaustion peculiar to oxygen deficiency was hardly observed.

その詳細な機構は不明であるが、現時点では有効な観察手段が見いだされていない、10nm未満のキャビテーション処理特有の超微細な生成物が関与し、溶存酸素を含有する水の生体組織への浸透性が著しく改善されている可能性がある。例えば水道水等をキャビテーション処理して得られる浸透性等の改善効果は、キャビテーション処理後1日程度を経ても大きく変化しないことから、該生成物は、一定時間は水中に持続的に存在しうる形態を有するとも考えられる。 Although the detailed mechanism is unknown, no effective observation method has been found at this time, and ultrafine products peculiar to cavitation treatment of less than 10 nm are involved, and the penetration of dissolved oxygen-containing water into living tissues. The sex may have improved significantly. For example, the effect of improving permeability obtained by cavitation treatment of tap water or the like does not change significantly even about one day after the cavitation treatment, so that the product may be continuously present in water for a certain period of time. It is also considered to have a morphology.

また、100nm以上の酸素気泡が再溶解により寸法縮小する場合も、最終的には完全に気泡が溶解消滅するのではなく、上記のような生成物を水中に残留させる可能性が高い。例えば、非特許文献1には、外気と水とを旋回流により気液混合したナノバブル水を凍結し超高圧電子顕微鏡で観察した結果、平均径が7nm前後の気泡らしき生成物が大量に存在することが報告されている。観察された生成物の組成や、気泡であるか否かなどについては明らかでなく、また、本件発明の作用効果との因果関係も不明であるが、微細な核生成を起点として気泡を析出させるキャビテーション処理水の場合、同様の微細な生成物がさらに高密度に観察される可能性が高いと思われる。該生成物は、酸素ガスを主体にするものであったとしても、極度に微小化した気泡の表面張力が相当高圧になると推測される点に鑑みれば、酸素と水との固体系化合物(ハイドレート等)である可能性もある。 Further, even when oxygen bubbles having a diameter of 100 nm or more are reduced in size due to re-dissolution, there is a high possibility that the above-mentioned products will remain in the water instead of being completely dissolved and extinguished in the end. For example, in Non-Patent Document 1, as a result of freezing nanobubble water in which outside air and water are mixed by a swirling flow and observing with an ultrahigh pressure electron microscope, a large amount of bubble-like products having an average diameter of about 7 nm are present. Has been reported. The composition of the observed product, whether or not it is a bubble, etc. are not clear, and the causal relationship with the action and effect of the present invention is unknown, but bubbles are precipitated starting from fine nucleation. In the case of cavitation-treated water, similar fine products are likely to be observed at higher densities. Even if the product is mainly composed of oxygen gas, it is presumed that the surface tension of extremely miniaturized bubbles becomes considerably high pressure, so that it is a solid compound (hide) of oxygen and water. Rate, etc.).

いずれにしても、キャビテーション処理した養殖水と通常の養殖水との間で被養殖物の活動及び成長活性に著しい差を生ずることは実験的には明らかとなった。溶存酸素の吸収を媒介する水そのものの浸透性(例えば、水生生物のえら等の溶存酸素の吸収器官における毛細血管への浸透性)が改善されていれば、酸素濃度が多少低い水であっても、限られた量の溶存酸素を被養殖物が効率よく吸収し、被養殖物が活動及び成長活性を良好に維持できるようになる、との推測も成り立つ。 In any case, it has been empirically revealed that there is a significant difference in the activity and growth activity of the aquaculture product between the cavitation-treated aquaculture water and the normal aquaculture water. If the permeability of water itself, which mediates the absorption of dissolved oxygen (for example, the permeability to capillaries in the absorbing organs of dissolved oxygen such as the gills of aquatic organisms) is improved, the water has a slightly lower oxygen concentration. However, it is also speculated that the cultured product can efficiently absorb a limited amount of dissolved oxygen, and the cultured product can maintain good activity and growth activity.

養殖水の酸素濃度が2.5ppm未満であると、キャビテーション処理による酸素吸収効率の向上を考慮しても、被養殖物の酸素吸収量が不足し、活動活性の低下、生育不良等の不具合につながり、養殖継続に伴う費養殖物の死滅率の増大を招きやすくなる。一方、養殖水の酸素濃度が7ppmを超えるとキャビテーション処理に伴う気泡(特に気泡径100nm以上のもの)の過剰発生が生じやすくなり、被養殖物の活動活性が却って低下しやすくなる。酸素溶解機構により養殖水に酸素含有気体を供給しつつ溶解させる場合、養殖水の酸素濃度は、より望ましくは3ppm以上6ppm以下に維持するのがよい。 If the oxygen concentration of the aquaculture water is less than 2.5 ppm, the oxygen absorption amount of the aquaculture product will be insufficient even if the improvement of the oxygen absorption efficiency by the cavitation treatment is taken into consideration, resulting in problems such as decreased activity and poor growth. It is easy to connect and increase the mortality rate of aquaculture. On the other hand, when the oxygen concentration of the aquaculture water exceeds 7 ppm, excessive generation of bubbles (particularly those having a bubble diameter of 100 nm or more) due to the cavitation treatment tends to occur, and the activity activity of the aquaculture product tends to decrease. When the aquaculture water is dissolved while supplying an oxygen-containing gas by an oxygen dissolution mechanism, the oxygen concentration of the aquaculture water is more preferably maintained at 3 ppm or more and 6 ppm or less.

キャビテーション処理部における断面平均流速が8m/sec未満になるとキャビテーション処理により達成される効果が不足し、上記のように養殖水を低酸素化しても被養殖物の活動活性を維持できる効果が顕著でなくなる。特に、被養殖物の飼育密度が高く設定されている等の要因により、養殖水の酸素濃度が例えば3.5ppm以下に低下している状態にて断面平均流速が上記下限値を下回ることは、被養殖物の酸欠による衰弱や死滅を特に招きやすくなる。キャビテーション処理部における断面平均流速は、より望ましくは9m/sec以上確保されているのがよい。 If the average cross-sectional flow velocity in the cavitation treatment section is less than 8 m / sec, the effect achieved by the cavitation treatment is insufficient, and the effect of maintaining the activity of the aquaculture is remarkable even if the culture water is hypoxicized as described above. It disappears. In particular, the cross-sectional average flow velocity falls below the above lower limit when the oxygen concentration of the aquaculture water is lowered to, for example, 3.5 ppm or less due to factors such as the breeding density of the aquaculture being set high. It is especially prone to weakness and death due to lack of oxygen in the aquaculture. The average cross-sectional flow velocity in the cavitation processing section is more preferably secured at 9 m / sec or more.

キャビテーションノズルは、ノズル流路が円形断面を有するものとして形成され、各キャビテーション処理部にはねじ部材として、ねじピッチ及びねじ谷深さが0.20mm以上0.40mm以下、公称ねじ径Mが1.0mm以上2.0mm以下のねじ部材が複数配置されるとともに、ノズル流路の中心軸線と直交する平面への投影にてノズル流路の断面中心から該ノズル流路の半径の70%以内の領域に位置する谷点の全ねじ配置面間で合計した総数を、ノズル流路の断面積で除した70%谷点面積密度と定義したとき、70%谷点面積密度の値が1.6個/mm以上に確保されたものを使用することが望ましい。 The cavitation nozzle is formed so that the nozzle flow path has a circular cross section, and each cavitation processing portion has a screw pitch and a screw valley depth of 0.20 mm or more and 0.40 mm or less, and a nominal screw diameter M of 1 as a screw member. A plurality of screw members of 0.0 mm or more and 2.0 mm or less are arranged, and within 70% of the radius of the nozzle flow path from the cross-sectional center of the nozzle flow path by projection on a plane orthogonal to the central axis of the nozzle flow path. The value of 70% valley point area density is 1.6 when the total number of valley points located in the region is defined as 70% valley point area density divided by the cross-sectional area of the nozzle flow path. It is desirable to use the one secured at least 2 pieces / mm.

70%谷点面積密度の値が1.6個/mm未満のキャビテーションノズルを使用した場合、キャビテーション処理効果が不足し、養殖水を低酸素化しても被養殖物の活動活性を維持できる効果が顕著でなくなる場合がある。キャビテーションノズルの70%谷点面積密度の値の上限に特に上限に制限はないが、キャビテーション処理部におけるねじ配置数の極度の増加に伴う圧損増大ひいては流速不足を招かない範囲で適宜設定できる(例えば、5個/mm)。70%谷点面積密度の値は、より望ましくは2.0個/mm以上に確保されているのがよい。 When a cavitation nozzle with a 70% valley point area density value of less than 1.6 pieces / mm 2 is used, the cavitation treatment effect is insufficient, and the effect of maintaining the activity of the aquaculture product even if the aquaculture water is hypoxicized. May not be noticeable. There is no particular upper limit to the upper limit of the value of the 70% valley point area density of the cavitation nozzle, but it can be appropriately set as long as the pressure loss increases due to the extreme increase in the number of threads arranged in the cavitation processing section and the flow velocity is not insufficient (for example). 5, 5 pieces / mm 2 ). The value of the 70% valley point area density is more preferably secured at 2.0 pieces / mm 2 or more.

上記構成のキャビテーションノズルを使用する場合、キャビテーションノズルに対する養殖水の規定流量は、養殖池の貯水量をV1、キャビテーションノズルの1時間当たりの流通流量をV2としたとき、
K=V2/V1×100 (%)
にて表される流通循環比Kが2%以下となるように調整するのがよい。100nm以上のやや粗大な気泡がキャビテーションノズルにて発生した場合も、1時間当たりの養殖水の流通流量(規定流量)を、養殖池内の養殖水全体積の2%以下にとどめることで、上記粗大な気泡の再溶解を促進でき、被養殖物のえら等への付着による前述の不具合をさらに効果的に抑制できる。そして、養殖水全体積に対するキャビテーションノズルの流通循環比Kが極めて小さい値であるにも関わらず、上記構成のキャビテーションノズルを採用することで、被養殖物の活動及び成長活性を極めて良好に維持することが可能となる。なお、流通循環比Kが極度に小さくなりすぎると、被養殖物の活動及び成長活性を改善する効果が不十分となる。流通循環比Kの下限値は、キャビテーションノズルの70%谷点面積密度や設定流速により異なるが、例えば上記効果が損なわれないよう、例えば0.5%以上の値に確保するのがよい。
When using a cavitation nozzle having the above configuration, the specified flow rate of aquaculture water for the cavitation nozzle is when the amount of water stored in the aquaculture pond is V1 and the flow rate of the cavitation nozzle per hour is V2.
K = V2 / V1 × 100 (%)
It is preferable to adjust so that the distribution circulation ratio K represented by is 2% or less. Even if slightly coarse bubbles of 100 nm or more are generated at the cavitation nozzle, the above-mentioned coarseness can be achieved by keeping the flow rate (specified flow rate) of the aquaculture water per hour to 2% or less of the total volume of the aquaculture water in the aquaculture pond. It is possible to promote the re-dissolution of various bubbles, and it is possible to more effectively suppress the above-mentioned problems caused by the adhesion of the cultured material to the gills and the like. And, despite the fact that the distribution circulation ratio K of the cavitation nozzle to the total volume of the aquaculture water is an extremely small value, by adopting the cavitation nozzle having the above configuration, the activity and growth activity of the aquaculture product are maintained extremely well. It becomes possible. If the distribution / circulation ratio K becomes too small, the effect of improving the activity and growth activity of the aquaculture product becomes insufficient. The lower limit of the distribution circulation ratio K varies depending on the 70% valley point area density of the cavitation nozzle and the set flow velocity, but for example, it is preferable to secure a value of 0.5% or more so as not to impair the above effect.

酸素溶解機構は、キャビテーションノズルにて酸素含有気体を溶解するために、キャビテーションノズルに酸素含有気体と養殖水との混相流を供給する混相流供給部を備えるものとして構成できる。本発明にて使用するキャビテーションノズルは、養殖水がねじ部材に衝突してその下流に迂回する際に、ねじ谷内にて絞られることにより増速してキャビテーションを起こすので、養殖水の溶存ガス成分は負圧により過飽和となり、気泡を析出しつつ養殖水を激しく撹拌し乱流域を生ずる。このとき、乱流域に供給する養殖水に気相(気体)を混合して混相流となすことで、上記攪拌により気液混合・攪拌が進行し、気相成分(酸素含有気体)の養殖水への溶解を効果的に進行させることができる。 The oxygen dissolution mechanism can be configured to include a multiphase flow supply unit that supplies a multiphase flow of the oxygen-containing gas and the culture water to the cavitation nozzle in order to dissolve the oxygen-containing gas at the cavitation nozzle. The cavitation nozzle used in the present invention causes cavitation by squeezing in the screw valley when the aquaculture water collides with the screw member and detours downstream thereof, so that the dissolved gas component of the aquaculture water is generated. Is supersaturated by negative pressure and vigorously agitates the aquaculture water while precipitating bubbles, creating a turbulent flow area. At this time, by mixing the gas phase (gas) with the culture water supplied to the turbulent flow area to form a mixed phase flow, the gas-liquid mixing and stirring proceed by the above stirring, and the culture water of the gas phase component (oxygen-containing gas) Dissolution into the gas can be effectively promoted.

この場合、混相流がねじ部材に衝突する際に、ねじ谷の内側空間の全体が大きな気泡で覆われてしまうと、溶存気体を含有した養殖水とねじ谷との接触効率が下がり、キャビテーション効率の大幅な低下につながる(つまり、そのねじ谷は、キャビテーションポイントとして有効なねじ谷としての機能を失う)。その結果、気相成分の混合・攪拌の駆動力を生ずる乱流域の形成が顕著でなくなり、気体溶解効率が低下することにつながる。 In this case, when the mixed phase flow collides with the screw member, if the entire inner space of the screw valley is covered with large bubbles, the contact efficiency between the culture water containing the dissolved gas and the screw valley decreases, and the cavitation efficiency. (That is, the thread valley loses its function as a thread valley that is effective as a cavitation point). As a result, the formation of a turbulent flow region that generates a driving force for mixing and stirring the gas phase components becomes less remarkable, leading to a decrease in gas dissolution efficiency.

そこで、一端に流入口、他端に流出口が形成される中空の外筒部材と、外筒部材の内側に設けられ、流入口と流出口とをつなぐ螺旋状流路を、該螺旋状流路の螺旋軸線が外筒部材の中心軸線に沿うように形成する流路形成部材とを備え、螺旋状流路がキャビテーションノズルのノズル流路に連通するように、キャビテーションノズルの養殖水入口側に設けられる気液ミキサーを設けることができ、混相流供給部は、気液ミキサーの流入口に混相流を供給するものとして構成できる。これにより、混相流は気液ミキサーの螺旋状流路内を流通させることにより、強制的に生ずる螺旋流の遠心力により気相と液相との攪拌・混合が進むので、気相は細かい気泡に粉砕された状態でキャビテーションノズルのねじ部材に供給される。これにより、養殖水とねじ谷との接触効率が上昇し、気体溶解効率を高めることができる。 Therefore, a hollow outer cylinder member having an inflow port at one end and an outflow port at the other end, and a spiral flow path provided inside the outer cylinder member and connecting the inflow port and the outflow port are formed into the spiral flow path. A flow path forming member is provided so that the spiral axis of the path is formed along the central axis of the outer cylinder member, and the spiral flow path is connected to the nozzle flow path of the cavitation nozzle on the culture water inlet side of the cavitation nozzle. The provided gas-liquid mixer can be provided, and the mixed-phase flow supply unit can be configured to supply the mixed-phase flow to the inlet of the gas-liquid mixer. As a result, the mixed-phase flow flows through the spiral flow path of the gas-liquid mixer, and the centrifugal force of the spiral flow forcibly causes stirring and mixing of the gas phase and the liquid phase, so that the gas phase has fine bubbles. It is supplied to the screw member of the cavitation nozzle in a crushed state. As a result, the contact efficiency between the aquaculture water and the screw valley is increased, and the gas dissolution efficiency can be increased.

気液ミキサーは、ねじ部材のねじピッチをh(mm)として気泡を、1.5h以下の気泡径に微粉砕するように構成することが望ましい。気液ミキサーでの微粉砕により得られる気泡径が1.5hを超えると、気体溶解効率の改善効果が顕著でなくなる場合がある。該気泡径は、より望ましくは1.0h以下であるのがよい。また、該気泡径の下限値に制限はないが、螺旋状流路を有した気液ミキサーによる混合攪拌の場合、0.2h程度が粉砕の限界となる場合もあり得る。 It is desirable that the gas-liquid mixer is configured such that the screw pitch of the screw member is h (mm) and the bubbles are finely pulverized to a bubble diameter of 1.5 h or less. If the bubble diameter obtained by fine pulverization with a gas-liquid mixer exceeds 1.5 h, the effect of improving the gas dissolution efficiency may not be remarkable. The bubble diameter is more preferably 1.0 h or less. Further, although the lower limit of the bubble diameter is not limited, in the case of mixing and stirring by a gas-liquid mixer having a spiral flow path, about 0.2 h may be the limit of pulverization.

気液ミキサーの流路形成部材は、帯状の金属板の幅方向の中心軸線を螺旋軸線とする形で該金属板をねじり加工したねじり板部材として構成できる。このようなねじり板部材を用いることで、気液ミキサーの螺旋状流路を簡単かつ安価に形成することができる。また、該ねじり板部材を用いることで螺旋状流路は、ねじり板部材の第一主面と外筒部材の円筒状の内周面との間の空間がなす第一螺旋状流路と、ねじり板部材の第二主面と外筒部材の円筒状の内周面との間の空間がなす第二螺旋状流路とからなるものとして構成できる。これにより、ねじり板部材の両側に、回転位相の異なる螺旋流を2系統形成でき、気相の粉砕効率を簡単な構造によりさらに向上できる。 The flow path forming member of the gas-liquid mixer can be configured as a twisted plate member in which the metal plate is twisted so that the central axis in the width direction of the strip-shaped metal plate is a spiral axis. By using such a twisted plate member, a spiral flow path of a gas-liquid mixer can be easily and inexpensively formed. Further, by using the twisted plate member, the spiral flow path is formed by the first spiral flow path formed by the space between the first main surface of the twisted plate member and the cylindrical inner peripheral surface of the outer cylinder member. It can be configured to consist of a second spiral flow path formed by a space between the second main surface of the torsion plate member and the cylindrical inner peripheral surface of the outer cylinder member. As a result, two spiral flows having different rotation phases can be formed on both sides of the torsion plate member, and the pulverization efficiency of the gas phase can be further improved by a simple structure.

