JPH0328125B2 - - Google Patents

Info

Publication number
JPH0328125B2
JPH0328125B2 JP3409185A JP3409185A JPH0328125B2 JP H0328125 B2 JPH0328125 B2 JP H0328125B2 JP 3409185 A JP3409185 A JP 3409185A JP 3409185 A JP3409185 A JP 3409185A JP H0328125 B2 JPH0328125 B2 JP H0328125B2
Authority
JP
Japan
Prior art keywords
sheath
welding
degrees
connector
penetration depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3409185A
Other languages
Japanese (ja)
Other versions
JPS61196707A (en
Inventor
Masanori Ozaki
Yasue Nakamura
Mitsuru Negishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP3409185A priority Critical patent/JPS61196707A/en
Publication of JPS61196707A publication Critical patent/JPS61196707A/en
Publication of JPH0328125B2 publication Critical patent/JPH0328125B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processing Of Terminals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は無機絶縁ケーブルのコネクター溶接法
に関し、特にシースの溶け込み深さのバラツキに
よる溶接不良の発生を防止したものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a connector welding method for inorganic insulated cables, and in particular to a method for preventing welding defects due to variations in sheath penetration depth.

〔従来の技術〕[Conventional technology]

一般に無機絶縁ケーブルのコネクター溶接は、
第6図に示すように無機絶縁ケーブル1の金属シ
ース2上に金属コネクター5を外装し、該コネク
ター5の端部とシース2をTIG、プラズマ、レー
ザ等により溶接している。尚図において3は無機
絶縁ケーブル1の導体、4はシース2と導体3間
に充填したMgO粉体、6は溶接用トーチを示す。
In general, connector welding for inorganic insulated cables is
As shown in FIG. 6, a metal connector 5 is placed on the metal sheath 2 of the inorganic insulated cable 1, and the end of the connector 5 and the sheath 2 are welded using TIG, plasma, laser, or the like. In the figure, 3 indicates a conductor of the inorganic insulated cable 1, 4 indicates MgO powder filled between the sheath 2 and the conductor 3, and 6 indicates a welding torch.

〔発明が解決しようとする問題点〕 無機絶縁ケーブルの金属シースは薄いためシー
ス上に外装したコネクターとシースの溶接におい
て、溶接条件が一定であつても溶接時の溶け込み
深さをシース厚さ内で管理するのはワークの精
度、蓄熱の点から難しく、溶接不良を起す欠点が
あつた。即ち溶接熱によりシース内のMgO粉体
間の空気が膨脹し、更にMgO粉体の表面に吸着
した水分等が蒸発するため、シース内の圧力が高
くなり、その結果シースの溶け込み深さがシース
の厚さに達すると溶融部がシース内圧により吹き
破られて溶接不良となる。またシースの溶け込み
深さが小さいと、シースとコネクター端部の溶接
部に未溶融部が生じて溶接不良となる。
[Problems to be solved by the invention] Since the metal sheath of an inorganic insulated cable is thin, when welding the sheath and the connector sheathed on the sheath, it is difficult to keep the penetration depth during welding within the sheath thickness even under constant welding conditions. It is difficult to control the workpiece in terms of accuracy and heat accumulation, and it has the disadvantage of causing welding defects. In other words, the air between the MgO powder inside the sheath expands due to the welding heat, and the moisture adsorbed on the surface of the MgO powder evaporates, increasing the pressure inside the sheath, and as a result, the penetration depth of the sheath increases. When the thickness reaches , the molten part is blown away by the internal pressure of the sheath, resulting in defective welding. Furthermore, if the penetration depth of the sheath is small, an unfused portion will be formed in the weld between the sheath and the end of the connector, resulting in poor welding.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこれに鑑み種々検討の結果、シースの
溶込み深さのバラツキによる溶接不良の発生を防
止することができる無機絶縁ケーブルのコネクタ
ー溶接法を開発したもので、無機絶縁ケーブルの
金属シース上に金属コネクターを外装し、該コネ
クター端部とシースをレーザにより溶接する方法
において、コネクター端部のシース面より0.1〜
1.0mm高い側面に、レーザビームをケーブル軸と
10〜60度傾斜させて照射し、シースの溶け込み深
さをシース深さの1/4〜3/4とすることを特徴とす
るものである。
In view of this, as a result of various studies, the present invention has developed a connector welding method for inorganic insulated cables that can prevent the occurrence of welding defects due to variations in the penetration depth of the sheath. In a method in which a metal connector is sheathed on a metal connector and the end of the connector and sheath are welded using a laser,
The laser beam is connected to the cable axis on the 1.0mm high side.
It is characterized by irradiating at an angle of 10 to 60 degrees and making the sheath penetration depth 1/4 to 3/4 of the sheath depth.

即ち本発明は第1図に示すように無機絶縁ケー
ブル1のシース2上に金属コネクター5を外装
し、第2図に示すようにコネクター5端部のシー
ス2面より高さhが0.1〜1.0mm高い側面に、ケー
ブル1軸との角度θを10〜60度傾斜させたレーザ
ビーム7を照射し、シース2の溶け込み深さDを
シース2の厚さの1/4〜3/4に調整してシース2と
コネクター5の端部を溶接するものである。レー
ザには狭巾の溶け込みビード8を高速度で作れる
装置、即ち微小スポツト状で高エネルギー密度の
レーザビーム7を発生させることができる装置を
用いる。尚図において9はレーザビームを発射す
るノズルを示す。
That is, in the present invention, as shown in FIG. 1, a metal connector 5 is sheathed on the sheath 2 of an inorganic insulated cable 1, and as shown in FIG. A laser beam 7 with an angle θ of 10 to 60 degrees with respect to the cable 1 axis is irradiated on the side surface high by mm, and the penetration depth D of the sheath 2 is adjusted to 1/4 to 3/4 of the thickness of the sheath 2. Then, the ends of the sheath 2 and connector 5 are welded. The laser used is a device that can produce a narrow weld bead 8 at high speed, that is, a device that can generate a laser beam 7 in the form of a minute spot with high energy density. In the figure, numeral 9 indicates a nozzle that emits a laser beam.

〔作用〕[Effect]

本発明は上記の如くレーザビームをケーブル軸
と10〜60度の傾斜角度で照射することにより、溶
接に十分な溶け込み量を浅い溶け込み深さで得る
ことができると共に溶け込み深さのコントロール
が容易となる。
As described above, the present invention irradiates the laser beam at an angle of inclination of 10 to 60 degrees with respect to the cable axis, thereby making it possible to obtain sufficient penetration for welding at a shallow penetration depth, and making it easy to control the penetration depth. Become.

しかしてレーザビームの傾斜角度を10〜60度と
限定したのは、角度が10度未満ではノズルの保持
が寸法上困難となるばかりか、溶接時のケーブル
揺れ等によるシースの溶け込みの深さのバラツキ
により溶接部に未溶融部を生じ、角度が60度を超
えると溶接時のケーブル揺れ等によるシースの溶
け込み深さのバラツキにより溶け込み深さがシー
ス厚さに到達するものが生じ、溶接部の溶融部が
シース内圧により吹き破られるなど、何れも溶接
不良の原因となるためである。
However, the reason for limiting the inclination angle of the laser beam to 10 to 60 degrees is that if the angle is less than 10 degrees, it will not only be difficult to hold the nozzle due to the dimensions, but also the depth of sheath penetration due to cable shaking during welding. Due to the variation, an unfused area is created in the weld, and if the angle exceeds 60 degrees, the penetration depth of the sheath may reach the sheath thickness due to the variation in the penetration depth of the sheath due to cable shaking during welding. This is because the molten part is blown out by the internal pressure of the sheath, which can cause welding defects.

またレーザビームの照射位置をコネクター端部
のシース面より0.1〜1.0mm高い側面と限定したの
は、溶接時のケーブル揺れ等により、0.1mm未満
の高さではシースの溶け込み深さがシース厚さに
到達するものが生じ、高さが1.0mmを超えると溶
接部に未溶融部を生じるなど、何れも溶接不良の
原因となるためである。
In addition, the laser beam irradiation position was limited to the side surface of the connector end, which is 0.1 to 1.0 mm higher than the sheath surface, due to cable shaking during welding, etc. At a height of less than 0.1 mm, the penetration depth of the sheath is less than the sheath thickness. This is because if the height exceeds 1.0 mm, an unfused part will be formed in the weld, and both will cause welding defects.

またシースの溶け込み深さをシース厚さの1/4
〜3/4と限定したのは、溶接時のケーブル揺れ等
による溶け込み深さのバラツキにより1/4未満で
は溶接部に未溶融部を生じ、3/4を越えるとシー
スの溶け込み深さがシースの厚さに達するものが
生じ、何れも溶接不良の原因となるためである。
Also, the penetration depth of the sheath should be set to 1/4 of the sheath thickness.
The reason why we limited it to ~3/4 is because the penetration depth varies due to cable shaking during welding, etc. If it is less than 1/4, an unfused part will occur in the welded part, and if it exceeds 3/4, the penetration depth of the sheath will become smaller than that of the sheath. This is because some parts reach a thickness of

〔実施例〕〔Example〕

第1図に示すように無機絶縁ケーブルの厚さ
0.4mmの金属シース上に端部肉厚が0.75mmのコネ
クターを外装し、第2図に示すようにビーム傾斜
角度θ、照射位置のシース面からの高h、シース
の溶け込み深さDを変えてシースとコネクター端
部をレーザにより溶接した。レーザには容量
1KWの炭酸ガスレーザ装置を用い、その代表的
結果を第3図乃至第5図に示す。
Thickness of inorganic insulated cable as shown in Figure 1
A connector with an end wall thickness of 0.75 mm was mounted on a 0.4 mm metal sheath, and the beam inclination angle θ, the height h of the irradiation position from the sheath surface, and the sheath penetration depth D were varied as shown in Figure 2. The sheath and connector end were welded together using a laser. The laser has a capacity
Typical results using a 1KW carbon dioxide laser device are shown in Figures 3 to 5.

第3図イ,ロ,ハは平均出力500W、溶接速度
1.8m/minで溶接を行つた結果を示すもので、ビ
ーム7の照射位置(シース面からの高さh)を一
定(0.3mm)とし、ビーム7の傾斜角度θを変化
させた場合を示すもので、イはθを70度、ロはθ
を30度、ハはθを7度とした場合を示し、ロから
明らかなように傾斜角度θが30度において溶け込
みビード8がシース2の厚さの約1/2となり、詳
しくは角度θが10〜60度において良好な結果が得
られることが判る。これに対し、イに示すように
傾斜角度θが70度、詳しくは60度を超える角度で
は溶け込みビード8がシース2の厚さに達し、ハ
に示すように傾斜角度θが7度、詳しくは10度未
満では溶け込みビード8の深さが浅く、溶接部に
未溶融部を生じることが判る。
Figure 3 A, B, and C are average output 500W and welding speed
This shows the results of welding at 1.8 m/min, when the irradiation position of beam 7 (height h from the sheath surface) was constant (0.3 mm) and the inclination angle θ of beam 7 was varied. For A, θ is 70 degrees, and B is θ.
C shows the case where θ is 7 degrees, and as is clear from B, when the inclination angle θ is 30 degrees, the melted bead 8 becomes about 1/2 of the thickness of the sheath 2, and in detail, the angle θ is 30 degrees. It can be seen that good results are obtained between 10 and 60 degrees. On the other hand, as shown in A, when the inclination angle θ is 70 degrees, more specifically, at an angle exceeding 60 degrees, the weld bead 8 reaches the thickness of the sheath 2, and as shown in C, the inclination angle θ is 7 degrees, more specifically, at an angle exceeding 60 degrees. It can be seen that when the welding angle is less than 10 degrees, the depth of the weld bead 8 is shallow and an unfused portion is formed in the weld.

また第4図イ,ロ,ハは溶接速度1.8m/min、
出力を最大1KWまで変化させた結果を示すもの
で、ビーム7の傾斜角度θを一定(30度)とし、
ビーム7の照射位置(シース面からの高さh)を
変えた場合を示すもので、イはhを0mm、ロはh
を0.5mm、ハはhを1.2mmとした場合を示し、ロか
ら明らかなようにhが0.5mmの場合に溶け込みビ
ード8がシース2の厚さの約1/2となり、詳しく
はhが0.1〜1.0mmの範囲内で良好な結果が得られ
ることが判る。これに対しイに示すようにhが0
mm、詳しくはhが0.1mm未満では溶接面積が小さ
く溶接強度が小さく、ハに示すようにhが1.2mm、
詳しくはhが1.0mmを超えると溶け込みビード8
の深さが浅く、溶接部に未溶融部を生ずることが
判る。
In addition, Fig. 4 A, B, and C show a welding speed of 1.8 m/min.
This shows the results of varying the output up to 1KW, with the inclination angle θ of beam 7 constant (30 degrees).
This shows the case where the irradiation position of beam 7 (height h from the sheath surface) is changed;
C shows the case where h is 1.2 mm, and as is clear from B, when h is 0.5 mm, the melted bead 8 becomes about 1/2 of the thickness of the sheath 2, and in detail, h is 0.1. It can be seen that good results can be obtained within the range of ~1.0 mm. On the other hand, as shown in A, h is 0
mm, more specifically, when h is less than 0.1 mm, the welding area is small and the welding strength is low, as shown in C, when h is 1.2 mm,
For details, if h exceeds 1.0mm, weld bead 8
It can be seen that the depth of the weld is shallow, resulting in an unmelted part in the weld.

更に第5図イ,ロ,ハは溶接速度1.8m/minで
行つた結果を示すもので、ビーム7の傾斜角度θ
を10〜60度の範囲内で変化させ、ビーム7の照射
位置(シース面からの高さh)を0.1〜1.0mmの範
囲内で変化させ、更にレーザビームの出力を変化
させて溶け込みビード8の深さを変化させた場合
を示し、イはθを10度、hを0.1mm、溶け込みビ
ードの深さDを0.07mm、ロはθを30度、hを0.5
mm、Dを0.2mm、ハはθを60度、hを0.5mm、Dを
0.35mmとした場合を示し、ロから明らかなように
Dを0.2mm、詳しくはDがシース2の厚さの1/4〜
3/4において良好な溶接が得られることが判る。
これに対しイに示すようにθを10度、hを0.2mm、
Dを0.07mm、詳しくはDがシース2の厚さの1/4
未満では溶接部に未溶融部を生じ、ハに示すよう
にθを60度、hを0.3mm、Dを0.35mm、詳しくは
Dがシース2の厚さの1/4を超えると、溶け込み
ビード8がシース2の厚さに達するものが生じ、
シース2の内圧による吹き破りが起ることが判
る。
Furthermore, Fig. 5 A, B, and C show the results when welding was performed at a welding speed of 1.8 m/min, and the inclination angle θ of the beam 7 was
By varying the irradiation position of the beam 7 (height h from the sheath surface) within a range of 0.1 to 1.0 mm, and further changing the output of the laser beam, the bead 8 melts. Shows the case where the depth is changed, A: θ is 10 degrees, h is 0.1 mm, penetration bead depth D is 0.07 mm, B: θ is 30 degrees, h is 0.5
mm, D is 0.2mm, θ is 60 degrees, h is 0.5mm, D is
The case where D is 0.35 mm is shown, and as is clear from B, D is 0.2 mm, specifically D is 1/4 to 1/4 of the thickness of sheath 2.
It can be seen that good welding can be obtained in 3/4.
On the other hand, as shown in A, θ is 10 degrees, h is 0.2 mm,
D is 0.07mm, specifically D is 1/4 of the thickness of sheath 2
If it is less than 1/4 of the thickness of sheath 2, an unfused part will be formed in the welded part, and if θ is 60 degrees, h is 0.3 mm, and D is 0.35 mm, as shown in C, if D exceeds 1/4 of the thickness of sheath 2, a weld bead 8 reaches the thickness of sheath 2,
It can be seen that blow-out occurs due to the internal pressure of the sheath 2.

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば無機絶縁ケーブルの
コネクター溶接において、レーザビームをケーブ
ル軸と10〜60度傾斜させて、シース面より0.1〜
1.0mm高いコネクター端部側面に照射し、シース
の溶け込み深さをシースの厚さの1/4〜3/4にコン
トロールすることにより、溶接時のケーブル揺れ
等に基づくシースの溶け込み深さのバラツキによ
る溶接不良を防止し得るもので、工業上顕著な効
果を奏するものである。
In this way, according to the present invention, in connector welding of inorganic insulated cables, the laser beam is inclined at 10 to 60 degrees with respect to the cable axis, and the welding angle is 0.1 to 60 degrees from the sheath surface.
By irradiating the side surface of the connector end 1.0mm higher and controlling the sheath penetration depth to 1/4 to 3/4 of the sheath thickness, variations in sheath penetration depth due to cable shaking during welding, etc. It is possible to prevent welding defects due to this, and has a significant industrial effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明溶接法の一例を示す説明図、第
2図は第1図の要部を拡大して示す説明図、第3
図イ,ロ,ハはビーム照射の傾斜角度の影響を示
すもので、イは傾斜角度70度、ロは傾斜角度30
度、ハは傾斜角度7度の場合を示す説明図、第4
図イ,ロ,ハはビーム照射位置の影響を示すもの
で、イはシース面より0mm、ロはシース面より
0.5mm、ハはシース面より1.2mmの場合を示す説明
図、第5図イ,ロ,ハはシース溶け込み深さの影
響を示すもので、イは溶け込み深さ0.07mm、ロは
溶け込み深さ0.2mm、ハは溶け込み深さ0.35mmの
場合を示す説明図、第6図は従来の溶接法の一例
を示す説明図である。 1…無機絶縁ケーブル、2…シース、3…導
体、4…MgO粉体、5…コネクター、6…トー
チ、7…レーザビーム、8…溶込みビード、9…
レーザノズル。
Figure 1 is an explanatory diagram showing an example of the welding method of the present invention, Figure 2 is an explanatory diagram showing an enlarged main part of Figure 1, and Figure 3 is an explanatory diagram showing an example of the welding method of the present invention.
Figures A, B, and C show the influence of the tilt angle of beam irradiation.
degree, C is an explanatory diagram showing the case where the inclination angle is 7 degrees, 4th
Figures A, B, and C show the influence of the beam irradiation position, where A is 0 mm from the sheath surface and b is from the sheath surface.
0.5mm, C is an explanatory diagram showing the case of 1.2mm from the sheath surface, Figure 5 A, B, and C show the influence of sheath penetration depth, A is penetration depth of 0.07mm, and B is penetration depth. 0.2 mm, C is an explanatory diagram showing a case where the penetration depth is 0.35 mm, and FIG. 6 is an explanatory diagram showing an example of a conventional welding method. 1...Inorganic insulated cable, 2...Sheath, 3...Conductor, 4...MgO powder, 5...Connector, 6...Torch, 7...Laser beam, 8...Penetration bead, 9...
laser nozzle.

Claims (1)

【特許請求の範囲】[Claims] 1 無機絶縁ケーブルの金属シース上に金属コネ
クターを外装し、該コネクター端部とシースをレ
ザーにより溶接する方法において、コネクター端
部のシース面より0.1〜1.0mm高い側面に、レーザ
ビームをケーブル軸と10〜60度傾斜させて照射
し、シースの溶け込み深さをシースの厚さの1/4
〜3/4とすることを特徴とする無機絶縁ケーブル
のコネクター溶接法。
1 In a method in which a metal connector is sheathed on the metal sheath of an inorganic insulated cable and the end of the connector is welded to the sheath using a laser, a laser beam is applied to the side surface of the connector end that is 0.1 to 1.0 mm higher than the sheath surface and aligned with the cable axis. Irradiate at an angle of 10 to 60 degrees to reduce the penetration depth of the sheath to 1/4 of the sheath thickness.
A connector welding method for inorganic insulated cables characterized by ~3/4.
JP3409185A 1985-02-22 1985-02-22 Connector welding for inorganic insulation cable Granted JPS61196707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3409185A JPS61196707A (en) 1985-02-22 1985-02-22 Connector welding for inorganic insulation cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3409185A JPS61196707A (en) 1985-02-22 1985-02-22 Connector welding for inorganic insulation cable

Publications (2)

Publication Number Publication Date
JPS61196707A JPS61196707A (en) 1986-08-30
JPH0328125B2 true JPH0328125B2 (en) 1991-04-18

Family

ID=12404600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3409185A Granted JPS61196707A (en) 1985-02-22 1985-02-22 Connector welding for inorganic insulation cable

Country Status (1)

Country Link
JP (1) JPS61196707A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006090746A (en) * 2004-09-21 2006-04-06 Ngk Spark Plug Co Ltd Temperature sensor and its manufacturing method

Also Published As

Publication number Publication date
JPS61196707A (en) 1986-08-30

Similar Documents

Publication Publication Date Title
JP3762676B2 (en) Work welding method
WO2010131298A1 (en) Method of laser-welding and method of manufacturig battery including the same
EP1486314B8 (en) Laser-welded assembly and method for producing it
JP2001276988A (en) Laser processing apparatus
US5142119A (en) Laser welding of galvanized steel
WO2003064140A3 (en) Apparatus and method for closed-loop control of laser welder for welding polymeric catheter components
US4048459A (en) Method of and means for making a metalic bond to powdered metal parts
JP2005021912A (en) Laser beam welding method for shape steel
EP1136167B1 (en) Method for guiding arc by laser, and arc guiding welding and device by the method
JP4153218B2 (en) Laser combined AC MIG pulse arc welding method
JPH0328125B2 (en)
JPH10225782A (en) Combined welding method by laser and arc
EP1118420A2 (en) Inclined beam lap welding
JPH0919778A (en) Laser welding method for aluminum alloy without exposing molten metal on the rear surface
JPH0212674B2 (en)
JPH06198472A (en) High-speed laser beam welding method
JPS60106688A (en) Laser working device
JPH10272577A (en) Highly precise welding method for groove
CN207372497U (en) A kind of high power laser welding system based on high-velocity scanning galvanometer
CN207372496U (en) A kind of Laser Welding of Aluminum Alloys device
JP2002283078A (en) Method for laser beam welding
JP3067825B2 (en) Method and apparatus for welding quartz members
JP6628270B1 (en) Inorganic insulated cable and its welding method
JPH04279289A (en) Butt welding method
JPH046468B2 (en)