JPS60106688A - Laser working device - Google Patents

Laser working device

Info

Publication number
JPS60106688A
JPS60106688A JP58213912A JP21391283A JPS60106688A JP S60106688 A JPS60106688 A JP S60106688A JP 58213912 A JP58213912 A JP 58213912A JP 21391283 A JP21391283 A JP 21391283A JP S60106688 A JPS60106688 A JP S60106688A
Authority
JP
Japan
Prior art keywords
welding
arc
laser beam
electrode
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58213912A
Other languages
Japanese (ja)
Inventor
Masayoshi Hashiura
橋浦 雅義
Tomio Unno
海野 富男
Shigeru Suzuki
茂 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58213912A priority Critical patent/JPS60106688A/en
Publication of JPS60106688A publication Critical patent/JPS60106688A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/346Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding
    • B23K26/348Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding in combination with arc heating, e.g. TIG [tungsten inert gas], MIG [metal inert gas] or plasma welding

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To unite a molten pool which is formed by combination use of laser welding and inert gas arc welding with a welding device which makes combination use of both welding by providing an aperture for irradiating laser light to the electrode part of arc welding. CONSTITUTION:Electrodes 19 for TIG welding are formed into a cylindrical shape and a hole 22 for passage of laser light is provided in the central part thereof. Four pairs of eight electrodes such as (a), (b) are built in the electrode 19 via a cylindrical insulator 23 and a gap for supplying an inert gas 11 is provided on the outside circumference thereof, by which a nozzle 20 is assembled. Each two electrodes 19 making a pair are respectively conductably connected. Welding is accomplished by firing the electrodes 19 of the set (a) by using high frequency and irradiating laser light 2 through the hole 22. The gas 11 is supplied through the hole 22 as well in addition to the supply through the nozzle 20. The arc generated before and behind the laser light increases the absorption rate of the laser light right under the part to be irradiated with the laser, thereby increasing the depth of penetration.

Description

【発明の詳細な説明】 【発明の利用分野〕 本発明はレーザ加工装置に係り、特に、レーザビームの
集光部に点弧したアークを併合して使用出来る溶接装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a laser processing device, and more particularly to a welding device that can be used by combining an ignited arc with a condensing portion of a laser beam.

〔発明の背景〕[Background of the invention]

第1図はレーザ溶接とイナートガスタングステンアーク
溶接(T I G溶接と略記する)を併用する溶接装置
の概要を示す。第2図は溶接部近傍の拡大図である。溶
接はアーム8で固定されたTIG溶接トーチ7と被溶接
材9との間に電源6により通電し、タングステン電極1
oがらアーク13を発生させて溶融池14を形成させる
。これにレーザ光2を集光して照射し、溶接部15を溶
接するものである。この時、溶接はレーザ用ノズル5お
よびTIG溶接トーチ7から不活性ガス11,12を供
給しながらシールドして行なわれている。
FIG. 1 shows an outline of a welding device that uses both laser welding and inert gas tungsten arc welding (abbreviated as TIG welding). FIG. 2 is an enlarged view of the vicinity of the weld. Welding is performed by applying electricity from a power source 6 between a TIG welding torch 7 fixed by an arm 8 and a material to be welded 9, and using a tungsten electrode 1.
arc 13 is generated to form a molten pool 14. The welding portion 15 is welded by condensing and irradiating the laser beam 2 onto this. At this time, welding is performed while shielding while supplying inert gases 11 and 12 from the laser nozzle 5 and TIG welding torch 7.

この方法では第2図に示うようにTIG溶接による加熱
部Aとレーザ光2の照射部Bとの距離Qはレーザ溶接用
ノズル5とトーチ7との寸法から数10mmの距離を必
要とし、同一溶融池が形成されずに再溶接法併用の効果
が少ない。そのため。
In this method, as shown in FIG. 2, the distance Q between the heated part A by TIG welding and the irradiated part B of the laser beam 2 needs to be several tens of mm from the dimensions of the laser welding nozzle 5 and the torch 7. The same molten pool is not formed and the effect of using the rewelding method in combination is small. Therefore.

