JP2021018951A - Inorganic insulation cable and weld method thereof - Google Patents
Inorganic insulation cable and weld method thereof Download PDFInfo
- Publication number
- JP2021018951A JP2021018951A JP2019135088A JP2019135088A JP2021018951A JP 2021018951 A JP2021018951 A JP 2021018951A JP 2019135088 A JP2019135088 A JP 2019135088A JP 2019135088 A JP2019135088 A JP 2019135088A JP 2021018951 A JP2021018951 A JP 2021018951A
- Authority
- JP
- Japan
- Prior art keywords
- sheath
- welding
- fixing component
- welded
- inorganic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000009413 insulation Methods 0.000 title abstract description 7
- 238000003466 welding Methods 0.000 claims abstract description 85
- 239000000835 fiber Substances 0.000 claims abstract description 25
- 229910052751 metal Inorganic materials 0.000 claims abstract description 22
- 239000002184 metal Substances 0.000 claims abstract description 22
- 230000013011 mating Effects 0.000 claims abstract description 9
- 239000011810 insulating material Substances 0.000 claims description 9
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical group [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims description 6
- 230000001678 irradiating effect Effects 0.000 claims description 5
- 239000011248 coating agent Substances 0.000 abstract 1
- 238000000576 coating method Methods 0.000 abstract 1
- 239000004020 conductor Substances 0.000 abstract 1
- 229910010272 inorganic material Inorganic materials 0.000 abstract 1
- 239000011147 inorganic material Substances 0.000 abstract 1
- 239000012774 insulation material Substances 0.000 abstract 1
- 230000005855 radiation Effects 0.000 abstract 1
- 230000007547 defect Effects 0.000 description 12
- 230000035515 penetration Effects 0.000 description 8
- 230000002093 peripheral effect Effects 0.000 description 8
- 229910000990 Ni alloy Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001256 stainless steel alloy Inorganic materials 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
Images
Landscapes
- Insulated Conductors (AREA)
- Laser Beam Processing (AREA)
Abstract
Description
本発明は、金属シース上に固定用部品を溶接した無機絶縁ケーブル及びその溶接方法に関する。 The present invention relates to an inorganic insulated cable in which a fixing component is welded on a metal sheath and a welding method thereof.
無機絶縁(MI)ケーブルは、銅などの導線(芯線)を、ステンレス鋼やニッケル合金などの金属シースで覆い、導線と金属シースの間に酸化マグネシウム等の無機物(絶縁材)を充填して絶縁されたケーブルである。無機絶縁ケーブルは、高温など過酷な環境に強く、信号ケーブルやシース熱電対などに使用される。無機絶縁ケーブルには、装置等に取り付けるための固定用部品(スリーブ・取付ねじ・フランジ・ボス)が溶接により取り付けられる。 Inorganic insulation (MI) cables are insulated by covering a lead wire (core wire) such as copper with a metal sheath such as stainless steel or nickel alloy, and filling an inorganic substance (insulating material) such as magnesium oxide between the lead wire and the metal sheath. It is a cable that has been used. Inorganic insulated cables are resistant to harsh environments such as high temperatures, and are used for signal cables and sheath thermocouples. Fixing parts (sleeve, mounting screws, flanges, bosses) for mounting on the device or the like are attached to the inorganic insulated cable by welding.
無機絶縁ケーブルと固定用部品との溶接としては、例えば、無機絶縁ケーブルの側周面と固定用部品の上端面とが接合する角をプラズマやレーザで加熱してすみ肉溶接する方法がある。無機絶縁ケーブルの金属シースは薄く、シースの上に被せた固定用部品との溶接において、溶接条件を一定にしても溶接の溶け込み状態を常に同じにするのは難しく問題があった。 As welding of the inorganic insulating cable and the fixing component, for example, there is a method of fillet welding by heating the corner where the side peripheral surface of the inorganic insulating cable and the upper end surface of the fixing component are joined with plasma or a laser. The metal sheath of the inorganic insulated cable is thin, and in welding with the fixing part placed on the sheath, it is difficult to always keep the welded state in the same state even if the welding conditions are constant.