外筒部材は、螺旋流路が1周期以上の螺旋区間を含むように全長が定められているのがよい。螺旋流路に含まれる螺旋区間が1周期未満であると、気液ミキサーの気相粉砕効率が低下し、下流側のキャビテーションノズルにおける気体溶解効率が不十分となる場合がある。外筒部材は、よりのぞましくは、螺旋流路が1.5周期以上、より望ましくは2周期以上の螺旋区間を含むように全長が定められているのがよい。 The total length of the outer cylinder member is preferably defined so that the spiral flow path includes a spiral section having one or more cycles. If the spiral section included in the spiral flow path is less than one cycle, the gas-liquid mixer's gas-phase pulverization efficiency may decrease, and the gas dissolution efficiency in the cavitation nozzle on the downstream side may become insufficient. The overall length of the outer cylinder member is preferably defined so that the spiral flow path includes a spiral section having 1.5 cycles or more, more preferably 2 cycles or more.

また、外筒部材の円筒状の内周面の内径をDx(mm)、ねじり板部材の螺旋周期長をλ(mm)として、λ/Dxの値は1.5以上4以下に設定されているのがよい。λ/Dxの値が4を超えると、気液ミキサーの気相粉砕効率を確保するために必要な螺旋流路の周期数を確保する際に、外筒部材の全長が大きくなりすぎる不具合を招く場合がある。また、λ/Dxの値が1.5未満であると、ねじり板部材が形成する螺旋流路の流通抵抗が大きくなりすぎ、気液ミキサーの気相粉砕効率が低下して、下流側のキャビテーションノズルにおける気体溶解効率が不十分となる場合がある。 Further, the inner diameter of the cylindrical inner peripheral surface of the outer cylinder member is Dx (mm), the spiral period length of the torsion plate member is λ (mm), and the value of λ / Dx is set to 1.5 or more and 4 or less. It is good to be there. If the value of λ / Dx exceeds 4, the total length of the outer cylinder member becomes too large when securing the number of cycles of the spiral flow path required to secure the gas-phase crushing efficiency of the gas-liquid mixer. In some cases. If the value of λ / Dx is less than 1.5, the flow resistance of the spiral flow path formed by the torsion plate member becomes too large, the gas-liquid mixer's gas-phase crushing efficiency decreases, and cavitation on the downstream side occurs. The gas dissolution efficiency in the nozzle may be insufficient.

養殖水の被養殖物の活動及び成長活性を高める効果は、酸素を含有した養殖水を、キャビテーションノズルを通過させることにより、酸素の溶解プロセスとは無関係に達成できる。よって、酸素溶解機構は、キャビテーションノズルとは別に設けられ、養殖池を満たす養殖水に外部から供給される酸素含有気体を平均気泡径が0.5mm以上となるように噴射する周知の散気部を備えるものとして構成することもできる。ここで、被養殖物のえら等への付着による悪影響が懸念されるのは、100nm〜30μm程度の微細な気泡であり、周知の散気部はこうした気泡が発生しにくい点においては有利である。ただし、酸素溶解効率はキャビテーションノズルに劣るので、キャビテーションノズルによる酸素溶解と併用することが望ましいともいえる。養殖水全体積に対するキャビテーションノズルの流通循環比Kが上記のように小さい場合は、キャビテーションノズルの酸素溶解能力のみでは所望の酸素濃度を維持できないこともありえる。この観点においても、散気部による酸素溶解とキャビテーションノズルによる酸素溶解とは併用することが望ましい。 The effect of enhancing the activity and growth activity of the aquaculture product of the aquaculture water can be achieved independently of the oxygen dissolution process by passing the aquaculture water containing oxygen through the cavitation nozzle. Therefore, the oxygen dissolution mechanism is provided separately from the cavitation nozzle, and is a well-known air diffuser that injects an oxygen-containing gas supplied from the outside to the aquaculture water that fills the aquaculture pond so that the average bubble diameter is 0.5 mm or more. It can also be configured to include. Here, it is the fine bubbles of about 100 nm to 30 μm that are concerned about adverse effects due to the adhesion of the aquaculture product to the gills and the like, and the well-known air diffuser is advantageous in that such bubbles are unlikely to be generated. .. However, since the oxygen dissolution efficiency is inferior to that of the cavitation nozzle, it can be said that it is desirable to use it together with oxygen dissolution by the cavitation nozzle. When the circulation circulation ratio K of the cavitation nozzle to the total volume of aquaculture water is small as described above, it may not be possible to maintain the desired oxygen concentration only by the oxygen dissolving capacity of the cavitation nozzle. From this viewpoint as well, it is desirable to use oxygen dissolution by the air diffuser and oxygen dissolution by the cavitation nozzle together.

この場合、散気部による養殖水への酸素含有気体の供給流量をキャビテーションノズルへの酸素含有気体の供給流量よりも大きく設定するとさらによい。キャビテーションノズルへの酸素含有気体の供給流量を低くとどめることで、養殖池中の前述の微細気泡の存在密度を低減でき、被養殖物のえら等への付着による悪影響をさらに効果的に抑制できる。 In this case, it is further preferable to set the supply flow rate of the oxygen-containing gas to the aquaculture water by the air diffuser to be larger than the supply flow rate of the oxygen-containing gas to the cavitation nozzle. By keeping the supply flow rate of the oxygen-containing gas to the cavitation nozzle low, the abundance density of the above-mentioned fine bubbles in the aquaculture pond can be reduced, and the adverse effect due to the adhesion of the aquaculture material to the gills and the like can be more effectively suppressed.

次に、キャビテーションノズルは、ノズルの狭小な絞り孔を水が通過する際に生ずる減圧沸騰効果を利用して微細気泡を発生させる原理上、被処理水の絞り孔における流速を10m/秒以上程度以上の高速に確保する必要がある。しかし、このキャビテーションノズルを上記のように濾過槽との循環経路に配置した場合、濾過槽への有機残渣の堆積により循環経路への養殖水の流通抵抗が増加すると、キャビテーションノズルを通過する養殖水の流速が不足し、キャビテーションによる微細気泡の発生量が不十分となる問題がある。この場合、キャビテーション処理用の循環経路を別に設けたとしても、養殖水がノズルに直接吸い込まれると、浮遊する有機残渣が絞り孔に詰まり微細気泡の発生は同様に阻害される。よって、これを防止するために、循環経路の養殖池側の入り口には結局のところ新たな濾過部を設けざるを得ないので、何ら問題の解決には至らないのである。 Next, the cavitation nozzle uses the vacuum boiling effect generated when water passes through the narrow drawing hole of the nozzle to generate fine bubbles, and in principle, the flow velocity in the drawing hole of the water to be treated is about 10 m / sec or more. It is necessary to secure the above high speed. However, when this cavitation nozzle is arranged in the circulation path with the filtration tank as described above, when the flow resistance of the culture water to the circulation path increases due to the accumulation of organic residue in the filtration tank, the culture water passing through the cavitation nozzle There is a problem that the flow velocity is insufficient and the amount of fine bubbles generated by cavitation is insufficient. In this case, even if a separate circulation path for cavitation treatment is provided, when the aquaculture water is directly sucked into the nozzle, the floating organic residue clogs the throttle hole and the generation of fine bubbles is similarly inhibited. Therefore, in order to prevent this, a new filtration part must be provided at the entrance of the circulation route on the aquaculture pond side after all, and no problem can be solved.

これを解決するためには、キャビテーション処理用配管の流入口に設けられ、養殖池内の浮遊物がキャビテーション処理用配管内に流入することを抑制するキャビテーション処理用濾過部と、キャビテーション処理用配管内を流通する養殖水の流量を検出する流量検出部と、キャビテーション処理用濾過部への浮遊物の堆積に伴う流量損失を補う形で、キャビテーション処理用ポンプによるキャビテーションノズルへの送液流量を規定流量に制御するキャビテーション流量制御部とを、本発明の装置にさらに付加することが望ましい。キャビテーション処理用配管の流量を流量検出部にモニタリングし、キャビテーション処理用濾過部へ浮遊物が堆積した場合に、キャビテーションノズルへの送液流量を上記規定範囲となるように補うキャビテーション流量制御部を設けることで、濾過部に有機残渣が堆積し流通抵抗が増加した場合でも、被養殖物に対する前記有利な効果は安定に維持できるようになる。 In order to solve this, a cavitation treatment filter unit, which is provided at the inlet of the cavitation treatment pipe and prevents floating substances in the culture pond from flowing into the cavitation treatment pipe, and a cavitation treatment pipe are provided. The flow rate of liquid sent to the cavitation nozzle by the cavitation processing pump is set to the specified flow rate by compensating for the flow rate loss due to the accumulation of suspended matter on the flow rate detection unit that detects the flow rate of the circulating culture water and the cavitation processing filtration unit. It is desirable to further add a cavitation flow control unit to control to the apparatus of the present invention. A cavitation flow rate control unit is provided to monitor the flow rate of the cavitation processing pipe in the flow rate detection unit and to supplement the flow rate of the liquid sent to the cavitation nozzle within the above specified range when suspended matter accumulates in the cavitation processing filtration unit. As a result, even when the organic residue is deposited on the filtration portion and the flow resistance is increased, the advantageous effect on the incubated material can be stably maintained.

ここで、主ポンプとキャビテーション処理用ポンプとは別の構成としてもよいし、主ポンプをキャビテーション処理用ポンプに兼用させることもできる。また、キャビテーション処理用濾過部についても濾過槽と別に設けてもよいし、両者を兼用させる構成としてもよい。 Here, the main pump and the cavitation processing pump may have different configurations, or the main pump may also be used as the cavitation processing pump. Further, the filtration unit for cavitation treatment may be provided separately from the filtration tank, or both may be used in combination.

例えば、次のような構成を採用することが可能である。すなわち、該構成では、濾過槽に養殖水の流入口が連通するとともに、他端側が養殖水の養殖池への戻し口とされた濾過用主配管と、濾過用主配管の流入口に設けられ、濾過槽内の浮遊物が濾過用主配管内に流入することを抑制する補助フィルタリング部とを備え、主ポンプが濾過用主配管上に設けられる。また、キャビテーション処理用配管は、主ポンプの下流側にて濾過用主配管から分岐し、かつ、濾過用主配管とは別位置にて養殖池に対する戻し口を開口させる形で設けられる。そして、濾過用主配管とキャビテーション処理用配管との分配比をバルブ開度に応じて調整する分配バルブが設けられる。キャビテーション流量制御部は、補助フィルタリング部への浮遊物の堆積に伴い主ポンプの送水流量が減少した場合に、養殖水のキャビテーション処理用配管への分配比が増加するように分配バルブの開度を調整制御するよう構成される。上記の構成では、主ポンプがキャビテーション処理用ポンプに、補助フィルタリング部がキャビテーション処理用濾過部にそれぞれ兼用されることとなり、装置構成の大幅な簡略化が実現されるとともに、主ポンプの出力制御をせずとも分配バルブの開度によりキャビテーション処理用配管の流量を規定範囲に安定的に保持することができる。 For example, the following configuration can be adopted. That is, in this configuration, the inlet of the culture water communicates with the filtration tank, and the other end side is provided at the inlet of the main pipe for filtration and the inlet of the main pipe for filtration as the return port of the culture water to the culture pond. , An auxiliary filtering unit for suppressing the inflow of suspended matter in the filtration tank into the main filtration pipe is provided, and the main pump is provided on the main filtration pipe. Further, the cavitation processing pipe is provided so as to branch from the filtration main pipe on the downstream side of the main pump and to open a return port to the fishpond at a position different from the filtration main pipe. Then, a distribution valve is provided that adjusts the distribution ratio between the main filtration pipe and the cavitation processing pipe according to the valve opening degree. The cavitation flow rate control unit adjusts the opening of the distribution valve so that the distribution ratio of the cultured water to the cavitation processing pipe increases when the water flow rate of the main pump decreases due to the accumulation of suspended matter in the auxiliary filtering unit. It is configured to adjust and control. In the above configuration, the main pump is used as the cavitation processing pump and the auxiliary filtering unit is also used as the cavitation processing filtering unit, which greatly simplifies the device configuration and controls the output of the main pump. Even without this, the flow rate of the cavitation processing pipe can be stably maintained within the specified range by the opening degree of the distribution valve.

本発明の作用及び効果の詳細については、「課題を解決するための手段」の欄にすでに記載したので、ここでは繰り返さない。 The details of the action and effect of the present invention have already been described in the column of "Means for Solving the Problem" and will not be repeated here.

本発明の閉鎖型陸上養殖装置の一例を示す概念図。The conceptual diagram which shows an example of the closed type land aquaculture apparatus of this invention. 図1Aの閉鎖型陸上養殖装置に使用する気液ミキサーの一例を示す横断面図及び側面。A cross-sectional view and a side view showing an example of a gas-liquid mixer used in the closed land aquaculture apparatus of FIG. 1A. 図1Aの閉鎖型陸上養殖装置に使用するキャビテーションノズルの一例を示す横断面図。FIG. 1 is a cross-sectional view showing an example of a cavitation nozzle used in the closed land aquaculture apparatus of FIG. 1A. 図1Cのキャビテーションノズルの各ねじ配置面におけるねじ部材レイアウトを示す軸断面図。FIG. 3 is an axial sectional view showing a screw member layout on each screw arrangement surface of the cavitation nozzle of FIG. 1C. 図2の要部を拡大して示す軸断面図。FIG. 2 is an enlarged axial sectional view showing a main part of FIG. 図1Cのキャビテーションノズルにおいて、図2のレイアウトの面ねじ組を中心軸線方向に4組配置したキャビテーションノズルの要部横断面図。In the cavitation nozzle of FIG. 1C, a cross-sectional view of a main part of the cavitation nozzle in which four sets of surface screws having the layout of FIG. 2 are arranged in the direction of the central axis. 同じく8組配置したキャビテーションノズルの要部横断面図。The cross-sectional view of the main part of the cavitation nozzle which also arranged 8 sets. 図1Cのキャビテーションノズルにおいて、一方の面ねじ組を45°回転させた構造を示す要部横断面図。FIG. 5 is a cross-sectional view of a main part showing a structure in which one of the face screw sets is rotated by 45 ° in the cavitation nozzle of FIG. 1C. 図1Cのキャビテーションノズルにおいて、一方の面ねじ組を図6のレイアウトとしたキャビテーションノズルの要部横断面図。FIG. 6 is a cross-sectional view of a main part of the cavitation nozzle of FIG. 1C, in which one of the face screw sets is the layout of FIG. 図7の構造において、面ねじ組を互いに直交するねじ部材対に分割し、それぞれ中心軸線方向に位置をずらせて配置したキャビテーションノズルの要部横断面図。In the structure of FIG. 7, a cross-sectional view of a main part of a cavitation nozzle in which a face screw set is divided into a pair of screw members orthogonal to each other and arranged at different positions in the central axis direction. 図7のキャビテーションノズルと同様の面ねじ組の対を中心軸線方向に2組配置したキャビテーションノズルの要部横断面図。FIG. 6 is a cross-sectional view of a main part of a cavitation nozzle in which two pairs of surface screw sets similar to the cavitation nozzle of FIG. 7 are arranged in the central axis direction. 図1Aの閉鎖型陸上養殖装置の気液ミキサーにベンチュリエジェクタを接続した状態を示す横断面図。A cross-sectional view showing a state in which a Venturi ejector is connected to a gas-liquid mixer of the closed land aquaculture apparatus of FIG. 1A. キャビテーション流量制御部の電気的構成の一例を示すブロック図。The block diagram which shows an example of the electric structure of the cavitation flow rate control part. 流量制御プログラムの処理の流れを示すフローチャート。The flowchart which shows the processing flow of the flow rate control program. 酸素濃度制御プログラムの処理の流れを示すフローチャート。The flowchart which shows the processing flow of an oxygen concentration control program. 2孔型のキャビテーションノズルの要部軸断面図。A cross-sectional view of a main part of a 2-hole type cavitation nozzle. 実験例に使用したキャビテーションノズルの各部の寸法関係を説明する図。The figure explaining the dimensional relationship of each part of the cavitation nozzle used in the experimental example. 分配バルブの変形例を示す模式図。The schematic diagram which shows the modification of the distribution valve. 図1Aの閉鎖型陸上養殖装置の変形例を示す概念図。FIG. 6 is a conceptual diagram showing a modified example of the closed land aquaculture apparatus of FIG. 1A.

以下、本発明の実施の形態を添付の図面に基づき説明する。
図1Aは、本発明の一実施形態をなす閉鎖型陸上養殖装置の一例を使用形態とともに示す概念図である。閉鎖型陸上養殖装置300は、養殖池250内に養殖水Wと甲殻類又は魚類からなる被養殖物SPとを収容し、主ポンプ175を用いて養殖池250から養殖水Wを濾過槽252に導き、養殖水W中に浮遊する有機残渣を濾過しつつ養殖池250内に戻して循環させながら、養殖池250内に飼料を投入して被養殖物SPを飼育するためのものである。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1A is a conceptual diagram showing an example of a closed land aquaculture device according to an embodiment of the present invention together with a usage pattern. The closed aquaculture device 300 accommodates the aquaculture water W and the aquaculture SP composed of shellfish or fish in the aquaculture pond 250, and uses the main pump 175 to transfer the aquaculture water W from the aquaculture pond 250 to the filter tank 252. The purpose is to feed the aquaculture SP by feeding the feed into the aquaculture pond 250 while filtering the organic residue floating in the aquaculture water W and returning it to the aquaculture pond 250 for circulation.