TIG溶接の入熱量を多くし、溶融池14を太きくする
工夫がなされている。すなわち (1)溶接電流を大きくする。
Efforts have been made to increase the amount of heat input during TIG welding and to make the molten pool 14 thicker. That is, (1) increase the welding current.

(2)溶接電流を遅くする。(2) Slow down the welding current.

(3)タングステン電極を長くし傾けて近づける。(3) Lengthen and tilt the tungsten electrode to bring it closer.

これらの方法は、必然的に溶接部横断面を第3図に示す
ようにし、TIG溶接溶接伝熱きくし、溶接変形、材質
脆化の問題が出てくる。過大な溶接電流は溶湯を吹き上
げ溶接ビード外観を悪くする欠点をもっている。溶加材
を供給する場合は、第4図に示すように送給装置17に
より供給してやる必要があり、両溶融中心部の距離Qを
大きくとれないので、第4図に示すような水平に近い方
向から送給することになり、作業性が悪い。距離Qが長
いと、半溶融層18を形成しやすくなり、レーザ光照射
部Bでは凝固するような低温で溶接するためレーザ光の
吸収率が低下し第5図に示すように溶は込み深さhの浅
い溶接となる。
In these methods, the cross section of the welded part is inevitably as shown in FIG. 3, and problems such as TIG welding, welding distortion, welding deformation, and material embrittlement arise. Excessive welding current has the disadvantage of blowing up the molten metal and worsening the appearance of the weld bead. When supplying the filler metal, it is necessary to supply it by the feeding device 17 as shown in Fig. 4, and since the distance Q between the two melting centers cannot be large, it is nearly horizontal as shown in Fig. 4. The work efficiency is poor because the material must be fed from both directions. If the distance Q is long, it becomes easier to form a semi-molten layer 18, and since the laser beam irradiated part B is welded at such a low temperature that it solidifies, the absorption rate of the laser beam decreases and the weld penetration depth decreases as shown in Fig. 5. This results in shallow welding.

さらに、−個のタングステン電極では溶接方向が一方向
だけとなり、複合方向の溶接ができない。
Furthermore, with - number of tungsten electrodes, the welding direction is only one direction, and welding in multiple directions cannot be performed.

〔発明の目的〕[Purpose of the invention]

本発明の目的はレーザ溶接とTIG溶接を併用して形成
される溶融池が一体となり、面溶接を併用した深い溶込
み深さの得られるレーザ加工機を提供するにある。
An object of the present invention is to provide a laser processing machine in which a molten pool formed by a combination of laser welding and TIG welding is integrated, and a deep penetration depth can be obtained by using a combination of surface welding.

〔発明の概要〕[Summary of the invention]

本発明の要点はTIG溶接の電極により発生したアーク
の内部にレーザ光を照射させ、アーク柱を円筒状にし、
その中心部にレーザ光を照射することにある。すなわち
、TIG溶接電極を複数化して円筒状を形成し、その中
心部にレーザを通し、レーザ光照射部を高温り溶融状態
にしてレーザ光の吸収率を高め、深溶は込みの溶接を可
能にしたことである。
The main point of the present invention is to irradiate the inside of the arc generated by the TIG welding electrode with a laser beam, make the arc column cylindrical,
The purpose is to irradiate the center with laser light. In other words, multiple TIG welding electrodes are used to form a cylindrical shape, a laser is passed through the center of the electrode, the laser beam irradiated area is heated to a molten state, and the absorption rate of the laser beam is increased, making it possible to perform deep welding. This is what I did.

〔発明の実施例〕[Embodiments of the invention]

