WO2006121075A1 - Method of aquafarming fishes or shellfishes - Google Patents

Method of aquafarming fishes or shellfishes Download PDF

Info

Publication number
WO2006121075A1
WO2006121075A1 PCT/JP2006/309399 JP2006309399W WO2006121075A1 WO 2006121075 A1 WO2006121075 A1 WO 2006121075A1 JP 2006309399 W JP2006309399 W JP 2006309399W WO 2006121075 A1 WO2006121075 A1 WO 2006121075A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
swirl chamber
fluid swirl
seawater
air
Prior art date
Application number
PCT/JP2006/309399
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroaki Tsutsumi
Daigo Hama
Hisatsune Nashiki
Original Assignee
Keiten Co., Ltd.
Tashizen Techno Works Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keiten Co., Ltd., Tashizen Techno Works Co., Ltd. filed Critical Keiten Co., Ltd.
Publication of WO2006121075A1 publication Critical patent/WO2006121075A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • A01K63/042Introducing gases into the water, e.g. aerators, air pumps
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/60Floating cultivation devices, e.g. rafts or floating fish-farms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Definitions

  • the present invention relates to a method for culturing fish and shellfish that can be carried out in various waters such as seawater such as coastal waters of the ocean or fresh water such as rivers and lakes.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-231394
  • Patent Document 2 JP-A-8-281292
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-290893
  • Patent Document 4 Japanese Patent Laid-Open No. 2003-250663
  • the problem to be solved by the present invention is that it does not require complicated equipment, and can promote the growth of fish and shellfish without adversely affecting the natural environment or deteriorating the bottom and water quality.
  • the object of the present invention is to provide a method for culturing fish and shellfish that can also be used effectively for aquaculture.
  • the fine bubble generating means with a built-in fluid swirl chamber is arranged in the water area to be purified, and water and air are supplied to the fine bubble generating means to supply the fluid swirl.
  • the water area purified by supplying oxygen to the benthic organisms that inhabit the bottom of the water area while supplying water mixed with fine bubbles generated by the fluid swirl flow formed in the room into the water area. It is characterized by breeding fish and shellfish.
  • the fine bubbles supplied together with water from the fluid swirl chamber of the fine bubble generating means diffuse into the water and settle down toward the bottom of the water area.
  • Oxygen is supplied to water and the bottom layer, and oxygen is also supplied to benthic organisms that inhabit the bottom because there is no anoxic region.
  • the life activity of benthic organisms is remarkably activated and its organic matter decomposition ability is increased, so that organic matter sludge at the bottom of the water area is efficiently purified, and water quality is improved and the amount of dissolved oxygen in water is increased. Can be planned.
  • halophilic bacteria EM bacteria, nitrifying bacteria, etc. are distributed at the bottom of the water area where the fish shellfish cultivation method is to be carried out, and water mixed with fine bubbles by the fine bubble generating means is distributed to the water area. If the supply is performed, the purification action is further improved.
  • EM bacteria is an abbreviation of Effective Microorganisms bacteria, and means a group of microorganisms effective for decomposing organic matter including lactic acid bacteria, yeasts, radioactive bacteria, filamentous fungi, and photosynthetic bacteria.
  • the present inventor has cultivated a large amount of bentos in advance, and actively sprinkles this on the organic sludge on the seabed in the fall, where organisms can inhabit, thereby We have obtained knowledge that organic sludge can be efficiently purified using power consumption (for example, refer to Patent Document 1).
  • O Bentos is known as Spioaceae and small polychaete, Among them, swordfish (Capitella sp. 1) are known to appear at high density in organic polluted areas and to multiply explosively during the recovery of sludge environmental conditions.
  • the present inventor has completed the present invention.
  • Carabidae belong to small polychaetes (annular animals), and are filamentous organisms with an adult body length of about 10 mm and a maximum diameter of about 1 mm.
  • the growth rate is extremely slow.However, if the seafloor environment recovers during winter and winter, the water temperature becomes 10-15 ° C and the dissolved oxygen in the bottom water becomes saturated or close to that. It grows to adults in about 4 to 6 weeks, and shows explosive growth ability by repeated breeding.
  • organic degradation bacteria bacteria with organic matter resolving ability that coexist with cynomolgus species (hereinafter referred to as “organic degradation bacteria”) also grow, and these organic matter decomposition bacteria use organic matter in organic sludge as a nutrient source. Therefore, sludge can be decomposed and removed by the life activity of organic matter-degrading bacteria.
  • the fish shellfish cultivation method of the present invention distributes scallops at the bottom of the seawater area that is the target of purification, and provides fine bubble generating means incorporating a fluid swirl chamber on the scallops distribution area. Disposing in the seawater area, supplying seawater and air to the fine bubble generating means to supply seawater mixed with fine bubbles generated by a fluid swirl flow formed in the fluid swirl chamber into the seawater area, and Benthic organisms that inhabit the bottom of water bodies and before It is characterized by breeding fish and shellfish in water that is purified by supplying oxygen to it.
  • the swordfish distributed on the seabed, along with its symbiotic bacteria, have been living in the natural world since ancient times, and the microbubble generating means is used in the atmosphere for the purpose of providing sufficient oxygen to the swordfish. Since it supplies seawater containing fine bubbles formed from air into the sea, it does not adversely affect the natural environment or fish and shellfish. In addition, it is possible to distribute lobsters on the seabed and use microbubble generation means placed in a relatively shallow sea area. Supply mixed seawater to the sea area, so you don't need complicated equipment.
  • a cylindrical or rotating fluid swirl chamber in which fluid can swivel around an axis, and water is fed into the fluid swirl chamber along a direction that forms a twisted position with respect to the shaft center.
  • a fine bubble generator having a discharge path provided on an extension line of the shaft center;
  • a fine bubble generator comprising: a liquid pump that supplies water into the fluid swirl chamber via the water introduction path; and a gas pump that supplies air into the fluid swirl chamber via the air introduction path. Can be used.
  • a cylindrical or rotating fluid swirl chamber in which a fluid can swivel around an axis, and air-mixed water is fed into the fluid swirl chamber along a direction that forms a twisted position with respect to the shaft center.
  • a microbubble generator comprising: an air / water introduction path arranged as described above; and a discharge path arranged on an extension line of the shaft for discharging water mixed with microbubbles from the fluid swirl chamber;
  • a fine bubble generation comprising: a liquid pump for supplying water into the fluid swirl chamber via the air / water introduction path; and a gas pump for supplying air into the fluid swirl chamber via the air / water introduction path.
  • An apparatus can also be used.
  • the fine bubble generator is thrown into water and placed on the water or on the ground.
  • air mixed with water is supplied to the fine bubble generator via the air / water introduction path, It becomes possible to supply water mixed with fine bubbles into the water. For this reason, it is possible to provide a single piping route to the liquid pump and the gas pumping force fine bubble generator, and to simplify the equipment.
  • a cylindrical or rotating fluid swirl chamber in which fluid can swivel around an axis, and water is fed into the fluid swirl chamber along a direction that forms a twisted position with respect to the shaft center.
  • a microbubble generator having a discharge path provided on an extension of the heart;
  • a waterproof liquid pump for feeding water sucked from a suction port provided in a portion that can be immersed in water into the fluid swirl chamber via the water introduction path;
  • a fine bubble generator integrated with a waterproof drive for operating the liquid pump
  • a gas pump for feeding air into the fluid swirl chamber via the air introduction path of the fine bubble generating unit
  • the microbubble generator is thrown into the water to operate the drive unit, and at the same time, the gas pumping force disposed on the water or on the ground is only supplied to the microbubble generator. Therefore, a fluid swirl flow is formed in the fluid swirl chamber, and water mixed with fine bubbles generated thereby can be supplied to the water, so that the fish shellfish cultivation method can be easily implemented.
  • the microbubble generator has a structure in which the microbubble generator, liquid pump, and drive unit are integrated. Therefore, the piping for the water introduction path can be minimized, and the equipment can be simplified and miniaturized. Can be planned.
  • FIG. 1 is a schematic configuration diagram showing a fish and shellfish farm using the fish and shellfish cultivation method according to an embodiment of the present invention.
  • FIG. 2 is a partially enlarged view showing the management system in the fish and shellfish farm shown in FIG.
  • FIG. 3 is a partially enlarged view of the vicinity of the microbubble generator shown in FIG.
  • FIG. 4 is a partially omitted plan view of the microbubble generator shown in FIG.
  • FIG. 5 is a partially cutaway side view showing the fine bubble generator constituting the fine bubble generating apparatus shown in FIG. 3.
  • FIG. 6 is a cross-sectional view taken along line AA in FIG.
  • FIG. 7 is a cross-sectional view taken along line BB in FIG.
  • FIG. 8 is a cross-sectional view taken along line CC in FIG.
  • FIG. 9 is a cross-sectional view taken along the line DD in FIG.
  • FIG. 10 is a cross-sectional view showing another embodiment of the fine bubble generator shown in FIG.
  • FIG. 11 is a diagram showing a second embodiment relating to a fine bubble generator.
  • FIG. 12 is a perspective view of the fine bubble generator shown in FIG. 11.
  • FIG. 13 is a cross-sectional view taken along line EE in FIG.
  • FIG. 14 is a schematic view showing an operating state of the fine bubble generator shown in FIG. 11.
  • FIG. 15 is a cross-sectional view showing another embodiment of the fine bubble generator shown in FIG. 11.
  • FIG. 16 is a perspective view showing a third embodiment relating to a fine bubble generator.
  • FIG. 17 is a cross-sectional view taken along line FF in FIG.
  • FIG. 18 is a schematic diagram showing an operating state of the fine bubble generator shown in FIG.
  • FIG. 1 is a schematic configuration diagram showing a fish shell farm using the fish shell farming method according to the embodiment of the present invention
  • FIG. 2 is a partially enlarged view showing a management system in the fish shell farm shown in FIG. .
  • the fish farm 80 includes a cage 51 formed in a certain sea area, a cage 50 formed by a net 52 arranged in the sea below the sea, and the like. And a management system 70 provided on the wall 71 arranged adjacent to the living room 50. Inside the net 52 of the ginger 50, a large number of cultivated fish 53 are bred, and the microbubble generator 1 is placed in the sea. (Capitella sp. 1) 55 is distributed. As a result, in the fish farm 80, the fine bubble generating part 1 is placed in the seawater W on the bottom 54a, which is the distribution area of the scallop 55.
  • Itogokai 55 consists of approximately 800,000 to 1,600,000 individuals of the cultivated colony in a plastic bag with sand as a culture substrate, and the diver dives it to the bottom 54a, and then nears the bottom 54a. , And the scallop culture colony was gently spread on the bottom 54a of the soil along with the culture substrate sand.
  • the time when organic sludge concentrates and accumulates on bottom 54a occurs when the stratified structure collapses in summer and vertical mixing occurs. Is known. Therefore, it is considered that the most effective timing for purifying the organic sludge 54b is to distribute the cultivated colony at this time.
  • the fine bubble generating part 1 arranged in the sacrifice 50 is locked at a fixed position by the wire la, and is operated by the alternating current supplied from the generator 72 constituting the management system 70.
  • the seawater W mixed with fine bubbles NB formed by the seawater W sucked from inside and the air fed from the gas pump 73 is discharged into the sacrifice 50.
  • the water depth to the bottom 54 of the sea area where the fish farm 80 is provided is about 14 m, and the microbubble generator 1 is located at a depth of 7 m from the sea surface W1. Not something The position of the microbubble generator 1 can be changed by lowering or pulling up the wire la.
  • the management system 70 on ⁇ 71 includes a generator 72, a gas pump (air conditioner press) 73, a water quality measuring device 74 that automatically measures the amount of dissolved oxygen in seawater W, and the measurement results.
  • Operate solar panel 76, generator 72, gas pump 73, etc. for charging storage battery (not shown) that operates transmitter 77a and antenna 77b, water quality measuring device 74, transmitter 77a, etc.
  • the water quality measuring device 74 includes a sensor 74b locked to the wire 74a, and the sensor 74b can move up and down in the seawater W by winding up or rolling out the wire 74a. It is possible to automatically measure the water quality of seawater W and the current direction flow velocity at the depth.
  • the measurement result is wirelessly transmitted from the transmitter 77a via the antenna 77b, transferred to a data server on the Internet through a circuit of a cellular phone, and can be viewed on a website at any time.
  • the vertical profile of the water quality of seawater W is measured every two hours, the vertical profile of the flow direction flow velocity is measured every hour, and the measurement results are transmitted.
  • the conditions are not limited to these.
  • FIGS. Fig. 3 is a partially enlarged view of the vicinity of the fine bubble generating device shown in Fig. 1, Fig. 4 is a partially omitted plan view of the fine bubble generating device shown in Fig. 3, and Fig. 5 is a fine view of the fine bubble generating device shown in Fig. 3.
  • 6 is a partially cutaway side view showing the bubble generator, FIG. 6 is a cross-sectional view taken along the line AA in FIG. 5, FIG. 7 is a cross-sectional view taken along the line B-B in FIG. Is a cross-sectional view taken along the line D-D in FIG. As shown in FIG. 3 and FIG.
  • the fine bubble generator 1 includes a waterproof liquid pump 2, a waterproof electric motor 3 that is a drive for operating the liquid pump 2, and a fine bubble generator. 4 and are connected together.
  • the electric motor 3 is supplied with power from the generator 72 arranged on the sea anchor 71 (see FIG. 1) via the power cord 5 and can be turned on and off by a switch (not shown) provided on the switchboard 75. it can.
  • the liquid pump 2 is coaxially connected to the rotating shaft (not shown) of the electric motor 3 and supplies the seawater W sucked from the suction port 2a to the water introduction path 15 of the fine bubble generator 4 via the water discharge part 8. To do.
  • the microbubble generator 4 is generally cylindrical in shape, and in the lower part thereof, air in the atmosphere fed from a gas pump 73 disposed on a ridge 71 (see Fig. 1) is introduced.
  • the front end of the air supply pipe 9 is connected, and the base end of the air supply pipe 9 is connected to the gas pump 73.
  • a check valve 13 is provided in the middle of the supply pipe 9 to prevent the seawater W from flowing backward in the sea direction.
  • the fine bubble generator 4 includes a cylindrical casing 4a containing a fluid swirl chamber 14 in which a fluid (seawater and air) can swivel around an axis S, and a fluid swirl.
  • a fluid seawater and air
  • An air introduction path 16 formed in communication with the chamber 14 and a discharge path 17 formed at the end of the fluid swirl chamber 14 in the axial center S direction are provided.
  • the discharge path 17 is formed in the central part (intersection with the axis S) of the planar partition wall 17a that intersects the axis S of the cylindrical casing 4a.
  • the water introduction path 15 has a cylindrical shape whose outer diameter is smaller than that of the cylindrical casing 4a, and a base 15 is provided with a connection part 15c to the water discharge part 8 of the liquid pump 2, and its tip part is a fluid swirl.
  • the end of the chamber 14 opposite to the discharge path 17 is disposed so as to protrude into the fluid swirl chamber 14, and the tip thereof is closed by a closing plate 15a.
  • a plurality of seawater W are ejected along the direction that forms the position of the axis S of the fluid swirl chamber 14 and the torsion. There is an outlet 15b.
  • the air introduction path 16 penetrates the side surface portion of the water introduction path 15 and enters the inside thereof, bends at right angles to the axis S direction, and then has its tip opening 16a. Is open on the surface side of the closing plate 15a (fluid swirl chamber 14 side).
  • the base end portion of the air supply pipe 9 is detachably connected to the air introduction path 16 protruding from the side surface of the water introduction path 15. Therefore, the air sent from the air supply pipe 9 is directly supplied into the fluid swirl chamber 14 via the air introduction path 16 from the tip opening 16a opened on the surface of the blocking plate 15a.
  • a plane intersecting the axis S is located outside the discharge path 17 of the cylindrical casing 4 a containing the fluid swirl chamber 14 at a position facing the discharge path 17.
  • a disc-shaped guide member 18 having 18 a is arranged.
  • the guide member 18 is joined to the tip portion of the cylindrical casing 4a via three arc-shaped connecting members 18b and 18c, and three outlets 19 force formed between the connecting members 18b and 18c. Therefore, seawater W mixed with fine bubbles NB, which will be described later, can be blown out into the sea. Note that these three air outlets 19 are arranged at intervals of 90 degrees in three directions other than the arrangement direction of the electric motor 3 in a plan view.