被養殖物SPは本実施形態ではエビであるが、カニ等の他の甲殻類であってもよい。また、甲殻類以外ではマダイ、マグロ、ブリ、マス、サーモン、フグ及びコイなどの魚類であってもよい。また、被養殖物SPをエビとする場合のエビの種別は、例えばクルマエビ科に属するエビであり、クルマエビ、バナメイエビ、ウシエビ(通称:ブラックタイガーエビ)、クマエビ及びコウライエビ(通称:タイショウエビ)などから選択されるものである。また、養殖水Wは被養殖物の種別に応じ、海水(塩分濃度:3.0〜4.0質量%)、汽水(塩分濃度:0.05〜3.0質量%)及び淡水のなかから適宜選択される。 The aquaculture SP is a shrimp in this embodiment, but may be another crustacean such as a crab. In addition to crustaceans, fish such as red sea bream, tuna, yellowtail, trout, salmon, blowfish and carp may be used. In addition, the type of shrimp when the cultured product SP is a shrimp is, for example, a shrimp belonging to the family Penaeid shrimps, from Penaeid shrimps, Banamei shrimp, Giant tiger prawn (commonly known as black tiger prawn), Penaeus semisulcatus and Chinese white shrimp (commonly known as Taisho shrimp). It is the one to be selected. The aquaculture water W is selected from seawater (salinity: 3.0 to 4.0% by mass), brackish water (salinity: 0.05 to 3.0% by mass) and fresh water, depending on the type of aquaculture. It is selected as appropriate.

閉鎖型陸上養殖装置300には、養殖水Wの酸素濃度を2.5ppm以上7ppm以下に維持されるように養殖水Wに酸素含有気体を供給しつつ溶解する酸素溶解機構が設けられる(後述)。また、さらに次のような構成要素を備える。
・キャビテーション処理用配管181:養殖池250に養殖水Wの流入口が連通するとともに、他端側が養殖水Wの養殖池250への戻し口とされる。
・キャビテーションノズル1:構造については追って詳述する。
・キャビテーション処理用ポンプ:本実施形態では主ポンプ175が兼用している。キャビテーション処理用配管181(濾過用主配管180の流入口側の一部区間はキャビテーション処理用配管に兼用されている)の途上に設けられ、キャビテーションノズル1に養殖水Wを、キャビテーション処理部における断面平均流速が8m/sec以上となる規定流量にて流通させる。
・キャビテーション処理用濾過部:補助フィルタリング部253fがこれに該当し、濾過用主配管(キャビテーション処理用配管)180の流入口に設けられ、養殖池250内の浮遊物がキャビテーション処理用配管181内に流入することを抑制する。
・流量検出部182:超音波流量計等で構成され、キャビテーションノズル1の例えば下流側にキャビテーション処理用配管181内を流通する養殖水Wの流量を検出する。・制御部185(キャビテーション流量制御部):キャビテーション処理用濾過部253fへの浮遊物の堆積に伴う流量損失を補う形で、キャビテーション処理用ポンプ181pによるキャビテーションノズル1への送液流量を上記規定流量に制御する。
The closed land aquaculture apparatus 300 is provided with an oxygen dissolution mechanism that dissolves the aquaculture water W while supplying an oxygen-containing gas so that the oxygen concentration of the aquaculture water W is maintained at 2.5 ppm or more and 7 ppm or less (described later). .. It also has the following components.
Cavitation treatment pipe 181: The inflow port of the aquaculture water W communicates with the aquaculture pond 250, and the other end side serves as a return port of the aquaculture water W to the aquaculture pond 250.
-Cavitation nozzle 1: The structure will be described in detail later.
-Cavitation processing pump: In this embodiment, the main pump 175 is also used. It is provided in the middle of the cavitation treatment pipe 181 (a part of the inflow port side of the main filtration pipe 180 is also used as the cavitation treatment pipe), and the culture water W is applied to the cavitation nozzle 1 in the cross section of the cavitation treatment section. It is circulated at a specified flow rate having an average flow rate of 8 m / sec or more.
-Cavitation processing filtration unit: The auxiliary filtering unit 253f corresponds to this, and is provided at the inflow port of the main filtration pipe (cavitation processing pipe) 180, and the suspended matter in the culture pond 250 is inside the cavitation processing pipe 181. Suppress inflow.
-Flow rate detection unit 182: It is composed of an ultrasonic flow meter or the like, and detects the flow rate of the culture water W flowing in the cavitation processing pipe 181 on the downstream side of the cavitation nozzle 1, for example. Control unit 185 (cavitation flow rate control unit): The flow rate of liquid sent to the cavitation nozzle 1 by the cavitation processing pump 181p is set to the above-mentioned specified flow rate in a form of compensating for the flow rate loss due to the accumulation of suspended matter on the cavitation processing filtration unit 253f. To control.

本実施形態では、具体的には、濾過槽252に養殖水Wの流入口が連通するとともに、他端側が養殖水Wの養殖池250への戻し口とされた濾過用主配管180が設けられ、また、濾過用主配管180の流入口には濾過槽252内の浮遊物が濾過用主配管180内に流入することを抑制する、金属網等で構成された補助フィルタリング部253fが設けられている。また、主ポンプ175は濾過用主配管180上に設けられる。一方、キャビテーション処理用配管181は、主ポンプ175の下流側にて濾過用主配管180から分岐し、かつ、濾過用主配管180とは別位置にて養殖池250に対する戻し口を開口させる形で設けられる。 Specifically, in the present embodiment, a filtration main pipe 180 is provided in which the inflow port of the aquaculture water W communicates with the filtration tank 252 and the other end side serves as a return port of the aquaculture water W to the aquaculture pond 250. In addition, an auxiliary filtering unit 253f made of a metal net or the like is provided at the inflow port of the main filtration pipe 180 to prevent suspended matter in the filtration tank 252 from flowing into the main filtration pipe 180. There is. Further, the main pump 175 is provided on the main filtration pipe 180. On the other hand, the cavitation processing pipe 181 branches from the filtration main pipe 180 on the downstream side of the main pump 175, and opens a return port to the fishpond 250 at a position different from the filtration main pipe 180. Provided.

また、閉鎖型陸上養殖装置300には、濾過用主配管180とキャビテーション処理用配管181との分配比をバルブ開度に応じて調整する分配バルブ183が設けられる。本実施形態では、分配バルブ183は濾過用主配管180とキャビテーション処理用配管181との分岐点に設けられた比例制御型の電磁三方バルブとして構成されているが、図16に示すように、分岐点より下流側にて濾過用主配管180とキャビテーション処理用配管181とにそれぞれ個別に設けられた1対の比例制御バルブ183A,183Bとして構成してもよい。キャビテーション流量制御部185は、補助フィルタリング部253fへの浮遊物の堆積に伴い主ポンプ175の送水流量が減少した場合に、養殖水Wのキャビテーション処理用配管181への分配比が増加するように分配バルブ183の開度を調整駆動制御する。以上の構成では、主ポンプ175がキャビテーション処理用ポンプに兼用され、補助フィルタリング部253fがキャビテーション処理用濾過部に兼用されている。 Further, the closed type land aquaculture apparatus 300 is provided with a distribution valve 183 that adjusts the distribution ratio between the main filtration pipe 180 and the cavitation processing pipe 181 according to the valve opening degree. In the present embodiment, the distribution valve 183 is configured as a proportional control type electromagnetic three-way valve provided at a branch point between the main filtration pipe 180 and the cavitation processing pipe 181. As shown in FIG. 16, the distribution valve 183 is branched. It may be configured as a pair of proportional control valves 183A and 183B individually provided in the main piping 180 for filtration and the piping 181 for cavitation processing on the downstream side of the point. The cavitation flow rate control unit 185 distributes the culture water W to the cavitation treatment pipe 181 so as to increase when the water supply flow rate of the main pump 175 decreases due to the accumulation of suspended matter on the auxiliary filtering unit 253f. The opening degree of the valve 183 is adjusted and driven. In the above configuration, the main pump 175 is also used as the cavitation processing pump, and the auxiliary filtering unit 253f is also used as the cavitation processing filtering unit.

養殖池250の出口配管250eから排出される養殖水は、沈殿槽251にて粗大な浮遊物が沈殿除去され、該沈殿槽251からオーバーフローする養殖水Wは濾過槽252に導かれる。濾過槽252には不織布や多孔質樹脂などからなるフィルタ252fが配置され、該フィルタ252fを通過した養殖水Wは濾過槽252からバッファ層253に流下する。濾過槽252にてフィルタ252fには好気性微生物の繁殖媒体層(例えば多孔質セラミック)を介在させることができ、有機浮遊物の分解を行なうバイオフィルタとして構成することが可能である。一方、バッファ層253内には濾過用主配管180の入り口側端部が浸漬されており、金属網等で構成された補助フィルタリング部253fにより開口部が覆われている。養殖池250の長期の使用に伴い、濾過槽252からバッファ層253へはフィルタ252fにて除去しきれなかった浮遊物が流入する。該浮遊物は補助フィルタリング部253fにより分離され、濾過用主配管180に侵入することが抑制される。 In the aquaculture water discharged from the outlet pipe 250e of the aquaculture pond 250, coarse suspended matter is settled and removed in the settling tank 251 and the aquaculture water W overflowing from the settling tank 251 is guided to the filtration tank 252. A filter 252f made of a non-woven fabric, a porous resin, or the like is arranged in the filtration tank 252, and the aquaculture water W that has passed through the filter 252f flows down from the filtration tank 252 to the buffer layer 253. In the filter tank 252, a breeding medium layer of aerobic microorganisms (for example, porous ceramic) can be interposed in the filter 252f, and it can be configured as a biofilter for decomposing organic suspended matter. On the other hand, the inlet side end of the main filtration pipe 180 is immersed in the buffer layer 253, and the opening is covered by the auxiliary filtering portion 253f composed of a metal net or the like. With the long-term use of the fishpond 250, suspended matter that could not be completely removed by the filter 252f flows into the buffer layer 253 from the filtration tank 252. The suspended matter is separated by the auxiliary filtering unit 253f and is prevented from entering the main filtering pipe 180.

次に、キャビテーション処理用配管181には混相流供給部165、気液ミキサー150及びキャビテーションノズル1が上流側からこの順に設けられている。養殖水Wには、該混相流供給部165にて気体供給配管171を経て気体供給源170より酸素含有気体としての空気が混合され、さらに気液ミキサー150にて導入された空気が微粉砕され、キャビテーションノズル1にて該気体の少なくとも一部が溶解され、養殖水池250に戻される。この気液ミキサー150はキャビテーションノズル1と協働して酸素溶解機構の一部を構成する。 Next, the cavitation processing pipe 181 is provided with a mixed phase flow supply unit 165, a gas-liquid mixer 150, and a cavitation nozzle 1 in this order from the upstream side. The culture water W is mixed with air as an oxygen-containing gas from the gas supply source 170 through the gas supply pipe 171 at the mixed phase flow supply unit 165, and the air introduced by the gas-liquid mixer 150 is further pulverized. , At least a part of the gas is dissolved by the cavitation nozzle 1 and returned to the culture water pond 250. The gas-liquid mixer 150 cooperates with the cavitation nozzle 1 to form a part of the oxygen dissolution mechanism.

図1Bは、気液ミキサー150の一構成例を示すものである。気液ミキサー150は、外筒部材151と流路形成部材155とを備える。外筒部材151は、一端に流入口159、他端に流出口160が形成される中空円筒状に形成される。材質は例えば金属ないしポリ塩化ビニル等のプラスチックであり、本実施形態ではステンレス鋼が採用されている。外筒部材151の両端部には他の配管要素と接続するための継ぎ手部、本実施形態ではおねじ部152が形成されている。 FIG. 1B shows a configuration example of the gas-liquid mixer 150. The gas-liquid mixer 150 includes an outer cylinder member 151 and a flow path forming member 155. The outer cylinder member 151 is formed in a hollow cylindrical shape having an inflow port 159 at one end and an outflow port 160 at the other end. The material is, for example, metal or plastic such as polyvinyl chloride, and stainless steel is used in this embodiment. Joints for connecting to other piping elements, and male threaded portions 152 in this embodiment are formed at both ends of the outer cylinder member 151.

一方、流路形成部材155は外筒部材151の内側に設けられ、流入口159と流出口160とをつなぐ螺旋状流路157,158を、該螺旋状流路157,158の螺旋軸線HCが外筒部材151の中心軸線に沿うように形成する。本実施形態において流路形成部材155は、帯状の金属板の幅方向の中心軸線Oを螺旋軸線HCとする形で該金属板をねじり加工したねじり板部材(以下、ねじり板部材155ともいう)として構成できる。流路形成部材155の材質は、例えばステンレス鋼(SUS316等)を採用可能であるが、海水や汽水を使用する場合はチタンないしチタン合金等、海水に対する耐食性がさらに良好な金属で構成することがより望ましい。 On the other hand, the flow path forming member 155 is provided inside the outer cylinder member 151, and the spiral flow paths 157 and 158 connecting the inflow port 159 and the outflow port 160 are provided with the spiral axis HC of the spiral flow path 157 and 158. It is formed along the central axis of the outer cylinder member 151. In the present embodiment, the flow path forming member 155 is a twisted plate member (hereinafter, also referred to as a twisted plate member 155) obtained by twisting the metal plate so that the central axis O in the width direction of the strip-shaped metal plate is the spiral axis HC. Can be configured as. As the material of the flow path forming member 155, for example, stainless steel (SUS316, etc.) can be adopted, but when seawater or brackish water is used, it may be composed of a metal having better corrosion resistance to seawater, such as titanium or a titanium alloy. More desirable.

外筒部材151の内側にてねじり板部材155は、該ねじり板部材155の第一主面と外筒部材151の内周面との間に第一螺旋状流路157を、同じく第二主面と外筒部材151の内周面との間に第二螺旋状流路158を形成している。そして、外筒部材151は、螺旋状流路が1周期以上、本実施形態では2周期の螺旋区間156を含むように全長が定められている。また、外筒部材151の円筒状の内周面の内径をDx(mm)、ねじり板部材155の螺旋周期長をλ(mm)として、λ/Dxの値は1.5以上4以下に設定されている。Dxは例えば5mm以上30mm以下(例えば15mm)あり、λの値は例えば20mm以上300mm以下(例えば50mm)である。また、ねじり板部材155を構成する板材の厚みはDxの1/4超えない範囲にて、例えば0.3mm以上4mm以下の範囲で選定される(例えば1mm)。 Inside the outer cylinder member 151, the twisted plate member 155 has a first spiral flow path 157 between the first main surface of the twisted plate member 155 and the inner peripheral surface of the outer cylinder member 151, and also the second main surface. A second spiral flow path 158 is formed between the surface and the inner peripheral surface of the outer cylinder member 151. The total length of the outer cylinder member 151 is determined so that the spiral flow path includes a spiral section 156 having one or more cycles and two cycles in the present embodiment. Further, the inner diameter of the cylindrical inner peripheral surface of the outer cylinder member 151 is Dx (mm), the spiral period length of the torsion plate member 155 is λ (mm), and the value of λ / Dx is set to 1.5 or more and 4 or less. Has been done. Dx is, for example, 5 mm or more and 30 mm or less (for example, 15 mm), and the value of λ is, for example, 20 mm or more and 300 mm or less (for example, 50 mm). Further, the thickness of the plate material constituting the twisted plate member 155 is selected within a range not exceeding 1/4 of Dx, for example, in a range of 0.3 mm or more and 4 mm or less (for example, 1 mm).

また、本実施形態においては、酸素溶解機構として、キャビテーションノズル1とは別に設けられ、養殖池250を満たす養殖水Wに外部から供給される酸素含有気体を平均気泡径が0.5mm以上となるように噴射する散気部174が養殖池250内に設けられている。散気部174は、気孔を多数形成した散気板あるいは連通気孔が多数形成されたセラミック、樹脂ないし金属製の散気モジュール、あるいは旋回流式気液混合型のディフューザなど周知の構成を有するものであり、気体供給管173を介してエアコンプレッサー170から酸素含有気体としての空気が供給されるようになっている。 Further, in the present embodiment, as an oxygen dissolution mechanism, an oxygen-containing gas supplied from the outside to the aquaculture water W which is provided separately from the cavitation nozzle 1 and fills the aquaculture pond 250 has an average cell diameter of 0.5 mm or more. An air diffuser 174 is provided in the aquaculture pond 250. The air diffuser 174 has a well-known configuration such as an air diffuser having a large number of pores or a ceramic, a resin or metal air diffuser having a large number of continuous ventilation holes, or a swirling flow type gas-liquid mixing type diffuser. Therefore, air as an oxygen-containing gas is supplied from the air compressor 170 via the gas supply pipe 173.

キャビテーションノズル1(混相流供給部165)に向かう気体供給管171、及び散気部174に向かう気体供給管173には、それぞれ電磁バルブ172,184が設けられ、制御部185からの制御信号を受けて開閉駆動される。電磁バルブ172,184が開けばキャビテーションノズル1及び散気部174への空気の供給すなわち養殖水への酸素溶解処理がなされ、電磁バルブ172,184が閉じれば空気の供給すなわち養殖水への酸素溶解処理が停止する。養殖池250内には酸素センサ186(光学式ないしポーラログラフ式の周知の構成のものである)が設けられており、制御部185は該酸素センサ186による養殖水の酸素濃度を読み取るとともに、該酸素濃度が2.5ppm以上7ppm以下(望ましくは3ppm以上6ppm以下)となるように電磁バルブ172,184を開閉制御する。なお、本実施形態では、散気部174への空気供給流量がキャビテーションノズル1における空気供給流量よりも大きく設定されている。 Solenoid valves 172 and 184 are provided in the gas supply pipe 171 toward the cavitation nozzle 1 (multiphase flow supply unit 165) and the gas supply pipe 173 toward the air diffuser 174, respectively, and receive control signals from the control unit 185. Is driven to open and close. When the solenoid valves 172 and 184 are opened, air is supplied to the cavitation nozzle 1 and the air diffuser 174, that is, oxygen is dissolved in the aquaculture water. When the solenoid valves 172 and 184 are closed, air is supplied, that is, oxygen is dissolved in the aquaculture water. Processing stops. An oxygen sensor 186 (which is a well-known optical or polarograph type) is provided in the aquaculture pond 250, and the control unit 185 reads the oxygen concentration of the aquaculture water by the oxygen sensor 186 and the oxygen. The solenoid valves 172 and 184 are controlled to open and close so that the concentration is 2.5 ppm or more and 7 ppm or less (preferably 3 ppm or more and 6 ppm or less). In this embodiment, the air supply flow rate to the air diffuser 174 is set to be larger than the air supply flow rate in the cavitation nozzle 1.