例えばプラズマ溶接ですみ肉溶接した場合、シールドガス(プラズマガス)等の条件により、溶接金属内に外気が巻き込まれ、ガスが凝固中に大気中に放出されず、閉じ込められて生じるブローホールの発生や溶け込み量が浅いと未溶融部が生じ溶込み不良による欠陥となるおそれがある。また、YAGレーザ溶接ですみ肉溶接した場合、プラズマ溶接より溶接幅が狭くなるので、溶接部の脚長やのど厚を大きくするためビーム出力を上げる必要があり、溶接割れを起こすおそれがある。 For example, in the case of fillet welding by plasma welding, outside air is entrained in the weld metal due to conditions such as shield gas (plasma gas), and the gas is not released into the atmosphere during solidification, and blow holes are generated by being trapped. If the amount of penetration is shallow, an unmelted portion may occur and a defect may occur due to poor penetration. Further, in the case of fillet welding by YAG laser welding, the welding width is narrower than that in plasma welding, so it is necessary to increase the beam output in order to increase the leg length and throat thickness of the welded portion, which may cause welding cracks.
特許文献1に記載されているように、シースの溶け込み深さのバラツキによる溶接不良の発生を防止した無機絶縁ケーブルのコネクタ溶接法の発明も開示されている。また、特許文献2に記載されているように、溶接部品の細径化や温度センサの小型化に対応でき、かつ信頼性の高い温度センサ及びその製造方法の発明も開示されている。 As described in Patent Document 1, an invention of a connector welding method for an inorganic insulated cable that prevents the occurrence of welding defects due to variations in the penetration depth of the sheath is also disclosed. Further, as described in Patent Document 2, an invention of a highly reliable temperature sensor and a method for manufacturing the same, which can cope with a reduction in the diameter of a welded part and a miniaturization of a temperature sensor, is also disclosed.
しかしながら、特許文献1、2に記載の技術では、コネクタ端部にレーザビームを傾斜させて照射することで、溶接不良を防止しているが、溶接部が無機絶縁ケーブルの軸線方向に対して傾斜しており、深い位置まで溶接しようとすると溶け込み幅がシース厚に到達し、シース内圧により溶接部が吹き破られてブローホール等の溶接不良が発生する可能性がある。 However, in the techniques described in Patent Documents 1 and 2, welding defects are prevented by inclining and irradiating the end of the connector with a laser beam, but the welded portion is inclined with respect to the axial direction of the inorganic insulating cable. If welding is attempted to a deep position, the penetration width reaches the sheath thickness, and the welded portion may be blown off by the internal pressure of the sheath, resulting in welding defects such as blow holes.
そこで、本発明は、金属シース上に固定用部品を溶接する際の溶接不良を抑制した無機絶縁ケーブル及びその溶接方法を提供することを目的とする。 Therefore, an object of the present invention is to provide an inorganic insulating cable and a welding method thereof that suppress welding defects when welding a fixing part on a metal sheath.
上記の課題を解決するために、本発明は、導線である芯線と前記芯線を被覆する金属シースとの間に無機物の絶縁材を充填した無機絶縁ケーブルであって、前記シースの外周を囲むように溶接された固定用部品を有し、前記固定用部品は、前記シースとの境目にファイバーレーザビームが照射されることにより、溶接部が前記シースとの接触面のギャップに沿って軸方向に進むように且つ前記シースの厚さに達しないように、前記シースに合わせ面溶接された、ことを特徴とする。 In order to solve the above problems, the present invention is an inorganic insulating cable in which an inorganic insulating material is filled between a core wire which is a conducting wire and a metal sheath covering the core wire so as to surround the outer periphery of the sheath. The fixing part has a fixing part welded to the sheath, and the welded portion is axially along the gap of the contact surface with the sheath by irradiating the boundary with the sheath with a fiber laser beam. It is characterized in that it is face-welded to the sheath so as to advance and not reach the thickness of the sheath.