第6図に本発明による要部断面図を示す。第7図は被害
溶接材側より見たヘッド先端部の概略図である。TIG
溶接の電極19は円筒状の絶縁体23を介して4対8本
が組込まれている。その外周には不活性ガス(Ar、H
e)11を供給する空隙をもうけ、ノズル20が組まれ
ている。電極は、それぞれ、対をなす二本(a、bなど
4対)を別々に通電できるように結線した。溶接は高周
波を用いてTIG溶接のaの組の電極19に点弧し、ビ
ーム通過穴22を通してレーザ光2を照射して行なった
。この時、溶接ノズル20からArガス12とビーム通
過穴22からもArガス11を供給し、大気中の酸素よ
り酸化しないと共に。
FIG. 6 shows a sectional view of a main part according to the present invention. FIG. 7 is a schematic diagram of the head tip viewed from the damaged welding material side. T.I.G.
Welding electrodes 19 are assembled in 4 pairs of 8 electrodes with cylindrical insulators 23 in between. Its outer periphery is filled with inert gas (Ar, H
e) A nozzle 20 is assembled with a gap for supplying 11. The electrodes were wired so that two pairs (four pairs of a, b, etc.) of each electrode could be separately energized. Welding was performed by igniting the electrodes 19 of group a of TIG welding using high frequency and irradiating the laser beam 2 through the beam passage hole 22. At this time, Ar gas 12 is supplied from the welding nozzle 20 and Ar gas 11 is also supplied from the beam passage hole 22 to prevent oxidation from oxygen in the atmosphere.

冷却用としても効果があった。絶縁リング21はノズル
20と電極19間の絶縁をし、Arガスが洩れないよう
にシールする。レーザ光の前後に発生したアークは、レ
ーザ光照射部直下のレーザ光吸収率を高め、溶込み深さ
がより深くなった。そして、第8図の方式によれば、第
5図と比べて、ビード幅が狭く、熱影響が少なく、従来
の二倍以上の溶接速度でも同程度の溶は込み深さの溶接
ビードの盛上りの少ない良好な溶接部が得られた。
It was also effective for cooling purposes. The insulating ring 21 insulates the nozzle 20 and the electrode 19 and seals the nozzle 20 to prevent Ar gas from leaking. The arc generated before and after the laser beam increased the laser beam absorption rate directly under the laser beam irradiation area, resulting in deeper penetration depth. According to the method shown in Fig. 8, the bead width is narrower than that shown in Fig. 5, there is less heat influence, and the weld bead embankment with the same penetration depth can be achieved even at more than twice the welding speed of the conventional method. A good welded joint with little rise was obtained.

第9図は電極先端に円筒状タングステンチップ27を取
り付け、ノズル20をセラミックスにして絶縁、体熱性
をあげ、溶接ヘッドの上部に#8縁部を介してレーザ光
の集光レンズ4を搭載するしンズホルダ24を組込んだ
ものである。溶接はレンズホルダ部よりArガスllを
供給して行なった。
In Figure 9, a cylindrical tungsten tip 27 is attached to the tip of the electrode, the nozzle 20 is made of ceramic to insulate it and increase body heat resistance, and a condensing lens 4 for laser light is mounted on the top of the welding head via the #8 edge. A lens holder 24 is incorporated. Welding was performed by supplying Ar gas 11 from the lens holder.

溶接方向が変わった場合、第7図では対をなす電極の組
合ぜをaからbへと電気的にスイッチングしたが、第9
図の方法では、まったく、この操作が不要となり任意の
方向に溶接ができた。また、レーザ光の集光レンズをT
IG溶接電極と一体化したため、立体的な角度選択もレ
ーザ光の調整だけでよくなり、レーザ光とTIG溶接の
電極間の距離、角度、方向など複雑な調整が不要となっ
た。
When the welding direction changes, the pair of electrodes is electrically switched from a to b in Fig. 7, but in Fig. 9
With the method shown in the figure, this operation was completely unnecessary and welding could be performed in any direction. In addition, the condensing lens of the laser beam is
Since it is integrated with the IG welding electrode, three-dimensional angle selection can be done by simply adjusting the laser beam, eliminating the need for complex adjustments such as the distance, angle, and direction between the laser beam and the TIG welding electrode.

TIG溶接に円筒電極を使用したことにより、アーク圧
力が低下し、溶接電流を高くしても溶接金属がはじけ吹
き飛ぶ現象がなくなり、良好な深溶は込みの溶接部が得
られた。
By using a cylindrical electrode for TIG welding, the arc pressure was reduced, and even when the welding current was increased, the phenomenon of the weld metal popping off and being blown away was eliminated, and a welded part with good deep penetration was obtained.