次に、図1Cは、キャビテーションノズル1の一例を示す横断面図である。このキャビテーションノズル1は、ノズル流路3が形成されたノズル本体2を備える。ノズル本体2は円筒状に形成され、その中心軸線Oの向きに円形断面の1つのノズル流路3が貫通形成されている。ノズル流路3は一方の端(図面右側)に養殖水入口4を、他方の端に養殖水出口5を開口しており、その流れ方向中間位置には養殖水入口4及び養殖水出口5よりも径小の絞り孔9がノズル流路3の一部区間をなす形で形成されている。ノズル流路3は絞り孔9よりも養殖水入口4側が流入室6とされ、養殖水出口5側が流出室7とされる。そして、絞り孔9には、脚部先端側が流路内側に突出するようにねじ部材10が組み付けられ、キャビテーション処理部CVを形成している。 Next, FIG. 1C is a cross-sectional view showing an example of the cavitation nozzle 1. The cavitation nozzle 1 includes a nozzle body 2 in which a nozzle flow path 3 is formed. The nozzle body 2 is formed in a cylindrical shape, and one nozzle flow path 3 having a circular cross section is formed through the nozzle body 2 in the direction of the central axis O. The nozzle flow path 3 has a aquaculture water inlet 4 at one end (on the right side of the drawing) and a aquaculture water outlet 5 at the other end, and from the aquaculture water inlet 4 and the aquaculture water outlet 5 at an intermediate position in the flow direction. The small diameter drawing hole 9 is formed so as to form a part of the nozzle flow path 3. The nozzle flow path 3 has an inflow chamber 6 on the aquaculture water inlet 4 side and an outflow chamber 7 on the aquaculture water outlet 5 side of the throttle hole 9. Then, a screw member 10 is assembled in the throttle hole 9 so that the tip end side of the leg portion protrudes inside the flow path to form a cavitation processing portion CV.

ノズル本体2の材質は、たとえばABS、ナイロン、ポリカーボネート、ポリアセタール、ポリ塩化ビニル、PTFEなどの樹脂であるが、チタンないしチタン合金やステンレス鋼などの金属、さらにはアルミナ等のセラミックスで構成される。また、ねじ部材10の材質はたとえばSUS316等のステンレス鋼であるが、海水や汽水を使用する場合はチタンないしチタン合金等、海水に対する耐食性がさらに良好な金属で構成することがより望ましい。また、石英やアルミナなどのセラミック材料を用いることも可能である。 The material of the nozzle body 2 is, for example, a resin such as ABS, nylon, polycarbonate, polyacetal, polyvinyl chloride, or PTFE, but is composed of a metal such as titanium or titanium alloy or stainless steel, and ceramics such as alumina. The material of the screw member 10 is, for example, stainless steel such as SUS316, but when seawater or brackish water is used, it is more desirable to use a metal having better corrosion resistance to seawater such as titanium or a titanium alloy. It is also possible to use a ceramic material such as quartz or alumina.

ねじ部材10は、ねじピッチ及びねじ谷深さが0.20mm以上0.40mm以下、公称ねじ径Mが1.0mm以上2.0mm以下のものが使用されている。本実施形態にてねじ部材10は、JISに定められた0番1種なべ小ねじが使用されている。キャビテーション処理部CVには、ノズル流路3の中心軸線Oと直交する仮想的なねじ配置面が該中心軸線Oに沿って複数、図1CにおいてはLP1,LP2の2面が設定されている。上記のねじ部材10は、脚部の長手方向が個々のねじ配置面LP1,LP2に沿うように配置される。図1Cの実施形態においてねじ部材10の総数は8であり(後述するように、8を超える数であってもよい)、各ねじ配置面LP1,LP2に対し2つ以上、図1Cにおいては4つずつ分配されている。なお、ねじ配置面(面ねじ組)を1つのみ形成することも可能である。 As the screw member 10, a screw member 10 having a screw pitch and a screw valley depth of 0.20 mm or more and 0.40 mm or less and a nominal screw diameter M of 1.0 mm or more and 2.0 mm or less is used. In the present embodiment, as the screw member 10, the No. 0 type 1 pan head machine screw defined in JIS is used. The cavitation processing unit CV is provided with a plurality of virtual screw arrangement surfaces orthogonal to the central axis O of the nozzle flow path 3 along the central axis O, and two surfaces LP1 and LP2 in FIG. 1C. The screw member 10 is arranged so that the longitudinal direction of the leg portion is along the individual screw arrangement surfaces LP1 and LP2. In the embodiment of FIG. 1C, the total number of screw members 10 is 8 (the number may exceed 8 as described later), 2 or more for each screw arrangement surface LP1 and LP2, and 4 in FIG. 1C. It is distributed one by one. It is also possible to form only one screw arrangement surface (face screw set).

図1Cにおいて各ねじ配置面LP1,LP2においてねじ部材10は、図2に示すレイアウトに従い配置されている。具体的には、各ねじ配置面LP1,LP2上の4本のねじ部材10は互いに直交する十字形態に配置され、各々ノズル本体2に形成されたねじ孔19内面のめねじ部にて、その壁部外周面側から脚部先端が絞り孔9内へ突出するようにねじ込まれている。ねじ孔19とねじ部材10とは接着剤等によりセッティング固定することができる。図3は、絞り孔9の内側をさらに拡大して示すものであり、ねじ部材10と絞り孔9の内周面との間には主流通領域21が形成されている。また、各絞り孔9において、4つの衝突部10が形成する十字の中心位置には、流通ギャップ15が形成されている。流通ギャップ15(図3)を形成する4つの衝突部10の先端面は平坦に形成され、前述の投影において流通ギャップ15は正方形状に形成されている。 In FIG. 1C, the screw members 10 are arranged on the screw arrangement surfaces LP1 and LP2 according to the layout shown in FIG. Specifically, the four screw members 10 on the screw arrangement surfaces LP1 and LP2 are arranged in a cross shape orthogonal to each other, and each of them is formed at a female thread portion on the inner surface of the screw hole 19 formed in the nozzle body 2. The tip of the leg is screwed so as to protrude into the throttle hole 9 from the outer peripheral surface side of the wall portion. The screw hole 19 and the screw member 10 can be set and fixed with an adhesive or the like. FIG. 3 shows a further enlarged view of the inside of the throttle hole 9, and a main distribution region 21 is formed between the screw member 10 and the inner peripheral surface of the throttle hole 9. Further, in each throttle hole 9, a distribution gap 15 is formed at the center position of the cross formed by the four collision portions 10. The tip surfaces of the four collision portions 10 forming the flow gap 15 (FIG. 3) are formed flat, and the flow gap 15 is formed in a square shape in the above projection.

図3において、各ねじ配置面LP1,LP2における養殖水流通領域の面積(キャビテーション処理部におけるノズル流路の断面積:以下、全流通断面積ともいう)aを、ノズル流路の投影領域の外周縁内側の全面積(ここでは、図1Cの絞り孔9の円形軸断面の面積:内径をdとしてπd/4))をS1、衝突部10(4本のねじ部材)の投影領域面積をS2として、
a=S1−S2 (単位:mm
として定義する。この実施形態では、主流通領域21と流通ギャップ15との合計面積が全流通断面積aに相当する。図1Cに示すごとく、養殖水入口4及び養殖水出口5の開口径は、絞り孔9の内径よりも大きい。すなわち、養殖水入口4及び養殖水出口5の開口断面積は全流通断面積aよりも大きく設定されている。また、流入室6及び流出室7の絞り孔9に連なる内周面はそれぞれテーパ部13,14とされている。養殖水出口5側のテーパ部14と養殖水入口4側のテーパ部13とは絞り比は同じであるが、区間長はテーパ部14の方が大きく設定されている。そして、各ねじ配置面LP1,LP2において、全流通断面積aは3.8mm以上確保され、ノズル流路の全断面積S1に占める全流通断面積aの割合(すなわち、a/S1×100(%))として定められる面内流通面積率は40%以上に確保されている。
In FIG. 3, the area of the cultured water flow area (cross-sectional area of the nozzle flow path in the cavitation processing section: hereinafter also referred to as the total flow-through cross-sectional area) a on each of the screw arrangement surfaces LP1 and LP2 is outside the projection area of the nozzle flow path. (here, the area of the circular shaft cross-section of the throttle bore 9 in Figure 1C: [pi] d 2/4 internal diameter as d) the total area of the peripheral edge inside) the S1, the projected area area of the collision portion 10 (four screws member) As S2
a = S1-S2 (Unit: mm 2 )
Defined as. In this embodiment, the total area of the main distribution area 21 and the distribution gap 15 corresponds to the total distribution cross-sectional area a. As shown in FIG. 1C, the opening diameters of the aquaculture water inlet 4 and the aquaculture water outlet 5 are larger than the inner diameter of the throttle hole 9. That is, the opening cross-sectional areas of the aquaculture water inlet 4 and the aquaculture water outlet 5 are set to be larger than the total distribution cross-sectional area a. Further, the inner peripheral surfaces of the inflow chamber 6 and the outflow chamber 7 connected to the throttle holes 9 are tapered portions 13 and 14, respectively. The tapered portion 14 on the aquaculture water outlet 5 side and the tapered portion 13 on the aquaculture water inlet 4 side have the same drawing ratio, but the section length is set larger in the tapered portion 14. Then, on each of the screw arrangement surfaces LP1 and LP2, the total circulation cross-sectional area a is secured at 3.8 mm 2 or more, and the ratio of the total flow cross-sectional area a to the total cross-sectional area S1 of the nozzle flow path (that is, a / S1 × 100). The in-plane distribution area ratio defined as (%)) is secured at 40% or more.

ねじ部材(衝突部)10の投影外形線に現れる谷部21の深さhは0.2mm以上確保されている。また、中心軸線Oの投影点を中心としてノズル流路の内周縁までの距離の70%に相当する半径にて描いた円を基準円C70として定めたとき、谷部21の最底位置を表す谷点のうち、基準円C70の内側に位置するもの(○で表示)の数、つまり、中心軸線Oと直交する平面への投影にてノズル流路3の断面中心から該ノズル流路3の半径の70%以内の領域に位置する谷点の数を70%谷点数N70と定義する。そして、該70%谷点数N70の値を全ねじ配置面について合計した値を、ノズル流路3(絞り孔9)の断面積S1で除した値を70%谷点面積密度と定義する。図1Cのキャビテーションノズル1においては、70%谷点面積密度の値が1.6個/mm以上に確保されている。 The depth h of the valley portion 21 appearing on the projected outline of the screw member (collision portion) 10 is secured at 0.2 mm or more. Further, when a circle drawn with a radius corresponding to 70% of the distance to the inner peripheral edge of the nozzle flow path centered on the projection point of the central axis O is defined as the reference circle C 70 , the bottom position of the valley portion 21 is set. Of the valley points represented, the number of valley points located inside the reference circle C 70 (indicated by a circle), that is, projected onto a plane orthogonal to the central axis O from the center of the cross section of the nozzle flow path 3 to the nozzle flow path. The number of valley points located within 70% of the radius of 3 is defined as 70% valley point number N 70 . Then, the value obtained by dividing the value obtained by dividing the value of the 70% number of valley points N 70 for all the screw arrangement surfaces by the cross-sectional area S1 of the nozzle flow path 3 (throttle hole 9) is defined as the 70% valley point area density. In the cavitation nozzle 1 of FIG. 1C, the value of the 70% valley point area density is secured at 1.6 pieces / mm 2 or more.

図1Cにおいて、互いに隣接するねじ配置面LP1,LP2間にてねじ部材10の脚部は、中心軸線Oと直交する平面への投影において長手方向を一致させつつ互いに重なり合う位置関係にて配置されている。具体的には、十字状に配置された4本のねじ部材10からなる面ねじ組が、ねじ配置面LP1,LP2間にて互いに重なり合う位置関係(すなわち、十字状の面ねじ組の中心軸線O周りの配置角度位相が互いに一致する位置関係:以下、このような配置を「同相配置」という)にて配置されている。また、隣接するねじ配置面LP1,LP2間の間隔dpは、図2のねじ頭部10hの外径をdh、ねじ脚部10fの公称ねじ径をMとして、例えば1.05dh以上2M以下に設定されている。 In FIG. 1C, the legs of the screw member 10 between the screw arrangement surfaces LP1 and LP2 adjacent to each other are arranged in a positional relationship in which they overlap each other while matching the longitudinal directions in projection onto a plane orthogonal to the central axis O. There is. Specifically, the surface screw set consisting of four screw members 10 arranged in a cross shape overlaps each other between the screw arrangement surfaces LP1 and LP2 (that is, the central axis O of the cross-shaped face screw set). Peripheral arrangement angle Positional relationship in which the phases match each other: Hereinafter, such an arrangement is referred to as "in-phase arrangement"). Further, the distance dp between the adjacent screw arrangement surfaces LP1 and LP2 is set to, for example, 1.05 dh or more and 2 M or less, where the outer diameter of the screw head 10h in FIG. 2 is dh and the nominal screw diameter of the screw leg portion 10f is M. Has been done.

図1Cのキャビテーションノズル1に対し、たとえば、養殖水出口5側を開放して養殖水入口4に動圧が通常水道圧(例えば、0.077MPa)程度となるように、養殖水として例えば水を流通させた場合の作用について説明する。水流はまずテーパ部13及び絞り孔9で絞られ、ねじ部材10と絞り孔9内周面との間に形成される図2の主流通領域21と流通ギャップ15とからなる液流通領域にてねじ部材10に衝突しながらこれを通過する。 For the cavitation nozzle 1 of FIG. 1C, for example, water is used as the aquaculture water so that the aquaculture water outlet 5 side is opened and the dynamic pressure at the aquaculture water inlet 4 is about the normal tap pressure (for example, 0.077 MPa). The operation when it is distributed will be described. The water flow is first throttled by the tapered portion 13 and the throttle hole 9, and is formed in the liquid flow region including the main flow region 21 and the flow gap 15 of FIG. 2 formed between the screw member 10 and the inner peripheral surface of the throttle hole 9. It passes through the screw member 10 while colliding with it.

そして、ねじ部材10の外周面を通過するときに、ねじ谷部に高速領域を、ねじ山部に低速領域をそれぞれ形成する。すると、ねじ谷部の高速領域はベルヌーイの定理により負圧領域となり、キャビテーションが生ずる。ねじ谷部はねじ部材の外周に複数巻形成され、かつ8本以上のねじ部材10が複数のねじ配置面LP1、LP2に分配配置されていることから、キャビテーションは絞り孔9内の谷部にて同時多発的に起こることとなる。すると、水流がねじ部材10に衝突する際に、ねじ谷部での溶存空気の減圧析出が沸騰的に激しく起こり、ねじ部材10の表面及びノズル流路3の内面との間で水流を激しく摩擦しつつ撹拌する。 Then, when passing through the outer peripheral surface of the screw member 10, a high-speed region is formed in the thread valley portion and a low-speed region is formed in the screw thread portion. Then, the high-speed region of the screw valley portion becomes a negative pressure region according to Bernoulli's theorem, and cavitation occurs. Since a plurality of screw valleys are formed on the outer periphery of the screw member and eight or more screw members 10 are distributed and arranged on the plurality of screw arrangement surfaces LP1 and LP2, the cavitation is formed in the valley in the throttle hole 9. It will occur at the same time. Then, when the water flow collides with the screw member 10, decompression precipitation of the dissolved air at the screw valley portion occurs violently in a boiling manner, and the water flow violently rubs between the surface of the screw member 10 and the inner surface of the nozzle flow path 3. Stir while doing.

前述のごとく、図1Cのキャビテーションノズル1は、各ねじ配置面LP1,LP2にて、面内流通面積率が40%以上に確保され、全流通断面積が3.8mm以上に確保され、さらに隣接するねじ配置面LP1,LP2(面ねじ組)の間隔dpが、使用されるねじ部材10の公称ねじ径よりも大きく確保されている。これにより、面ねじ組を流路中心軸線Oの方向に複数連ねて配置してもノズルの圧損増加を極めて小さくとどめることができる。その結果、1つのノズル流路3内に多くのねじ部材が配置されているにも関わらず、断面内にて必要な流速を十分に確保できるようになる。該構成は、キャビテーション処理の効率を高めた大流量のノズルが望まれる場合に特に有利である。 As described above, in the cavitation nozzle 1 of FIG. 1C, the in-plane distribution area ratio is secured at 40% or more, the total distribution cross-sectional area is secured at 3.8 mm 2 or more on each screw arrangement surface LP1 and LP2, and further. The distance dp between the adjacent screw arrangement surfaces LP1 and LP2 (face screw set) is secured to be larger than the nominal screw diameter of the screw member 10 used. As a result, even if a plurality of face screw sets are arranged in a row in the direction of the flow path center axis O, the increase in pressure loss of the nozzle can be kept extremely small. As a result, it becomes possible to sufficiently secure the required flow velocity in the cross section even though many screw members are arranged in one nozzle flow path 3. This configuration is particularly advantageous when a large flow rate nozzle with increased efficiency in cavitation processing is desired.