さらに、本発明は、導線である芯線と前記芯線を被覆する金属シースとの間に無機物の絶縁材を充填した無機絶縁ケーブルに前記シースの外周を囲むように固定用部品を溶接する方法であって、前記固定用部品を被せた前記シースを垂立させ、前記固定用部品と前記シースの境目にファイバーレーザビームを垂直に照射し、前記シースの軸方向に溶接部を進めて前記溶接部が前記シースの厚さに到達しないように合わせ面溶接する、ことを特徴とする。 Further, the present invention is a method of welding a fixing component to an inorganic insulating cable in which an inorganic insulating material is filled between a core wire as a lead wire and a metal sheath covering the core wire so as to surround the outer periphery of the sheath. Then, the sheath covered with the fixing component is erected, a fiber laser beam is vertically irradiated at the boundary between the fixing component and the sheath, and the welded portion is advanced in the axial direction of the sheath to cause the welded portion. It is characterized in that the mating surfaces are welded so as not to reach the thickness of the sheath.
また、前記無機絶縁ケーブルの溶接方法において、前記シースを回転させることで、前記アダプタと前記シースの境目に沿ってファイバーレーザビームを照射する、ことを特徴とする。 Further, in the method of welding the inorganic insulated cable, the sheath is rotated to irradiate a fiber laser beam along the boundary between the adapter and the sheath.
本発明によれば、無機絶縁ケーブルの金属シース上に固定用部品を溶接する際の溶接不良を抑制することができる。ファイバーレーザ溶接で金属シースと固定用部品の接触面の微小なギャップを溶かし込むように合わせ面溶接をすることで、溶接部が垂直に形成され、溶接範囲がシース厚の4倍程度の深さまで溶け込むので溶け込み不良の懸念がない。 According to the present invention, it is possible to suppress welding defects when welding a fixing component on a metal sheath of an inorganic insulated cable. By performing mating surface welding so as to melt the minute gap between the metal sheath and the contact surface of the fixing part by fiber laser welding, the welded part is formed vertically and the welding range is up to about 4 times the sheath thickness. Since it blends in, there is no concern about poor blending.
また、溶接部が無機絶縁ケーブルの軸線方向と平行に形成されるので、溶け込み幅がシース厚に到達することがなく、金属シースを貫通する等の溶接不良の発生も抑えられる。ファイバーレーザ溶接は、ビームのスポット径がYAGレーザ溶接等より小さいことから、入熱も少なく、溶接割れを起こし難い。また、溶け込みが深いので溶接強度も高い。 Further, since the welded portion is formed parallel to the axial direction of the inorganic insulating cable, the penetration width does not reach the sheath thickness, and the occurrence of welding defects such as penetrating the metal sheath can be suppressed. In fiber laser welding, since the spot diameter of the beam is smaller than that of YAG laser welding or the like, heat input is small and welding cracks are unlikely to occur. In addition, since the penetration is deep, the welding strength is also high.
以下に、本発明の実施形態について図面を参照して詳細に説明する。なお、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する場合がある。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Those having the same function may be designated by the same reference numerals, and the repeated description thereof may be omitted.
まず、本発明である無機絶縁ケーブルの溶接方法によって固定用部品を溶接した無機絶縁ケーブルについて説明する。図1は、無機絶縁ケーブルの(a)平面図及び(b)正面図である。図2は、無機絶縁ケーブルを溶接するための溶接装置を示す図である。 First, an inorganic insulated cable in which fixing parts are welded by the method of welding an inorganic insulated cable of the present invention will be described. FIG. 1 is a plan view (a) and a front view (b) of the inorganic insulated cable. FIG. 2 is a diagram showing a welding device for welding an inorganic insulated cable.