なお、図中1はレーザ発振器、4は集光レンジ、16は
溶加材。
In the figure, 1 is a laser oscillator, 4 is a condensing range, and 16 is a filler material.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、TIG溶接とレーザ溶接で形成される
溶融池の一体化ができ、高能率で深溶は込み溶接ができ
る。
According to the present invention, the molten pool formed by TIG welding and laser welding can be integrated, and deep penetration welding can be performed with high efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のレーザ溶接とTIG溶接を併用した溶接
装置の説明図、第2図は従来の溶接要部の断面図、第3
図は従来の溶接部横断面図、第4図は従来の溶加材供給
の概要図、第5図は従来の溶加材供給の溶接部横断面図
、第6図は本発明による要部断面図、第7図は本発明に
よる要部概要図、第8図は本発明による溶接部の横断面
図、第9図は本発明の溶接ヘッド概略断面図である。 2・・・レーザ光、6・・・TIG溶接電源、9・・・
被溶接材、13・・・アーク、15・・・溶接部、19
・・・電極、第 l 口 第 2 菌 第 3 囮 第 4 日 第 、!5 圀 第 6 図 b μ
Fig. 1 is an explanatory diagram of a welding device that uses a combination of conventional laser welding and TIG welding, Fig. 2 is a sectional view of the main parts of conventional welding, and Fig. 3
The figure is a cross-sectional view of a conventional weld zone, FIG. 4 is a schematic diagram of a conventional filler metal supply, FIG. 5 is a cross-sectional view of a weld zone with a conventional filler metal supply, and FIG. 6 is a main part according to the present invention. FIG. 7 is a schematic diagram of a main part according to the present invention, FIG. 8 is a cross-sectional view of a welding part according to the present invention, and FIG. 9 is a schematic cross-sectional view of a welding head according to the present invention. 2... Laser light, 6... TIG welding power source, 9...
Material to be welded, 13... Arc, 15... Welding part, 19
...Electrode, 1st mouth, 2nd bacteria, 3rd decoy, 4th day,! 5 Kuni No. 6 Figure b μ

Claims (1)

【特許請求の範囲】 ■、レーザ溶接と不活性ガスアーク溶接を併用させた溶
接装置において、 前記不活性ガスアーク溶接の電極部にレーザ光を被加工
物に照射させる開孔部を設け、前記電極の通電によって
発生したアーク熱と前記開孔部を通して照射したレーザ
ビームによって形成される溶融池が一体化するように構
成したことを特徴とするレーザ加工装置。 2、特許請求の範囲第1項において、 アークを発生する前記電極と酸化防止のシールドガスを
供給する外筒により二重構造の溶接ヘッドを構成し、内
部の前記電極部と前記被加工物間に発生させたアークの
中央部にレーザ光を照射して溶接するように構成したこ
とを特徴とするレーザ加工装置。 3、特許請求の範損第2項において、耐熱絶縁体を介し
て複数個の前記電極が前記レーザビームの照射部を中心
に対称に配列した構造をなし、溶接進行方向に対をなす
電極を通電させ、前記レーザビームの照射とともに点弧
して溶接し、溶接方向の変更に合せて通電させる対の電
極を変えながら溶接することを特徴とするレーザ加工装
置。 4、特許請求の範囲第2項において、アークを発生させ
る電極構造が円環状をなし、通電によって前記被加工物
との間で中空り円環状アークを形成し、その中空部に前
記レーザビームを照射しながら溶接することを特徴とす
るレーザ加工装置。 5、特許請求の範囲第2項において、前記電極部と前記
外筒部よりなる二重構造の溶接ヘッドと、前記レーザビ
ームを集光させる光学系を、前記電極部より前記被加工
物側で前記レーザビームを集光出来るように前記外筒の
上部に固定し、前記外筒の内部に絶縁体を介して前記電
極部を支持して一体構造としたことを特徴とするレーザ
加工装置。
[Scope of Claims] (1) In a welding device that combines laser welding and inert gas arc welding, an opening for irradiating a workpiece with a laser beam is provided in the electrode portion of the inert gas arc welding, and A laser processing apparatus characterized in that the arc heat generated by energization and the molten pool formed by the laser beam irradiated through the aperture are integrated. 2. In claim 1, a welding head with a double structure is configured by the electrode that generates an arc and an outer cylinder that supplies a shielding gas for preventing oxidation, and the welding head is configured to have a double structure between the electrode section inside and the workpiece. 1. A laser processing device characterized in that the laser processing device is configured to perform welding by irradiating a laser beam onto the central portion of an arc generated in the process. 3. In claim 2, the plurality of electrodes are arranged symmetrically with respect to the irradiation part of the laser beam through a heat-resistant insulator, and the electrodes are arranged in pairs in the direction of welding progress. A laser processing apparatus characterized in that the welding is performed by applying current, igniting the laser beam together with the irradiation, and performing welding while changing the pair of electrodes to be energized in accordance with a change in the welding direction. 4. In claim 2, the electrode structure for generating the arc is annular, and when energized, a hollow annular arc is formed between the arc and the workpiece, and the laser beam is directed into the hollow part. A laser processing device that performs welding while irradiating. 5. In claim 2, a double-structured welding head consisting of the electrode part and the outer cylinder part, and an optical system for condensing the laser beam, are arranged closer to the workpiece than the electrode part. A laser processing apparatus characterized in that the laser beam is fixed to the upper part of the outer cylinder so as to be condensed, and the electrode part is supported inside the outer cylinder via an insulator to form an integrated structure.
JP58213912A 1983-11-16 1983-11-16 Laser working device Pending JPS60106688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58213912A JPS60106688A (en) 1983-11-16 1983-11-16 Laser working device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58213912A JPS60106688A (en) 1983-11-16 1983-11-16 Laser working device

Publications (1)

Publication Number Publication Date
JPS60106688A true JPS60106688A (en) 1985-06-12

Family

ID=16647086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58213912A Pending JPS60106688A (en) 1983-11-16 1983-11-16 Laser working device

Country Status (1)

Country Link
JP (1) JPS60106688A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01241392A (en) * 1988-03-22 1989-09-26 Nippon Steel Corp Composite welding method using tig and laser beam
WO2000024543A1 (en) * 1998-10-24 2000-05-04 Ulrich Dilthey Welding method using a laser beam method in combination with two mig methods and device for carrying out said method
EP1084789A2 (en) * 1999-09-16 2001-03-21 Linde Gas Aktiengesellschaft Process and device for hybrid welding under protective gas
WO2001076806A1 (en) * 2000-04-10 2001-10-18 Mitsubishi Heavy Industries, Ltd. Welding system
FR2829413A1 (en) * 2001-09-11 2003-03-14 Air Liquide Modular hybrid arc-laser welding torch incorporates an interchangeable welding head for the application of different laser-arc welding processes
US7019256B2 (en) * 2001-12-27 2006-03-28 Honda Giken Kogyo Kabushiki Kaisha Method and apparatus for composite YAG laser/arc welding
WO2010021094A1 (en) * 2008-08-19 2010-02-25 パナソニック株式会社 Composite welding method and composite welding device
CN104625402A (en) * 2013-11-14 2015-05-20 大族激光科技产业集团股份有限公司 Laser seam side-blown protection device, welding device and welding method
CN105328342A (en) * 2015-12-08 2016-02-17 哈尔滨工业大学 Method for removing laser welding pores of medium-thick D406A ultra-high-strength steel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51147446A (en) * 1975-06-12 1976-12-17 Mitsubishi Electric Corp Laser gas cutting nozzle
JPS5439340A (en) * 1977-09-02 1979-03-26 Mitsubishi Electric Corp Laser welder
JPS5519481A (en) * 1978-07-28 1980-02-12 Inoue Japax Res Inc Laser machining device
JPS56151190A (en) * 1980-03-25 1981-11-24 Makusuueru Suteiin Uiriamu Method and device for electrically treating non-conductor processed good

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51147446A (en) * 1975-06-12 1976-12-17 Mitsubishi Electric Corp Laser gas cutting nozzle
JPS5439340A (en) * 1977-09-02 1979-03-26 Mitsubishi Electric Corp Laser welder
JPS5519481A (en) * 1978-07-28 1980-02-12 Inoue Japax Res Inc Laser machining device
JPS56151190A (en) * 1980-03-25 1981-11-24 Makusuueru Suteiin Uiriamu Method and device for electrically treating non-conductor processed good

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0451271B2 (en) * 1988-03-22 1992-08-18 Nippon Steel Corp
JPH01241392A (en) * 1988-03-22 1989-09-26 Nippon Steel Corp Composite welding method using tig and laser beam
WO2000024543A1 (en) * 1998-10-24 2000-05-04 Ulrich Dilthey Welding method using a laser beam method in combination with two mig methods and device for carrying out said method
DE19849117A1 (en) * 1998-10-24 2000-05-18 Dilthey Ulrich Method and device for coupled laser MSG welding
DE19849117B4 (en) * 1998-10-24 2008-04-10 Dilthey, Ulrich, Prof. Dr.-Ing. Welding process by performing a laser beam process together with two MSG processes and apparatus
EP1084789A3 (en) * 1999-09-16 2003-04-16 Linde AG Process and device for hybrid welding under protective gas
EP1084789A2 (en) * 1999-09-16 2001-03-21 Linde Gas Aktiengesellschaft Process and device for hybrid welding under protective gas
US6600133B2 (en) 2000-04-10 2003-07-29 Mitsubishi Heavy Industries, Ltd. Welding system
WO2001076806A1 (en) * 2000-04-10 2001-10-18 Mitsubishi Heavy Industries, Ltd. Welding system
FR2829413A1 (en) * 2001-09-11 2003-03-14 Air Liquide Modular hybrid arc-laser welding torch incorporates an interchangeable welding head for the application of different laser-arc welding processes
US7019256B2 (en) * 2001-12-27 2006-03-28 Honda Giken Kogyo Kabushiki Kaisha Method and apparatus for composite YAG laser/arc welding
WO2010021094A1 (en) * 2008-08-19 2010-02-25 パナソニック株式会社 Composite welding method and composite welding device
JP5278426B2 (en) * 2008-08-19 2013-09-04 パナソニック株式会社 Composite welding method and composite welding apparatus
US8791384B2 (en) 2008-08-19 2014-07-29 Panasonic Corporation Hybrid welding method and hybrid welding apparatus
CN104625402A (en) * 2013-11-14 2015-05-20 大族激光科技产业集团股份有限公司 Laser seam side-blown protection device, welding device and welding method
CN105328342A (en) * 2015-12-08 2016-02-17 哈尔滨工业大学 Method for removing laser welding pores of medium-thick D406A ultra-high-strength steel

Similar Documents

Publication Publication Date Title
US8884183B2 (en) Welding process and a welding arrangement
JP5822376B2 (en) Laser welding method for steel sheet
US6469277B1 (en) Method and apparatus for hybrid welding under shielding gas
US7154065B2 (en) Laser-hybrid welding with beam oscillation
US7009139B2 (en) Method and apparatus for composite YAG laser/arc welding
JP2003088968A (en) Welding method for workpiece
WO2018145544A1 (en) Welding torch used for laser beam-plasma arc hybrid welding
CN108406118A (en) Laser-rotating the arc composite welding system and its complex welding method
CN110238525A (en) A kind of method for welding dissimilar metal of mild steel and cast iron
JPS60106688A (en) Laser working device
US4143260A (en) Multi electrode torch
JPH031110B2 (en)
JPS5987996A (en) Laser and gas cutter
CN111604597B (en) Double-electric-arc preheating laser swing welding method for K-shaped connector
JPH02263585A (en) Combined heat source welding equipment
JPH01241392A (en) Composite welding method using tig and laser beam
SU1579682A1 (en) Method of welding by means of concentrated source of heating
JPS6462291A (en) Welding method for al alloy
JPS613683A (en) Hollow electrode type tig arc welding method
JP2004174576A (en) Laser arc compound welding head
JPH02147185A (en) Laser beam machining method and machine
JPH057115B2 (en)
JPS5633192A (en) Welding process for copper and copper alloy
JPH02147169A (en) Plasma mig welding method
JP2000254791A (en) Device and method for cladding by welding for white metal for bearing