図10に示すように、気液ミキサー150は、螺旋状流路157,158がキャビテーションノズル1のノズル流路3に連通するように、キャビテーションノズル1の養殖水入口側に配置されている。具体的には、外筒部材151の流出口側のおねじ部152をノズル本体2のめねじ部16に螺合させる形で接続されている。気液ミキサー150とキャビテーションノズル1との間には中継配管等の別配管要素(図示せず)が介在していてもよいが、該別配管要素内を流通する間に二次気泡BSが合体・粗大化する懸念もあり、気液ミキサー150とキャビテーションノズル1とは図10のように直結されていることが望ましい。 As shown in FIG. 10, the gas-liquid mixer 150 is arranged on the culture water inlet side of the cavitation nozzle 1 so that the spiral flow paths 157 and 158 communicate with the nozzle flow path 3 of the cavitation nozzle 1. Specifically, the threaded portion 152 on the outlet side of the outer cylinder member 151 is screwed into the female threaded portion 16 of the nozzle body 2. A separate piping element (not shown) such as a relay pipe may be interposed between the gas-liquid mixer 150 and the cavitation nozzle 1, but the secondary bubble BS is united while flowing through the separate pipe element. -There is a concern that the gas-liquid mixer 150 and the cavitation nozzle 1 are directly connected as shown in FIG.

また、混相流供給部165は、気液ミキサー150の流入口159に、気体と養殖水との混相流を供給する。本実施形態では混相流供給部165はベンチュリエジェクタとして構成され、その絞り孔に連通する気体供給孔166に気体導入用継手167を介して気体供給配管171(図1A)により気体が供給され、混相流が形成される。本実施形態では、混相流供給部165もまた気液ミキサー150の流入口159側に直結されている。混相流は、第一螺旋状流路157及び第二螺旋状流路158に分配され、それぞれ第一螺旋流TR1と第二螺旋流TR2を形成しつつ気相を二次気泡BSに粉砕する。 Further, the multiphase flow supply unit 165 supplies a mixed phase flow of gas and aquaculture water to the inflow port 159 of the gas-liquid mixer 150. In the present embodiment, the mixed-phase flow supply unit 165 is configured as a venturi ejector, and gas is supplied to the gas supply hole 166 communicating with the throttle hole via the gas introduction joint 167 through the gas supply pipe 171 (FIG. 1A) to mix the phases. A stream is formed. In the present embodiment, the multiphase flow supply unit 165 is also directly connected to the inflow port 159 side of the gas-liquid mixer 150. The mixed phase flow is distributed to the first spiral flow path 157 and the second spiral flow path 158, and the gas phase is pulverized into the secondary bubble BS while forming the first spiral flow TR1 and the second spiral flow TR2, respectively.

該混相流中の一次気泡BPは、気液ミキサー150の螺旋状流路157,158内を流通させることにより遠心力により養殖水と混合・微粉砕され、図1Cのキャビテーションノズル1のねじ部材10のねじピッチをh(mm)として、気泡径1.5h以下(望ましくは1h以下)の二次気泡BSに微粉砕される。二次気泡BSを含んだ養殖水はキャビテーションノズル1に供給され、キャビテーション処理部CVに生ずる乱流域に巻き込まれることにより溶解する。 The primary bubble BP in the mixed phase flow is mixed and finely pulverized with the aquaculture water by centrifugal force by circulating in the spiral flow paths 157 and 158 of the gas-liquid mixer 150, and the screw member 10 of the cavitation nozzle 1 in FIG. 1C. The screw pitch is h (mm), and the particles are finely pulverized into secondary bubble BS having a bubble diameter of 1.5 h or less (preferably 1 h or less). The aquaculture water containing the secondary bubble BS is supplied to the cavitation nozzle 1 and is dissolved by being caught in the turbulent flow area generated in the cavitation processing unit CV.

混相流中の気相が、より細かい二次気泡BSに粉砕された状態でキャビテーションノズル1のねじ部材に供給されることにより、気体を含有した養殖水とねじ谷との接触効率が上昇する。これにより、気相成分の混合・攪拌の駆動力を生ずる乱流域の形成が顕著となり、気体溶解効率を高めることができる。また、キャビテーション処理部CV内では、溶解した気体の一部は直ちにキャビテーションにより再析出することから、ねじ谷部内でのキャビテーション効率は大幅に改善される。 By supplying the gas phase in the mixed phase flow to the screw member of the cavitation nozzle 1 in a state of being crushed into finer secondary bubble BS, the contact efficiency between the gas-containing aquaculture water and the screw valley is increased. As a result, the formation of a turbulent flow region that generates a driving force for mixing and stirring the gas phase components becomes remarkable, and the gas dissolution efficiency can be improved. Further, in the cavitation processing section CV, a part of the dissolved gas is immediately reprecipitated by cavitation, so that the cavitation efficiency in the thread valley portion is significantly improved.

次に、図11は、制御部185の電気的構成の一例を示すブロック図である。制御部185はCPU191と、該CPU191が実行する制御プログラム(ノズル流量制御プログラム193a及び酸素濃度制御プログラム193b)を格納したROM193と、プログラム実行メモリを形成するRAM192と、入出力部194と、これらを接続するバスライン195とを備えるマイコンハードウェアを主体に構成されている。入出力部194には、バルブ開度(バルブ位置)の指示値を示すデジタル信号をアナログ電圧指示値に変換するD/A変換部199を介して、前述の分配バルブ183が接続されている。また、流量計186と酸素センサ186のアナログセンサ出力は、A/D変換部196,197によりデジタル信号に変換され入出力部194に入力される。さらに、散気ノズル174及びキャビテーションノズル1への空気の供給を開閉する電磁バルブ172及び184は、駆動回路172A,184Aを介して入出力部194に接続されている。 Next, FIG. 11 is a block diagram showing an example of the electrical configuration of the control unit 185. The control unit 185 includes a CPU 191 and a ROM 193 that stores a control program (nozzle flow control program 193a and oxygen concentration control program 193b) executed by the CPU 191, a RAM 192 that forms a program execution memory, an input / output unit 194, and the like. It is mainly composed of microcomputer hardware including a bus line 195 to be connected. The above-mentioned distribution valve 183 is connected to the input / output unit 194 via a D / A conversion unit 199 that converts a digital signal indicating an indicated value of a valve opening degree (valve position) into an analog voltage indicated value. Further, the analog sensor outputs of the flow meter 186 and the oxygen sensor 186 are converted into digital signals by the A / D conversion units 196 and 197 and input to the input / output units 194. Further, the solenoid valves 172 and 184 that open and close the supply of air to the air diffuser nozzle 174 and the cavitation nozzle 1 are connected to the input / output unit 194 via the drive circuits 172A and 184A.

以下、図1Aの閉鎖型陸上養殖装置300の動作について説明する。
まず、養殖池250内に養殖水Wを注水する。図11の制御部185に対しては、キャビテーションノズル1の流通断面積の値に応じ、養殖水Wの断面平均流速が8m/sec以上、望ましくは9m/以上となる規定流量範囲(上限値Q、下限値Q)を入力部198を用いて設定しておく。また、投入する被養殖物SPの個体数に応じて養殖水Wの規定酸素濃度範囲(上限値C、下限値C)を、同様に入力部198を用いて設定する。これらの設定値は、図11のRAM192に記憶される。
Hereinafter, the operation of the closed aquaculture apparatus 300 of FIG. 1A will be described.
First, the aquaculture water W is injected into the aquaculture pond 250. For the control unit 185 of FIG. 11, a specified flow rate range (upper limit value Q) in which the average cross-sectional flow velocity of the aquaculture water W is 8 m / sec or more, preferably 9 m / or more, according to the value of the distribution cross-sectional area of the cavitation nozzle 1. U, is set with the lower limit Q L) input unit 198 a. Further, the specified oxygen concentration range (upper limit value CU , lower limit value CL ) of the aquaculture water W is similarly set by using the input unit 198 according to the number of individuals of the aquaculture SP to be input. These set values are stored in the RAM 192 of FIG.

以上の設定が終了すれば、主ポンプ175の動作と、制御部185によるキャビテーションノズル1の流量及び養殖水Wへの酸素溶解の制御を開始する。そして、流量計182が示すキャビテーションノズル1の流量と、酸素センサ186が示す酸素濃度とが規定範囲内にて制御され、これらの値が安定した段階で養殖水Wに被養殖物SPを投入する。 When the above settings are completed, the operation of the main pump 175 and the control of the flow rate of the cavitation nozzle 1 and the oxygen dissolution in the aquaculture water W by the control unit 185 are started. Then, the flow rate of the cavitation nozzle 1 indicated by the flow meter 182 and the oxygen concentration indicated by the oxygen sensor 186 are controlled within a specified range, and when these values are stable, the aquaculture SP is charged into the aquaculture water W. ..

図12は流量制御プログラムの処理の流れの一例を示すフローチャートである。S101では、図1Aの分配バルブ183の開度Sをデフォルト値であるS0に設定する。該デフォルト値は、例えば図1Aの補助フィルタリング部253fが新品の状態であり、かつ主ポンプ175が定格出力にて回転駆動されたときに、キャビテーションノズル1の流量が規定流量範囲の中心値を示すように設定することができる。S102では、流量計182の流量値Q2を読み取る。次に、この流量値Q2を規定流量範囲の下限値Q及び上限値Qと比較する。S103にてQ2<Qならば流量が不足しているのでS104に進み、開度Sをキャビテーション処理用配管181側に予め定められた増分ΔSだけ増加するよう分配バルブ183を駆動する。その余の場合はS105に進み、Q<Q2ならば流量が過剰なので、S106にて開度Sをキャビテーション処理用配管181側に増分ΔSだけ減少するように分配バルブ183を駆動する。そして、Q<Q2<Qの場合は流量が適正であり、S107に進んで分配バルブ183の開度Sの現在値を維持する。以降、S108で終了でなければS101に戻り、以下の処理を繰り返す。流量の上限値Qは、養殖池250の貯水量をV1、キャビテーションノズル1の1時間当たりの流通流量をV2としたとき、
K=V2/V1×100 (%)
にて表される流通循環比Kが例えば2%を超えないように設定される。
FIG. 12 is a flowchart showing an example of the processing flow of the flow rate control program. In S101, the opening degree S of the distribution valve 183 in FIG. 1A is set to the default value S0. The default value indicates, for example, that the flow rate of the cavitation nozzle 1 indicates the center value of the specified flow rate range when the auxiliary filtering unit 253f of FIG. 1A is in a new state and the main pump 175 is rotationally driven at the rated output. Can be set as. In S102, the flow rate value Q2 of the flow meter 182 is read. Then compared with the lower limit Q L and an upper limit Q U prescribed flow rate range the flow rate value Q2. Since Q2 <Q L if the flow rate in S103 is insufficient proceeds to S104, driving the dispensing valve 183 such that the opening degree S is increased by a predetermined increment ΔS cavitation process pipe 181 side. In the remaining case, the process proceeds to S105, and if Q U <Q2, the flow rate is excessive. Therefore, in S106, the distribution valve 183 is driven so that the opening degree S is incremented by ΔS toward the cavitation processing pipe 181 side. Then, when Q L <Q2 <Q U , the flow rate is appropriate, and the process proceeds to S107 to maintain the current value of the opening degree S of the distribution valve 183. After that, if it is not completed in S108, the process returns to S101 and the following processing is repeated. The upper limit of the flow rate QU is when the amount of water stored in the pond 250 is V1 and the flow rate of the cavitation nozzle 1 per hour is V2.
K = V2 / V1 × 100 (%)
The distribution circulation ratio K represented by is set so as not to exceed, for example, 2%.

図13は酸素濃度制御プログラムの処理の流れの一例を示すフローチャートである。S201では、デフォルト設定状態として、図1Aの散気部174側の電磁バルブ184をON(開)とし、キャビテーションノズル1側の電磁バルブ172もON(開)とする。S202では、酸素センサ186の酸素濃度検出値Cを読み取る。次に、この酸素濃度検出値Cを規定酸素濃度範囲の下限値C及び上限値Cと比較する。S103にてC<Cならば酸素濃度が不足しているのでS204に進み、散気部174側の電磁バルブ184をON(開)とし、キャビテーションノズル1側の電磁バルブ172もON(開)とする状態を維持する。その余の場合はS205に進み、C<Cならば酸素濃度が過剰なので、S206にて散気部174側の電磁バルブ184はON(開)とし、キャビテーションノズル1側の電磁バルブ172はOFF(閉)として、キャビテーションノズル1での酸素溶解を抑制し、養殖水W中の酸素濃度を低下させる。なお、酸素濃度の下げ幅をより大きくしたい場合は、散気部174側の電磁バルブ184もOFF(閉)とする処理を行なうことも可能である。そして、C<C2<Qの場合は酸素濃度が適正であり、S207に進んで散気部174側の電磁バルブ184をON(開)とし、キャビテーションノズル1側の電磁バルブ172は断続的にON/OFFして現在の酸素濃度値を維持するようにする。以降、S208で終了でなければS201に戻り、以下の処理を繰り返す。養殖水W中の酸素濃度Cは例えば中心目標値C0を4〜6ppmの範囲内で固定的に定め(例えば5ppm)、上限値Cは該中心目標値C0を基準に例えばC0+0.5〜C0+2ppmの値(例えば6ppm)とし、下限値Cは中心目標値C0を基準に例えばC0−0.5〜C0−2ppmの値(例えば4ppm)として設定することができる。 FIG. 13 is a flowchart showing an example of the processing flow of the oxygen concentration control program. In S201, as the default setting state, the solenoid valve 184 on the air diffuser 174 side of FIG. 1A is turned ON (open), and the solenoid valve 172 on the cavitation nozzle 1 side is also turned ON (open). In S202, the oxygen concentration detection value C of the oxygen sensor 186 is read. Then, comparing the oxygen concentration detection value C and the lower limit value C L and an upper limit C U prescribed oxygen concentration range. S103 it with the C <C L if the oxygen concentration is insufficient proceeds to S204, the electromagnetic valve 184 of the diffuser portion 174 side is ON (open), cavitation nozzle 1 side of the solenoid valve 172 is also ON (open) Maintain the state of. Go to that case remaining in S205, since excessive C U <C if the oxygen concentration, the electromagnetic valve 184 of the diffuser portion 174 side in S206 is set to ON (open), the electromagnetic valve 172 of the cavitation nozzle 1 side OFF As (closed), oxygen dissolution in the cavitation nozzle 1 is suppressed, and the oxygen concentration in the culture water W is lowered. If it is desired to further reduce the oxygen concentration, it is possible to perform a process of turning off (closing) the solenoid valve 184 on the air diffuser 174 side. When C L <C2 <Q U , the oxygen concentration is appropriate, and the process proceeds to S207 to turn on (open) the solenoid valve 184 on the air diffuser 174 side, and the solenoid valve 172 on the cavitation nozzle 1 side is intermittent. To maintain the current oxygen concentration value. After that, if it is not completed in S208, the process returns to S201 and the following processing is repeated. Oxygen concentration C in aquaculture water W is fixedly defined within the 4~6ppm central target value C0 for example (e.g. 5 ppm), the upper limit C U example, based on the said center target value C0 is C0 + 0.5~C0 + 2ppm of the value (e.g. 6 ppm), the lower limit C L can be set as the value of the central target value criterion, for example C0-0.5~C0-2ppm the C0 (e.g., 4 ppm).

被養殖物SPによる消費により減少する養殖水W中の酸素濃度は、上記制御により、突発的な要因による酸素濃度の変動を考慮しても、養殖水W中の酸素濃度は飽和値未満である2.5ppm以上7ppm以下(望ましくは3ppm以上8ppm以下)の範囲に維持されるようになる。そして、その養殖水Wをキャビテーションノズル1に導き、キャビテーション処理部における断面平均流速が8m/sec以上となる規定流量にて流通させることによりキャビテーション処理がなされる。養殖水Wの酸素濃度をあえて飽和値未満に維持することで、キャビテーションに伴う微細気泡の過剰発生が抑制され、被養殖物SPのえらに気泡が付着して溶存酸素の取り込みが阻害される等の不具合を効果的に防止することができる。そして、キャビテーション処理部における断面平均流速が8m/sec以上となる規定流量を確保することで、養殖水Wの酸素濃度が従来技術よりも低く設定されているにも関わらず、被養殖物SPの生育促進等は問題なく図ることができる。 The oxygen concentration in the aquaculture water W, which decreases due to consumption by the aquaculture SP, is less than the saturation value due to the above control, even if the fluctuation of the oxygen concentration due to a sudden factor is taken into consideration. It will be maintained in the range of 2.5 ppm or more and 7 ppm or less (preferably 3 ppm or more and 8 ppm or less). Then, the cavitation treatment is performed by guiding the cultured water W to the cavitation nozzle 1 and circulating it at a predetermined flow rate at which the average cross-sectional flow velocity in the cavitation treatment unit is 8 m / sec or more. By intentionally keeping the oxygen concentration of the cultured water W below the saturation value, excessive generation of fine bubbles due to cavitation is suppressed, and bubbles adhere to the gills of the cultured product SP to inhibit the uptake of dissolved oxygen. Problems can be effectively prevented. By ensuring a specified flow rate at which the average cross-sectional flow velocity in the cavitation treatment section is 8 m / sec or more, the oxygen concentration of the cultured water W is set lower than that of the prior art, but the cultured product SP Growth promotion can be promoted without any problem.