図1に示すように、無機絶縁ケーブル100は、銅などの導線である芯線200と、芯線200を被覆するステンレス鋼やニッケル合金などの金属製のシース300との間に、酸化マグネシウム等の無機物からなる絶縁材400を充填した、信号ケーブルやシース熱電対などに使用されるケーブルである。
As shown in FIG. 1, the inorganic
無機絶縁ケーブル100は、装置等に取付け固定するために、シース300の外周を囲むように固定用部品500が全周溶接される。固定用部品500は、ステンレス鋼やニッケル合金などの金属製の部品であり、シース300が貫通する孔が空いた形状である。また、固定用部品500は、外周にねじが切ってあるものやフランジのようなものであっても良い。
In order to attach and fix the
シース300の外周面と、固定用部品500の内周面とが、僅かなギャップ520を介して接触しており、シース300とアダプタ500の接触面の端(境目)からギャップ520に沿って進行するように溶接部510が形成される。ギャップ520は、シース300が固定用部品500内をスライド移動可能な最小のギャップ寸法にする。
The outer peripheral surface of the
溶接部510は、シース300の外周面と、固定用部品500の内周面とが、それぞれ熱などで溶融されることで、接触面が一体的に接合した部分である。溶接部510は、シース300を突き破るとシース300の内圧により吹き破られてブローホール等の溶接不良が発生するので、幅がシース300の厚さに達しないように、境目から接触面に沿って細く真っ直ぐに奥に向かって深く形成される。
The
図2に示すように、無機絶縁ケーブル100の溶接装置600は、シース300を垂立させるための作業台であるステージ610、シース300を垂立させた状態で固定するチャック620、シース300と固定用部品500を溶接するためのファイバーレーザビーム640を照射する溶接ヘッド630等を有し、ファイバーレーザビーム640で合わせ面溶接をするための装置である。
As shown in FIG. 2, the
ファイバーレーザビーム640は、希土類元素を添加した光ファイバーをレーザ媒質として利用する形式のレーザビームである。ファイバーレーザビーム640は、ビームのスポット径が小さく、入熱量が少ないので溶接割れの発生が抑えられる。
The
まず、固定用部品500を被せたシース300を、軸方向を垂直にしてステージ610にセットし、固定用部品500をチャック620で挟み込んで固定する。
First, the
溶接ヘッド630をステージ610の上方に配置し、シース300と固定用部品500の境目を狙ってファイバーレーザビーム640を照射する。溶接ヘッド630の角度は0〜30°の間で設定し、できるだけ境目に対して垂直に当てて、溶接部610の溶け込みが過度に斜め方向にならないようにする。
The
溶接時はステージ610を30〜60mm/secの速さで軸を中心に回転させることで、環状の境目に沿ってファイバーレーザビーム640を照射すれば良い。また、ファイバーレーザビーム640の出力を100〜500Wの範囲で溶け込み量を調整しながら、ギャップ520に沿って奥まで垂直(軸方向)に溶かし込めば良い。溶接範囲の幅はシース厚に達しないように狭く、垂直方向の深さはシース厚の4倍程度まで長くなる。
At the time of welding, the
図3は、(a)ファイバーレーザ溶接で合わせ面溶接をした溶接部、(b)プラズマ溶接ですみ肉溶接をした溶接部、(c)YAGレーザ溶接でレーザビームを斜めに照射して溶接した溶接部を比較した図である。図4は、ファイバーレーザ溶接で合わせ面溶接をした溶接部の断面を示す写真である。 FIG. 3 shows (a) a welded portion in which mating surfaces are welded by fiber laser welding, (b) a welded portion in which fillet welding is performed by plasma welding, and (c) a laser beam is obliquely irradiated and welded by YAG laser welding. It is the figure which compared the welded part. FIG. 4 is a photograph showing a cross section of a welded portion obtained by mating surface welding by fiber laser welding.