  • the fine bubble generating part 1 is put into the seawater W in the sacrifice 50, held in the standing condition in the seawater W, and a switch (not shown) of the switchboard 75 is operated.
  • the electric motor 3 When the electric motor 3 is operated, the seawater W sucked from the suction port 2a of the liquid pump 2 flows into the water introduction path 15 from the water discharge part 8, and is jetted into the fluid swirl chamber 14 via the jet port 15b.
  • the discharge direction of the seawater W is a direction that forms a twisted position with the axis S of the fluid swirl chamber 14, so that a seawater flow swirling around the axis S is generated in the fluid swirl chamber 14. Part of this seawater flow is discharged from the discharge path 17 into the seawater W.
  • a negative pressure cavity V is generated in the vicinity of the axis S in the fluid swirl chamber 14, and the presence of this negative pressure cavity V causes the fluid swirl chamber 14 to be in the fluid swirl chamber 14. Due to the negative pressure, air in the atmosphere is smoothly introduced through the air introduction path 16 and the air supply pipe 9 communicating with the fluid rotation chamber 14, and the fluid swirl chamber 14 passes through the opening 16 a of the air introduction path 16. Flows in.
  • a swirling flow (for example, also called swirling two-layer flow) consisting of a negative pressure cavity V located near the axis S and sea-water mixed with air that rotates around it. Is formed.
  • the air introduced into the fluid swirl chamber 14 via the tip opening 16a of the air introduction path 16 is the swirl described above. It is refined by the shearing action of the flow and turns into a fluid swirl flow R, which swirls in the fluid swirl chamber 14 at high speed.
  • the fluid swirl flow R eventually moves in the direction of the partition wall 17a of the fluid swirl chamber 14, and converges toward the discharge path 17 by coming into contact with the partition wall 17a, and passes through the discharge path 17 narrower than the inner diameter of the fluid swirl chamber 14.
  • the seawater W and air in the atmosphere are supplied to the microbubble generator 1 and mixed with the microbubbles NB generated by the fluid swirl flow R formed in the fluid swirl chamber 14.
  • Seawater W can be supplied to the seawater area above the distribution area (on the bottom 54 a) of Itogokai 55.
  • These fine bubbles NB are extremely fine and contain a large amount of fine bubbles NB at the outer diameter nanometer level, so the ascent rate in seawater W is extremely low. For this reason, a phenomenon in which most of the residence time in the seawater W simply settles down toward the bottom 54a with the passage of time occurs.
  • the internal pressure is greater than atmospheric pressure, so most of them that are difficult to break up in seawater rise to the sea level and disappear.
  • the fine bubbles NB supplied from the fine bubble generator 4 are formed in a negative pressure atmosphere by the fluid swirl flow R generated in the fluid swirl chamber 14, so that the internal pressure is less than the atmospheric pressure. It tends to disappear. For this reason, it is also predicted that oxygen in the air contained in the lost fine bubbles NB is dissolved in the seawater W and contributes to an increase in the amount of dissolved oxygen. Further, it is considered that the radiation pressure of ultrasonic waves generated when these fine bubbles NB disappear in the seawater W is also effective in lowering the fine bubbles NB.
  • the operating time of the microbubble generator 1 in the sacrifice 50 was about 15 hours every day (between 5 PM and 8 AM the next morning).
  • Itogokai 55 is distributed on the bottom 54 a of the sacrifice 50.
  • the average individual weight of the salmon in the salmon 50 was 1643.2 g, and the average individual weight of the salmon in the conventional salmon was 1612. lg, which can be regarded as almost the same weight. .
  • the sacrificed fish 50 was reared for about three and a half months while operating the microbubble generator 1 under the conditions described above.
  • the average individual weight of the cocoons in the conventional sacrifice was 2066.6 g, whereas the average number of cocoons in the sacrifice 50
  • the weight was 22 84. lg.
  • the pups bred with 50 ginger have a weight of about 220 g more than those bred with conventional ginger. That is, it can be seen that the pups bred with the ginger 50 are greatly promoted in growth than the pupas bred with the conventional ginger.
  • the field of application of the present invention is not limited to this, and therefore, hamachi, puffer fish, prawns, scallops, sea bream, etc. It can also be widely used in fish farms such as bi, oysters, and pearl shells, or seaweed farms such as seaweed, kombu, and kajime.
  • Itogokai 55 and its symbiotic bacteria have been living in nature since ancient times, and the microbubble generator 1 supplies seawater W mixed with microbubbles NB to the sea for the purpose of providing sufficient oxygen to Itogokai 55. Therefore, it does not adversely affect the natural environment and fish shellfish in the surrounding sea area. Also, it is possible to distribute the sea bream 55 on the seabed and supply seawater W mixed with microbubbles NB to the sea area using the microbubble generator 1 located in a relatively shallow sea area, so no complicated equipment is required. .
  • the fine bubble generating unit 1 is thrown into the sea to operate the electric motor 3, and only air is supplied from the gas pump 73 disposed on the sea to the fine bubble generator 4.
  • Fluid swirl flow R is formed in fluid swirl chamber 14, and microbubbles generated by this can be supplied into the sea with seawater W mixed with NB, making it easy to clean the sea area where fish farm 80 is located. Can be ashamed.
  • the micro-bubble generator 1 has a structure in which the micro-bubble generator 4, liquid pump 2, and motor 3 are integrated, so that the piping for introducing seawater W can be minimized and the equipment is simple And miniaturization can be achieved.
  • the fine bubble generator 1 is miniaturized by integrating the fine bubble generator 4, the liquid pump 2 and the electric motor 3, the occupied space can be small. For this reason, it is cultivated in the cage 50, and its influence on the sea current around the sea urchin 53 and fish farm 80 is extremely small.
  • the microbubble generator 1 is operated continuously, the dissolved oxygen content in the seawater W in the ginger 50 and its surrounding seawater W can be maintained at a saturated concentration level. Even if it is operated only from the evening when the amount of oxygen decreases to the next morning, a sufficient oxygen supply effect can be obtained.
  • the fine bubble NB When the fine bubble NB is supplied from the fine bubble generation part 1 into the seawater W in the sacrifice 50, the fine bubble NB extends not only in the horizontal direction but also in the vertical direction, from the surface layer to the bottom layer (water depth of about 14m). , I was able to confirm the increase of dissolved oxygen amount of about 1 ⁇ 2mgZL. In addition, with respect to a single sacrifice 50, it was also found that if one fine bubble generating part was placed, the amount of dissolved oxygen could be increased efficiently from the surface layer to the bottom layer near the seabed.
  • the fine bubble generating unit 1 of the present embodiment includes the liquid pump 2, the electric motor 3, and the fine bubble generator 4, and can be freely moved as it is. It is very easy to use because the microbubbles NB mixed seawater W can be supplied by simply operating the motor 3 with the entire microbubble generator 1 immersed in the seawater W. In addition, as long as the generator placed on the ocean ridge is operating, it can be continuously operated by the electric motor 3, so that a large amount of fine bubbles NB can be stably supplied into the seawater W.
  • the fine bubble generating part 1 since the jet outlet 15b of the water introduction path 15 is provided at a position away from the inner peripheral surface 14a of the fluid swirl chamber 14, a negative pressure cavity is formed by the water jetted from the jet outlet 15b. No water pressure is applied to part V. Therefore, the negative pressure cavity V is formed almost linearly on the axis S of the fluid swirl chamber 14, and the position and shape thereof are kept stable, thereby preventing the occurrence of cavity erosion. Therefore, the fine bubble generator 4 exhibits excellent durability.
  • the tip opening 16a of the air introduction path 16 is disposed on the axis S of the fluid swirl chamber 14, the fluid swirl flow R in the fluid swirl chamber 14 generates near the axis S. Negative pressure Using the large negative pressure generated in the cavity V, air in the atmosphere can be efficiently introduced into the fluid swirl chamber 14 to form the fine bubbles NB.
  • the guide member 18 having the flat surface 18a intersecting the axis S direction is disposed at a position facing the discharge path 17 established in the partition wall 17a, the discharge is performed while turning from the discharge path 17
  • the seawater mixed with the fine bubbles NB is expanded to the periphery along the plane 18a of the guiding member 18. After being guided in this way, it is discharged from the three outlets 19 in three different directions.
  • the diffusibility of the fine bubbles NB is also good.
  • This embodiment is an example implemented in a fish farm 80 provided in a bay, which is one of the natural closed water areas. It can also inhabit estuaries and inner bays (i.e. so-called brackish waters) where the brackish water formed constantly or seasonally exists. For this reason, the fish and shellfish culture method of the present invention can be carried out even in such a brackish water area, and even in such a case, the excellent operational effects as described above can be obtained.
  • a discharge port 36 is opened in the tangential direction of the inner peripheral surface 14a of the fluid swirl chamber 14, and a discharge pipe 35 having an on-off valve 35a is connected to the discharge port 36. .
  • the on-off valve 35a is closed. If foreign matter enters the fluid swirl chamber 14, the on-off valve 35a can be opened and discharged.
  • the position of the discharge port 36 may be anywhere in the cylindrical casing 4a, but the inner diameter of the fluid swirl chamber 14 is If it is not constant, it is desirable to provide it at the maximum inner diameter.
  • the structure and functions of the other parts are the same as the microbubble generator 4.
  • FIG. 11 is a diagram showing a second embodiment of the microbubble generator
  • FIG. 12 is a perspective view of the microbubble generator shown in FIG. 11
  • FIG. 13 is a cross-sectional view taken along the line EE in FIG. 12, and
  • FIG. It is a schematic diagram which shows the operating state of the fine bubble generator shown in FIG.
  • the fine bubble generator 20 includes a cylindrical fluid swirl chamber 22 in which a fluid (seawater and air) can swirl in a substantially rectangular parallelepiped casing 21,
  • a fluid such as water and air
  • the inner circumferential surface 22a of the central portion of the body swirl chamber 22 in the S direction is air-aired in the normal direction.
  • One air introduction path 24 for introduction is established, and two waters that can introduce seawater in the tangential direction of the inner peripheral surface 22a of the fluid swirl chamber 22 are located near both ends sandwiching the air introduction path 24.
  • Introduction route 23 has been established.
  • Each of the water introduction path 23 and the air introduction path 24 is formed so as to penetrate the casing 21, and the water introduction pipe 23a and the air introduction pipe 24a are connected to respective opening portions of the outer surface of the casing 21.
  • the two water introduction pipes 23a are connected to the water supply pipe 23b in a unified state on the upstream side, and the air introduction pipe 24a is extended in the direction of the water supply pipe 23b as it is.
  • planar partition walls 21a orthogonal to the axis S are provided, and central portions of these partition walls 21a (intersections with the axis S) ) Each have a circular discharge path 25, and a guide pipe 26 is connected to each of the two discharge paths 25.
  • the guide pipe 26 is communicated so as to protrude linearly along the discharge direction of seawater mixed with fine bubbles NB discharged from the discharge path 25, and the discharge direction is regulated by the guide pipe 26. is doing.
  • the fine bubble generator 20 is immersed in the seawater W in the fish bowl 50, and from the liquid pump (not shown) placed on the bowl 71, through the water supply pipe 23b and the water introduction pipe 23a. Then, sea water is pumped and sea water is pumped from the water introduction path 23 into the fluid swirl chamber 22, and fluid swirl from the air introduction path 24 via the air introduction pipe 24a from the gas pump 73 (see Fig. 1).
  • a fluid swirl flow R around the axis S is generated in the fluid swirl chamber 22, and a negative pressure cavity V is formed in the vicinity of the axis S.
  • the air flowing into the fluid swirl chamber 22 from the air introduction path 24 is shattered by the shearing action of the fluid swirl flow R, and turns into fine bubbles NB while rotating around the negative pressure cavity V. Eventually, it will be discharged from the discharge path 25 as seawater mixed with fine bubbles NB.
  • the seawater mixed with fine bubbles NB discharged from the discharge path 25 is discharged into the seawater W in the ginger 50 while being guided by the guide pipe 26. As a result, the amount of dissolved oxygen in the seawater W increases, and the same effect as when the fine bubble generating unit 1 is used can be obtained.
  • the seawater mixed with the fine bubbles NB discharged from the discharge path 25 interferes with the surrounding seawater W. Without being done, it is discharged in a certain direction immediately. Accordingly, the surrounding seawater W is not attracted into the discharge path 25, and the seawater W does not flow back into the fluid swirl chamber 22, and the negative pressure level generated in the fluid swirl chamber 22 is prevented. The amount of microbubbles NB can be stably supplied. Also, the seawater mixed with fine bubbles NB passes through the induction pipe 26 and is released into the seawater W, so that the flow direction is converged and the straightness is improved.
  • the fine bubble generator 20 is a method of supplying seawater from a liquid pump or the like disposed on the ridge, the portion that is introduced into the sea can be made smaller than the fine bubble generator 1. For this reason, when used in a fish farm, the effects on the fish shellfish being cultivated and the nearby ocean current can be further reduced.
  • a discharge port 38 is opened in the tangential direction of the inner peripheral surface 22a of the fluid swirl chamber 22, and a discharge pipe 37 having an on-off valve 37a is connected to the discharge port 38. .
  • the opening and closing valve 37a is closed during normal operation. If foreign matter enters the fluid swirling chamber 22, the on-off valve 37a is opened and discharged. can do.
  • the position of the discharge port 38 may be any position on the casing 21, but the position facing the water introduction path 23.
  • the seawater W is supplied from the outside into the fluid swirl chamber 22 via the discharge pipe 37 with the open / close valve 37a opened. In this case, a gas-liquid swirl flow swirling in a direction opposite to the fluid swirl flow R can be generated in the fluid swirl chamber 22.
  • the structure and functions of other parts are the same as for the fine bubble generator 20.
  • FIG. 16 is a perspective view showing a third embodiment relating to the fine bubble generator
  • FIG. 17 is a cross-sectional view taken along the line FF in FIG. 16
  • FIG. 18 is a schematic view showing an operating state of the fine bubble generator shown in FIG. is there.
  • parts having the same structure and function as those of the fine bubble generator 20 described above are given the same reference numerals as those shown in FIG. 11 to FIG. Omitted.
  • the fine bubble generator 30 has a structure in which the air introduction path 24 and the air introduction pipe 24a in the fine bubble generator 20 described above are eliminated, and the other is fine bubble generation. Same as vessel 20.
  • a mixed fluid of seawater and air is supplied via the fluid supply pipe 33b and the fluid introduction pipe 33a, and this mixed fluid is tangential to the inner peripheral surface of the fluid swirl chamber 32.
  • the microbubbles generated by introducing the fluid into the fluid swirl chamber 32 from the fluid introduction path 33 arranged at the high speed and swirling at high speed are supplied to the seawater in the ginger 50 through the discharge path 25 and the guide pipe 26. To do.
  • the mixed fluid of seawater and air is fed into the fluid swirl chamber 32 through the single fluid feed pipe 33b, and the seawater mixed with fine bubbles NB. Therefore, there is no need for long air supply pipes, etc., piping and handling are easy, and there is no risk of clogging of the air supply pipe.
  • the outer diameter of the generated fine bubbles NB can be increased or decreased by increasing or decreasing the air mixing rate in the mixed fluid of air and seawater that is supplied via the fluid supply pipe 33b.
  • Other structures and functions are the same as the fine bubble generator 20.
  • the present invention is not limited to these embodiments, and can be implemented as a fish shell culture method in freshwater or brackish water. That is, the fine bubble generators 4, 20, 30 etc. are placed in fresh water or brackish water, and water and air are sent to the fine bubble generators 4, 20, 30. Supplying fine water NB-mixed fresh water into the fresh water area by the fluid swirl flow R formed in the fluid swirl chamber 14, 22, 32, and the bottom that inhabit the bottom of these water areas It can also supply oxygen to living organisms. As a result, it is possible to purify the water quality and bottom quality of freshwater bodies and brackish water areas, so that the breeding state of fish and shellfish bred in these water areas can be promoted.
  • the fish shell culture method of the present invention can be used as a fish shell culture method in an artificial sea area such as a fish shell farm in a coastal water area, and also as a fish shell culture method in a natural sea area, a brackish water area, or a fresh water area. Can be widely used.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Zoology (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