以下、本発明にて採用可能なキャビテーションノズルの種々の変形例について説明する。
図4は、図1Cのキャビテーションノズル1のキャビテーション処理部CVを、図2に示すレイアウトの面ねじ組を中心軸線Oの方向に4組配置した構成を示す。具体的には、中心軸線Oの向きに4つのねじ配置面LP1〜LP4が、図1Cと同じ面間隔dpにて配置され、図2の十字状の面ねじ組が互いに重なるように(すなわち、同相に)配置されている。この場合、16本のねじ部材10が4つのねじ配置面LP1〜LP4に分配されることとなる。また、図5は、図2の面ねじ組を8つのねじ配置面LP1〜LP8に対し同相に配置したキャビテーション処理部CVの例を示す。この場合、32本のねじ部材10が8つのねじ配置面LP1〜LP8に分配されることとなる。各キャビテーション処理部CVの70%谷点面積密度は、図2の構成と比較して、図4の構成では2倍に、図5の構成では4倍に増加させることができる。これにより、キャビテーション処理の効率が向上し、本発明の前述の効果をより安定的に達成することが可能となる。
Hereinafter, various modifications of the cavitation nozzle that can be adopted in the present invention will be described.
FIG. 4 shows a configuration in which four sets of cavitation processing units CV of the cavitation nozzle 1 of FIG. 1C are arranged in the direction of the central axis O with four sets of face screws having the layout shown in FIG. Specifically, the four screw arrangement surfaces LP1 to LP4 are arranged in the direction of the central axis O at the same surface spacing dp as in FIG. 1C, so that the cross-shaped surface screw sets in FIG. 2 overlap each other (that is,). (In phase). In this case, the 16 screw members 10 are distributed to the four screw arrangement surfaces LP1 to LP4. Further, FIG. 5 shows an example of a cavitation processing unit CV in which the surface screw set of FIG. 2 is arranged in phase with the eight screw arrangement surfaces LP1 to LP8. In this case, the 32 screw members 10 are distributed to the eight screw arrangement surfaces LP1 to LP8. The 70% valley point area density of each cavitation processing unit CV can be increased twice in the configuration shown in FIG. 4 and four times in the configuration shown in FIG. 5 as compared with the configuration shown in FIG. As a result, the efficiency of the cavitation treatment is improved, and the above-mentioned effects of the present invention can be achieved more stably.

次に、図6は、図1Cのキャビテーションノズル1と同様の面ねじ組を45°回転させた状態を示している。そして、図1Cのキャビテーションノズル1の2つのねじ配置面LP1,LP2のうち、一方のねじ配置面LP2の十字状の面ねじ組を、他方のねじ配置面LP1の面ねじ組に対して中心軸線Oの周りに45°だけ回転させ、図6の状態とした場合のキャビテーション処理部CVの例を、図7に示している。該構成のキャビテーション処理部CVは、図2の構成と同等の70%谷点面積密度を実現できるが、ねじ配置面LP1,LP2の面間隔dpが図1Cの構成と同一の場合は、養殖水流通時の圧損が若干大きくなる。しかし、面間隔dpを適度に拡大することで該圧損は減じられ、図2の構成のキャビテーション処理部CVとほぼ同等のキャビテーション処理能力を発揮する。また、養殖水の乱流攪拌効果は図1Cの構成よりも大きいため、混相流供給により気体を養殖水に溶解させる目的においてはより有利となる。 Next, FIG. 6 shows a state in which a surface screw set similar to that of the cavitation nozzle 1 of FIG. 1C is rotated by 45 °. Then, of the two screw arrangement surfaces LP1 and LP2 of the cavitation nozzle 1 of FIG. 1C, the cross-shaped surface screw set of one screw arrangement surface LP2 is centered with respect to the surface screw set of the other screw arrangement surface LP1. FIG. 7 shows an example of the cavitation processing unit CV in the case where the cavitation processing unit CV is rotated around O by 45 ° to be in the state shown in FIG. The cavitation processing unit CV having the same configuration can achieve 70% valley point area density equivalent to that of FIG. 2, but when the surface spacing dp of the screw arrangement surfaces LP1 and LP2 is the same as the configuration of FIG. 1C, the aquaculture water The pressure loss during distribution will be slightly larger. However, the pressure loss is reduced by appropriately expanding the surface spacing dp, and the cavitation processing capacity is substantially the same as that of the cavitation processing unit CV having the configuration shown in FIG. Further, since the turbulent agitation effect of the aquaculture water is larger than that of FIG. 1C, it is more advantageous for the purpose of dissolving the gas in the aquaculture water by the mixed phase flow supply.

図8は、図7の構成において、面ねじ組を互いに直交するねじ部材対に分割し、それぞれ中心軸線Oの向きに位置をずらせて配置したキャビテーション処理部CVの例を示す。具体的には、図1Cにおいてねじ配置面LP1,LP2上に配置されていた各々4本のねじ部材10が、図7の構成では、ねじ部材10の公称ねじ径Mだけ隔てられた2つのねじ配置面LP1,LP1’及びLP2,LP2’に、互いに直交する2本ずつを分散させて配置している。すなわち、8本のねじ部材10を4つのねじ配置面LP1,LP1’,LP2,LP2’に分配した例を示すものである。また、ねじ配置面LP1’とねじ配置面LP2との間隔は、公称ねじ径Mよりも大きく(例えば1.5M〜2.0M程度)に設定されている。該構成における70%谷点面積密度は図2の構成と同等である。 FIG. 8 shows an example of a cavitation processing unit CV in which a face screw set is divided into a pair of screw members orthogonal to each other and arranged so as to be displaced in the direction of the central axis O in the configuration of FIG. Specifically, in the configuration of FIG. 7, the four screw members 10 arranged on the screw arrangement surfaces LP1 and LP2 in FIG. 1C are separated by the nominal screw diameter M of the screw member 10. Two screws orthogonal to each other are dispersed and arranged on the arrangement surfaces LP1, LP1'and LP2, LP2'. That is, it shows an example in which eight screw members 10 are distributed to four screw arrangement surfaces LP1, LP1', LP2, LP2'. Further, the distance between the screw arrangement surface LP1'and the screw arrangement surface LP2 is set to be larger than the nominal screw diameter M (for example, about 1.5M to 2.0M). The 70% valley point area density in this configuration is equivalent to that in FIG.

また、図9は、図2のレイアウトの面ねじ組と、図6のレイアウトの面ねじ組とを、4つのねじ配置面LP1〜LP4に対し、交互に2つずつ合計4組配置したキャビテーション処理部CVの例を示す。この例では、16本のねじ部材10が4つのねじ配置面LP1〜LP4に4本ずつ分配配置されている。該構成における70%谷点面積密度は図2の構成の2倍となる。 Further, FIG. 9 shows a cavitation process in which the surface screw set of the layout of FIG. 2 and the surface screw set of the layout of FIG. 6 are alternately arranged on the four screw arrangement surfaces LP1 to LP4, for a total of four sets. An example of the part CV is shown. In this example, 16 screw members 10 are distributed and arranged on each of the four screw arrangement surfaces LP1 to LP4. The 70% valley point area density in this configuration is twice that of the configuration of FIG.

図14は、キャビテーション処理部に形成した隔壁部8に2つの絞り孔9を形成し、各絞り孔9について十字形態に4本のねじ部材10を配置したキャビテーションノズルの例を示すものである。 FIG. 14 shows an example of a cavitation nozzle in which two drawing holes 9 are formed in a partition wall portion 8 formed in a cavitation processing section, and four screw members 10 are arranged in a cross shape for each drawing hole 9.

また、閉鎖型陸上養殖装置300は、図17に示すように、キャビテーション処理用配管182及びキャビテーション処理用ポンプ181pを濾過用主配管180及び主ポンプ175とは独立して設ける構成とすることもできる。キャビテーション処理用配管182の入り口は養殖池250内に開口しており、補助フィルタリング部253fと同様の構成のキャビテーション処理用濾過部181fが設けられている。キャビテーション処理用ポンプ181pの駆動入力は電源アンプ181vにより可変とされており、制御部185からの信号により該電源アンプ181vの出力を制御することでキャビテーションノズル1への送液流量が前述の規定流量範囲に維持される。その余の構成は図1と同様であるので、詳細な説明は略する。 Further, as shown in FIG. 17, the closed type aquaculture apparatus 300 may be configured to provide the cavitation processing pipe 182 and the cavitation processing pump 181p independently of the filtration main pipe 180 and the main pump 175. .. The entrance of the cavitation processing pipe 182 is opened in the aquaculture pond 250, and the cavitation processing filtering unit 181f having the same configuration as the auxiliary filtering unit 253f is provided. The drive input of the cavitation processing pump 181p is made variable by the power supply amplifier 181v, and the output of the power supply amplifier 181v is controlled by the signal from the control unit 185 so that the liquid feed flow rate to the cavitation nozzle 1 becomes the above-mentioned specified flow rate. Maintained in range. Since the remaining configuration is the same as that in FIG. 1, detailed description will be omitted.

以下、キャビテーションノズルの効果を確認するために行った種々の実験の結果について説明する。
(実施例1)
キャビテーションノズルA,Bとして、図1Cに示す形状のものを作成した。なお、キャビテーションノズルAについては、図2に示す4本のねじからなる面ねじ組を1つのみ配置し、キャビテーションノズルBについては面ねじ組を2つ互いに重なる位置関係にて配置している。図21に図1Cの各部の寸法関係を図示している。ノズル本体2の材質はABS樹脂であり、養殖水入口4と養殖水出口5の内径はφ20mm、流入室6及び流出室7の流れ方向の長さはそれぞれ15mm及び45mmである。キャビテーション処理部において絞り孔9の長さは12mmである。また、絞り孔9の内径Dは、キャビテーションノズルAについてはφ5.0mm、キャビテーションノズルBについてはφ14.0mmに設定した。採用したねじ部材は、JIS:B0205(1997)に規定されたメートル並目ピッチを有する0番1種なべ小ねじであり、材質はチタンである。また、脚部の公称ねじ径はM1.4mmである。
The results of various experiments conducted to confirm the effect of the cavitation nozzle will be described below.
(Example 1)
As the cavitation nozzles A and B, those having the shape shown in FIG. 1C were prepared. For the cavitation nozzle A, only one face screw set consisting of the four screws shown in FIG. 2 is arranged, and for the cavitation nozzle B, two face screw sets are arranged so as to overlap each other. FIG. 21 illustrates the dimensional relationship of each part of FIG. 1C. The material of the nozzle body 2 is ABS resin, the inner diameters of the aquaculture water inlet 4 and the aquaculture water outlet 5 are φ20 mm, and the lengths of the inflow chamber 6 and the outflow chamber 7 in the flow direction are 15 mm and 45 mm, respectively. The length of the throttle hole 9 in the cavitation processing section is 12 mm. The inner diameter D of the diaphragm hole 9 was set to φ5.0 mm for the cavitation nozzle A and φ14.0 mm for the cavitation nozzle B. The threaded member adopted is a No. 1 type pan head machine screw having a metric coarse pitch specified in JIS: B0205 (1997), and the material is titanium. The nominal screw diameter of the leg is M1.4 mm.

また、絞り孔内のねじ部材のレイアウトを示す投影画像上で全流通断面積a(絞り孔の全断面積からねじにより占有される領域の面積を除いた値)を算出した。さらに、図3の基準円C70の内側に存する70%谷点数を計数し、絞り孔の全断面積S1で除することにより、70%谷点面積密度の値を各試験ノズルについて算出した。作成した各ノズルA,Bについて、絞り孔内径、面内流通断面積70%谷点総数、70%谷点面積密度、及び養殖池の全水量を50tとしたときの流通循環比Kの各値を、表1にまとめて示している。いずれのノズルも70%谷点密度は2.0個/mm以上に確保されている上記のキャビテーションノズルを図10の気液ミキサー150とともに図1Aの閉鎖型陸上養殖装置300に組み込んだ。 In addition, the total circulation cross-sectional area a (value obtained by subtracting the area occupied by the screw from the total cross-sectional area of the drawing hole) was calculated on the projected image showing the layout of the screw member in the drawing hole. Furthermore, by counting the 70% valley points residing inside the reference circle C 70 of FIG. 3, by dividing the aperture total cross-sectional area S1 of the hole was calculated for each test nozzle the value of 70% valley dot area densities. For each of the created nozzles A and B, each value of the inner diameter of the throttle hole, the total number of 70% valley points in the in-plane distribution cross-sectional area, the 70% valley point area density, and the distribution circulation ratio K when the total amount of water in the pond is 50 tons. Are summarized in Table 1. The above-mentioned cavitation nozzle, which has a 70% valley point density of 2.0 pieces / mm 2 or more for each nozzle, was incorporated into the closed land aquaculture apparatus 300 of FIG. 1A together with the gas-liquid mixer 150 of FIG.

Figure 2021019509
Figure 2021019509

次に、養殖池250に塩分濃度が2.0%の汽水域となるように調整した人工海水を50t(水深:約1.5m)注入するとともに、主ポンプ175による循環を初期流量100L/分にて開始した。そして、各ノズルA,Bについて表1に示す流量設定となるように、分配バルブ183の開度をすでに詳細に説明した方式により制御した。また、養殖水の制御目標となる酸素濃度を、下記表2に示す番号1〜6の各条件(2.0ppm〜7.5ppm、番号1(2.0ppm)及び番号6(7.5ppm)は比較例)となるように設定し、図1Aの電磁バルブ184及び174を駆動制御して養殖水の酸素濃度を各設定値に維持した。なお、散気部174の空気噴出流量は50NL/分(平均気泡径:0.3mm)とした。キャビテーションノズル1への空気供給流量は、大気圧換算での体積流量(NL/分)にて水流量の10%となるように調整した。さらに、図示しない圧力計にて計測した上記流量設定時のキャビテーションノズルの動水圧の値と、流量値と全流通断面積とから算出した絞り孔(キャビテーション処理部)内の平均流速の値も表1に合わせて示している。いずれの条件においても、キャビテーション処理部の平均流速は9m/秒の値に確保されている。 Next, 50 tons (water depth: about 1.5 m) of artificial seawater adjusted so that the salt concentration becomes a brackish water area of 2.0% is injected into the aquaculture pond 250, and the circulation by the main pump 175 is performed at an initial flow rate of 100 L / min. It started at. Then, the opening degree of the distribution valve 183 was controlled by the method already described in detail so that the flow rates of the nozzles A and B were set as shown in Table 1. In addition, the oxygen concentration, which is the control target of the aquaculture water, is set according to the conditions (2.0 ppm to 7.5 ppm, No. 1 (2.0 ppm) and No. 6 (7.5 ppm)) shown in Table 2 below. (Comparative example) was set, and the solenoid valves 184 and 174 of FIG. 1A were driven and controlled to maintain the oxygen concentration of the aquaculture water at each set value. The air ejection flow rate of the air diffuser 174 was set to 50 NL / min (average cell diameter: 0.3 mm). The air supply flow rate to the cavitation nozzle 1 was adjusted so as to be 10% of the water flow rate at the volume flow rate (NL / min) in terms of atmospheric pressure. Furthermore, the value of the hydrodynamic pressure of the cavitation nozzle at the time of the above flow rate setting measured by a pressure gauge (not shown) and the value of the average flow velocity in the throttle hole (cavitation processing unit) calculated from the flow rate value and the total flow cross-sectional area are also shown in the table. It is shown according to 1. Under all conditions, the average flow velocity of the cavitation processing unit is secured at a value of 9 m / sec.

この状態で、200匹/トンの個体密度となるようにバナメイエビの稚エビを投入するとともに、池内の稚エビには、魚粉、オキアミミール、イカミール及び小麦粉を配合した飼料をエビの成長度合いに応じて適宜投与し、飼育を行なった。飼育継続に伴い、養殖水にはエビの排せつ物や食べ残された飼料などが池内に有機残渣となって浮遊するようになる。養殖水の上記循環により、該浮遊物は図1Aの濾過槽252である程度除去されるが、長期間の飼育を継続すれば、除去しきれなかった浮遊物が下流側のバッファ槽側に流出し、補助フィルタリング部253f(キャビテーション処理用濾過部)に次第に堆積する。その結果、主ポンプ175による濾過用主配管180への吸い込み負荷が増大し、キャビテーション処理用配管1との分岐点よりも上流側において濾過用主配管180の循環流量は徐々に減少する。しかし、図1Aの閉鎖型陸上養殖装置の構成が採用されていることで、いずれの条件においても、キャビテーション処理用配管181(すなわちキャビテーションノズル1)側への分配流量は、設定された規定流量範囲内に維持することができた。なお、濾過槽252内のフィルタ252fについては、濾過用主配管180の総流量が30L/分以下に低下した場合に、一旦循環を止めて新しいものと適宜交換するようにした。なお、濾過槽252内は図示しないばっ気機構により空気ばっ気を行ない、腐植形成に関与するバシルス属等の好気性微生物を繁殖させることにより、濾過された有機残渣の腐植化を同時に行なうようにしている。 In this state, the juvenile whiteleg shrimp is added so that the individual density is 200 animals / ton, and the juvenile shrimp in the pond is fed with fish meal, krill meal, squid meal and wheat flour according to the degree of shrimp growth. Was administered as appropriate and bred. As the breeding continues, shrimp excrement and leftover feed will float in the aquaculture water as organic residues. By the above circulation of the aquaculture water, the suspended matter is removed to some extent in the filtration tank 252 of FIG. 1A, but if the breeding is continued for a long period of time, the suspended matter that could not be completely removed flows out to the buffer tank side on the downstream side. , Gradually accumulates in the auxiliary filtering unit 253f (cavitation processing filtering unit). As a result, the suction load on the filtration main pipe 180 by the main pump 175 increases, and the circulation flow rate of the filtration main pipe 180 gradually decreases on the upstream side of the branch point with the cavitation processing pipe 1. However, since the configuration of the closed land aquaculture apparatus shown in FIG. 1A is adopted, the distributed flow rate to the cavitation processing pipe 181 (that is, the cavitation nozzle 1) side is set within the specified flow rate range under any condition. I was able to keep it inside. Regarding the filter 252f in the filtration tank 252, when the total flow rate of the main filtration pipe 180 decreased to 30 L / min or less, the circulation was temporarily stopped and replaced with a new one as appropriate. The inside of the filter tank 252 is air-ventilated by an aeration mechanism (not shown), and aerobic microorganisms such as Bacillus, which are involved in humus formation, are propagated to simultaneously humus the filtered organic residue. ing.

上記の養殖試験を開始後、30日、90日及び120日の各日数が経過後に下記の項目について確認・評価した。
(1)COD値
養殖水をサンプリングし、JIS K 0102(2013)17に規定の方法により各々測定した。
(2)平均体長
養殖中のエビを30匹無作為に抽出し、各々体長を測定して平均値を求めた。
(3)死滅率
養殖池上に斃死して浮上するエビの死骸の数を3時間ごとに確認し、各日までの合計斃死数から死滅率を算出した。なお、比較のため、図1においてキャビテーションノズル1を用いず、キャビテーション処理用配管181に気液ミキサー150のみを取り付けた場合についても、同様の実験を行なった(キャビテーション処理なし)。以上の結果を表2に示す。
The following items were confirmed and evaluated after the lapse of 30 days, 90 days, and 120 days after the start of the above aquaculture test.
(1) COD value Cultured water was sampled and measured by the method specified in JIS K 0102 (2013) 17.
(2) Mean length 30 shrimp being cultivated were randomly selected, and the length of each shrimp was measured to obtain the average value.
(3) Death rate The number of dead shrimp that died and emerged on the aquaculture pond was confirmed every 3 hours, and the death rate was calculated from the total number of deaths up to each day. For comparison, the same experiment was performed in the case where only the gas-liquid mixer 150 was attached to the cavitation processing pipe 181 without using the cavitation nozzle 1 in FIG. 1 (without cavitation processing). The above results are shown in Table 2.

Figure 2021019509
*は比較例。
Figure 2021019509
* Is a comparative example.

養殖水の酸素濃度が本発明の範囲内となる番号2〜5の酸素濃度については、キャビテーション処理を行なった養殖水を用いることにより、キャビテーション処理を行なわない養殖水を用いた場合と比較して、養殖水が同じ酸素濃度を示していてもエビの成長が格段に早いことが明らかである。また、キャビテーション処理を行なうことで養殖水のCOD値は顕著に低くなっており、養殖水の汚染が進みにくくなっていることがわかる。特に3〜4ppmの低酸素濃度領域では、キャビテーション処理を行なわない場合のエビの死滅率が著しく高くなっているのに対し、キャビテーション処理を行なった場合の死滅率は大幅に低減されていることもわかる。 Regarding the oxygen concentrations of Nos. 2 to 5 in which the oxygen concentration of the aquaculture water is within the range of the present invention, by using the aquaculture water subjected to the cavitation treatment, as compared with the case of using the aquaculture water not subjected to the cavitation treatment. It is clear that shrimp grow much faster even if the cultured water shows the same oxygen concentration. In addition, it can be seen that the COD value of the aquaculture water is remarkably lowered by performing the cavitation treatment, and the contamination of the aquaculture water is less likely to proceed. Especially in the low oxygen concentration region of 3 to 4 ppm, the mortality rate of shrimp without cavitation treatment is remarkably high, whereas the mortality rate with cavitation treatment is significantly reduced. Understand.

また、養殖水の酸素濃度が本発明の範囲の下限値を下回る番号1(2ppm)の条件の場合、キャビテーション処理を行なっても120日経過の時点で死滅率が高まっており、COD値の悪化が見られている。他方、養殖水の酸素濃度が本発明の範囲の上限値を上回る番号6の条件(7.5ppm)の場合、キャビテーション処理を行なわなかった場合よりも死滅率が高くなっていることがわかる。番号6の条件は酸素濃度が高いばかりでなく、養殖水W全体積に対するキャビテーションノズル1の流通循環比Kが大きいためキャビテーションノズル1にて100nm〜30μm程度に成長した気泡の発生量が過剰となり、この気泡がエビのえらに付着して溶存酸素の取り込みが困難になったことが原因と考えられた。 Further, in the case of the condition of No. 1 (2 ppm) in which the oxygen concentration of the cultured water is lower than the lower limit of the range of the present invention, the mortality rate increases after 120 days even if the cavitation treatment is performed, and the COD value deteriorates. Has been seen. On the other hand, in the case of the condition No. 6 (7.5 ppm) in which the oxygen concentration of the cultured water exceeds the upper limit of the range of the present invention, it can be seen that the mortality rate is higher than that in the case where the cavitation treatment is not performed. The condition of No. 6 is not only that the oxygen concentration is high, but also that the circulation circulation ratio K of the cavitation nozzle 1 to the total volume of the aquaculture water W is large, so that the amount of bubbles grown to about 100 nm to 30 μm in the cavitation nozzle 1 becomes excessive. It was considered that the cause was that these bubbles adhered to the shrimp gills and it became difficult to take in dissolved oxygen.

(実施例2)
キャビテーションノズルとして、キャビテーション処理部の構造を図14の形態(絞り孔9を2個形成)に変更した以外は、図1Cに示すものと同様の寸法関係にて作成した。なお、各絞り孔の内径Dについてはφ3.9mm(キャビテーションノズルCと称する)及びφ4.9mm(キャビテーションノズルDと称する)の2種類用意した。また、大流量用として、図1Cに示すものと同様の絞り孔9が1組のキャビテーションノズルを、絞り孔内径Dがφ9.8mm(キャビテーションノズルEと称する)及びφ15.0mm(キャビテーションノズルFと称する)の2種類用意した。前者については図2に示す4本のねじからなる面ねじ組を2組とし、後者については面ねじ組を1〜3組の各値にて、それぞれ互いに重なる位置関係にて配置している。いずれのノズルも70%谷点密度は2.0個/mm以上に確保されている
(Example 2)
The cavitation nozzle was created with the same dimensional relationship as that shown in FIG. 1C, except that the structure of the cavitation processing portion was changed to the form shown in FIG. 14 (two aperture holes 9 were formed). Two types of inner diameters D of each diaphragm hole were prepared: φ3.9 mm (referred to as cavitation nozzle C) and φ4.9 mm (referred to as cavitation nozzle D). Further, for a large flow rate, a cavitation nozzle having a set of aperture holes 9 similar to that shown in FIG. 1C has an inner diameter D of φ9.8 mm (referred to as cavitation nozzle E) and φ15.0 mm (with cavitation nozzle F). Two types (referred to as) were prepared. For the former, two sets of face screws composed of four screws shown in FIG. 2 are used, and for the latter, face screw sets are arranged at each value of 1 to 3 sets in a positional relationship in which they overlap each other. The 70% valley point density of each nozzle is secured at 2.0 pieces / mm 2 or more.

これらのノズルを図1Aの閉鎖型陸上養殖装置に組み込み、以下の試験条件にて実施例1と同様の実験及び評価を行なった。いずれの条件においても養殖水に対する設定酸素濃度は4ppmとし、被養殖物(バナメイエビ)の個体密度は200匹/tonとした。キャビテーションノズルCについては制御流量値を4.6〜6.1L/分に設定することで、キャビテーション処理部における流速を7.5〜9.9m/secの各値に調整した。キャビテーションノズルDについては制御流量値を6.0〜11.7L/分に設定することで、キャビテーション処理部における流速を5.2〜9.9m/secの各値に調整した。キャビテーションノズルE及びFについては制御流量値を33.1L/分及び86.7L/分に設定することで、キャビテーション処理部における流速を9.9m/secに調整した。また、養殖池の水量については50t〜500tの範囲で種々設定しているが、キャビテーションノズルの種類及び流量との組み合わせにより、流通循環比Kの値が0.5%以上2%以下に収まるように設定されている。以上の結果を表3に示す(キャビテーション処理を行なったものにつき、90日目と120日目の結果を示している)。 These nozzles were incorporated into the closed land aquaculture apparatus shown in FIG. 1A, and the same experiments and evaluations as in Example 1 were carried out under the following test conditions. Under all conditions, the set oxygen concentration with respect to the cultured water was 4 ppm, and the individual density of the cultured product (whiteleg shrimp) was 200 animals / ton. For the cavitation nozzle C, the control flow rate value was set to 4.6 to 6.1 L / min, so that the flow velocity in the cavitation processing unit was adjusted to each value of 7.5 to 9.9 m / sec. For the cavitation nozzle D, the control flow rate value was set to 6.0 to 11.7 L / min, so that the flow velocity in the cavitation processing unit was adjusted to each value of 5.2 to 9.9 m / sec. For the cavitation nozzles E and F, the flow rate in the cavitation processing section was adjusted to 9.9 m / sec by setting the control flow rate values to 33.1 L / min and 86.7 L / min. The amount of water in the aquaculture pond is variously set in the range of 50t to 500t, but the value of the distribution circulation ratio K should be within 0.5% or more and 2% or less depending on the type of cavitation nozzle and the flow rate. Is set to. The above results are shown in Table 3 (the results on the 90th and 120th days are shown for those subjected to cavitation treatment).

Figure 2021019509
Figure 2021019509

70%谷点面積密度が1.6個/mm以上のキャビテーションノズルを使用し、キャビテーション処理部における平均流速が8m/secとなる条件が確保されている条件(番号51、53、54、56、56〜58)では、実施例1の酸素濃度4ppm(番号3)のキャビテーションなしの場合と比較しても明らかな通り、エビの成長が促進され、水質を示すCOD値も良好に維持され、死滅率も低いことがわかる。一方、キャビテーション処理部における平均流速が8m/sec未満となる比較例(番号52、55)については、死滅率が高く、COD値も悪化していることがわかる。また、70%谷点面積密度が1.6個/mmを下回るキャビテーションノズルを使用した番号59の条件では、70%谷点面積密度が1.6個/mm以上のキャビテーションノズルを使用した場合と比較して、エビの成長がやや遅く、死滅率も増加していることがわかる。 Conditions (numbers 51, 53, 54, 56) in which a cavitation nozzle having a 70% valley point area density of 1.6 pieces / mm 2 or more is used and a condition that the average flow velocity in the cavitation processing section is 8 m / sec is secured. , 56-58), as is clear from the case where the oxygen concentration of Example 1 was 4 ppm (No. 3) without cavitation, the growth of shrimp was promoted, and the COD value indicating the water quality was well maintained. It can be seen that the mortality rate is also low. On the other hand, in the comparative examples (Nos. 52 and 55) in which the average flow velocity in the cavitation processing section is less than 8 m / sec, it can be seen that the mortality rate is high and the COD value is also deteriorated. Moreover, 70% valley dot area density of the conditions of 1.6 pieces / mm 2 Number 59 using the cavitation nozzle below 70% valley dot area densities using 1.6 pieces / mm 2 or more cavitation nozzle It can be seen that the growth of shrimp is slightly slower and the mortality rate is also increased compared to the case.

(実施例3)
実施例1と全く同じキャビテーションノズルA,Bを図10の気液ミキサー150とともに図1Aの閉鎖型陸上養殖装置300に組み込み、養殖池250に塩分濃度が3.5%の人工海水を50t(水深:約2m)注入するとともに、主ポンプ175による循環を初期流量100L/分にて開始した。そして、各ノズルA,Bについて実施例1と同じ流量設定となるように、分配バルブ183の開度を制御する一方、養殖水の制御目標となる酸素濃度を、4.0ppm〜7.5ppm(7.5ppm)は比較例)となるように設定し、図1Aの電磁バルブ184及び174を駆動制御して養殖水の酸素濃度を各設定値に維持した。散気部174の空気噴出流量は50NL/分(平均気泡径:0.3mm)とした。キャビテーションノズル1への空気供給流量は、大気圧換算での体積流量(NL/分)にて水流量の10%となるように調整した。また、図示しない圧力計にて計測した上記流量設定時のキャビテーションノズルの動水圧の値と、流量値と全流通断面積とから算出した絞り孔(キャビテーション処理部)内の平均流速の値も表1に合わせて示している。いずれの条件においても、キャビテーション処理部の平均流速は9m/秒以上の値に確保されている。
(Example 3)
The same cavitation nozzles A and B as in Example 1 were incorporated into the closed land aquaculture apparatus 300 of FIG. 1A together with the gas-liquid mixer 150 of FIG. 10, and 50 tons of artificial seawater having a salinity of 3.5% (water depth) was added to the fishpond 250. : Approximately 2 m) Injecting and starting circulation by the main pump 175 at an initial flow rate of 100 L / min. Then, while controlling the opening degree of the distribution valve 183 so that the flow rates of the nozzles A and B are the same as those of the first embodiment, the oxygen concentration, which is the control target of the aquaculture water, is 4.0 ppm to 7.5 ppm ( 7.5 ppm) was set to be a comparative example), and the solenoid valves 184 and 174 of FIG. 1A were driven and controlled to maintain the oxygen concentration of the aquaculture water at each set value. The air ejection flow rate of the air diffuser 174 was set to 50 NL / min (average cell diameter: 0.3 mm). The air supply flow rate to the cavitation nozzle 1 was adjusted so as to be 10% of the water flow rate at the volume flow rate (NL / min) in terms of atmospheric pressure. In addition, the value of the hydraulic water pressure of the cavitation nozzle at the time of the above flow rate setting measured by a pressure gauge (not shown) and the value of the average flow velocity in the throttle hole (cavitation processing unit) calculated from the flow rate value and the total flow cross-sectional area are also shown in the table. It is shown according to 1. Under all conditions, the average flow velocity of the cavitation processing unit is secured at a value of 9 m / sec or more.

この状態で、40匹/トンの個体密度となるように真鯛の稚魚を投入するとともに、池内の真鯛には、イワシ系のモイストペレットを真鯛の成長度合いに応じて適宜投与し、飼育を行なった。本実施形態においても、濾過槽252内のフィルタ252fは濾過用主配管180の総流量が30L/分以下に低下した場合は、一旦循環を止めて新しいものと適宜交換するようにした。また、濾過槽252内は図示しないばっ気機構により空気ばっ気を行ない、好気性微生物を繁殖させることにより、濾過された有機残渣の腐植化を同時に行なうようにしている。 In this state, juvenile red sea bream was added so as to have an individual density of 40 animals / ton, and sardine-based moist pellets were appropriately administered to red sea bream in the pond according to the degree of growth of red sea bream and bred. .. Also in this embodiment, when the total flow rate of the main filtration pipe 180 drops to 30 L / min or less, the filter 252f in the filtration tank 252 is temporarily stopped from circulating and replaced with a new one as appropriate. Further, the inside of the filter tank 252 is air-ventilated by an aeration mechanism (not shown), and aerobic microorganisms are propagated to simultaneously humus the filtered organic residue.

上記の養殖試験を開始後、240日及び510日の各日数が経過後に、真鯛の平均体重と死滅率とを計測した。なお、比較のため、図1においてキャビテーションノズル1を用いず、キャビテーション処理用配管181に気液ミキサー150のみを取り付けた場合についても、同様の実験を行なった(キャビテーション処理なし)。以上の結果を表4に示す。 After the lapse of 240 days and 510 days after the start of the above aquaculture test, the average body weight and mortality rate of red sea bream were measured. For comparison, the same experiment was performed in the case where only the gas-liquid mixer 150 was attached to the cavitation processing pipe 181 without using the cavitation nozzle 1 in FIG. 1 (without cavitation processing). The above results are shown in Table 4.

Figure 2021019509
Figure 2021019509

養殖水の酸素濃度が本発明の範囲内となる番号101、102の酸素濃度については、キャビテーション処理を行なった養殖水を用いることで、キャビテーション処理を行なわない養殖水を用いた場合と比較して、養殖水が同じ酸素濃度を示していても真鯛の成長が格段に早いことが明らかである。特に4ppmの低酸素濃度領域では、キャビテーション処理を行なわない場合の真鯛の死滅率が著しく高くなっているのに対し、キャビテーション処理を行なった場合の死滅率は大幅に低減されていることもわかる。他方、養殖水の酸素濃度が本発明の範囲の上限値を上回る番号103の条件(7.5ppm)の場合、キャビテーション処理を行なわなかった場合よりも死滅率が高くなっていることがわかる。 Regarding the oxygen concentrations of Nos. 101 and 102 in which the oxygen concentration of the cultured water is within the range of the present invention, by using the cultured water subjected to the cavitation treatment, as compared with the case of using the cultured water not subjected to the cavitation treatment. It is clear that red sea bream grows much faster even if the cultured water shows the same oxygen concentration. In particular, in the low oxygen concentration region of 4 ppm, the mortality rate of red sea bream without cavitation treatment is remarkably high, whereas the mortality rate with cavitation treatment is significantly reduced. On the other hand, it can be seen that when the oxygen concentration of the cultured water exceeds the upper limit of the range of the present invention under the condition of No. 103 (7.5 ppm), the mortality rate is higher than that when the cavitation treatment is not performed.

1 キャビテーションノズル
2 ノズル本体
3 ノズル流路
5 養殖水出口
4 養殖水入口
9 絞り孔
10 ねじ部材
150 気液ミキサー
151 外筒部材
155 流路形成部材
156 螺旋区間
157 第一螺旋状流路
158 第二螺旋状流路
159 流入口
160 流出口
165 混相流供給部
174 散気部
175 主ポンプ
180 濾過用主配管
181 キャビテーション処理用配管
181p キャビテーション処理用ポンプ
182 流量検出部
183 分配バルブ
185 キャビテーション流量制御部
250 養殖池
252 濾過槽
253f 補助フィルタリング部(キャビテーション処理用濾過部)
300 閉鎖型陸上養殖装置
W 養殖水
SP 被養殖物
LP1〜LP4 ねじ配置面
CV キャビテーション処理部

1 Cavitation nozzle 2 Nozzle body 3 Nozzle flow path 5 Culture water outlet 4 Culture water inlet 9 Squeezing hole 10 Thread member 150 Gas-liquid mixer 151 Outer cylinder member 155 Flow path forming member 156 Spiral section 157 First spiral flow path 158 Second Spiral flow path 159 Inflow port 160 Outflow port 165 Multiphase flow supply unit 174 Air diffuser 175 Main pump 180 Main piping for filtration 181 Piping for cavitation processing 181p Pump for cavitation processing 182 Flow detection unit 183 Distribution valve 185 Culture pond 252 Filter tank 253f Auxiliary filtering unit (Cavitation processing filtration unit)
300 Closed land aquaculture equipment W aquaculture water SP aquaculture LP1 to LP4 Screw placement surface CV cavitation treatment unit

Claims (10)

養殖池内に養殖水と甲殻類又は魚類からなる被養殖動物とを収容し、主ポンプを用いて前記養殖池から前記養殖水を濾過槽に導き、前記養殖水中に浮遊する有機残渣を濾過しつつ前記養殖池内に戻して循環させながら、前記養殖池内に飼料を投入して前記被養殖動物を飼育するための閉鎖型陸上養殖装置において、
前記養殖水の酸素濃度が2.5ppm以上7ppm以下に維持されるように前記養殖水に酸素含有気体を供給しつつ溶解する酸素溶解機構と、
前記養殖池に前記養殖水の流入口が連通するとともに、他端側が前記養殖水の前記養殖池への戻し口とされたキャビテーション処理用配管と、
前記キャビテーション処理用配管の途上に設けられ、一端に前記養殖水の入口を、他端に前記養殖水の出口を有するノズル流路が形成されるとともに、該ノズル流路の一部区間がキャビテーション処理部として定められたノズル本体と、前記キャビテーション処理部にて前記ノズル本体に脚部先端側が流路内側に突出するように組付けられる複数のねじ部材とを備え、前記養殖水を前記養殖水入口から前記養殖水出口に向けて流通させ、前記キャビテーション処理部にて前記ねじ部材の脚部外周面に形成されたねじ谷に前記養殖水を増速しつつ接触させることにより、該養殖水に対し溶存空気の減圧析出に基づくキャビテーション処理を行なうキャビテーションノズルと、
前記キャビテーション処理用配管の途上に設けられ、前記キャビテーションノズルに前記養殖水を前記キャビテーション処理部における断面平均流速が8m/sec以上となる規定流量にて流通させるキャビテーション処理用ポンプと、
を備えたことを特徴とする閉鎖型陸上養殖装置。
The aquaculture water and the aquaculture animal consisting of shellfish or fish are housed in the aquaculture pond, and the aquaculture water is guided from the aquaculture pond to a filter tank by using a main pump, and the organic residue floating in the aquaculture water is filtered. In a closed aquaculture device for raising the aquaculture animal by feeding feed into the aquaculture pond while returning it to the aquaculture pond and circulating it.
An oxygen dissolution mechanism that dissolves the aquaculture water while supplying an oxygen-containing gas to the aquaculture water so that the oxygen concentration of the aquaculture water is maintained at 2.5 ppm or more and 7 ppm or less.
A cavitation treatment pipe in which the inflow port of the aquaculture water communicates with the aquaculture pond and the other end side serves as a return port of the aquaculture water to the aquaculture pond.
A nozzle flow path provided in the middle of the cavitation treatment pipe, having an inlet for the aquaculture water at one end and an outlet for the aquaculture water at the other end is formed, and a part of the nozzle flow path is cavitation-treated. The aquaculture water inlet is provided with a nozzle body defined as a portion and a plurality of screw members assembled to the nozzle body so that the tip end side of the leg protrudes inside the flow path in the cavitation processing portion. The aquaculture water is circulated from the aquaculture water outlet to the aquaculture water outlet, and the aquaculture water is brought into contact with the aquaculture water formed on the outer peripheral surface of the leg portion of the aquaculture member while accelerating. A cavitation nozzle that performs cavitation treatment based on reduced pressure precipitation of dissolved air,
A cavitation processing pump provided in the middle of the cavitation processing pipe and flowing the cultured water through the cavitation nozzle at a specified flow rate at which the average cross-sectional flow velocity in the cavitation processing unit is 8 m / sec or more.
A closed aquaculture device characterized by being equipped with.
前記酸素溶解機構は前記養殖水の酸素濃度が3ppm以上6ppm以下に維持されるように前記養殖水に前記酸素含有気体を供給しつつ溶解するものである請求項1記載の閉鎖型陸上養殖装置。 The closed-type aquaculture apparatus according to claim 1, wherein the oxygen dissolution mechanism dissolves the aquaculture water while supplying the oxygen-containing gas to the aquaculture water so that the oxygen concentration of the aquaculture water is maintained at 3 ppm or more and 6 ppm or less. 前記キャビテーションノズルは、前記ノズル流路が円形断面を有するものとして形成され、各前記キャビテーション処理部には前記ねじ部材として、ねじピッチ及びねじ谷深さが0.20mm以上0.40mm以下、公称ねじ径Mが1.0mm以上2.0mm以下のねじ部材が複数配置されるとともに、前記ノズル流路の中心軸線と直交する平面への投影にて前記ノズル流路の断面中心から該ノズル流路の半径の70%以内の領域に位置する谷点の全ねじ配置面間で合計した総数を、前記ノズル流路の断面積で除した70%谷点面積密度と定義したとき、前記70%谷点面積密度の値が1.6個/mm以上に確保されたものが使用されてなる請求項1又は請求項2に記載の閉鎖型陸上養殖装置。 The cavitation nozzle is formed so that the nozzle flow path has a circular cross section, and each of the cavitation processing portions has a screw pitch and a screw valley depth of 0.20 mm or more and 0.40 mm or less as the screw member, and a nominal screw. A plurality of screw members having a diameter M of 1.0 mm or more and 2.0 mm or less are arranged, and the nozzle flow path is projected from the cross-sectional center of the nozzle flow path to a plane orthogonal to the central axis of the nozzle flow path. The 70% valley point is defined as the 70% valley point area density obtained by dividing the total number of valley points located in the region within 70% of the radius among all the threaded planes by the cross-sectional area of the nozzle flow path. The closed type onshore culture apparatus according to claim 1 or 2, wherein the one having an area density value of 1.6 pieces / mm 2 or more is used. 前記キャビテーションノズルに対する前記規定流量は、前記養殖池の貯水量をV1、前記キャビテーションノズルの1時間当たりの流通流量をV2として
K=V2/V1×100 (%)
にて表される流通循環比Kが2%以下となるように調整される請求項3に記載の閉鎖型陸上養殖装置。
The specified flow rate for the cavitation nozzle is K = V2 / V1 × 100 (%), where the amount of water stored in the pond is V1 and the flow rate of the cavitation nozzle per hour is V2.
The closed-type aquaculture apparatus according to claim 3, wherein the distribution / circulation ratio K represented by the above is adjusted to be 2% or less.
前記酸素溶解機構は、前記キャビテーションノズルにて前記酸素含有気体を溶解するために、前記キャビテーションノズルに酸素含有気体と前記養殖水との混相流を供給する混相流供給部を備える請求項1ないし請求項4のいずれか1項に記載の閉鎖型陸上養殖装置。 Claim 1 to claim 1, wherein the oxygen dissolution mechanism includes a multiphase flow supply unit that supplies a multiphase flow of the oxygen-containing gas and the culture water to the cavitation nozzle in order to dissolve the oxygen-containing gas at the cavitation nozzle. Item 4. The closed land culture apparatus according to any one of Item 4. 一端に流入口、他端に流出口が形成される中空の外筒部材と、前記外筒部材の内側に設けられ、前記流入口と前記流出口とをつなぐ螺旋状流路を、該螺旋状流路の螺旋軸線が前記外筒部材の中心軸線に沿うように形成する流路形成部材とを備え、前記螺旋状流路が前記キャビテーションノズルの前記ノズル流路に連通するように、前記キャビテーションノズルの前記養殖水入口側に設けられる気液ミキサーを備え、
前記混相流供給部は、前記気液ミキサーの前記流入口に前記混相流を供給するものである請求項5記載の閉鎖型陸上養殖装置。
A hollow outer cylinder member having an inflow port at one end and an outflow port at the other end, and a spiral flow path provided inside the outer cylinder member and connecting the inflow port and the outflow port are spirally formed. The cavitation nozzle is provided with a flow path forming member formed so that the spiral axis of the flow path is along the central axis of the outer cylinder member, and the spiral flow path communicates with the nozzle flow path of the cavitation nozzle. Equipped with a gas-liquid mixer provided on the culture water inlet side of
The closed-type aquaculture apparatus according to claim 5, wherein the mixed-phase flow supply unit supplies the mixed-phase flow to the inlet of the gas-liquid mixer.
前記酸素溶解機構は、前記キャビテーションノズルとは別に設けられ、前記養殖池を満たす養殖水に外部から供給される前記酸素含有気体を平均気泡径が0.1mm以上0.5mm以下となるように噴射する散気部を備える請求項1ないし請求項6のいずれか1項に記載の閉鎖型陸上養殖装置。 The oxygen dissolution mechanism is provided separately from the cavitation nozzle, and injects the oxygen-containing gas supplied from the outside into the aquaculture water that fills the aquaculture pond so that the average bubble diameter is 0.1 mm or more and 0.5 mm or less. The closed-type land-based aquaculture apparatus according to any one of claims 1 to 6, further comprising an air diffuser. 前記キャビテーション処理用配管の前記流入口に設けられ、前記養殖池内の浮遊物が前記キャビテーション処理用配管内に流入することを抑制するキャビテーション処理用濾過部と、
前記キャビテーション処理用配管内を流通する前記養殖水の流量を検出する流量検出部と、
前記キャビテーション処理用濾過部への前記浮遊物の堆積に伴う流量損失を補う形で、前記キャビテーション処理用ポンプによる前記キャビテーションノズルへの送液流量を前記規定流量に制御するキャビテーション流量制御部とを備える請求項1ないし請求項7のいずれか1項に記載の閉鎖型陸上養殖装置。
A cavitation treatment filtration unit provided at the inlet of the cavitation treatment pipe and suppressing the inflow of suspended matter in the aquaculture pond into the cavitation treatment pipe.
A flow rate detection unit that detects the flow rate of the aquaculture water flowing in the cavitation processing pipe, and
It is provided with a cavitation flow rate control unit that controls the flow rate of liquid sent to the cavitation nozzle by the cavitation processing pump to the specified flow rate in a form of compensating for the flow rate loss due to the accumulation of the suspended matter on the cavitation processing filtration unit. The closed type land culture apparatus according to any one of claims 1 to 7.
前記濾過槽に前記養殖水の流入口が連通するとともに、他端側が前記養殖水の前記養殖池への戻し口とされた濾過用主配管と、
前記濾過用主配管の前記流入口に設けられ、前記濾過槽内の浮遊物が前記濾過用主配管内に流入することを抑制する補助フィルタリング部とを備え、前記主ポンプが前記濾過用主配管上に設けられるとともに、
前記キャビテーション処理用配管が、前記主ポンプの下流側にて前記濾過用主配管から分岐し、かつ、前記濾過用主配管とは別位置にて前記養殖池に対する前記戻し口を開口させる形で設けられ、
また、前記養殖水の前記主配管と前記キャビテーション処理用配管との分配比をバルブ開度に応じて調整する分配バルブが設けられ、
前記主ポンプが前記キャビテーション処理用ポンプに、前記補助フィルタリング部が前記キャビテーション処理用濾過部にそれぞれ兼用されるとともに、
前記キャビテーション流量制御部は、前記補助フィルタリング部への前記浮遊物の堆積に伴い前記主ポンプの送水流量が減少した場合に、前記養殖水の前記キャビテーション処理用配管への分配比が増加するように前記分配バルブの開度を調整制御するものである請求項7又は請求項8に記載の閉鎖型陸上養殖装置。
The main pipe for filtration, in which the inflow port of the aquaculture water communicates with the filtration tank and the other end side serves as a return port for the aquaculture water to the aquaculture pond.
The main pump is provided with an auxiliary filtering unit provided at the inlet of the main filtration pipe to prevent suspended matter in the filtration tank from flowing into the main filtration pipe, and the main pump is the main pipe for filtration. As well as being provided on top
The cavitation processing pipe is provided so as to branch from the filtration main pipe on the downstream side of the main pump and to open the return port to the fishpond at a position different from the filtration main pipe. Be,
Further, a distribution valve for adjusting the distribution ratio between the main pipe of the aquaculture water and the cavitation treatment pipe according to the valve opening degree is provided.
The main pump is used as the cavitation processing pump, and the auxiliary filtering unit is also used as the cavitation processing filtering unit.
The cavitation flow rate control unit increases the distribution ratio of the aquaculture water to the cavitation treatment pipe when the water supply flow rate of the main pump decreases due to the accumulation of the suspended matter on the auxiliary filtering unit. The closed type aquaculture apparatus according to claim 7 or 8, wherein the opening degree of the distribution valve is adjusted and controlled.
請求項1ないし請求項9のいずれか1記載の閉鎖型陸上養殖装置を用い、前記養殖池内に前記養殖水と前記被養殖動物とを収容し、前記主ポンプを用いて前記養殖池から前記養殖水を前記濾過槽に導き、前記養殖水中に浮遊する有機残渣を濾過しつつ前記養殖池内に戻して循環させながら、前記養殖池内に飼料を投入して前記被養殖動物を飼育することを特徴とする陸上養殖方法。 The closed aquaculture apparatus according to any one of claims 1 to 9 is used to accommodate the aquaculture water and the aquaculture animal in the aquaculture pond, and the aquaculture pond is used to cultivate the aquaculture from the aquaculture pond. The feature is that water is guided to the aquaculture tank, the organic residue floating in the aquaculture water is filtered, returned to the aquaculture pond and circulated, and the feed is put into the aquaculture pond to breed the aquaculture animal. Land aquaculture method.
JP2019136466A 2019-07-24 2019-07-24 Closed land aquaculture equipment and land aquaculture method using the same Active JP7410490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019136466A JP7410490B2 (en) 2019-07-24 2019-07-24 Closed land aquaculture equipment and land aquaculture method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019136466A JP7410490B2 (en) 2019-07-24 2019-07-24 Closed land aquaculture equipment and land aquaculture method using the same

Publications (2)

Publication Number Publication Date
JP2021019509A true JP2021019509A (en) 2021-02-18
JP7410490B2 JP7410490B2 (en) 2024-01-10

Family

ID=74572903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019136466A Active JP7410490B2 (en) 2019-07-24 2019-07-24 Closed land aquaculture equipment and land aquaculture method using the same

Country Status (1)

Country Link
JP (1) JP7410490B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07236389A (en) * 1994-02-28 1995-09-12 Kitajima Sangyo Kk Cleaning apparatus of aquarium for ornamental fish
JPH08238041A (en) * 1995-03-03 1996-09-17 Tadanobu Wakabayashi Filtration apparatus
JP2003092954A (en) * 2001-09-21 2003-04-02 Rikujo Yoshoku Kogaku Kenkyusho:Kk Circulating filtration-type culture system
JP2008173525A (en) * 2007-01-16 2008-07-31 Yuji Nomura Water treatment apparatus
JP2013158250A (en) * 2012-02-01 2013-08-19 Panasonic Corp Culture apparatus and culture method
WO2016195116A2 (en) * 2015-06-02 2016-12-08 株式会社ウォーターデザイン Liquid processing nozzle, liquid processing method using same, gas dissolution method, and gas dissolution device
US20180050312A1 (en) * 2016-08-18 2018-02-22 Alan T Cheng System and method for feeding gas into liquid

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3338768T3 (en) 2016-12-20 2020-05-18 Lts Lohmann Therapie-Systeme Ag Transdermal therapeutic system containing asenapine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07236389A (en) * 1994-02-28 1995-09-12 Kitajima Sangyo Kk Cleaning apparatus of aquarium for ornamental fish
JPH08238041A (en) * 1995-03-03 1996-09-17 Tadanobu Wakabayashi Filtration apparatus
JP2003092954A (en) * 2001-09-21 2003-04-02 Rikujo Yoshoku Kogaku Kenkyusho:Kk Circulating filtration-type culture system
JP2008173525A (en) * 2007-01-16 2008-07-31 Yuji Nomura Water treatment apparatus
JP2013158250A (en) * 2012-02-01 2013-08-19 Panasonic Corp Culture apparatus and culture method
WO2016195116A2 (en) * 2015-06-02 2016-12-08 株式会社ウォーターデザイン Liquid processing nozzle, liquid processing method using same, gas dissolution method, and gas dissolution device
US20180050312A1 (en) * 2016-08-18 2018-02-22 Alan T Cheng System and method for feeding gas into liquid

Also Published As

Publication number Publication date
JP7410490B2 (en) 2024-01-10

Similar Documents

Publication Publication Date Title
CA2720605C (en) Device for supplying gas into water
KR101126320B1 (en) Ventury tube type Nano Bubble proceded water Generator
JP6383906B1 (en) Fine bubble generator and water tank system using the same
AU2008267548B2 (en) Water inlet arrangement
JP2007215538A (en) Method for culturing puffers and culture apparatus
JP2009136739A (en) Water purification method and foam separation apparatus using this method
JP2002011335A (en) Fine bubble supply apparatus
JP4870174B2 (en) Water treatment apparatus and water treatment method
JP4124956B2 (en) Fine bubble supply method and fine bubble supply device
JPH11333491A (en) Microbubble jet water purifying apparatus
JP2021019509A (en) Closed type land-based aquaculture apparatus and land-based aquaculture method using the same
WO2017094647A1 (en) Swirl-flow gas-liquid mixing device for aquaculture
TWI225037B (en) Purifying device for waste water
JP6383119B2 (en) Mixed processing body, mixed processing method, fluid mixer, fluid mixing processing device, seafood culture system, and seafood culture method
JP2018153159A (en) Aquarium fish growth system
WO2006121075A1 (en) Method of aquafarming fishes or shellfishes
JP2017099331A (en) Freshness maintaining device and freshness maintaining method
JP2021052650A (en) Eel larvae aquaculture feed and farming equipment
JP2016198096A (en) Seafood processor, seafood processing method, frozen seafood, and reviving method of frozen seafood
JP2018015756A (en) Blending treatment body, blending treatment, fluid mixer, fluid mixing processor, seafood cultivation system, and seafood cultivation method
JP2003144003A (en) Oxygen feeder for fishery
JP6126728B1 (en) Mixed processing body, mixed processing method, fluid mixer, gas-liquid mixing processing device, and fishery culture system
JP2846271B2 (en) Aquaculture methods
JP2004208648A (en) System for activating water in which fish and shellfish live
KR102347019B1 (en) The fluid supply pipe with twin venturi effect and aquaculture system equipped with an oxygen supply device for aquaculture organisms applying the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190919

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220513

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220521

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231213

R150 Certificate of patent or registration of utility model

Ref document number: 7410490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150