図3(a)及び図4に示すように、ファイバーレーザビーム640でシース300と固定用部品500の接触面を合わせ面溶接した場合、シース300の側周面310と、固定用部品500の上端面530との境目にファイバーレーザビーム640が垂直に照射され、溶接部510がキャップ520に沿って垂直に奥まで形成される。
As shown in FIGS. 3A and 4, when the contact surfaces of the
図3(b)に示すように、プラズマ溶接でシース300の側周面310と固定用部品500の上端面530とをすみ肉溶接した場合、溶接部510aが角まで到達せず、境目からギャップ520が埋まらない溶接不良540aが発生するおそれがある。
As shown in FIG. 3B, when the side
図3(c)に示すように、YAGレーザ溶接でレーザビームを斜めから照射してすみ肉溶接した場合、溶接部510bがシース300の厚さに到達してシース300を突き破る溶接不良540bが発生するおそれがある。また、YAGレーザ溶接の場合、溶接部510bの脚長及びのど厚を大きくするためにビーム出力を上げると溶接割れを起こすおそれもある。
As shown in FIG. 3C, when fillet welding is performed by irradiating a laser beam at an angle in YAG laser welding, a
本発明によれば、無機絶縁ケーブルの金属シース上に固定用部品を溶接する際の溶接不良を抑制することができる。ファイバーレーザ溶接で金属シースと固定用部品の接触面の微小なギャップを溶かし込むように合わせ面溶接をすることで、溶接部が垂直に形成され、溶接範囲がシース厚の4倍程度の深さまで溶け込むので溶け込み不良の懸念がない。 According to the present invention, it is possible to suppress welding defects when welding a fixing component on a metal sheath of an inorganic insulated cable. By performing mating surface welding so as to melt the minute gap between the metal sheath and the contact surface of the fixing part by fiber laser welding, the welded part is formed vertically and the welding range is up to about 4 times the sheath thickness. Since it blends in, there is no concern about poor blending.
また、溶接部が無機絶縁ケーブルの軸線方向と平行に形成されるので、溶け込み幅がシース厚に到達することがなく、金属シースを貫通する等の溶接不良の発生も抑えられる。ファイバーレーザ溶接は、ビームのスポット径がYAGレーザ溶接等より小さいことから、入熱も少なく、溶接割れを起こし難い。また、溶け込みが深いので溶接強度も高い。 Further, since the welded portion is formed parallel to the axial direction of the inorganic insulating cable, the penetration width does not reach the sheath thickness, and the occurrence of welding defects such as penetrating the metal sheath can be suppressed. In fiber laser welding, since the spot diameter of the beam is smaller than that of YAG laser welding or the like, heat input is small and welding cracks are unlikely to occur. In addition, since the penetration is deep, the welding strength is also high.
以上、本発明の実施例を述べたが、これらに限定されるものではない。 Examples of the present invention have been described above, but the present invention is not limited thereto.
100:無機絶縁ケーブル
200:芯線
300:シース
310:側周面
400:絶縁材
500:固定用部品
510:溶接部
520:ギャップ
530:上端面
540:溶接不良
600:溶接装置
610:ステージ
620:チャック
630:溶接ヘッド
640:ファイバーレーザビーム
100: Inorganic insulated cable 200: Core wire 300: Sheath 310: Side peripheral surface 400: Insulating material 500: Fixing part 510: Welded part 520: Gap 530: Upper end surface 540: Welding defect 600: Welding device 610: Stage 620: Chuck 630: Welding head 640: Fiber laser beam
上記の課題を解決するために、本発明は、導線である芯線と前記芯線を被覆する金属シースとの間に無機物の絶縁材を充填した無機絶縁ケーブルであって、前記シースの外周を囲むように溶接された固定用部品を有し、前記固定用部品は、前記シースとの境目にファイバーレーザビームが垂直に照射されることにより、溶接部が前記シースとの接触面のギャップに沿って軸方向に前記シースの厚さの4倍の深さまで進むように且つ前記シースの厚さに達しないように、前記シースに合わせ面溶接された、ことを特徴とする。
In order to solve the above problems, the present invention is an inorganic insulating cable in which an inorganic insulating material is filled between a core wire which is a conducting wire and a metal sheath covering the core wire so as to surround the outer periphery of the sheath. The fixed part has a fixing part welded to the sheath, and the welded portion is axially along the gap of the contact surface with the sheath by vertically irradiating the fiber laser beam at the boundary with the sheath. It is characterized in that it is face-welded to the sheath so as to advance to a depth four times the thickness of the sheath in the direction and not to reach the thickness of the sheath.