It is intended to provide a method of aquafarming fishes or shellfishes whereby the growth of the fishes or shellfishes can be promoted and an aquafarm can be effectively utilized while neither requiring a complicated apparatus, exerting undesirably effects on the natural environment nor worsening the bottom qualities or the water qualities. An aquafarming farm (80) has a preserve (50), which consists of a raft (51) putting on a certain sea area and a net (52) provided under the sea below it, and a controlling system (70) formed on a raft (71) located adjacent to the preserve (50). A large number of red sea breams (53) are fed within the net (52) in the preserve (50). A microbubble generator (1) is provided in the seawater in the preserve (50) and a large amount of capitellidae (55) are distributed at the bottom (54a) of the sea area in which the preserve (50) is formed. By supplying electricity and air from a power generating machine (72) and an air pump (73) on the raft (71) into the microbubble generator (1), seawater containing microbubbles (NB) is supplied into the seawater (W) in the preserve (50).

Description

明 細 書  Specification
魚貝類養殖方法  Fish shell culture method
技術分野  Technical field
[0001] 本発明は、海洋の沿岸海域などの海水域あるいは河川、湖沼などの淡水域などの 様々な水域にぉ 、て実施可能な魚貝類養殖方法に関する。  [0001] The present invention relates to a method for culturing fish and shellfish that can be carried out in various waters such as seawater such as coastal waters of the ocean or fresh water such as rivers and lakes.
背景技術  Background art
[0002] 日本各地の沿岸海域にお!、ては、従来、タイ、ハマチ、フグ、クルマエビあるいはホ タテ、ァヮビ、カキなどの魚貝類を育成して出荷する養殖漁業が営まれている。これら の魚類養殖場においては、海面に撒布される多量の餌の残渣や、飼育されている魚 貝類の排泄物が発生するため、その海域の底部には大量の有機物が堆積している。 海底に堆積した大量の有機物は、夏季の高水温期には、嫌気的な分解過程により 有害な硫化水素を発生するため、海底は、生物が生息不可能な大量の有機物汚泥 (ヘドロ)で汚染され、養殖場の魚貝類の生育に深刻な悪影響を及ぼしている。特に [0002] In the coastal waters of various parts of Japan, traditionally, aquaculture and fisheries have been run to cultivate and ship shellfish such as Thailand, yellowtail, pufferfish, prawns, or scallops, abalone, and oysters. In these fish farms, a large amount of food residue distributed on the surface of the sea and the excrement of fish shellfish being raised are generated, and a large amount of organic matter is deposited at the bottom of the sea area. A large amount of organic matter deposited on the sea floor generates harmful hydrogen sulfide during the summer high water temperature due to anaerobic decomposition process, so the sea floor is contaminated with a large amount of organic sludge (sludge) that cannot be inhabited by organisms. It has a serious adverse effect on the growth of fish and shellfish in the farm. In particular
、地形的閉鎖性内湾で魚類養殖漁業が行われている場所では、養殖魚への給餌が 水中への溶存物の付加ならびに海底への有機物負荷をもたらし、水質および底質に 対して強い影響を及ぼしている。また、河川や湖沼などの淡水域、あるいは、河川な どカゝら流入する淡水と海水とが混合して形成される汽水が恒常的にあるいは季節的 に存在する河口域や内湾 (いわゆる汽水域)においても生活排水や産業排水などに よる水質悪化、あるいは有機物汚泥の堆積に起因する底質や水質の悪ィ匕が生じて いる。 In places where fish farming is carried out in topographically closed inner bays, feeding fish farms has the effect of adding dissolved substances to the water and loading organic matter on the seabed, which has a strong impact on water quality and sediment quality. It is exerting. In addition, fresh water areas such as rivers and lakes, or estuaries and inner bays where the brackish water that is formed by mixing fresh water and sea water flowing in from rivers and other areas is present constantly or seasonally (so-called brackish water areas). ), The quality of the bottom and water quality are deteriorated due to the deterioration of water quality due to domestic and industrial wastewater, or the accumulation of organic sludge.
[0003] ところで、魚類養殖場にお!、ては、その海水温度が低下する秋季になると、付近の 海域に対流が生じ、海底の有機物汚泥に酸素が供給されるようになるため、これらの 有機物汚泥を栄養源とするベントス (底生生物)の活動が活発化し、その生命活動に より、有機物汚泥が浄化される。そこで、本願発明者は、大量に培養したベントスを、 海底の有機物汚泥の上に撒いて繁殖させ、これらのベントスの有機物消費力を利用 して有機物汚泥を効率良く浄ィ匕する技術を提案している (例えば、特許文献 1参照。  [0003] By the way, in the fish farm! In the fall when the seawater temperature falls, convection occurs in the nearby sea area, and oxygen is supplied to the organic sludge on the seabed. The activity of bentos (benthic organisms) that use organic sludge as a nutrient source is activated, and the organic sludge is purified by this life activity. Therefore, the present inventor proposed a technique for efficiently cultivating a large amount of benthos by spreading it on the bottom of the organic sludge on the seabed and efficiently purifying the organic sludge using the organic matter consumption of these bentos. (For example, see Patent Document 1).
) o [0004] また、海底に堆積した有機物汚泥を分解、浄ィ匕する技術として、底部付近の海域 へ溶存酸素量を高めた海水あるいは微細気泡を供給することによって海中の溶存酸 素を増大させて有機物汚泥中への酸素供給を図るもの (例えば、特許文献 2, 3参照 。;)、あるいは底部に堆積した有機物汚泥中へ微細気泡混合水を噴射することによつ て、底有機物汚泥の撹拌、耕耘と酸素供給とを行うもの (例えば、特許文献 4参照。 ) などがある。 ) o [0004] In addition, as a technology for decomposing and purifying organic sludge deposited on the seabed, the dissolved oxygen in the sea is increased by supplying seawater with increased dissolved oxygen or fine bubbles to the sea area near the bottom. Stirring of bottom organic sludge by supplying oxygen into organic sludge (for example, refer to Patent Documents 2 and 3); or by jetting fine-bubble mixed water into organic sludge accumulated at the bottom. There are those that perform tillage and oxygen supply (for example, see Patent Document 4).
[0005] 特許文献 1 :特開 2001— 231394号公報  Patent Document 1: Japanese Patent Laid-Open No. 2001-231394
特許文献 2:特開平 8— 281292号公報  Patent Document 2: JP-A-8-281292
特許文献 3:特開 2004— 290893号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 2004-290893
特許文献 4:特開 2003— 265063号公報  Patent Document 4: Japanese Patent Laid-Open No. 2003-250663
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 特許文献 1に記載された有機物汚泥の浄化技術の場合、魚類養殖場の海水温度 が低い時期には底生生物の活動が活発化するため、優れた浄ィ匕効果を得ることがで きるが、海水温度が高まる時期においては底生生物が減少するため、浄化作用が低 下してしまう。このため、魚貝類の生育が悪ィ匕するだけでなぐ浄化作用が回復する まで養殖場の使用を休止しなければならな 、。  [0006] In the organic sludge purification technology described in Patent Document 1, the activity of benthic organisms is activated when the seawater temperature of the fish farm is low, so that an excellent purification effect can be obtained. However, when the seawater temperature rises, benthic organisms decrease and the purification action is reduced. For this reason, the use of the aquaculture farm must be suspended until the purification of the fish and shellfish has been recovered and the purification action has been restored.
[0007] また、特許文献 2, 3に記載された汚泥浄ィ匕技術の場合、使用されている微細気泡 発生手段によって海中へ供給される微細気泡の粒径は比較的大きいため、海中へ 供給されると同時に上昇を開始し、その殆どが海面まで浮上して消失する。このため 、海水中における気泡の滞留時間が比較的短くなる結果、海水中へ酸素を充分に 溶解させることができず、有機物汚泥中への酸素供給作用も不十分である。特に、真 水より大きな浮力を受ける海水中では、気泡の上昇速度は速くなるため、充分な酸素 供給効果を得ることができな 、。  [0007] In addition, in the case of the sludge purification technology described in Patent Documents 2 and 3, since the particle size of the fine bubbles supplied into the sea by the used means for generating fine bubbles is relatively large, supply to the sea At the same time, it begins to rise, and most of them rise to the sea level and disappear. For this reason, as a result of the relatively short residence time of bubbles in the seawater, oxygen cannot be sufficiently dissolved in the seawater, and the oxygen supply action into the organic sludge is insufficient. In particular, in seawater that receives a greater buoyancy than fresh water, the rate of bubbles rises faster, so it is not possible to obtain a sufficient oxygen supply effect.
[0008] また、特許文献 2, 3に記載された汚泥浄ィ匕技術を用いて、海域の底部の有機物汚 泥中への酸素供給量を増やすためには、微細気泡発生手段を底部直上に配置しな ければならない。このため、海面または海上 (地上)に配置される給水手段および給 気手段など力 の配管や配線が長くなる結果、これらの配線、配管を支える構造体も 必要となり、設備の大型化、複雑ィ匕を招いている。 [0008] Further, in order to increase the amount of oxygen supplied to the organic sludge at the bottom of the sea area using the sludge purification technology described in Patent Documents 2 and 3, the fine bubble generating means is placed directly above the bottom. Must be placed. For this reason, as a result of the length of power piping and wiring such as water supply means and air supply means placed on the sea surface or on the sea (ground), the structure that supports these wirings and pipes is also required. Necessary, increasing the size and complexity of the equipment.
[0009] 一方、特許文献 4に記載の水底耕耘システムの場合、海底に堆積した有機物汚泥 中へ効率良く酸素を供給することはできるが、噴射ノズル力 噴射される微細気泡混 合水で巻き上げられる汚泥によって周辺海域の海水が汚濁するため、汚濁した海水 によって生育に悪影響を受けやすい魚貝類^!司育する養殖場では使用することがで きない。  [0009] On the other hand, in the case of the water bottom tillage system described in Patent Document 4, oxygen can be efficiently supplied into the organic sludge deposited on the sea bottom, but the water is wound up by the water mixed with fine bubbles that are injected by the injection nozzle force. Since the seawater in the surrounding waters is polluted by sludge, it cannot be used in fish farms that are susceptible to adverse effects on growth by contaminated seawater.
[0010] 本発明が解決しょうとする課題は、複雑な設備を必要とせず、自然環境に悪影響を 与えたり、底質や水質が悪化したりすることなぐ魚貝類の生育を促進することができ 、養殖場の有効活用も図ることができる魚貝類養殖方法を提供することにある。  [0010] The problem to be solved by the present invention is that it does not require complicated equipment, and can promote the growth of fish and shellfish without adversely affecting the natural environment or deteriorating the bottom and water quality. The object of the present invention is to provide a method for culturing fish and shellfish that can also be used effectively for aquaculture.
課題を解決するための手段  Means for solving the problem
[0011] 本発明の魚貝類養殖方法は、流体旋回室を内蔵した微細気泡発生手段を浄化対 象である水域中に配置し、前記微細気泡発生手段に水および空気を供給して前記 流体旋回室内に形成される流体旋回流によって発生する微細気泡混じりの水を前 記水域中へ供給するとともに、前記水域の底部に生息する底生生物に酸素を供給 することによって浄ィ匕される前記水域において魚貝類を飼育することを特徴とする。  [0011] In the fish shellfish cultivation method of the present invention, the fine bubble generating means with a built-in fluid swirl chamber is arranged in the water area to be purified, and water and air are supplied to the fine bubble generating means to supply the fluid swirl. The water area purified by supplying oxygen to the benthic organisms that inhabit the bottom of the water area while supplying water mixed with fine bubbles generated by the fluid swirl flow formed in the room into the water area. It is characterized by breeding fish and shellfish.
[0012] このような構成とすれば、微細気泡発生手段の流体旋回室から水と共に供給される 微細気泡が水中に拡散するとともに水域の底部に向力つて沈降していき、これによつ て水中および底層へ酸素が供給され、貧酸素領域が無くなるため、底部に生息する 底生生物にも酸素が供給される。その結果、底生生物の生命活動が著しく活性化さ れ、その有機物分解能力が高まるため、水域底部の有機物汚泥が効率良く浄化され るとともに、水質の清浄ィ匕および水中溶存酸素量の増大を図ることができる。  [0012] With such a configuration, the fine bubbles supplied together with water from the fluid swirl chamber of the fine bubble generating means diffuse into the water and settle down toward the bottom of the water area. Oxygen is supplied to water and the bottom layer, and oxygen is also supplied to benthic organisms that inhabit the bottom because there is no anoxic region. As a result, the life activity of benthic organisms is remarkably activated and its organic matter decomposition ability is increased, so that organic matter sludge at the bottom of the water area is efficiently purified, and water quality is improved and the amount of dissolved oxygen in water is increased. Can be planned.
[0013] 従って、養殖場に撒布される餌や魚貝類の排泄物に起因する有機物汚泥が水域 の底部に堆積することがなくなり、水域が浄化されるとともに、水中の溶存酸素量も高 まるため、当該水域で飼育される魚貝類の生育を促進することができる。また、従来、 底部に堆積した有機物汚泥を自然浄ィ匕するために、 1シーズン中に少なくとも 1度は 必要としていた、養殖場の休止期間が不要となり、養殖場の連続使用が可能となるた め、養殖場の有効活用を図ることができ、効率が向上する。また、浄化対象水域に配 置した微細気泡発生手段を用いて微細気泡混じりの水を当該水域に供給すればよ いので、複雑な設備を必要とせず、自然環境に悪影響を与えることもない。 [0013] Therefore, organic sludge caused by bait distributed at the farm and fish and shellfish excrement will not accumulate at the bottom of the water area, and the water area will be purified and the amount of dissolved oxygen in the water will increase. The growth of fish and shellfish bred in the water can be promoted. In addition, it has been necessary to at least once during the season to clean organic sludge deposited on the bottom of the soil, and the suspension period of the farm is no longer necessary, allowing continuous use of the farm. Therefore, the farm can be used effectively and the efficiency is improved. In addition, water containing fine bubbles may be supplied to the water area using the means for generating fine bubbles placed in the water area to be purified. Therefore, it does not require complicated equipment and does not adversely affect the natural environment.
[0014] なお、魚貝類養殖方法の実施対象である水域の底部に、好塩菌、 EM菌、硝化菌 などを撒布し、当該水域に対して前記微細気泡発生手段による微細気泡混じりの水 の供給を行えば、浄化作用がさらに向上する。ここで、 EM菌とは、 Effective Micr o— Organisms菌の略称であり、乳酸菌、酵母菌、放射菌、糸状菌、光合成細菌な どを含む有機物分解に有効な微生物群を意味する。  [0014] It should be noted that halophilic bacteria, EM bacteria, nitrifying bacteria, etc. are distributed at the bottom of the water area where the fish shellfish cultivation method is to be carried out, and water mixed with fine bubbles by the fine bubble generating means is distributed to the water area. If the supply is performed, the purification action is further improved. Here, EM bacteria is an abbreviation of Effective Microorganisms bacteria, and means a group of microorganisms effective for decomposing organic matter including lactic acid bacteria, yeasts, radioactive bacteria, filamentous fungi, and photosynthetic bacteria.
[0015] 一方、本発明者は、ベントスを予め大量に培養しておいて、これを、生物が生息で きる秋期に、積極的に、海底の有機物汚泥の上に撒くことにより、イトゴカイの有機物 消費力を利用して有機物汚泥を効率的に浄ィ匕できるという知見を得ている(例えば、 特許文献 1参照。 ) oベントスとしては、スピオ科や小型多毛類などが知られているが 、中でも、イトゴカイ類 (Capitella属 sp. 1)は有機物汚染地域に高密度に出現し、 ヘドロ環境条件の回復期には爆発的に増殖することが知られている。そこで、本発明 者は、イトゴカイ類の生態などについて鋭意研究を重ねた結果、本発明を完成する に至ったものである。  [0015] On the other hand, the present inventor has cultivated a large amount of bentos in advance, and actively sprinkles this on the organic sludge on the seabed in the fall, where organisms can inhabit, thereby We have obtained knowledge that organic sludge can be efficiently purified using power consumption (for example, refer to Patent Document 1). O Bentos is known as Spioaceae and small polychaete, Among them, swordfish (Capitella sp. 1) are known to appear at high density in organic polluted areas and to multiply explosively during the recovery of sludge environmental conditions. Thus, as a result of intensive studies on the ecology of the swordfish, the present inventor has completed the present invention.
[0016] イトゴカイ類は小型多毛類 (環形動物)に属し、成体の体長が 10mm程度、最大部 分の径が lmm程度の糸状の生物である。海底環境が著しく嫌気化した夏季には増 殖速度が極度に鈍化するが、秋季力 冬季にかけて海底環境が回復し、水温 10〜 15°C、底層水の溶存酸素が飽和またはそれに近い条件になると、約 4〜6週間で成 体まで成長し、繁殖を繰り返すことによって爆発的な増殖能力を示す。また、その増 殖の過程において、イトゴカイ類に共生する有機物分解能を有する細菌(以下、「有 機物分解細菌」という。)も増殖し、この有機物分解細菌が有機物汚泥中の有機物を 栄養源とするため、有機物分解細菌の生命活動により汚泥を分解除去することがで きる。  [0016] Carabidae belong to small polychaetes (annular animals), and are filamentous organisms with an adult body length of about 10 mm and a maximum diameter of about 1 mm. In summer, when the seafloor environment has become extremely anaerobic, the growth rate is extremely slow.However, if the seafloor environment recovers during winter and winter, the water temperature becomes 10-15 ° C and the dissolved oxygen in the bottom water becomes saturated or close to that. It grows to adults in about 4 to 6 weeks, and shows explosive growth ability by repeated breeding. In addition, in the process of growth, bacteria with organic matter resolving ability that coexist with cynomolgus species (hereinafter referred to as “organic degradation bacteria”) also grow, and these organic matter decomposition bacteria use organic matter in organic sludge as a nutrient source. Therefore, sludge can be decomposed and removed by the life activity of organic matter-degrading bacteria.
[0017] そこで、本発明の魚貝類養殖方法は、浄ィ匕対象である海水域の底部にイトゴカイ類 を撒布し、流体旋回室を内蔵した微細気泡発生手段を前記イトゴカイ類の撒布領域 上の海水域中に配置し、前記微細気泡発生手段に海水および空気を供給して前記 流体旋回室内に形成される流体旋回流によって発生する微細気泡混じりの海水を 前記海水域中へ供給するとともに、前記水域の底部に生息する底生生物および前 記イトゴカイ類に酸素を供給することによって浄化される水域において魚貝類を飼育 することを特徴とする。 [0017] Therefore, the fish shellfish cultivation method of the present invention distributes scallops at the bottom of the seawater area that is the target of purification, and provides fine bubble generating means incorporating a fluid swirl chamber on the scallops distribution area. Disposing in the seawater area, supplying seawater and air to the fine bubble generating means to supply seawater mixed with fine bubbles generated by a fluid swirl flow formed in the fluid swirl chamber into the seawater area, and Benthic organisms that inhabit the bottom of water bodies and before It is characterized by breeding fish and shellfish in water that is purified by supplying oxygen to it.
[0018] このような構成とすれば、イトゴカイ類の撒布領域上の海水と大気中の空気とを微 細気泡発生手段に供給することにより流体旋回室内に形成される流体旋回流によつ て発生する微細気泡混じりの海水を前記撒布領域上の水域に供給することが可能と なる。これらの微細気泡は極めて微細であり、外径ナノメートルレベルの微細気泡も 大量に含まれるため、浮上速度が極めて小さぐ単に海水中での滞留時間が長いだ けでなく、時間の経過とともに海底に向力つて沈降する性質をも示す。このため、底 部付近の海水中の溶存酸素量を高めることが可能となり、貧酸素層をなくすことがで きる。  [0018] With such a configuration, by the fluid swirl flow formed in the fluid swirl chamber by supplying the seawater on the distribution area of the lobster and the air in the atmosphere to the fine bubble generating means. It is possible to supply the generated seawater mixed with fine bubbles to the water area on the distribution area. These microbubbles are extremely fine and contain a large amount of microbubbles with an outer diameter of nanometer level, so the levitation speed is extremely low, and not only the residence time in seawater is long, but also the seabed over time. It also shows the property of sedimentation by force. For this reason, it becomes possible to increase the amount of dissolved oxygen in the seawater near the bottom and eliminate the poor oxygen layer.
[0019] 従って、微細気泡発生手段を海底近くに配置しなくても、底層海水の溶存酸素量 が飽和状態に達して、海底の有機物汚泥中に効率良く酸素が供給されるようになり、 底部に生息する底生生物および撒布されたイトゴカイ類に充分な酸素が供給される 。これによつて、イトゴカイ類の生命活動および増殖能力が活性化され、その個体数 も著しく増大するので、イトゴカイ類に共生する有機物分解細菌も増殖する。このため 、増殖した有機物分解細菌の分解能力により、海底の有機物汚泥を効率良く分解浄 ィ匕することがでさる。  [0019] Therefore, even if the fine bubble generating means is not arranged near the seabed, the amount of dissolved oxygen in the bottom seawater reaches a saturated state, and oxygen is efficiently supplied into the organic sludge on the seabed. Sufficient oxygen is supplied to the benthic organisms and the dispersed beetles that inhabit the area. As a result, the life activity and proliferation ability of the carpenter are activated and the number of the individuals is remarkably increased, so that organic matter-decomposing bacteria that live in the carpenter are also proliferated. For this reason, the organic sludge on the seabed can be efficiently decomposed and purified by the decomposition ability of the organic matter-degrading bacteria grown.
[0020] また、海中に供給された微細気泡の大部分は海水中に長期間にわたって滞留し続 けながら海水中で徐々に消失していくため、海水中の溶存酸素量が高まることとなり 、貧酸素領域が無くなるため、好気性微生物による浄ィ匕作用も活性化され、これによ つても海水域の清浄ィ匕を図ることができる。従って、このようにして浄ィ匕される海域に おいて魚貝類を養殖すれば、魚貝類の生命活動が活性化され、その生育状態を大 幅〖こ促進させることができる。  [0020] In addition, most of the fine bubbles supplied in the sea remain in the seawater for a long time and gradually disappear in the seawater, resulting in an increase in the amount of dissolved oxygen in the seawater. Since the oxygen region disappears, the purification action by aerobic microorganisms is also activated, and this also makes it possible to purify the seawater area. Therefore, if fish and shellfish are cultivated in the sea area thus purified, the life activity of the fish and shellfish is activated and the growth state can be greatly promoted.
[0021] 本発明において海底に撒布するイトゴカイは、その共生細菌とともに、古代より自然 界に生息し続ける生物であり、微細気泡発生手段は、イトゴカイに充分な酸素を与え る目的で、大気中の空気から形成される微細気泡混じりの海水を海中へ供給するも のであるため、自然環境や魚貝類に悪影響を及ぼすこともない。また、海底にイトゴ カイ類を撒布し、比較的浅 ヽ海域に配置した微細気泡発生手段を用いて微細気泡 混じりの海水を海域に供給すればよ!、ので、複雑な設備も必要としな 、。 [0021] In the present invention, the swordfish distributed on the seabed, along with its symbiotic bacteria, have been living in the natural world since ancient times, and the microbubble generating means is used in the atmosphere for the purpose of providing sufficient oxygen to the swordfish. Since it supplies seawater containing fine bubbles formed from air into the sea, it does not adversely affect the natural environment or fish and shellfish. In addition, it is possible to distribute lobsters on the seabed and use microbubble generation means placed in a relatively shallow sea area. Supply mixed seawater to the sea area, so you don't need complicated equipment.
[0022] ここで、前記微細気泡発生手段として、 [0022] Here, as the fine bubble generating means,
流体が軸心の周りを旋回可能な筒体形状若しくは回転体形状の流体旋回室と、前 記軸心とねじれの位置をなす方向に沿って前記流体旋回室内へ水を送給するように 配置された流体導入経路と、前記流体旋回室内へ空気を送給するため前記流体旋 回室に連通して設けられた空気導入経路と、前記流体旋回室力 微細気泡混じりの 水を排出するため前記軸心の延長線上に設けられた吐出経路とを備えた微細気泡 発生器と、  A cylindrical or rotating fluid swirl chamber in which fluid can swivel around an axis, and water is fed into the fluid swirl chamber along a direction that forms a twisted position with respect to the shaft center. A fluid introduction path, an air introduction path provided in communication with the fluid swirl chamber for supplying air into the fluid swirl chamber, and the fluid swirl chamber force for discharging water mixed with fine bubbles. A fine bubble generator having a discharge path provided on an extension line of the shaft center;
前記水導入経路を経由して前記流体旋回室内へ水を供給する液体ポンプと、 前記空気導入経路を経由して前記流体旋回室内へ空気を供給する気体ポンプと、 を備えた微細気泡発生装置を用いることができる。  A fine bubble generator comprising: a liquid pump that supplies water into the fluid swirl chamber via the water introduction path; and a gas pump that supplies air into the fluid swirl chamber via the air introduction path. Can be used.
[0023] このような構成とすれば、微細気泡発生器を水中へ投入し、水上若しくは地上に配 置した液体ポンプおよび気体ポンプ力 それぞれ水、空気を前記微細気泡発生器 へ供給することにより、水中へ微細気泡混じりの水を供給することが可能となるため、 防水性および水に対する耐食性を有する液体ポンプ、気体ポンプを用いる必要がな くなり、設備の簡素化を図ることができる。また、水中に投入された複数の微細気泡 発生器を一組の液体ポンプおよび気体ポンプによって稼働させることも可能となるた め、大規模な魚貝類養殖場への対応も比較的容易となる。 [0023] With such a configuration, by introducing the fine bubble generator into water and supplying water and air respectively to the liquid pump and the gas pump force arranged on the water or on the ground, Since it is possible to supply water containing fine bubbles to water, it is not necessary to use a liquid pump or gas pump having water resistance and corrosion resistance to water, and the equipment can be simplified. In addition, since a plurality of microbubble generators thrown into water can be operated by a set of liquid pumps and gas pumps, it is relatively easy to handle large-scale fish shell farms.
[0024] また、前記微細気泡発生手段として、 [0024] As the fine bubble generating means,
流体が軸心の周りを旋回可能な筒体形状若しくは回転体形状の流体旋回室と、前 記軸心とねじれの位置をなす方向に沿って前記流体旋回室内へ空気混じりの水を 送給するように配置された気水導入経路と、前記流体旋回室から微細気泡混じりの 水を排出するため前記軸心の延長線上に配置された吐出経路とを備えた微細気泡 発生器と、  A cylindrical or rotating fluid swirl chamber in which a fluid can swivel around an axis, and air-mixed water is fed into the fluid swirl chamber along a direction that forms a twisted position with respect to the shaft center. A microbubble generator comprising: an air / water introduction path arranged as described above; and a discharge path arranged on an extension line of the shaft for discharging water mixed with microbubbles from the fluid swirl chamber;
前記気水導入経路を経由して前記流体旋回室内へ水を供給する液体ポンプと、 前記気水導入経路を経由して前記流体旋回室内へ空気を供給する気体ポンプと、 を備えた微細気泡発生装置を用いることもできる。  A fine bubble generation comprising: a liquid pump for supplying water into the fluid swirl chamber via the air / water introduction path; and a gas pump for supplying air into the fluid swirl chamber via the air / water introduction path. An apparatus can also be used.
[0025] このような構成とすれば、微細気泡発生器を水中へ投入し、水上若しくは地上に配 置した液体ポンプおよび気体ポンプからそれぞれ水、空気を気水導入経路へ送給 することにより、一つの気水導入経路を経由して空気混じりの水を前記微細気泡発 生器へ供給して、微細気泡混じりの水を水中へ供給することが可能となる。このため 、液体ポンプおよび気体ポンプ力 微細気泡発生器に至る配管経路を一本ィ匕するこ とができ、設備の簡素化を図ることができる。 [0025] With such a configuration, the fine bubble generator is thrown into water and placed on the water or on the ground. By supplying water and air from the installed liquid pump and gas pump to the air / water introduction path, air mixed with water is supplied to the fine bubble generator via the air / water introduction path, It becomes possible to supply water mixed with fine bubbles into the water. For this reason, it is possible to provide a single piping route to the liquid pump and the gas pumping force fine bubble generator, and to simplify the equipment.
[0026] さらに、前記微細気泡発生手段として、  [0026] Further, as the fine bubble generating means,
流体が軸心の周りを旋回可能な筒体形状若しくは回転体形状の流体旋回室と、前 記軸心とねじれの位置をなす方向に沿って前記流体旋回室内へ水を送給するように 配置された水導入経路と、前記流体旋回室内へ空気を送給するため前記流体旋回 室に連通して設けられた空気導入経路と、前記流体旋回室力 微細気泡混じりの水 を排出するため前記軸心の延長線上に設けられた吐出経路とを備えた微細気泡発 生器と、  A cylindrical or rotating fluid swirl chamber in which fluid can swivel around an axis, and water is fed into the fluid swirl chamber along a direction that forms a twisted position with respect to the shaft center. A water introduction path, an air introduction path provided in communication with the fluid swirl chamber for supplying air to the fluid swirl chamber, and the shaft for discharging the fluid swirl chamber force water mixed with fine bubbles. A microbubble generator having a discharge path provided on an extension of the heart;
水中に浸漬可能な部分に設けられた吸込口から吸い込んだ水を、前記水導入経 路を経由して前記流体旋回室内へ送給する防水性の液体ポンプと、  A waterproof liquid pump for feeding water sucked from a suction port provided in a portion that can be immersed in water into the fluid swirl chamber via the water introduction path;
前記液体ポンプを作動させる防水性の駆動機と、を一体化させた微細気泡発生部 と、  A fine bubble generator integrated with a waterproof drive for operating the liquid pump;
前記微細気泡発生部の前記空気導入経路を経由して前記流体旋回室内へ空気 を送給する気体ポンプと、  A gas pump for feeding air into the fluid swirl chamber via the air introduction path of the fine bubble generating unit;
を備えた微細気泡発生装置を用いることもできる。  It is also possible to use a fine bubble generator equipped with
[0027] このような構成とすれば、微細気泡発生部を水中へ投入して駆動機を作動させると ともに、水上若しくは地上に配置した気体ポンプ力 前記微細気泡発生器へ空気を 送給するだけで、流体旋回室内に流体旋回流が形成され、これによつて発生する微 細気泡混じりの水を水中へ供給することが可能となるため、魚貝類養殖方法を容易 に実施可能となる。微細気泡発生部は、微細気泡発生器、液体ポンプおよび駆動機 が一体化された構造であるため、水の導入経路となる配管を最小限とすることができ 、設備の簡素化、小型化を図ることができる。 [0027] With such a configuration, the microbubble generator is thrown into the water to operate the drive unit, and at the same time, the gas pumping force disposed on the water or on the ground is only supplied to the microbubble generator. Therefore, a fluid swirl flow is formed in the fluid swirl chamber, and water mixed with fine bubbles generated thereby can be supplied to the water, so that the fish shellfish cultivation method can be easily implemented. The microbubble generator has a structure in which the microbubble generator, liquid pump, and drive unit are integrated. Therefore, the piping for the water introduction path can be minimized, and the equipment can be simplified and miniaturized. Can be planned.
発明の効果  The invention's effect
[0028] 本発明により、複雑な設備を必要とせず、自然環境に悪影響を与えたり、底質や水 質が悪ィ匕したりすることなぐ魚貝類の生育を促進することが可能となり、養殖場の有 効活用を図ることもできる。 [0028] According to the present invention, complicated facilities are not required, the natural environment is adversely affected, sediment and water This makes it possible to promote the growth of fish and shellfish that do not deteriorate in quality, and to make effective use of farms.
図面の簡単な説明  Brief Description of Drawings
[0029] [図 1]図 1は本発明の実施の形態である魚貝類養殖方法を用いた魚貝類養殖場を示 す概略構成図である。  FIG. 1 is a schematic configuration diagram showing a fish and shellfish farm using the fish and shellfish cultivation method according to an embodiment of the present invention.
[図 2]図 2は図 1に示す魚貝類養殖場おける管理システムを示す部分拡大図である。  [FIG. 2] FIG. 2 is a partially enlarged view showing the management system in the fish and shellfish farm shown in FIG.
[図 3]図 3は図 1に示す微細気泡発生装置付近の部分拡大図である。  FIG. 3 is a partially enlarged view of the vicinity of the microbubble generator shown in FIG.
[図 4]図 4は図 3に示す微細気泡発生装置の一部省略平面図である。  FIG. 4 is a partially omitted plan view of the microbubble generator shown in FIG.
[図 5]図 5は図 3に示す微細気泡発生装置を構成する微細気泡発生器を示す一部切 欠側面図である。  FIG. 5 is a partially cutaway side view showing the fine bubble generator constituting the fine bubble generating apparatus shown in FIG. 3.
[図 6]図 6は図 5における A— A線断面図である。  FIG. 6 is a cross-sectional view taken along line AA in FIG.
[図 7]図 7は図 5における B— B線断面図である。  FIG. 7 is a cross-sectional view taken along line BB in FIG.
[図 8]図 8は図 5における C C線断面図である。  FIG. 8 is a cross-sectional view taken along line CC in FIG.
[図 9]図 9は図 5における D— D線断面図である。  [FIG. 9] FIG. 9 is a cross-sectional view taken along the line DD in FIG.
[図 10]図 10は図 5に示す微細気泡発生器に関するその他の実施の形態を示す断面 図である。  FIG. 10 is a cross-sectional view showing another embodiment of the fine bubble generator shown in FIG.
[図 11]図 11は微細気泡発生器に関する第 2実施形態を示す図である。  FIG. 11 is a diagram showing a second embodiment relating to a fine bubble generator.
[図 12]図 12は図 11に示す微細気泡発生器の斜視図である。  FIG. 12 is a perspective view of the fine bubble generator shown in FIG. 11.
[図 13]図 13は図 12における E—E線断面図である。  FIG. 13 is a cross-sectional view taken along line EE in FIG.
[図 14]図 14は図 11に示す微細気泡発生器の稼働状態を示す模式図である。  FIG. 14 is a schematic view showing an operating state of the fine bubble generator shown in FIG. 11.
[図 15]図 15は図 11に示す微細気泡発生器に関するその他の実施の形態を示す断 面図である。  FIG. 15 is a cross-sectional view showing another embodiment of the fine bubble generator shown in FIG. 11.
[図 16]図 16は微細気泡発生器に関する第 3実施形態を示す斜視図である。  FIG. 16 is a perspective view showing a third embodiment relating to a fine bubble generator.
[図 17]図 17は図 16における F—F線断面図である。  FIG. 17 is a cross-sectional view taken along line FF in FIG.
[図 18]図 18は図 16に示す微細気泡発生器の稼働状態を示す模式図である。  FIG. 18 is a schematic diagram showing an operating state of the fine bubble generator shown in FIG.
符号の説明  Explanation of symbols
[0030] 1 微細気泡発生部 [0030] 1 Microbubble generator
la, 74a ワイヤ 液体ポンプla, 74a wire Liquid pump
a 吸引口 a Suction port
電動機  Electric motor
, 4X, 20, 20X, 30 微細気泡発生器a 円筒ケーシング , 4X, 20, 20X, 30 Microbubble generator a Cylindrical casing
電源コード  Power cord
吐水部  Water discharge part
給気管 Supply pipe
3 逆止弁3 Check valve
4, 22, 32 流体旋回室4, 22, 32 Fluid swirl chamber
4a, 22a 内周面4a, 22a Inner peripheral surface
5, 23 水導入経路5, 23 Water introduction route
5a 閉塞板5a Blocking plate
5b 噴出口5b spout
5c 連結部5c Connecting part
6, 24 空気導入経路6, 24 Air introduction route
a 先端開口部 a Tip opening
7, 25 吐出経路7, 25 Discharge path
7a, 21a 隔壁 7a, 21a Bulkhead
誘導部材 Guide member
a 平面 a plane
b, 18c 連結部材  b, 18c Connecting member
吹出口  Outlet
ケーシング casing
a 水導入管 a Water introduction pipe
b 送水管 b Water pipe
a 空気導入管  a Air inlet pipe
誘導管 33 流体導入経路 33a 流体導入管 33b 流体送給管Induction tube 33 Fluid introduction path 33a Fluid introduction pipe 33b Fluid supply pipe
35, 37 排出管 35a, 37a 開閉弁35, 37 Drain pipe 35a, 37a Open / close valve
36, 38 排出口 50 生け簀 36, 38 Outlet 50 Sacrificial
51 , 71 筏 51, 71 筏
52 網  52 Net
53 鯛 53 鯛
54, 54a 底部 54b 有機物汚泥 55 イトゴカイ 70 管理システム 72 発電機  54, 54a Bottom 54b Organic sludge 55 Itokai 70 Management system 72 Generator
73 気体ポンプ 74 水質測定装置 74b センサ 75 配電盤 73 Gas pump 74 Water quality measuring device 74b Sensor 75 Switchboard
76 太陽電池パネル 77a 送信機 77b アンテナ 80 魚類養殖場 NB 微細気泡 R 流体旋回流 S 軸心 76 Solar panel 77a Transmitter 77b Antenna 80 Fish farm NB Microbubbles R Fluid swirl flow S Axis
V 負圧空洞部 W 海水 Wl 海面 V Negative pressure cavity W Seawater Wl sea level
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0031] 以下、図面に基づいて、本発明を実施するための最良の形態について説明する。  [0031] The best mode for carrying out the present invention will be described below with reference to the drawings.
図 1は本発明の実施の形態である魚貝類養殖方法を用いた魚貝類養殖場を示す概 略構成図、図 2は図 1に示す魚貝類養殖場おける管理システムを示す部分拡大図で ある。  FIG. 1 is a schematic configuration diagram showing a fish shell farm using the fish shell farming method according to the embodiment of the present invention, and FIG. 2 is a partially enlarged view showing a management system in the fish shell farm shown in FIG. .
[0032] 図 1に示すように、本実施形態に係る魚類養殖場 80は、一定の海域に浮かべられ た筏 51とその下方の海中に配置された網 52などによって形成された生け簀 50と、生 け簀 50に隣接して配置された筏 71上に設けられた管理システム 70とを備えている。 生け簀 50の網 52の内部には養殖魚である多数の鯛 53が飼育されるとともに、海中 に微細気泡発生部 1が配置され、生け簀 50が設けられた海域の底部 54aには、大量 のイトゴカイ(Capitella属 sp. 1) 55が撒布されている。これにより、魚類養殖場 80 にお 、ては、イトゴカイ 55の撒布領域である底部 54a上の海水 W中に微細気泡発生 部 1が配置された状態となっている。  [0032] As shown in FIG. 1, the fish farm 80 according to the present embodiment includes a cage 51 formed in a certain sea area, a cage 50 formed by a net 52 arranged in the sea below the sea, and the like. And a management system 70 provided on the wall 71 arranged adjacent to the living room 50. Inside the net 52 of the ginger 50, a large number of cultivated fish 53 are bred, and the microbubble generator 1 is placed in the sea. (Capitella sp. 1) 55 is distributed. As a result, in the fish farm 80, the fine bubble generating part 1 is placed in the seawater W on the bottom 54a, which is the distribution area of the scallop 55.
[0033] イトゴカイ 55は、約 80万〜 160万個体のイトゴカイ培養コロニーを培養基質の砂と ともにビニル袋に入れたものをダイバーが潜水して底部 54aまで運んだ後、底部 54a 付近でビュル袋を破って、イトゴカイ培養コロニーを培養基質の砂と一緒に静か〖こ底 部 54aに撒布したものである。なお、魚類養殖場 80内における海水 Wの水質観測の 結果によれば、底部 54aに有機物汚泥が集中して堆積する時期が、夏季の成層構 造が崩れて鉛直混合が発生する時期に起きることが判明している。従って、この時期 にイトゴカイ培養コロニーを撒布することが、有機物汚泥 54bの浄ィ匕を行う上で最も 効果的なタイミングであると考えられる。  [0033] Itogokai 55 consists of approximately 800,000 to 1,600,000 individuals of the cultivated colony in a plastic bag with sand as a culture substrate, and the diver dives it to the bottom 54a, and then nears the bottom 54a. , And the scallop culture colony was gently spread on the bottom 54a of the soil along with the culture substrate sand. According to the results of water quality observation of seawater W in fish farm 80, the time when organic sludge concentrates and accumulates on bottom 54a occurs when the stratified structure collapses in summer and vertical mixing occurs. Is known. Therefore, it is considered that the most effective timing for purifying the organic sludge 54b is to distribute the cultivated colony at this time.
[0034] 生け簀 50中に配置された微細気泡発生部 1はワイヤ laによって一定位置に係止さ れており、管理システム 70を構成する発電機 72から供給される交流電流で作動し、 生け簀 50内から吸い込んだ海水 Wと気体ポンプ 73から送給される空気とによって形 成される微細気泡 NB混じりの海水 Wを生け簀 50内へ吐出する。本実施形態では、 魚類養殖場 80が設けられた海域の底部 54までの水深は約 14mであり、微細気泡発 生部 1は海面 W1から水深 7mの位置に配置している力 これに限定するものではな ぐワイヤ laを下降させたり、引き上げたりすることによって、微細気泡発生部 1の位 置を変更することができる。 [0034] The fine bubble generating part 1 arranged in the sacrifice 50 is locked at a fixed position by the wire la, and is operated by the alternating current supplied from the generator 72 constituting the management system 70. The seawater W mixed with fine bubbles NB formed by the seawater W sucked from inside and the air fed from the gas pump 73 is discharged into the sacrifice 50. In this embodiment, the water depth to the bottom 54 of the sea area where the fish farm 80 is provided is about 14 m, and the microbubble generator 1 is located at a depth of 7 m from the sea surface W1. Not something The position of the microbubble generator 1 can be changed by lowering or pulling up the wire la.
[0035] 筏 71上の管理システム 70は、図 2に示すように、発電機 72、気体ポンプ(エアコン プレッサ) 73、海水 W中の溶存酸素量などを自動測定する水質測定装置 74、測定 結果を無線送信する送信機 77aおよびアンテナ 77b、水質測定装置 74および送信 機 77aなどを作動させる蓄電池(図示せず)を充電するための太陽電池パネル 76、 発電機 72および気体ポンプ 73などを操作する配電盤 75を備えて ヽる。水質測定装 置 74は、ワイヤ 74aに係止されたセンサ 74bを備え、ワイヤ 74aを巻き取ったり、捲き 出したりすることによってセンサ 74bは海水 W中を昇降可能であり、予め設定された 複数の水深位置における海水 Wの水質および潮流の流向流速を自動測定すること ができる。 [0035] As shown in Fig. 2, the management system 70 on 筏 71 includes a generator 72, a gas pump (air conditioner press) 73, a water quality measuring device 74 that automatically measures the amount of dissolved oxygen in seawater W, and the measurement results. Operate solar panel 76, generator 72, gas pump 73, etc. for charging storage battery (not shown) that operates transmitter 77a and antenna 77b, water quality measuring device 74, transmitter 77a, etc. With a switchboard 75. The water quality measuring device 74 includes a sensor 74b locked to the wire 74a, and the sensor 74b can move up and down in the seawater W by winding up or rolling out the wire 74a. It is possible to automatically measure the water quality of seawater W and the current direction flow velocity at the depth.
[0036] 測定結果は送信機 77aからアンテナ 77bを経由して無線送信され、携帯電話の回 線を通してインターネット上のデータサーバに転送され、随時、ウェブサイト上で閲覧 することができる。本実施形態においては、海水 Wの水質の鉛直プロファイルを 2時 間ごとに測定し、流向流速の鉛直プロファイルを 1時間ごとに測定して、その測定結 果を送信するように 、るが、測定条件はこれらに限定するものではな 、。  [0036] The measurement result is wirelessly transmitted from the transmitter 77a via the antenna 77b, transferred to a data server on the Internet through a circuit of a cellular phone, and can be viewed on a website at any time. In this embodiment, the vertical profile of the water quality of seawater W is measured every two hours, the vertical profile of the flow direction flow velocity is measured every hour, and the measurement results are transmitted. The conditions are not limited to these.
[0037] このような構成としたことにより、魚類養殖場 80の水質構造や潮流の状態を、現象 発生から 2時間以内にモニターすることが可能となるため、生け簀 50のある海水 Wの 溶存酸素量低下の監視、溶存酸素量低下を防止するための微細気泡発生部 1の稼 働および稼働に伴う効果の検証、あるいは有機汚泥の堆積を招く水質構造発生の監 視などを行うことができる。これにより、魚類養殖場 80の水質環境の管理および環境 改善技術の効果的な運用に不可欠な情報を迅速に入手することができる。  [0037] With this configuration, it is possible to monitor the water quality structure and tidal current status of the fish farm 80 within 2 hours of the occurrence of the phenomenon, so the dissolved oxygen in the seawater W with the sacrifice 50 It is possible to monitor the decrease in the volume, verify the effects of the operation and operation of the microbubble generator 1 to prevent the decrease in dissolved oxygen, or monitor the generation of water quality structures that cause organic sludge to accumulate. As a result, it is possible to quickly obtain information essential for the management of the water quality environment of the fish farm 80 and effective operation of the environmental improvement technology.
[0038] 次に、図 3〜図 9を参照して、微細気泡発生部 1の構造、機能などについて詳しく説 明する。図 3は図 1に示す微細気泡発生装置付近の部分拡大図、図 4は図 3に示す 微細気泡発生装置の一部省略平面図、図 5は図 3に示す微細気泡発生装置を構成 する微細気泡発生器を示す一部切欠側面図、図 6は図 5における A— A線断面図、 図 7は図 5における B— B線断面図、図 8は図 5における C C線断面図、図 9は図 5 における D— D線断面図である。 [0039] 図 3,図 4に示すように、微細気泡発生部 1は、防水性の液体ポンプ 2と、液体ボン プ 2を作動させる駆動機である防水性の電動機 3と、微細気泡発生器 4と、を一体的 に連結した構造である。電動機 3は、海上の筏 71 (図 1参照)上に配置された発電機 72から電源コード 5を介して給電され、配電盤 75に設けられたスィッチ(図示せず) によって ON— OFFすることができる。液体ポンプ 2は電動機 3の回転軸(図示せず) と同軸上に連結され、吸引口 2aから吸い込んだ海水 Wを吐水部 8を経由して微細気 泡発生器 4の水導入経路 15へ供給する。 [0038] Next, the structure and function of the fine bubble generating unit 1 will be described in detail with reference to FIGS. Fig. 3 is a partially enlarged view of the vicinity of the fine bubble generating device shown in Fig. 1, Fig. 4 is a partially omitted plan view of the fine bubble generating device shown in Fig. 3, and Fig. 5 is a fine view of the fine bubble generating device shown in Fig. 3. 6 is a partially cutaway side view showing the bubble generator, FIG. 6 is a cross-sectional view taken along the line AA in FIG. 5, FIG. 7 is a cross-sectional view taken along the line B-B in FIG. Is a cross-sectional view taken along the line D-D in FIG. As shown in FIG. 3 and FIG. 4, the fine bubble generator 1 includes a waterproof liquid pump 2, a waterproof electric motor 3 that is a drive for operating the liquid pump 2, and a fine bubble generator. 4 and are connected together. The electric motor 3 is supplied with power from the generator 72 arranged on the sea anchor 71 (see FIG. 1) via the power cord 5 and can be turned on and off by a switch (not shown) provided on the switchboard 75. it can. The liquid pump 2 is coaxially connected to the rotating shaft (not shown) of the electric motor 3 and supplies the seawater W sucked from the suction port 2a to the water introduction path 15 of the fine bubble generator 4 via the water discharge part 8. To do.
[0040] 微細気泡発生器 4は概略形状が円筒形であり、その下部には、筏 71 (図 1参照)上 に配置された気体ポンプ 73から送給される大気中の空気を導入するための給気管 9 の先端部が接続され、給気管 9の基端部は気体ポンプ 73に接続されている。給気管 9の途中には、海水 Wが海上方向に逆流するのを防ぐための逆止弁 13が設けられ ている。  [0040] The microbubble generator 4 is generally cylindrical in shape, and in the lower part thereof, air in the atmosphere fed from a gas pump 73 disposed on a ridge 71 (see Fig. 1) is introduced. The front end of the air supply pipe 9 is connected, and the base end of the air supply pipe 9 is connected to the gas pump 73. A check valve 13 is provided in the middle of the supply pipe 9 to prevent the seawater W from flowing backward in the sea direction.
[0041] 図 5〜図 7に示すように、微細気泡発生器 4は、流体 (海水および空気)が軸心 S周 りを旋回可能な流体旋回室 14を内蔵する円筒ケーシング 4aと、流体旋回室 14内へ 海水 Wを導入して流体旋回流 Rを発生させるために流体旋回室 14内へ海水 Wを噴 出する水導入経路 15と、流体旋回室 14内へ空気を導入するため流体旋回室 14と 連通して形成された空気導入経路 16と、流体旋回室 14の軸心 S方向の端部に形成 された吐出経路 17とを備えている。吐出経路 17は、円筒ケーシング 4aの軸心 Sと直 交する平面状の隔壁 17aの中心部分 (軸心 Sとの交差部分)に形成されて!、る。  [0041] As shown in FIGS. 5 to 7, the fine bubble generator 4 includes a cylindrical casing 4a containing a fluid swirl chamber 14 in which a fluid (seawater and air) can swivel around an axis S, and a fluid swirl. Introducing seawater W into chamber 14 to generate fluid swirl flow R, water introduction path 15 for jetting seawater W into fluid swirl chamber 14 and fluid swirl to introduce air into fluid swirl chamber 14 An air introduction path 16 formed in communication with the chamber 14 and a discharge path 17 formed at the end of the fluid swirl chamber 14 in the axial center S direction are provided. The discharge path 17 is formed in the central part (intersection with the axis S) of the planar partition wall 17a that intersects the axis S of the cylindrical casing 4a.
[0042] 水導入経路 15は円筒ケーシング 4aより外径の小さな円筒形であり、その基端部に は液体ポンプ 2の吐水部 8との連結部 15cが設けられ、その先端部は、流体旋回室 1 4の吐出経路 17と反対側の端部において流体旋回室 14内へ突出して配置され、そ の先端部分は閉塞板 15aで閉塞されている。図 9に示すように、流体旋回室 14内に 位置する水導入経路 15の外周には、流体旋回室 14の軸心 Sとねじりの位置をなす 方向に沿って海水 Wを噴出するための複数の噴出口 15bが設けられている。本実施 形態では、噴出口 15bは、軸心 Sを中心に等角度間隔で 6個配置するとともに、これ ら 6個の噴出口 15bを同じ位相で、軸心 S方向に 2段配置することにより、合計 12個 設けているが、これらの個数および配置形態に限定するものではない。 [0043] 図 6に示すように、空気導入経路 16は、水導入経路 15の側面部を貫通してその内 部へ進入し、軸心 S方向へ直角に曲がった後、その先端開口部 16aが閉塞板 15aの 表面側(流体旋回室 14側)に開口している。水導入経路 15の側面に突出した空気 導入経路 16に給気管 9の基端部が着脱可能に連結されている。従って、給気管 9か ら送られる空気は空気導入経路 16を経由して、閉塞板 15a表面に開口した先端開 口部 16aから流体旋回室 14内に直接供給される。 [0042] The water introduction path 15 has a cylindrical shape whose outer diameter is smaller than that of the cylindrical casing 4a, and a base 15 is provided with a connection part 15c to the water discharge part 8 of the liquid pump 2, and its tip part is a fluid swirl. The end of the chamber 14 opposite to the discharge path 17 is disposed so as to protrude into the fluid swirl chamber 14, and the tip thereof is closed by a closing plate 15a. As shown in FIG. 9, on the outer periphery of the water introduction path 15 located in the fluid swirl chamber 14, a plurality of seawater W are ejected along the direction that forms the position of the axis S of the fluid swirl chamber 14 and the torsion. There is an outlet 15b. In the present embodiment, six jet outlets 15b are arranged at equiangular intervals around the axis S, and these six jets 15b are arranged in two stages in the axis S direction with the same phase. Although a total of twelve are provided, the number and arrangement of these are not limited. [0043] As shown in FIG. 6, the air introduction path 16 penetrates the side surface portion of the water introduction path 15 and enters the inside thereof, bends at right angles to the axis S direction, and then has its tip opening 16a. Is open on the surface side of the closing plate 15a (fluid swirl chamber 14 side). The base end portion of the air supply pipe 9 is detachably connected to the air introduction path 16 protruding from the side surface of the water introduction path 15. Therefore, the air sent from the air supply pipe 9 is directly supplied into the fluid swirl chamber 14 via the air introduction path 16 from the tip opening 16a opened on the surface of the blocking plate 15a.
[0044] 図 6,図 7に示すように、流体旋回室 14を内蔵する円筒ケーシング 4aの吐出経路 1 7の外側において、この吐出経路 17と対向する位置には、軸心 Sと交差する平面 18 aを有する円板状の誘導部材 18が配置されている。誘導部材 18は、円弧状をした 3 つの連結部材 18b, 18cを介して円筒ケーシング 4aの先端部分に接合されており、 これらの連結部材 18b, 18cの間に形成された 3つの吹出口 19力ら、後述する、微細 気泡 NB混じりの海水 Wを海中へ吹き出すことができる。なお、これら 3つの吹出口 1 9は、平面視状態において、電動機 3の配置方向を除く 3つの方向に 90度間隔で配 置されている。  As shown in FIG. 6 and FIG. 7, a plane intersecting the axis S is located outside the discharge path 17 of the cylindrical casing 4 a containing the fluid swirl chamber 14 at a position facing the discharge path 17. A disc-shaped guide member 18 having 18 a is arranged. The guide member 18 is joined to the tip portion of the cylindrical casing 4a via three arc-shaped connecting members 18b and 18c, and three outlets 19 force formed between the connecting members 18b and 18c. Therefore, seawater W mixed with fine bubbles NB, which will be described later, can be blown out into the sea. Note that these three air outlets 19 are arranged at intervals of 90 degrees in three directions other than the arrangement direction of the electric motor 3 in a plan view.
[0045] 図 1で示したように、微細気泡発生部 1を生け簀 50内の海水 W中に投入し、海水 W 中で起立状態に保持し、配電盤 75のスィッチ(図示せず)を操作して電動機 3を作動 させると、液体ポンプ 2の吸引口 2aから吸い込まれた海水 Wが吐水部 8から水導入 経路 15へ流れ込み、噴出口 15bを経由して流体旋回室 14内へ噴出される。このとき 、海水 Wの噴出方向は流体旋回室 14の軸心 Sとねじれの位置をなす方向となってい るため、流体旋回室 14内には軸心 S周りに旋回する海水流が発生するとともに、この 海水流の一部は吐出経路 17から海水 W中へ排出される。  [0045] As shown in FIG. 1, the fine bubble generating part 1 is put into the seawater W in the sacrifice 50, held in the standing condition in the seawater W, and a switch (not shown) of the switchboard 75 is operated. When the electric motor 3 is operated, the seawater W sucked from the suction port 2a of the liquid pump 2 flows into the water introduction path 15 from the water discharge part 8, and is jetted into the fluid swirl chamber 14 via the jet port 15b. At this time, the discharge direction of the seawater W is a direction that forms a twisted position with the axis S of the fluid swirl chamber 14, so that a seawater flow swirling around the axis S is generated in the fluid swirl chamber 14. Part of this seawater flow is discharged from the discharge path 17 into the seawater W.
[0046] このとき、図 6に示すように、流体旋回室 14内の軸心 S付近には負圧空洞部 Vが発 生し、この負圧空洞部 Vの存在によって流体旋回室 14内が負圧となるため、流体旋 回室 14と連通する空気導入経路 16および給気管 9を経由して大気中の空気が円滑 に導入され、空気導入経路 16の先端開口部 16aから流体旋回室 14内へ流入する。 これにより、流体旋回室 14内には、軸心 S付近に位置する負圧空洞部 Vと、その周り を回転する空気混じりの海水とからなる旋回流 (例えば、旋回二層流とも呼ばれる。) が形成される。 [0047] このような旋回流が流体旋回室 14内に形成されている状態において、空気導入経 路 16の先端開口部 16aを経由して流体旋回室 14内へ導入された空気は前述した 旋回流の剪断作用によって微細化され、流体旋回流 Rとなって流体旋回室 14内を 高速旋回する。そして、流体旋回流 Rはやがて流体旋回室 14の隔壁 17a方向へ移 動し、この隔壁 17aに当接することによって吐出経路 17に向かって収束し、流体旋回 室 14の内径より細い吐出経路 17を通過することによって、さらに高速で旋回する微 細気泡 NB混じりの海水となった後、生け簀 50内の海水 W中へ吐出される。即ち、大 気中から吸い込んで給気管 9を経由して送給された空気を流体旋回室 14内で微細 気泡 NBに変化させて海水 W中へ供給することができる。 At this time, as shown in FIG. 6, a negative pressure cavity V is generated in the vicinity of the axis S in the fluid swirl chamber 14, and the presence of this negative pressure cavity V causes the fluid swirl chamber 14 to be in the fluid swirl chamber 14. Due to the negative pressure, air in the atmosphere is smoothly introduced through the air introduction path 16 and the air supply pipe 9 communicating with the fluid rotation chamber 14, and the fluid swirl chamber 14 passes through the opening 16 a of the air introduction path 16. Flows in. Thus, in the fluid swirl chamber 14, a swirling flow (for example, also called swirling two-layer flow) consisting of a negative pressure cavity V located near the axis S and sea-water mixed with air that rotates around it. Is formed. [0047] In a state where such a swirl flow is formed in the fluid swirl chamber 14, the air introduced into the fluid swirl chamber 14 via the tip opening 16a of the air introduction path 16 is the swirl described above. It is refined by the shearing action of the flow and turns into a fluid swirl flow R, which swirls in the fluid swirl chamber 14 at high speed. The fluid swirl flow R eventually moves in the direction of the partition wall 17a of the fluid swirl chamber 14, and converges toward the discharge path 17 by coming into contact with the partition wall 17a, and passes through the discharge path 17 narrower than the inner diameter of the fluid swirl chamber 14. By passing through, it becomes seawater mixed with fine bubbles NB turning at higher speed, and then discharged into seawater W in the ginger 50. That is, the air sucked from the atmosphere and fed through the air supply pipe 9 can be changed into the fine bubbles NB in the fluid swirl chamber 14 and supplied into the seawater W.
[0048] 従って、図 1に示すように、海水 Wおよび大気中の空気を微細気泡発生部 1に供給 して流体旋回室 14内に形成される流体旋回流 Rによって発生する微細気泡 NB混じ りの海水 Wを、イトゴカイ 55の撒布領域上 (底部 54a上)の海水域に供給することが できる。これらの微細気泡 NBは極めて微細であり、外径ナノメートルレベルの微細気 泡 NBが大量に含まれているため、海水 W中における浮上速度が極めて小さい。この ため、単に海水 W中での滞留時間が長いだけでなぐその大部分は時間の経過とと もに底部 54aに向力つて沈降する現象が生じる。また、外径ナノメートルレベルの微 細気泡 NBが海水 W中に供給されることによって海水 W中への酸素溶解が促進され るため、飽和濃度レベルまで酸素が溶解して周囲の海水よりも比重の増大した海水 Wが底部 54aに向力つて下降する現象も生じ、これによつて底層の貧酸素領域の解 消が進行していると考えられる。  Therefore, as shown in FIG. 1, the seawater W and air in the atmosphere are supplied to the microbubble generator 1 and mixed with the microbubbles NB generated by the fluid swirl flow R formed in the fluid swirl chamber 14. Seawater W can be supplied to the seawater area above the distribution area (on the bottom 54 a) of Itogokai 55. These fine bubbles NB are extremely fine and contain a large amount of fine bubbles NB at the outer diameter nanometer level, so the ascent rate in seawater W is extremely low. For this reason, a phenomenon in which most of the residence time in the seawater W simply settles down toward the bottom 54a with the passage of time occurs. In addition, since fine bubbles NB with an outer diameter of nanometer level are supplied into seawater W, oxygen dissolution into seawater W is promoted, so oxygen dissolves to the saturation concentration level and has a specific gravity higher than that of surrounding seawater. There is also a phenomenon in which seawater W increased in number and descends toward the bottom 54a, and it is considered that the cancellation of the anoxic region in the bottom layer is progressing.
[0049] 従って、微細気泡発生部 1が底部 54aから離れた位置に配置されていても、底層海 水の溶存酸素が飽和状態に達して、底部 54aの有機物汚泥 54b中に効率良く酸素 が供給されるようになる。このため、底部 54aに撒布されたイトゴカイ 55に充分な酸素 が供給され、イトゴカイ 55の生命活動および増殖能力が活性化され、その個体数が 著しく増大するので、イトゴカイ 55に共生する有機物分解細菌(図示せず)も増殖す る。このため、増殖した有機物分解細菌の分解能力により、底部 54aの有機物汚泥 5 4bを効率良く分解浄ィ匕することができる。  [0049] Therefore, even if the fine bubble generating part 1 is arranged at a position away from the bottom 54a, the dissolved oxygen in the bottom seawater reaches a saturated state, and oxygen is efficiently supplied into the organic sludge 54b in the bottom 54a. Will come to be. For this reason, sufficient oxygen is supplied to the cypress 55 distributed on the bottom 54a, the vital activity and proliferation ability of the cypress 55 are activated, and the number of individuals increases significantly. (Not shown) also grows. Therefore, the organic sludge 54b at the bottom 54a can be efficiently decomposed and purified by the decomposition ability of the organic-degrading bacteria grown.
[0050] 流体旋回室 14内に発生する流体旋回流 Rによって形成される外径ナノメートルレ ベルの微細気泡 NB力 海水 W中において、時間の経過とともに沈降する性質を示 す理由については、不明な点も多いが、気泡自体の浮力で浮上する分は少なぐ微 細気泡 NBの大部分は海水鉛直混合流とともに、表層または底層へ移動 ·分散する ことによるものではないか、と推測される。また、流体旋回流 Rが発生している流体旋 回室 14内およびその近傍では超音波が発生することが確認されているため、この超 音波の放射圧の作用によって微細気泡 NBが下降するのではな 、かとも推測される [0050] The outer diameter nanometer level formed by the fluid swirl flow R generated in the fluid swirl chamber 14 Bell's microbubbles NB force Seawater In W, there are many unclear points about the reason for the nature of sedimentation over time, but there are few microbubbles NB that rise due to the buoyancy of the bubbles themselves. It is presumed that this is due to movement and dispersion to the surface layer or bottom layer with the seawater vertical mixed flow. In addition, since it has been confirmed that ultrasonic waves are generated in and near the fluid swirling chamber 14 where the fluid swirl flow R is generated, the fine bubbles NB descend due to the action of the radiation pressure of the ultrasonic waves. Then I guess
[0051] また、海水中へ空気を吹き込んで形成される従来の微細気泡の場合、その内圧が 大気圧より大であるため海水中で壊れにくぐその殆どが海面まで上昇して消失する のに対し、微細気泡発生器 4から供給される微細気泡 NBは、流体旋回室 14内に発 生する流体旋回流 Rにより負圧雰囲気下で形成されるため、その内圧は大気圧より 小さぐ海水 W中で消失しやすい傾向がある。このため、消失した微細気泡 NBに内 包されていた空気中の酸素が海水 W中へ溶解して、溶存酸素量の増加に寄与して いることも予測される。また、これらの微細気泡 NBが海水 W中で消失するときに発生 する超音波の放射圧も微細気泡 NBの下降に有効であると考えられる。 [0051] Also, in the case of conventional fine bubbles formed by blowing air into seawater, the internal pressure is greater than atmospheric pressure, so most of them that are difficult to break up in seawater rise to the sea level and disappear. On the other hand, the fine bubbles NB supplied from the fine bubble generator 4 are formed in a negative pressure atmosphere by the fluid swirl flow R generated in the fluid swirl chamber 14, so that the internal pressure is less than the atmospheric pressure. It tends to disappear. For this reason, it is also predicted that oxygen in the air contained in the lost fine bubbles NB is dissolved in the seawater W and contributes to an increase in the amount of dissolved oxygen. Further, it is considered that the radiation pressure of ultrasonic waves generated when these fine bubbles NB disappear in the seawater W is also effective in lowering the fine bubbles NB.
[0052] 一方、底部 54aにおいてイトゴカイ 55が高密度に増殖した地点では、その底質表 層にお 1ヽて有機物の分解促進および嫌気性の酸揮発性硫化物の酸化が促進され ていることも確認された。従って、魚類養殖場 80において、イトゴカイ培養コロニー撒 布と、海水 W中への微細気泡 NBの供給とを行うことにより底部 54, 54aの有機物汚 泥を確実に浄ィ匕することができる。また、イトゴカイ 55が増殖した海域では海水 W中 のアンモニア濃度が急速に減少し、硝酸塩'亜硝酸塩濃度の上昇が見られたが、こ のような現象は、イトゴカイ 55の生物活性や代謝活動により、アンモニアなどの窒素 化合物を硝酸イオンに変化させる働きを有する微生物 (硝化菌)の活性が高まったこ とを示すものではな 、かと推測される。  [0052] On the other hand, at the point where Itokai 55 grew at a high density in the bottom 54a, the decomposition of organic substances and the oxidation of anaerobic acid-volatile sulfides were promoted on the bottom surface layer. Was also confirmed. Therefore, in the fish farm 80, it is possible to reliably clean the organic sludge in the bottom portions 54 and 54 a by distributing the coral culture colony and supplying the fine bubbles NB into the seawater W. In the sea area where Itokai 55 was grown, the ammonia concentration in seawater W decreased rapidly, and an increase in nitrate and nitrite concentrations was observed. This phenomenon is caused by the biological activity and metabolic activity of Itokaikai 55. It is speculated that this indicates that the activity of microorganisms (nitrifying bacteria) having the function of changing nitrogen compounds such as ammonia into nitrate ions has increased.
[0053] また、生け簀 50内に供給された微細気泡 NBの大部分は海水 W中に長期間にわ たって滞留し続け海水 W中で徐々に消失していく結果、海水 Wの溶存酸素量が高ま るため、貧酸素領域が無くなり、好気性微生物による浄化作用も活性化され、これに よっても海水 Wの清浄ィ匕を図ることができる。さらに、微細気泡発生部 1を作動させ、 生け簀 50内の海水 W中に微細気泡 NB混じりの海水を供給することにより、この海域 の表層から底部 54a付近の底層に至るまで、効率良く酸素を溶解させることができる ため、養殖されている鯛 53の生命活動が活性化され、生育状態も促進される結果、 従来方法と比べると、同じ飼育期間で約 10%程度の体長および体重の増加が見ら れた。 [0053] Further, most of the fine bubbles NB supplied into the ginger 50 continue to stay in the seawater W for a long time and gradually disappear in the seawater W. As a result, the amount of dissolved oxygen in the seawater W is reduced. As a result, the anoxic region disappears and the purification action by aerobic microorganisms is activated, and the purification of the seawater W can also be achieved. Furthermore, the fine bubble generator 1 is activated, By supplying seawater mixed with microbubbles NB into the seawater W in the sacrifice 50, oxygen can be efficiently dissolved from the surface layer of this sea area to the bottom layer near the bottom 54a. As a result of the 53 vital activities being activated and the growth state being promoted, the body length and weight increased by about 10% in the same breeding period as compared with the conventional method.
[0054] ここで、本実施形態における生け簀 50と、従来の生け簀(図示せず)とにおいて、 同じ年齢の鯛を同じ条件で養殖した場合の生育状態の違いに実験を行ったので、そ の結果について説明する。図 1を参照して説明したように、生け簀 50においては、そ の中央部分の水深 7mの位置に、毎分 5リットルの微細気泡 NB混じりの海水を海水 W中へ供給する能力を有する微細気泡発生部 1が配置されている。このような生け簀 50と、同規模の従来の生け簀(図示せず)とに、 2歳魚の鯛をそれぞれ約 9000個体 ずつ収容し、給餌条件をほぼ同じにする一方、生け簀 50では微細気泡発生部 1を毎 日一定時間稼働させ、約 3ヶ月半の期間、飼育した場合の鯛の体重変化について調 查した。なお、生け簀 50における微細気泡発生部 1の稼働時間は、毎日約 15時間( 午後 5時から翌朝 8時までの間)とした。また、生け簀 50の底部 54aにはイトゴカイ 55 が撒布されている。  [0054] Here, an experiment was conducted on the difference in the growth state when the same age pods were cultured under the same conditions in the sacrifice pod 50 in this embodiment and the conventional pod (not shown). The results will be described. As explained with reference to Fig. 1, in the ginger 50, at the depth of 7m in the center of the ginger 50, fine bubbles with the capacity to supply 5 liters of minute bubbles NB mixed seawater into the seawater W per minute. Generator 1 is located. In this kind of sacrifice 50 and a conventional sacrifice (not shown) of the same scale, about 9000 individual 2-year-old fish cages are accommodated and the feeding conditions are almost the same. 1 was operated for a certain period of time every day, and changes in the weight of the pupae when bred for about three and a half months were examined. The operating time of the microbubble generator 1 in the sacrifice 50 was about 15 hours every day (between 5 PM and 8 AM the next morning). In addition, Itogokai 55 is distributed on the bottom 54 a of the sacrifice 50.
[0055] 実験開始時における、生け簀 50中の鯛の平均個体重は 1643. 2gであり、従来の 生け簀中の鯛の平均個体重は 1612. lgであり、殆ど同じ体重と見なせるものであつ た。この後、給餌条件をほぼ同じとする一方、生け簀 50においては前述した条件で 微細気泡発生部 1を稼働させながら、約 3ヶ月半にわたって飼育を行った。そして、 約 3ヶ月半経過後の各生け簀中の鯛の体重を測定したところ、従来の生け簀中の鯛 の平均個体重が 2066. 5gであったのに対し、生け簀 50中の鯛の平均個体重は 22 84. lgという結果となった。これらの結果を見ると、生け簀 50で飼育された鯛は、従 来の生け簀で飼育された鯛よりも、約 220g程度体重が大であることが分かる。即ち、 生け簀 50で飼育された鯛は、従来の生け簀で飼育された鯛よりも大幅に生育が促進 されていることが分かる。  [0055] At the start of the experiment, the average individual weight of the salmon in the salmon 50 was 1643.2 g, and the average individual weight of the salmon in the conventional salmon was 1612. lg, which can be regarded as almost the same weight. . Thereafter, while the feeding conditions were substantially the same, the sacrificed fish 50 was reared for about three and a half months while operating the microbubble generator 1 under the conditions described above. Then, after measuring the weight of the cocoons in each sacrifice after about three and a half months, the average individual weight of the cocoons in the conventional sacrifice was 2066.6 g, whereas the average number of cocoons in the sacrifice 50 The weight was 22 84. lg. From these results, it can be seen that the pups bred with 50 ginger have a weight of about 220 g more than those bred with conventional ginger. That is, it can be seen that the pups bred with the ginger 50 are greatly promoted in growth than the pupas bred with the conventional ginger.
[0056] なお、本実施形態では鯛 53を養殖する場合について説明しているが、本発明の利 用分野はこれに限定するものではないので、ハマチ、フグ、クルマエビ、ホタテ、ァヮ ビ、カキ、真珠貝などの魚貝類の養殖場あるいはワカメ、コンブ、カジメなどの海草類 の養殖場などにおいても広く利用することができる。 [0056] In the present embodiment, the case where the culm 53 is cultivated is described. However, the field of application of the present invention is not limited to this, and therefore, hamachi, puffer fish, prawns, scallops, sea bream, etc. It can also be widely used in fish farms such as bi, oysters, and pearl shells, or seaweed farms such as seaweed, kombu, and kajime.
[0057] イトゴカイ 55およびその共生細菌は古代より自然界に生息し続ける生物であり、微 細気泡発生部 1はイトゴカイ 55に充分な酸素を与える目的で、微細気泡 NB混じりの 海水 Wを海中へ供給するものであるため、周辺海域の自然環境や魚貝類に悪影響 を及ぼすことがない。また、海底にイトゴカイ 55を撒布し、比較的浅い海域に配置し た微細気泡発生部 1を用いて微細気泡 NB混じりの海水 Wを海域に供給すればょ 、 ので、複雑な設備も必要としない。  [0057] Itogokai 55 and its symbiotic bacteria have been living in nature since ancient times, and the microbubble generator 1 supplies seawater W mixed with microbubbles NB to the sea for the purpose of providing sufficient oxygen to Itogokai 55. Therefore, it does not adversely affect the natural environment and fish shellfish in the surrounding sea area. Also, it is possible to distribute the sea bream 55 on the seabed and supply seawater W mixed with microbubbles NB to the sea area using the microbubble generator 1 located in a relatively shallow sea area, so no complicated equipment is required. .
[0058] 本実施形態においては、微細気泡発生部 1を海中へ投入して電動機 3を作動させ るとともに、海上に配置した気体ポンプ 73から微細気泡発生器 4へ空気を送給する だけで、流体旋回室 14内に流体旋回流 Rが形成され、これによつて発生する微細気 泡 NB混じりの海水 Wを海中へ供給することができるため、魚類養殖場 80のある海域 を容易に浄ィ匕することができる。微細気泡発生部 1は、微細気泡発生器 4、液体ボン プ 2および電動機 3が一体化された構造であるため、海水 Wの導入経路となる配管を 最小限とすることができ、設備の簡素化、小型化を図ることができる。また、微細気泡 発生部 1は、微細気泡発生器 4、液体ポンプ 2および電動機 3を一体化することで小 型化を図っているため、占有スペースが小さくてすむ。このため、生け簀 50内で養殖 されて 、る鯛 53や魚類養殖場 80付近の海流などに対する影響も極めて小さ 、。な お、微細気泡発生部 1を連続的に作動させれば生け簀 50内およびその周辺海域の 海水 W中の溶存酸素量を飽和濃度レベルに保つことができる力 生け簀 50内の海 水 Wの溶存酸素量が低下する夕方から翌朝にかけて作動させるだけであっても、充 分な酸素供給効果を得ることができる。  [0058] In the present embodiment, the fine bubble generating unit 1 is thrown into the sea to operate the electric motor 3, and only air is supplied from the gas pump 73 disposed on the sea to the fine bubble generator 4. Fluid swirl flow R is formed in fluid swirl chamber 14, and microbubbles generated by this can be supplied into the sea with seawater W mixed with NB, making it easy to clean the sea area where fish farm 80 is located. Can be jealous. The micro-bubble generator 1 has a structure in which the micro-bubble generator 4, liquid pump 2, and motor 3 are integrated, so that the piping for introducing seawater W can be minimized and the equipment is simple And miniaturization can be achieved. Further, since the fine bubble generator 1 is miniaturized by integrating the fine bubble generator 4, the liquid pump 2 and the electric motor 3, the occupied space can be small. For this reason, it is cultivated in the cage 50, and its influence on the sea current around the sea urchin 53 and fish farm 80 is extremely small. In addition, if the microbubble generator 1 is operated continuously, the dissolved oxygen content in the seawater W in the ginger 50 and its surrounding seawater W can be maintained at a saturated concentration level. Even if it is operated only from the evening when the amount of oxygen decreases to the next morning, a sufficient oxygen supply effect can be obtained.
[0059] 魚類養殖場 80内において、海底環境が回復する秋から冬に、予め培養しておいた 大量のイトゴカイ培養コロニーを有機物汚泥 54bが堆積する底部 54aに撒布するとと もに微細気泡発生部 1を用 、て微細気泡 NBを海水 W中へ供給することにより、自然 現象では起こり得ない高密度個体群を短期間に発生させることにより、底部 54aに堆 積した有機物汚泥 54bを効率的に浄ィ匕することができる。また、有機物汚泥 54bの堆 積した魚類養殖場 80の底部 54, 54a付近における貧酸素水の発生を無くすことが できるため、酸素低下に伴う養殖魚 (鯛 53)の活動低下、生育不良などを防止するこ とがでさる。 [0059] In the fish farm 80, from autumn to winter when the seafloor environment recovers, a large number of cultivated scallop cultured colonies are distributed on the bottom 54a where the organic sludge 54b is deposited, and the microbubble generation part By using 1 and supplying fine air bubbles NB into seawater W, a high-density population that cannot occur in a natural phenomenon is generated in a short period of time, so that the organic sludge 54b deposited on the bottom 54a can be efficiently removed. It can be purified. It is also possible to eliminate the generation of anoxic water near the bottom 54 and 54a of the fish farm 80 where organic sludge 54b is deposited. Therefore, it is possible to prevent a decrease in the activity and poor growth of cultured fish (鯛 53) due to a decrease in oxygen.
[0060] 微細気泡発生部 1から生け簀 50内の海水 W中へ微細気泡 NBを供給すると、微細 気泡 NBは水平方向だけでなく鉛直方向にも広がり、表層から底層(水深 14m程度) に至るまで、 l〜2mgZL程度の溶存酸素量の上昇を確認することができた。また、 1 基の生け簀 50について、微細気泡発生部を 1基配置すれば、表層から海底付近の 底層まで、溶存酸素量を効率良く高めることができることも分力つた。  [0060] When the fine bubble NB is supplied from the fine bubble generation part 1 into the seawater W in the sacrifice 50, the fine bubble NB extends not only in the horizontal direction but also in the vertical direction, from the surface layer to the bottom layer (water depth of about 14m). , I was able to confirm the increase of dissolved oxygen amount of about 1 ~ 2mgZL. In addition, with respect to a single sacrifice 50, it was also found that if one fine bubble generating part was placed, the amount of dissolved oxygen could be increased efficiently from the surface layer to the bottom layer near the seabed.
[0061] 本実施形態の微細気泡発生部 1は、液体ポンプ 2、電動機 3および微細気泡発生 器 4がー体ィ匕されているため、そのままの状態で自由に移動させることが可能であり、 微細気泡発生部 1全体を海水 W中に浸漬した状態で電動機 3を作動させるだけで海 水 W中に微細気泡 NB混じりの海水を供給することができるため、使い方は極めて容 易である。また、海上の筏上に配置された発電機が稼働している限り、電動機 3によ つて連続作動させることができるため、大量の微細気泡 NBを海水 W中へ安定供給 することができる。  [0061] The fine bubble generating unit 1 of the present embodiment includes the liquid pump 2, the electric motor 3, and the fine bubble generator 4, and can be freely moved as it is. It is very easy to use because the microbubbles NB mixed seawater W can be supplied by simply operating the motor 3 with the entire microbubble generator 1 immersed in the seawater W. In addition, as long as the generator placed on the ocean ridge is operating, it can be continuously operated by the electric motor 3, so that a large amount of fine bubbles NB can be stably supplied into the seawater W.
[0062] 微細気泡発生部 1においは、水導入経路 15の噴出口 15bを、流体旋回室 14の内 周面 14aから離れた位置に設けているため、噴出口 15bから噴き出す水によって負 圧空洞部 Vに水圧が加わることがない。したがって、負圧空洞部 Vは流体旋回室 14 の軸心 S上にほぼ直線状に形成され、その位置および形状も安定した状態が保たれ ることとなり、キヤビテーシヨンエロージョンの発生が防止されるため、微細気泡発生 器 4は優れた耐久性を発揮する。  [0062] In the fine bubble generating part 1, since the jet outlet 15b of the water introduction path 15 is provided at a position away from the inner peripheral surface 14a of the fluid swirl chamber 14, a negative pressure cavity is formed by the water jetted from the jet outlet 15b. No water pressure is applied to part V. Therefore, the negative pressure cavity V is formed almost linearly on the axis S of the fluid swirl chamber 14, and the position and shape thereof are kept stable, thereby preventing the occurrence of cavity erosion. Therefore, the fine bubble generator 4 exhibits excellent durability.
[0063] また、空気導入経路 16の先端開口部 16aを、流体旋回室 14の軸心 S上に配置し ているため、流体旋回室 14内の流体旋回流 Rによって軸心 S付近に発生する負圧 空洞部 Vに生じる大きな負圧を利用して、大気中の空気を効率良く流体旋回室 14内 へ導入して微細気泡 NBを形成することができる。  [0063] Further, since the tip opening 16a of the air introduction path 16 is disposed on the axis S of the fluid swirl chamber 14, the fluid swirl flow R in the fluid swirl chamber 14 generates near the axis S. Negative pressure Using the large negative pressure generated in the cavity V, air in the atmosphere can be efficiently introduced into the fluid swirl chamber 14 to form the fine bubbles NB.
[0064] 一方、隔壁 17aに開設された吐出経路 17と対向する位置に、軸心 S方向と交差す る平面 18aを有する誘導部材 18を配置しているため、吐出経路 17から旋回しながら 吐出された微細気泡 NB混じりの海水を誘導部材 18の平面 18aに沿って周辺へ拡 力 ¾ように誘導した後、 3つの吹出口 19から互いに異なる 3つの方向へ排出すること が可能であり、微細気泡 NBの拡散性も良好である。 [0064] On the other hand, since the guide member 18 having the flat surface 18a intersecting the axis S direction is disposed at a position facing the discharge path 17 established in the partition wall 17a, the discharge is performed while turning from the discharge path 17 The seawater mixed with the fine bubbles NB is expanded to the periphery along the plane 18a of the guiding member 18. After being guided in this way, it is discharged from the three outlets 19 in three different directions. The diffusibility of the fine bubbles NB is also good.
[0065] また、これによつて流体旋回室 14内の負圧レベルが高まり、大量の空気が流体旋 回室 14内へ導入されるようになるため、微細気泡 NBの発生量も増大する。さらに、 流体旋回室 14内に生じている負圧空洞部 Vの負圧により、微細気泡発生器 4外部の 吐出経路 17付近の海水 Wが、吐出経路 17へ誘引されるのを当該誘導部材 18が阻 止するので、流体旋回室 14内への海水 Wの逆流入を防止することができる。  [0065] This also increases the negative pressure level in the fluid swirl chamber 14, and a large amount of air is introduced into the fluid swirl chamber 14, so that the amount of fine bubbles NB generated is also increased. Further, the induction member 18 is caused by the negative pressure of the negative pressure cavity V generated in the fluid swirl chamber 14 and the seawater W in the vicinity of the discharge path 17 outside the fine bubble generator 4 is attracted to the discharge path 17. Therefore, the reverse flow of seawater W into the fluid swirl chamber 14 can be prevented.