さらに、本発明は、導線である芯線と前記芯線を被覆する金属シースとの間に無機物の絶縁材を充填した無機絶縁ケーブルに前記シースの外周を囲むように固定用部品を溶接する方法であって、前記固定用部品を被せた前記シースを垂立させ、前記固定用部品と前記シースの境目にファイバーレーザビームを垂直に照射し、前記シースの軸方向に溶接部を進めて前記溶接部が前記シースの厚さの4倍の深さに到達するように且つ前記シースの厚さに到達しないように合わせ面溶接する、ことを特徴とする。
Further, the present invention is a method of welding a fixing component to an inorganic insulating cable in which an inorganic insulating material is filled between a core wire as a lead wire and a metal sheath covering the core wire so as to surround the outer periphery of the sheath. Then, the sheath covered with the fixing component is erected, a fiber laser beam is vertically irradiated at the boundary between the fixing component and the sheath, and the welded portion is advanced in the axial direction of the sheath to cause the welded portion. It is characterized in that the mating surfaces are welded so as to reach a depth four times the thickness of the sheath and not to reach the thickness of the sheath.
Claims (3)
前記シースの外周を囲むように溶接された固定用部品を有し、
前記固定用部品は、前記シースとの境目にファイバーレーザビームが照射されることにより、溶接部が前記シースとの接触面のギャップに沿って軸方向に進むように且つ前記シースの厚さに達しないように、前記シースに合わせ面溶接された、
ことを特徴とする無機絶縁ケーブル。 An inorganic insulating cable in which an inorganic insulating material is filled between a core wire that is a lead wire and a metal sheath that covers the core wire.
It has a fixing part welded around the outer circumference of the sheath.
By irradiating the boundary with the sheath with a fiber laser beam, the fixing part reaches the thickness of the sheath so that the welded portion advances in the axial direction along the gap of the contact surface with the sheath. Face-welded to the sheath so as not to
Inorganic insulated cable characterized by that.
前記固定用部品を被せた前記シースを垂立させ、
前記固定用部品と前記シースの境目にファイバーレーザビームを垂直に照射し、
前記シースの軸方向に溶接部を進めて前記溶接部が前記シースの厚さに到達しないように合わせ面溶接する、
ことを特徴とする無機絶縁ケーブルの溶接方法。 A method of welding a fixing component to an inorganic insulating cable filled with an inorganic insulating material between a core wire which is a lead wire and a metal sheath covering the core wire so as to surround the outer circumference of the sheath.
The sheath covered with the fixing component is erected.
A fiber laser beam is vertically irradiated at the boundary between the fixing component and the sheath.
The welded portion is advanced in the axial direction of the sheath, and the mating surface is welded so that the welded portion does not reach the thickness of the sheath.
A method of welding an inorganic insulated cable.
ことを特徴とする請求項2に記載の無機絶縁ケーブルの溶接方法。 By rotating the sheath, a fiber laser beam is irradiated along the boundary between the fixing component and the sheath.