[0066] 本実施形態は、自然閉鎖水域の一つである湾内に設けられた魚類養殖場 80にお いて実施した例である力 イトゴカイ 55は、海水と河川など力も流入する淡水とが混 合して形成される汽水が恒常的にあるいは季節的に存在する河口域や内湾(いわゆ る汽水域)の底部においても生息可能である。このため、本発明の魚貝類養殖方法 は、このような汽水域においても実施可能であり、その場合においても前述したような 優れた作用効果を得ることができる。  [0066] This embodiment is an example implemented in a fish farm 80 provided in a bay, which is one of the natural closed water areas. It can also inhabit estuaries and inner bays (i.e. so-called brackish waters) where the brackish water formed constantly or seasonally exists. For this reason, the fish and shellfish culture method of the present invention can be carried out even in such a brackish water area, and even in such a case, the excellent operational effects as described above can be obtained.
[0067] ここで、図 10を参照して、微細気泡発生器 4に関するその他の実施の形態につい て説明する。図 10に示す微細気泡発生器 4Xにおいては、流体旋回室 14の内周面 14aの接線方向に排出口 36を開設し、この排出口 36に開閉弁 35aを有する排出管 35を連結している。通常運転の際、開閉弁 35aは閉じられている力 流体旋回室 14 内にゴミゃ異物などが侵入した場合、開閉弁 35aを開いて排出することができる。排 出口 36が流体旋回室 14の内周面 14aの接線方向を向いていれば、排出口 36の位 置は、円筒ケーシング 4aのどの位置であってもよいが、流体旋回室 14の内径が一定 でない場合は、最大内径部分に設けることが望ましい。その他の部分の構造、機能 などは微細気泡発生器 4と同様である。  Here, with reference to FIG. 10, another embodiment relating to the fine bubble generator 4 will be described. In the fine bubble generator 4X shown in FIG. 10, a discharge port 36 is opened in the tangential direction of the inner peripheral surface 14a of the fluid swirl chamber 14, and a discharge pipe 35 having an on-off valve 35a is connected to the discharge port 36. . During normal operation, the on-off valve 35a is closed. If foreign matter enters the fluid swirl chamber 14, the on-off valve 35a can be opened and discharged. As long as the discharge port 36 faces the tangential direction of the inner peripheral surface 14a of the fluid swirl chamber 14, the position of the discharge port 36 may be anywhere in the cylindrical casing 4a, but the inner diameter of the fluid swirl chamber 14 is If it is not constant, it is desirable to provide it at the maximum inner diameter. The structure and functions of the other parts are the same as the microbubble generator 4.
[0068] 次に、図 11〜図 14を参照して、微細気泡発生器に関するその他の実施の形態に ついて説明する。図 11は微細気泡発生器に関する第 2実施形態を示す図、図 12は 図 11に示す微細気泡発生器の斜視図、図 13は図 12における E— E線断面図、図 1 4は図 11に示す微細気泡発生器の稼働状態を示す模式図である。  Next, with reference to FIGS. 11 to 14, other embodiments relating to the fine bubble generator will be described. FIG. 11 is a diagram showing a second embodiment of the microbubble generator, FIG. 12 is a perspective view of the microbubble generator shown in FIG. 11, FIG. 13 is a cross-sectional view taken along the line EE in FIG. 12, and FIG. It is a schematic diagram which shows the operating state of the fine bubble generator shown in FIG.
[0069] 図 11〜図 14に示すように、微細気泡発生器 20は、略直方体形状のケーシング 21 内に流体 (海水および空気)が旋回可能な円筒状の流体旋回室 22が設けられ、流 体旋回室 22の軸心 S方向の中央部分の内周面 22aには、その法線方向に、空気を 導入するための 1つの空気導入経路 24が開設され、この空気導入経路 24を挟む両 端寄り部分には、流体旋回室 22の内周面 22aの接線方向に、海水を導入可能な 2 つの水導入経路 23が開設されて 、る。 As shown in FIGS. 11 to 14, the fine bubble generator 20 includes a cylindrical fluid swirl chamber 22 in which a fluid (seawater and air) can swirl in a substantially rectangular parallelepiped casing 21, The inner circumferential surface 22a of the central portion of the body swirl chamber 22 in the S direction is air-aired in the normal direction. One air introduction path 24 for introduction is established, and two waters that can introduce seawater in the tangential direction of the inner peripheral surface 22a of the fluid swirl chamber 22 are located near both ends sandwiching the air introduction path 24. Introduction route 23 has been established.
[0070] これらの水導入経路 23および空気導入経路 24は、それぞれケーシング 21を貫通 して形成され、ケーシング 21外面のそれぞれの開口部分に水導入管 23a、空気導 入管 24aが接続されている。 2本の水導入管 23aは、その上流側で一本化された状 態で送水管 23bに連結され、空気導入管 24aはそのまま送水管 23b方向に延長され ている。 [0070] Each of the water introduction path 23 and the air introduction path 24 is formed so as to penetrate the casing 21, and the water introduction pipe 23a and the air introduction pipe 24a are connected to respective opening portions of the outer surface of the casing 21. The two water introduction pipes 23a are connected to the water supply pipe 23b in a unified state on the upstream side, and the air introduction pipe 24a is extended in the direction of the water supply pipe 23b as it is.
[0071] また、流体旋回室 22の軸心 S方向の両端部には、軸心 Sと直交する平面状の隔壁 21aが設けられ、これらの隔壁 21aの中心部分 (軸心 Sとの交差部分)には、それぞ れ円形の吐出経路 25が開設され、 2つの吐出経路 25にそれぞれ誘導管 26が連結 されている。誘導管 26は、後述するように、吐出経路 25から吐出される微細気泡 NB 混じりの海水の吐出方向に沿って直線状に突出するように連通され、この誘導管 26 によって、その吐出方向を規制している。  [0071] In addition, at both ends of the fluid swirl chamber 22 in the direction of the axis S, planar partition walls 21a orthogonal to the axis S are provided, and central portions of these partition walls 21a (intersections with the axis S) ) Each have a circular discharge path 25, and a guide pipe 26 is connected to each of the two discharge paths 25. As will be described later, the guide pipe 26 is communicated so as to protrude linearly along the discharge direction of seawater mixed with fine bubbles NB discharged from the discharge path 25, and the discharge direction is regulated by the guide pipe 26. is doing.
[0072] 図 1と同様に、生け簀 50内の海水 W中へ微細気泡発生器 20を浸漬し、筏 71上に 配置した液体ポンプ(図示せず)から送水管 23bおよび水導入管 23aを経由して海 水を圧送し、水導入経路 23から流体旋回室 22内へ海水を圧送するとともに、気体ポ ンプ 73 (図 1参照)から空気導入管 24aを経由して空気導入経路 24から流体旋回室 22内へ空気を流入させると、流体旋回室 22内に軸心 S周りの流体旋回流 Rが発生 するとともに、軸心 S付近には負圧空洞部 Vが形成される。  [0072] As in FIG. 1, the fine bubble generator 20 is immersed in the seawater W in the fish bowl 50, and from the liquid pump (not shown) placed on the bowl 71, through the water supply pipe 23b and the water introduction pipe 23a. Then, sea water is pumped and sea water is pumped from the water introduction path 23 into the fluid swirl chamber 22, and fluid swirl from the air introduction path 24 via the air introduction pipe 24a from the gas pump 73 (see Fig. 1). When air flows into the chamber 22, a fluid swirl flow R around the axis S is generated in the fluid swirl chamber 22, and a negative pressure cavity V is formed in the vicinity of the axis S.
[0073] 空気導入経路 24から流体旋回室 22内に流入する空気は、流体旋回流 Rの剪断作 用によって細力べ砕かれ、負圧空洞部 Vの周りを回転しながら微細気泡 NBとなって いき、やがて吐出経路 25から微細気泡 NB混じりの海水となって吐出される。吐出経 路 25から吐出された微細気泡 NB混じりの海水は、誘導管 26によって誘導されなが ら生け簀 50内の海水 W中へ吐出される。これによつて、海水 W中の溶存酸素量が高 まり、微細気泡発生部 1を用いた場合と同様の作用効果を得ることができる。  [0073] The air flowing into the fluid swirl chamber 22 from the air introduction path 24 is shattered by the shearing action of the fluid swirl flow R, and turns into fine bubbles NB while rotating around the negative pressure cavity V. Eventually, it will be discharged from the discharge path 25 as seawater mixed with fine bubbles NB. The seawater mixed with fine bubbles NB discharged from the discharge path 25 is discharged into the seawater W in the ginger 50 while being guided by the guide pipe 26. As a result, the amount of dissolved oxygen in the seawater W increases, and the same effect as when the fine bubble generating unit 1 is used can be obtained.
[0074] また、気体ポンプ 73で空気を圧送することにより、微細気泡 NBと共に、微細気泡 N Bよりも外径が大きな気泡 (外径が数 mm程度と推測される)を発生させることもできる ので、これらの気泡によって海水 wを撹拌する作用も得ることができる。なお、酸素富 化膜を内蔵した酸素富化器 (図示せず)を空気送給経路の途中に設け、酸素濃度を 高めた空気を微細気泡発生器 20の流体旋回室 22に送り込めば、酸素濃度の高い 微細気泡 NBを海水 W中へ供給することができるため、海水 W中の溶存酸素濃度を 大幅に高めることができる。 [0074] Further, by pumping air with the gas pump 73, it is possible to generate, together with the fine bubbles NB, bubbles having an outer diameter larger than that of the fine bubbles NB (the outer diameter is estimated to be about several millimeters). Therefore, the action of stirring the seawater w by these bubbles can also be obtained. If an oxygen enricher (not shown) with an oxygen enriched membrane is installed in the middle of the air feed path and air with an increased oxygen concentration is sent into the fluid swirl chamber 22 of the fine bubble generator 20, Since the fine bubbles NB with high oxygen concentration can be supplied into the seawater W, the dissolved oxygen concentration in the seawater W can be greatly increased.
[0075] さらに、本実施形態では、微細気泡発生器 20の吐出経路 25に誘導管 26を設けて いるため、吐出経路 25から吐出される微細気泡 NB混じりの海水は、周囲の海水 W に邪魔されることなぐ速やかに一定方向へ吐出される。従って、周囲の海水 Wが吐 出経路 25内へ誘引されたり、流体旋回室 22内へ海水 Wが逆流入したりすることがな くなり、流体旋回室 22内に発生している負圧レベルが大幅に高まり、大量の微細気 泡 NBを安定供給することができる。また、微細気泡 NB混じりの海水が誘導管 26を 通過して海水 W中へ放出されることにより、流動方向が収束され、その直進性が向上 するため、生け簀 50内のより遠い領域へ微細気泡 NBを供給することが可能であり、 周囲の海水 Wに対する撹拌作用も発揮する。微細気泡発生器 20は、筏上に配置し た液体ポンプなどから海水を供給する方式であるため、海中投入部分を微細気泡発 生部 1よりも小型化することができる。このため、魚類養殖場で使用した場合、養殖さ れている魚貝類や付近の海流に対する影響をさらに小さくすることができる。  Furthermore, in this embodiment, since the guide pipe 26 is provided in the discharge path 25 of the fine bubble generator 20, the seawater mixed with the fine bubbles NB discharged from the discharge path 25 interferes with the surrounding seawater W. Without being done, it is discharged in a certain direction immediately. Accordingly, the surrounding seawater W is not attracted into the discharge path 25, and the seawater W does not flow back into the fluid swirl chamber 22, and the negative pressure level generated in the fluid swirl chamber 22 is prevented. The amount of microbubbles NB can be stably supplied. Also, the seawater mixed with fine bubbles NB passes through the induction pipe 26 and is released into the seawater W, so that the flow direction is converged and the straightness is improved. It is possible to supply NB, and also exerts a stirring action on the surrounding seawater W. Since the fine bubble generator 20 is a method of supplying seawater from a liquid pump or the like disposed on the ridge, the portion that is introduced into the sea can be made smaller than the fine bubble generator 1. For this reason, when used in a fish farm, the effects on the fish shellfish being cultivated and the nearby ocean current can be further reduced.
[0076] ここで、図 15を参照して、微細気泡発生器 20に関するその他の実施の形態につい て説明する。図 10に示す微細気泡発生器 20Xにおいては、流体旋回室 22の内周 面 22aの接線方向に排出口 38を開設し、この排出口 38に開閉弁 37aを有する排出 管 37を連結している。図 10で示した微細気泡発生器 4Xと同様、通常運転の際、開 閉弁 37aは閉じられている力 流体旋回室 22内にゴミゃ異物などが侵入した場合、 開閉弁 37aを開いて排出することができる。排出口 38が流体旋回室 22の内周面 22 aの接線方向を向いていれば、排出口 38の位置は、ケーシング 21のどの位置であつ てもよいが、水導入経路 23と対向する位置に開設すれば、水導入経路 23から流入 する水流により、ゴミゃ異物などを迅速に排出することができる。また、流体旋回室 22 の内径が一定でない場合は、最大内径部分に設けることが望ましい。なお、開閉弁 3 7aを開いた状態にした排出管 37を経由して、外部から流体旋回室 22内へ海水 Wを 流入させることも可能であり、その場合、流体旋回室 22内に、流体旋回流 Rと逆方向 に旋回する気液旋回流を発生させることができる。その他の部分の構造、機能などは 微細気泡発生器 20と同様である。 Here, with reference to FIG. 15, another embodiment relating to the fine bubble generator 20 will be described. In the fine bubble generator 20X shown in FIG. 10, a discharge port 38 is opened in the tangential direction of the inner peripheral surface 22a of the fluid swirl chamber 22, and a discharge pipe 37 having an on-off valve 37a is connected to the discharge port 38. . As with the microbubble generator 4X shown in Fig. 10, the opening and closing valve 37a is closed during normal operation.If foreign matter enters the fluid swirling chamber 22, the on-off valve 37a is opened and discharged. can do. As long as the discharge port 38 faces the tangential direction of the inner peripheral surface 22a of the fluid swirl chamber 22, the position of the discharge port 38 may be any position on the casing 21, but the position facing the water introduction path 23. If it is established in the country, foreign substances etc. can be quickly discharged by the water flowing in from the water introduction path 23. Further, when the inner diameter of the fluid swirl chamber 22 is not constant, it is desirable to provide it at the maximum inner diameter portion. The seawater W is supplied from the outside into the fluid swirl chamber 22 via the discharge pipe 37 with the open / close valve 37a opened. In this case, a gas-liquid swirl flow swirling in a direction opposite to the fluid swirl flow R can be generated in the fluid swirl chamber 22. The structure and functions of other parts are the same as for the fine bubble generator 20.
[0077] 次に、図 16〜図 18を参照して、微細気泡発生器に関するその他の実施の形態に ついて説明する。図 16は微細気泡発生器に関する第 3実施形態を示す斜視図、図 17は図 16における F— F線断面図、図 18は図 16に示す微細気泡発生器の稼働状 態を示す模式図である。なお、図 16〜図 18に示す微細気泡発生器において、前述 した微細気泡発生器 20と同じ構造、機能を有する部分については図 11〜図 14に示 す符号と同じ符合を付して説明を省略する。  Next, with reference to FIGS. 16 to 18, other embodiments relating to the fine bubble generator will be described. FIG. 16 is a perspective view showing a third embodiment relating to the fine bubble generator, FIG. 17 is a cross-sectional view taken along the line FF in FIG. 16, and FIG. 18 is a schematic view showing an operating state of the fine bubble generator shown in FIG. is there. In the fine bubble generator shown in FIG. 16 to FIG. 18, parts having the same structure and function as those of the fine bubble generator 20 described above are given the same reference numerals as those shown in FIG. 11 to FIG. Omitted.
[0078] 図 16〜図 18に示すように、微細気泡発生器 30は、前述した微細気泡発生器 20に おける空気導入経路 24および空気導入管 24aを無くした構造であり、その他は微細 気泡発生器 20と同じである。微細気泡発生器 30においては、海水と空気との混合 流体を流体送給管 33bおよび流体導入管 33aを経由して送給し、この混合流体を流 体旋回室 32の内周面の接線方向に配置された流体導入経路 33から流体旋回室 32 内へ導入して高速旋回させることによって発生させた微細気泡 NB混じりの海水を吐 出経路 25および誘導管 26を通して生け簀 50内の海水中へ供給する。  As shown in FIGS. 16 to 18, the fine bubble generator 30 has a structure in which the air introduction path 24 and the air introduction pipe 24a in the fine bubble generator 20 described above are eliminated, and the other is fine bubble generation. Same as vessel 20. In the fine bubble generator 30, a mixed fluid of seawater and air is supplied via the fluid supply pipe 33b and the fluid introduction pipe 33a, and this mixed fluid is tangential to the inner peripheral surface of the fluid swirl chamber 32. The microbubbles generated by introducing the fluid into the fluid swirl chamber 32 from the fluid introduction path 33 arranged at the high speed and swirling at high speed are supplied to the seawater in the ginger 50 through the discharge path 25 and the guide pipe 26. To do.
[0079] 微細気泡発生器 30の場合、 1本の流体送給管 33bを経由して、海水と空気との混 合流体を流体旋回室 32内へ送給することによって微細気泡 NB混じりの海水を吐出 することができるため、長尺の空気送給管などが不要であり、配管や取り扱いが容易 で、空気送給管が目詰まりするおそれもない。また、海上力も流体送給管 33bを経由 して送給する空気と海水との混合流体中の空気混入率を増減させることにより、発生 する微細気泡 NBの外径を増減させることができる。その他の構造、機能などは微細 気泡発生器 20と同様である。  [0079] In the case of the fine bubble generator 30, the mixed fluid of seawater and air is fed into the fluid swirl chamber 32 through the single fluid feed pipe 33b, and the seawater mixed with fine bubbles NB. Therefore, there is no need for long air supply pipes, etc., piping and handling are easy, and there is no risk of clogging of the air supply pipe. In addition, the outer diameter of the generated fine bubbles NB can be increased or decreased by increasing or decreasing the air mixing rate in the mixed fluid of air and seawater that is supplied via the fluid supply pipe 33b. Other structures and functions are the same as the fine bubble generator 20.
[0080] 以上の実施形態においては、微細気泡発生器 4, 20, 30などを海水 W中に配置し て海域を浄ィ匕しながら魚貝類を養殖する場合について説明しているが、本発明はこ れらの実施形態に限定するものではないので、淡水域あるいは汽水域における魚貝 類養殖方法として実施することもできる。即ち、微細気泡発生器 4, 20, 30などを淡 水域中あるいは汽水域中に配置し、水および空気を微細気泡発生器 4, 20, 30に 供給して流体旋回室 14, 22, 32内に形成される流体旋回流 Rによって発生する微 細気泡 NB混じりの淡水を当該淡水域中へ供給して、これらの水域の底部に生息す る底生生物に酸素を供給することもできる。これによつて、淡水域や汽水域の水質お よび底質の浄ィ匕を図ることができるため、これらの水域で飼育されている魚貝類の生 育状態を促進させることができる。 [0080] In the above embodiment, the case where the fine bubble generators 4, 20, 30 and the like are arranged in the seawater W and fish shellfish are cultured while purifying the sea area has been described. However, the present invention is not limited to these embodiments, and can be implemented as a fish shell culture method in freshwater or brackish water. That is, the fine bubble generators 4, 20, 30 etc. are placed in fresh water or brackish water, and water and air are sent to the fine bubble generators 4, 20, 30. Supplying fine water NB-mixed fresh water into the fresh water area by the fluid swirl flow R formed in the fluid swirl chamber 14, 22, 32, and the bottom that inhabit the bottom of these water areas It can also supply oxygen to living organisms. As a result, it is possible to purify the water quality and bottom quality of freshwater bodies and brackish water areas, so that the breeding state of fish and shellfish bred in these water areas can be promoted.
産業上の利用可能性 Industrial applicability
本発明の魚貝類養殖方法は、沿岸水域に設けられた魚貝類養殖場などの人工的 な海域における魚貝類養殖方法として利用できるほか、自然海域、汽水域あるいは 淡水域における魚貝類養殖方法としても広く利用することができる。  The fish shell culture method of the present invention can be used as a fish shell culture method in an artificial sea area such as a fish shell farm in a coastal water area, and also as a fish shell culture method in a natural sea area, a brackish water area, or a fresh water area. Can be widely used.

Claims

請求の範囲 The scope of the claims
[1] 流体旋回室を内蔵した微細気泡発生手段を浄ィ匕対象である水域中に配置し、前 記微細気泡発生手段に水および空気を供給して前記流体旋回室内に形成される流 体旋回流によって発生する微細気泡混じりの水を前記水域中へ供給するとともに、 前記水域の底部に生息する底生生物に酸素を供給することによって浄化される前記 水域において魚貝類を飼育することを特徴とする魚貝類養殖方法。  [1] A fluid formed in the fluid swirl chamber by disposing the fine bubble generating means including the fluid swirl chamber in the water area to be purified and supplying water and air to the fine bubble generating means. Supplying water containing fine bubbles generated by swirling flow into the water area, and breeding fish and shellfish in the water area purified by supplying oxygen to benthic organisms that inhabit the bottom of the water area Fish shell culture method.
[2] 浄ィ匕対象である海水域の底部にイトゴカイ類を撒布し、流体旋回室を内蔵した微細 気泡発生手段を前記イトゴカイ類の撒布領域上の海水域中に配置し、前記微細気 泡発生手段に海水および空気を供給して前記流体旋回室内に形成される流体旋回 流により発生する微細気泡混じりの海水を前記海水域中へ供給するとともに、前記水 域の底部に生息する底生生物および前記イトゴカイ類に酸素を供給することによって 浄化される前記水域において魚貝類を飼育することを特徴とする魚貝類養殖方法。  [2] Disperse spiders at the bottom of the seawater area to be purified, and place fine bubble generating means with a built-in fluid swirl chamber in the seawater region on the dispersal area of the reeds. Seawater and air are supplied to the generating means to supply seawater mixed with fine bubbles generated by the fluid swirl formed in the fluid swirl chamber into the seawater area, and benthic organisms that inhabit the bottom of the water area And a method for culturing fish and shellfish, wherein the fish and shellfish are bred in the water area purified by supplying oxygen to the cynomolgus shellfish.
[3] 前記微細気泡発生手段として、  [3] As the fine bubble generating means,
流体が軸心の周りを旋回可能な筒体形状若しくは回転体形状の流体旋回室と、前 記軸心とねじれの位置をなす方向に沿って前記流体旋回室内へ水を送給するように 配置された流体導入経路と、前記流体旋回室内へ空気を送給するため前記流体旋 回室に連通して設けられた空気導入経路と、前記流体旋回室力 微細気泡混じりの 水を排出するため前記軸心の延長線上に設けられた吐出経路とを備えた微細気泡 発生器と、  A cylindrical or rotating fluid swirl chamber in which fluid can swivel around an axis, and water is fed into the fluid swirl chamber along a direction that forms a twisted position with respect to the shaft center. A fluid introduction path, an air introduction path provided in communication with the fluid swirl chamber for supplying air into the fluid swirl chamber, and the fluid swirl chamber force for discharging water mixed with fine bubbles. A fine bubble generator having a discharge path provided on an extension line of the shaft center;
前記水導入経路を経由して前記流体旋回室内へ水を供給する液体ポンプと、 前記空気導入経路を経由して前記流体旋回室内へ空気を供給する気体ポンプと、 を備えた微細気泡発生装置を用いた請求項 1または 2記載の魚貝類養殖方法。  A fine bubble generator comprising: a liquid pump that supplies water into the fluid swirl chamber via the water introduction path; and a gas pump that supplies air into the fluid swirl chamber via the air introduction path. The method for culturing fish and shellfish according to claim 1 or 2.
[4] 前記微細気泡発生手段として、 [4] As the fine bubble generating means,
流体が軸心の周りを旋回可能な筒体形状若しくは回転体形状の流体旋回室と、前 記軸心とねじれの位置をなす方向に沿って前記流体旋回室内へ空気混じりの水を 送給するように配置された気水導入経路と、前記流体旋回室から微細気泡混じりの 水を排出するため前記軸心の延長線上に配置された吐出経路とを備えた微細気泡 発生器と、 前記気水導入経路を経由して前記流体旋回室内へ水を供給する液体ポンプと、 前記気水導入経路を経由して前記流体旋回室内へ空気を供給する気体ポンプと、 を備えた微細気泡発生装置を用いた請求項 1または 2記載の魚貝類養殖方法。 前記微細気泡発生手段として、 A cylindrical or rotating fluid swirl chamber in which a fluid can swivel around an axis, and air-mixed water is fed into the fluid swirl chamber along a direction that forms a twisted position with respect to the shaft center. A microbubble generator comprising: an air / water introduction path arranged as described above; and a discharge path arranged on an extension line of the shaft for discharging water mixed with microbubbles from the fluid swirl chamber; A fine bubble generation comprising: a liquid pump for supplying water into the fluid swirl chamber via the air / water introduction path; and a gas pump for supplying air into the fluid swirl chamber via the air / water introduction path. The fish shellfish cultivation method according to claim 1 or 2, wherein the apparatus is used. As the fine bubble generating means,
流体が軸心の周りを旋回可能な筒体形状若しくは回転体形状の流体旋回室と、前 記軸心とねじれの位置をなす方向に沿って前記流体旋回室内へ水を送給するように 配置された水導入経路と、前記流体旋回室内へ空気を送給するため前記流体旋回 室に連通して設けられた空気導入経路と、前記流体旋回室力 微細気泡混じりの水 を排出するため前記軸心の延長線上に設けられた吐出経路とを備えた微細気泡発 生器と、  A cylindrical or rotating fluid swirl chamber in which fluid can swivel around an axis, and water is fed into the fluid swirl chamber along a direction that forms a twisted position with respect to the shaft center. A water introduction path, an air introduction path provided in communication with the fluid swirl chamber for supplying air to the fluid swirl chamber, and the shaft for discharging the fluid swirl chamber force water mixed with fine bubbles. A microbubble generator having a discharge path provided on an extension of the heart;
水中に浸漬可能な部分に設けられた吸込口から吸い込んだ水を、前記水導入経 路を経由して前記流体旋回室内へ送給する防水性の液体ポンプと、  A waterproof liquid pump for feeding water sucked from a suction port provided in a portion that can be immersed in water into the fluid swirl chamber via the water introduction path;
前記液体ポンプを作動させる防水性の駆動機と、を一体化させた微細気泡発生部 と、  A fine bubble generator integrated with a waterproof drive for operating the liquid pump;
前記微細気泡発生部の前記空気導入経路を経由して前記流体旋回室内へ空気 を送給する気体ポンプと、  A gas pump for feeding air into the fluid swirl chamber via the air introduction path of the fine bubble generating unit;
を備えた微細気泡発生装置を用いた請求項 1または 2記載の魚貝類養殖方法。  The method for culturing fish and shellfish according to claim 1 or 2, wherein a micro-bubble generating device comprising:
PCT/JP2006/309399 2005-05-13 2006-05-10 Method of aquafarming fishes or shellfishes WO2006121075A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005141596A JP2006314281A (en) 2005-05-13 2005-05-13 Method for culturing fish and shellfish
JP2005-141596 2005-05-13

Publications (1)

Publication Number Publication Date
WO2006121075A1 true WO2006121075A1 (en) 2006-11-16

Family

ID=37396582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309399 WO2006121075A1 (en) 2005-05-13 2006-05-10 Method of aquafarming fishes or shellfishes

Country Status (2)

Country Link
JP (1) JP2006314281A (en)
WO (1) WO2006121075A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2534946A1 (en) * 2011-06-16 2012-12-19 Linde Aktiengesellschaft Method to reduce nitrogen concentration in salt water
JP2014014359A (en) * 2012-06-14 2014-01-30 Takaaki Matsumoto Fish-and-shellfish oxygen water and manufacturing system therefor, fish-and-shellfish breeding apparatus, fish-and-shellfish breeding method, fish-and-shellfish transporting method, and oxygen ice for fish-and-shellfish
CN110476855A (en) * 2019-08-14 2019-11-22 宁波大学科学技术学院 A kind of far-reaching extra large aquafarm
US20200029536A1 (en) * 2018-07-24 2020-01-30 Running Tide Technologies, Inc. Systems and methods for the cultivation of aquatic animals

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101765122B1 (en) * 2015-05-21 2017-08-04 유한회사 주하나 Power supplying apparatus for fish holding nursery and fish holding nursery including the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09271292A (en) * 1996-04-01 1997-10-21 Shunzo Tsuboi Water purifier using benthic animal such as marine worm or the like
JP2001231394A (en) * 2000-02-28 2001-08-28 Mercian Corp Method for culturing capitella sp.1 for cleaning organic substance sludge and method for cleaning organic substance sludge
JP2005034814A (en) * 2003-07-18 2005-02-10 Tashizen Techno Works:Kk Fine bubble generator

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE355118T1 (en) * 1999-05-15 2006-03-15 Hirofumi Ohnari DEVICE AND METHOD FOR GENERATING GAS MICRO BUBBLES IN A LIQUID
WO2001097958A1 (en) * 2000-06-23 2001-12-27 Ikeda, Yoshiaki Fine air bubble generator and fine air bubble generating device with the generator
JP4145000B2 (en) * 2000-06-30 2008-09-03 株式会社 多自然テクノワークス Fine bubble feeder
JP4124956B2 (en) * 2000-11-30 2008-07-23 株式会社 多自然テクノワークス Fine bubble supply method and fine bubble supply device
JP2002096089A (en) * 2000-09-21 2002-04-02 Hajime Uchiyama Water quality cleaning device
JP2003145190A (en) * 2001-07-26 2003-05-20 Ryosaku Fujisato Aerator
JP4067385B2 (en) * 2002-10-31 2008-03-26 株式会社 多自然テクノワークス Water storage purification device
JP2004298817A (en) * 2003-04-01 2004-10-28 Takashi Doi Water purification system and gas/liquid mixing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09271292A (en) * 1996-04-01 1997-10-21 Shunzo Tsuboi Water purifier using benthic animal such as marine worm or the like
JP2001231394A (en) * 2000-02-28 2001-08-28 Mercian Corp Method for culturing capitella sp.1 for cleaning organic substance sludge and method for cleaning organic substance sludge
JP2005034814A (en) * 2003-07-18 2005-02-10 Tashizen Techno Works:Kk Fine bubble generator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2534946A1 (en) * 2011-06-16 2012-12-19 Linde Aktiengesellschaft Method to reduce nitrogen concentration in salt water
JP2014014359A (en) * 2012-06-14 2014-01-30 Takaaki Matsumoto Fish-and-shellfish oxygen water and manufacturing system therefor, fish-and-shellfish breeding apparatus, fish-and-shellfish breeding method, fish-and-shellfish transporting method, and oxygen ice for fish-and-shellfish
US20200029536A1 (en) * 2018-07-24 2020-01-30 Running Tide Technologies, Inc. Systems and methods for the cultivation of aquatic animals
US10945417B2 (en) * 2018-07-24 2021-03-16 Running Tide Technologies, Inc. Systems and methods for the cultivation of aquatic animals
US11647735B2 (en) 2018-07-24 2023-05-16 Running Tide Technologies, Inc. System and methods for the cultivation of aquatic animals
CN110476855A (en) * 2019-08-14 2019-11-22 宁波大学科学技术学院 A kind of far-reaching extra large aquafarm

Also Published As

Publication number Publication date
JP2006314281A (en) 2006-11-24

Similar Documents

Publication Publication Date Title
WO2006121074A1 (en) Method of purifying water area
US9167803B2 (en) Device for farming benthic organisms such as bivalves
MXPA97004360A (en) System and method of mariculture to open heaven to raise animals mari
JPH11501524A (en) Open marine aquaculture systems and marine animal aquaculture methods
JP6100301B2 (en) Purification device and aquarium equipped with the same
Holan et al. Health management in recirculating aquaculture systems (RAS)
JP5042585B2 (en) Water purification device and water purification method
JP5954629B2 (en) Water and bottom purification system for bivalve aquaculture and eutrophication waters
WO2006121075A1 (en) Method of aquafarming fishes or shellfishes
JP4870174B2 (en) Water treatment apparatus and water treatment method
CN109851163A (en) A kind of unhurried current small watershed removes algae algae control method
JP3957721B2 (en) Fish culture apparatus and method
CN108293947A (en) A kind of aquaculture aeration equipment
JP2007054735A (en) Sludge purification method
WO2018211513A1 (en) Method and system for maintaining water quality
JP5913717B1 (en) Sandy aquatic life culture equipment
CN109475827A (en) Mixed processing body, mixed processing method, mixing generate fluid, flow mixer, fluid mixed processing device, fish and shellfish cultivating system and fish and shellfish cultivation method
JP3535103B2 (en) Pearl culture method and system
JPH07284355A (en) Sea water-filtering device for fish culture preserve
JP6645659B2 (en) How to eliminate bluefish
JP2015061513A (en) Completely closed circulation type land breeding system for abalones and land breeding method for abalones using the same
JP2017086060A (en) Culture apparatus for underwater creatures that live in sandy soil
JP2004267868A (en) System for dissolving/storing/supplying gas with line atomizer
JP2002320427A (en) Fishes and shellfishes culturing equipment
KR20150144418A (en) Water purification apparatus using the water pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06746213

Country of ref document: EP

Kind code of ref document: A1