The method for welding an inorganic insulated cable according to claim 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019135088A JP6628270B1 (en) | 2019-07-23 | 2019-07-23 | Inorganic insulated cable and its welding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019135088A JP6628270B1 (en) | 2019-07-23 | 2019-07-23 | Inorganic insulated cable and its welding method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6628270B1 JP6628270B1 (en) | 2020-01-08 |
JP2021018951A true JP2021018951A (en) | 2021-02-15 |
Family
ID=69101122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019135088A Active JP6628270B1 (en) | 2019-07-23 | 2019-07-23 | Inorganic insulated cable and its welding method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6628270B1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0328125B2 (en) * | 1985-02-22 | 1991-04-18 | Furukawa Electric Co Ltd | |
JP5420809B1 (en) * | 2013-06-04 | 2014-02-19 | 株式会社岡崎製作所 | MI cable end structure and manufacturing method thereof |
JP2017147064A (en) * | 2016-02-16 | 2017-08-24 | トヨタ自動車株式会社 | Secondary battery manufacturing method |
JP2018115922A (en) * | 2017-01-17 | 2018-07-26 | 日本特殊陶業株式会社 | Temperature sensor |
-
2019
- 2019-07-23 JP JP2019135088A patent/JP6628270B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0328125B2 (en) * | 1985-02-22 | 1991-04-18 | Furukawa Electric Co Ltd | |
JP5420809B1 (en) * | 2013-06-04 | 2014-02-19 | 株式会社岡崎製作所 | MI cable end structure and manufacturing method thereof |
JP2017147064A (en) * | 2016-02-16 | 2017-08-24 | トヨタ自動車株式会社 | Secondary battery manufacturing method |
JP2018115922A (en) * | 2017-01-17 | 2018-07-26 | 日本特殊陶業株式会社 | Temperature sensor |
Also Published As
Publication number | Publication date |
---|---|
JP6628270B1 (en) | 2020-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6512474B2 (en) | Laser processing apparatus and laser welding quality determination method for battery | |
WO2010131298A1 (en) | Method of laser-welding and method of manufacturig battery including the same | |
US20100288738A1 (en) | Welding apparatus and method | |
US20240001488A1 (en) | Laser welding of square butt joints between copper substrates | |
TW200924895A (en) | Surface crack sealing method | |
JP2020009691A (en) | Spark plug | |
CN107824972A (en) | Laser welding method for titanium-aluminum dissimilar metal splice joint | |
KR20170108978A (en) | A method of connecting or laser welding a turbocharger turbine wheel to a shaft by means of an electron beam; a corresponding turbocharger turbine wheel | |
JP2016200527A (en) | Pressure sensor | |
CN108136540B (en) | Laser processing machine and method for lap welding DBC structures | |
CN115430910A (en) | Thin-wall gradient silicon-aluminum tube shell suitable for laser seal welding and laser seal welding method | |
RU2635123C1 (en) | Dissimilar materials bonding with electronic beam technique | |
JP6628270B1 (en) | Inorganic insulated cable and its welding method | |
JP3438809B2 (en) | Laser welding method for welding electric wires to terminal members | |
JP7110907B2 (en) | Lap welding method for dissimilar metal members | |
JP2006110631A (en) | Welding method | |
JP2015136718A (en) | Defect repair apparatus and defect repair method | |
CN108608115B (en) | Laser welding method for increasing welding penetration and improving weld formation | |
KR101658746B1 (en) | Inspection method for welded joint | |
JP6561931B2 (en) | Connection method of temperature sensor element wire and extension lead wire | |
US20100270276A1 (en) | System and Method for Repairing Hermetic Solder Seals in RF Electronic Assemblies | |
JP2022026626A (en) | Semiconductor device and manufacturing method therefor | |
JP2010051989A (en) | Laser joining method | |
Olschok et al. | Laser beam quality welds–Learning from other processes | |
JP4847148B2 (en) | Repair method for nuclear pressure vessel structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190723 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20190723 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20190802 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190903 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190910 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191119 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191126 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6628270 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |