JP2021017880A - 発電用ガスエンジンのミキサ及びガス供給システム - Google Patents

発電用ガスエンジンのミキサ及びガス供給システム Download PDF

Info

Publication number
JP2021017880A
JP2021017880A JP2019135708A JP2019135708A JP2021017880A JP 2021017880 A JP2021017880 A JP 2021017880A JP 2019135708 A JP2019135708 A JP 2019135708A JP 2019135708 A JP2019135708 A JP 2019135708A JP 2021017880 A JP2021017880 A JP 2021017880A
Authority
JP
Japan
Prior art keywords
gas
fuel
mixer
power generation
lpg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019135708A
Other languages
English (en)
Other versions
JP6653911B1 (ja
Inventor
貴弘 山崎
Takahiro Yamazaki
貴弘 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rise Pit Co Co Ltd
Original Assignee
Rise Pit Co Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rise Pit Co Co Ltd filed Critical Rise Pit Co Co Ltd
Priority to JP2019135708A priority Critical patent/JP6653911B1/ja
Application granted granted Critical
Publication of JP6653911B1 publication Critical patent/JP6653911B1/ja
Publication of JP2021017880A publication Critical patent/JP2021017880A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Indication Of The Valve Opening Or Closing Status (AREA)
  • Details Of Valves (AREA)
  • Multiple-Way Valves (AREA)

Abstract

【目的】都市ガス及びLPGにて稼働可能な発電用ガスエンジンにガス燃料を供給するための最適なミキサを提供する。【構成】導入管部11のベンチュリVの縮流部12を形成し縮流部12の外側には、上部空間14が設けられたアッパボディ1と、縮流部12に連続するベンチュリVの拡散部22の外側には下部空間24が設けられ下部空間24と上部空間14とからなる円環状空間Nが形成され、該円環状空間Nには外周側から第1入口部251と第1燃料ジェット4A及びLPG燃料用の第2入口部261及び第2燃料ジェット4 Bを備えたメインボディ2と、該メインボディ2に連続してスロットル32を設けたスロットルボディ3を備えること。縮流部12及び拡散部22の端部周縁との間であって、ベンチュリVの最狭部箇所に隙間としての円環状スリットSが形成されると共に、第1燃料ジェット4A及び第2燃料ジェット4Bの出口側はメインボディ2に連通されること。【選択図】 図1

Description

本発明は、都市ガス及びLPG〔液化石油ガス(プロパンC等)〕等の異種のガス料にて稼働可能な発電用ガスエンジンに異なるガス供給源から何れか1種類のガスを分別し、発電用ガスエンジンにガス燃料を供給するためのミキサであって、燃料の供給の精密な制御ができ、燃料と空気を均質になるように混合できる発電用ガスエンジンのミキサ及びガス供給システムに関する。
排気量5000cc以下のガスエンジンによる発電機は災害時の非常用や離島での電力供給や、電力の需要が電力会社の供給能力の限界に近くなったときの電力のピークカットに威力を発揮する。ガスエンジンの燃料として、一般的には都市ガス及びLPG(液化石油ガス)が使用される。都市ガスは、極めて扱い易いものであるし、LPGはボンベに充填すれば輸送が簡便で安全性が高いものである。また、ガソリンや軽油のように時間の経過とともに変質劣化(サワー化)することもない。
特許文献1(特開昭52-113408号)には、LPGエンジンが開示されている。この種のガスエンジンは、現在では多数存在するものとなった。そして、さらにLPGと共に都市ガスも使用可能な燃料としたエンジンは、特に都市ガスを常用する災害に強い発電用のエンジンとして期待されている。
このような、都市ガスとLPGの両方のガス燃料を使用可能とした発電用ガスエンジンでは、都市ガス供給源とLPG供給源の両方から、何れか一方のみを仕切り、選択し、発電用ガスエンジンにミキサを介して供給する必要がある。この都市ガスとLPGの両ガス燃料が使用可能とした発電用ガスエンジンでは、通常時では都市ガスが使用され、地震等の災害が発生して都市ガスの供給が停止してしまったときには、都市ガスに代わってLPGが発電用ガスエンジンに供給されるようするものである。
特開昭52−113408号公報
ところで、都市ガス燃料又はLPG燃料の何れも使用可能な発電用ガスエンジンでは、都市ガス供給源又はLPG供給源から、切替バルブを介して何れか一方のガス燃料を発電用ガスエンジンに供給するためのミキサが必用となる。そして、該ミキサは、発電用ガスエンジンにおいては、特有の機能部品であり、最も重要な機器となる。ミキサは、発電用ガスエンジンに供給する燃料の流量の精密な制御と燃料を空気に均質に混合させる機能を持つものである。
そして、都市ガス燃料及びLPG燃料の両方を使用可能とした発電用ガスエンジンに備わるミキサには、2つの異なる種類のガス燃料つまり都市ガス燃料又はLPG燃料を受け入れることができるものでなくてはならない。しかし、都市ガスとLPGとでは、密度,質量等の諸性質において異なるものであり、一種類のガス燃料しか使用できない通常のミキサでは、用を足し得ないものである。つまり、ミキサは都市ガスとLPGのそれぞれの性質が異なるガス燃料をそれぞれの性質に対応して使い分けるものでなくてはならない。
特許文献1(特開昭52−113408号)のLPGエンジンでは混合器(ミキサ)3が用いられている。このミキサでは、ベンチュリ部のノズル27から燃料を噴出させるようになっている。ここヘガス燃料を導く通路にガスアジャストスクリュウ26を設けて、先端のテーパした弁体の位置で通路面積を決めるようになっている。この位置のバラツキが直接空燃比の制御特性に影響する。
特に、三元触媒で排気の清浄化を行う場合は理論空燃比(燃料がシリンダ内で燃焼後、理論的には酸素も燃料の分子も余らない空燃比)になるように燃料流量を制御しなくてはならない。前記の混合器の構造(図3)では弁体の位置で燃料通路面積を決めているので、常時この要求性能を実現することはできない。
さらに空気と燃料を均質に混合するのに、ノズル27(図では2本)から燃料を噴出させるのでは不十分であり、燃料の偏りを避けることはできない。また、混合器3の上流にあるベ一パライザ7(構造は図2)は液体で流入した燃料をここで気化させることが主目的である。
発電用ガスエンジンが吸入する空気量と燃料の量を制御する混合器3の入り口の燃料の圧力を該混合器3の直前(エアクリーナの後流)の圧力と同じ圧力に調圧する機能を有していない。上記は、ミキサにおいてLPG燃料を使用するときに生じる問題点であるが、都市ガス燃料を使用する場合にも、略同様の問題点が生じる。
本発明では、特に、都市ガス及びLPG(液化石油ガス)の両方のガス燃料の使用に対応できる発電用ガスエンジンに好適なミキサを提供することである。そして、排気の清浄化を三元触媒で行うことができるように、簡易な構成にしつつ、理論空燃比の混合気を定常回転数で運転する発電用のガスエンジンに常時供給する。そのためミキサの必要条件は、第1に、都市ガス及びLPG(液化石油ガス)の何れのガス燃料であっても、燃料の供給の精密な制御を行い、第2に、都市ガス及びLPG(液化石油ガス)の何れのガス燃料であっても、燃料と空気を均質になるように混合できることを安価で簡単な構造としてのミキサ提供を実現することにある。
そこで、発明者は上記課題を解決すべく鋭意,研究を重ねた結果、請求項1の発明を、外部空気の導入管部の下側にベンチュリの縮流部を形成し該縮流部の外側には、逆U字状の円環状の上部空間が設けられたアッパボディと、前記縮流部に連続するベンチュリの拡散部の外側にはU字状の円環状の下部空間が設けられ該下部空間と前記上部空間とからなる断面O型状の円環状空間が形成され、該円環状空間には外周側から都市ガス燃料用の第1入口部と第1燃料ジェット及びLPG燃料用の第2入口部及び第2燃料ジェットを備えたメインボディと、該メインボディに連続してスロットルを設けたスロットルボディを備え、前記縮流部及び前記拡散部の端部周縁との間であって、前記ベンチュリの最狭部箇所に隙間としての円環状スリットが形成されると共に、前記第1燃料ジェット及び前記第2燃料ジェットの出口側は前記メインボディに連通されてなる発電用ガスエンジンのミキサとしたことにより、上記課題を解決した。
請求項2の発明を、請求項1における発電用ガスエンジンのミキサ構造において、前記隙間としての円環状スリットの隙間が一定間隔としてなる発電用ガスエンジンのミキサとしたことにより、上記課題を解決した。請求項3の発明を、請求項1における発電用ガスエンジンのミキサ構造において、前記隙間としての円環状スリットの隙間が可変間隔としてなる発電用ガスエンジンのミキサとしたことにより、上記課題を解決した。
請求項4の発明を、請求項1又は3における発電用ガスエンジンのミキサ構造において、前記隙間としての円環状スリットの隙間に対して、厚みが適宜異なるスペーサが介在されてなり、該スペーサの内径部は前記円環状空間の外形と同一径に形成され且つその外形部は前記アッパボディの下端部の外形断面形状と同等に形成されてなる発電用ガスエンジンのミキサとしたことにより、上記課題を解決した。
請求項5の発明を、請求項1,2,3又は4に記載の発電用ガスエンジンのミキサ構造において、前記ベンチュリの最狭部径の二乗と前記燃料ジェットのオリフィス径の二乗の比を一定に保つようにしてなる発電用ガスエンジンのミキサとしたことにより、上記課題を解決した。請求項6の発明を、請求項1,2,3,4又は5に記載の発電用ガスエンジンのミキサ構造において、前記メインボディの外周側には第1ボス部と第2ボス部が形成され、前記第1ボス部には前記第1入口部と前記第1燃料ジェットが設けられ、前記第2ボス部には前記第2入口部と前記第2燃料ジェットが設けられ、前記メインボディの外周で且つ前記ベンチュリの径方向の両側又は外周の周上となる位置に設けられてなる発電用ガスエンジンのミキサとしたことにより、上記課題を解決した。
請求項7の発明を、都市ガス及びLPGを使用可能な発電用ガスエンジンと、外部空気の導入管部の下側にベンチュリの縮流部を形成し該縮流部の外側には、逆U字状の円環状の上部空間が設けられたアッパボディと、前記縮流部に連続するベンチュリの拡散部の外側にはU字状の円環状の下部空間が設けられ該下部空間と前記上部空間とからなる断面O型状の円環状空間が形成され、該円環状空間には外周側から都市ガス燃料用の第1入口部と第1燃料ジェット及びLPG燃料用の第2入口部及び第2燃料ジェットを備えたメインボディと、該メインボディに連続してスロットルを設けたスロットルボディを備え、前記縮流部及び前記拡散部の端部周縁との間であって、前記ベンチュリの最狭部箇所に隙間としての円環状スリットが形成されると共に、前記第1燃料ジェット及び前記第2燃料ジェットの出口側は前記メインボディに連通されてなるミキサと、都市ガス供給源と、LPG供給源と、弁室と都市ガスが流入且つ流出する第1流入路及び第1流出路と、LPGが流入且つ流出する第2流入路と第2流出路を備えたバルブボディと、該バルブボディに収納され前記第1流入路と前記第1流出路とがなす流路又は前記第2流入路と前記第2流出路とがなす流路の何れか一方を開通し他方を遮断する弁体とを備えたガス供給切替バルブとを備え、前記都市ガス供給源と前記ミキサの第1入口部とが前記ガス供給切替バルブの前記第1流入路と前記第1流出路を介して連通され、前記LPG供給源と前記ミキサの第2入口部とが前記ガス供給切替バルブの前記第2流入路と前記第1流出路とを介して連通されてなる発電用ガスエンジンのガス供給システムとしたことにより上記課題を解決した。
請求項8の発明を、請求項7に記載の発電用ガスエンジンのガス供給システムにおいて、ECU及び低圧調整弁が具備され、前記ECUからの命令にてガス種に応じて前記低圧調整弁によって適正圧力となるように作動する発電用ガスエンジンのガス供給システムとしたことにより、上記課題を解決した。請求項9の発明を、請求項7又は8に記載の発電用ガスエンジンのガス供給システムにおいて、ECUが具備され、ガス供給切替バルブにはガス判別センサが設けられると共に前記ECUと繋がり、前記ガス供給切替バルブを通過するガス種を前記ガス判別センサと前記ECUにて判別してなる発電用ガスエンジンのガス供給システムとしたことにより、前記課題を解決したものである。
特に、本発明では、LPG(液化石油ガス)用或いはCNG(圧縮天然ガス)用又はLNG(液化天然ガス)用のガスエンジンである。いわゆる、家庭用のプロパンガス(ブタンも含む)や、都市ガスでも可能なガスエンジンである。
請求項1の発明においては、ミキサは、前記第1ボス部及び前記第2ボス部には燃料ジェットが備えられたメインボディと、簡易な構成にしつつ、理論空燃比の混合気を定常回転数で運転する発電用のガスエンジンを提供できるとともに、極めて簡易な構成にて、燃料ガスと空気とを均質になるように混合することができ、高効率な燃費を実現できるという最大の利点がある。
さらに、ミキサのメインボディには、都市ガス燃料用の第1入口部が設けられた第1ボス部と、LPG燃料用の第2入口部が設けられた第2ボス部が別々に備えられている。これら第1ボス部と第1入口部及び第2ボス部と第2入口部のそれぞれの組におけるガス燃料の流路内径のサイズは適宜に設定することができ、第1ボス部と第1入口部は都市ガス燃料の流路として最適なサイズにすることができ、また第2ボス部と第2入口部はLPG(液化石油ガス)燃料の流路として最適なサイズにすることができる。これによって、都市ガス燃料及びLPG(液化石油ガス)燃料の両方を使用できるを発電用ガスエンジンは、都市ガス燃料又はLPG(液化石油ガス)燃料の何れを使用する場合であっても、ミキサを介して発電用ガスエンジンに対してガス燃料を適正に供給することができる。
請求項2の発明では、隙間としての円環状スリットの隙間が一定間隔としてなることにより、発電用ガスエンジンに対して都市ガス燃料又はLPG(液化石油ガス)燃料を極めて安定且つ均一とした状態で供給することができる。請求項3の発明では、隙間としての円環状スリットの隙間が可変間隔としたことにより、該隙間からのガス燃料の噴出を適宜変更でき、発電用ガスエンジンのサイズによって、適正なガス燃料供給を行うことができる。請求項4の発明では、隙間としての円環状スリットの隙間に対して、厚みが適宜異なるスペーサが介在されてなり、該スペーサの内径部は前記円環状空間の外形と同一径に形成され且つその外形部は前記アッパボディの下端部の外形断面形状と同等に形成されたことにより、前記隙間の可変の構造を極めて簡単なものにでき、且つ隙間の可変作業も簡単にできる。
請求項5の発明では、ベンチュリの最狭部径の二乗と前記燃料ジェットのオリフィス径の二乗の比を一定に保つようにしてたことで、都市ガス燃料及びLPG(液化石油ガス)燃料の発電用ガスエンジンに対する供給量を最適なものにできる。請求項6の発明では、前記メインボディの外周側には第1ボス部と第2ボス部が形成され、前記第1ボス部には前記第1入口部と前記第1燃料ジェットが設けられ、前記第2ボス部には前記第2入口部と前記第2燃料ジェットが設けられ、前記メインボディの外周で且つ前記ベンチュリの径方向の両側又は外周の周上となる位置に設けられてなることをたことにより、都市ガス燃料及びLPG(液化石油ガス)燃料の入り口を誤認し難くなり、発電用ガスエンジンのガス燃料供給システムで、常時正しい設定を行い易いようにすることができる。また、第1ボス部と第2ボス部が外周の周上に設けられることで、第1ボス部と第2ボス部は、1直線上にすることなく、相互に適宜の角度で設定されるので使用される条件に適応した設置ができる。
請求項7の発明では、都市ガスとLPG(液化石油ガス)の両方のガス燃料を使用可能な発電用ガスエンジンに対して、ミキサを介して簡易且つ迅速に都市ガス供給源とLPG供給源からのガスの流入を仕切ることができる。発電用ガスエンジンには、通常(平時)は、都市ガスを使用し、地震等の災害発生の緊急時において都市ガスの供給が緊急停止してしまったときに、LPG(液化石油ガス)供給源からのLPGを発電用ガスエンジンのガス燃料として、災害発生直後から使用可能となり、発電用ガスエンジンを稼働し続けることができるものである。請求項8及び請求項9では、都市ガス及びLPG(液化石油ガス)の両方を使用できる発電用ガスエンジンにおける都市ガス及びLPGの仕切りが容易にできる回路を極めて簡単な構成にて行うことができる。
(A)は本発明における第1実施形態のミキサの縦断面図、(B)は(A)の平面図、(C)は(A)のX1-X1矢視断面図、(D)は(A)のX2-X2矢視断面図である。 本発明における第2実施形態のミキサの分離した縦断面図である。 (A)は第2実施形態のミキサ用のスペーサの平面図、(B)は(A)の断面図、(C)は種々の厚みのスペーサの断面図の一部である。 (A)は本発明におけるミキサを使用した発電用ガスエンジンへのガス供給システムの全体図、(B)は(A)の要部のシステム図である。 (A)は本発明におけるミキサを使用したガス供給システムにおいて第1ガス供給流路が動作しているシステム図、(B)は本発明におけるミキサを使用したガス供給システムにおいて第2ガス供給流路が動作しているシステム図である。 (A)は本発明における燃料流量調節用の第1及び第2の燃料ジェットの拡大断面図、(B)はスロットル箇所の状態図である。 低圧調整弁と遮断弁とガス供給切替バルブの一部拡大した状態図である。 (A)はガス供給切替バルブの縦断側面図、(B)は第1ガス供給流路の動作時の弁体の状態を示す断面図、(C)は第2ガス供給流路が動作時の弁体の状態を示す断面図である。 (A)は本発明におけるミキサによる都市ガス使用時の特性を示すデータ表、(B)は本発明におけるミキサによるLPG(液化石油ガス)使用時の特性を示すデータ表である。
以下、本発明におけるミキサAの説明を行い、次いで該ミキサAを中心としたガス供給システムの説明を行う。本発明におけるミキサAは、2つの異なる種類のガスをガス燃料として使用することができる発電用ガスエンジン93に異なる2種類のガス燃料を切替えて何れか一方のみを供給するものである。
種類の異なるガス燃料は、具体的には都市ガス及びLPG(液化石油ガス)である。なお、LPG(液化石油ガス)は、LPガスとも称する。本発明において使用される発電用ガスエンジン93は、往復動内燃機関(エンジン)に分類されるものである。したがって、本発明の発電用ガスエンジン93において、ガスタービンエンジンは含まれない。
まず、本発明におけるミキサAには、3つの実施形態が存在する。その第1実施形態では、図1に示すように、基本構造としてのアッパボディ1,メインボディ2,スロットルボディ3にて構成されている。この第1実施形態における基本構造は、第2及び第3の実施形態においても共通である。このアッパボディ1,メインボディ2,スロットルボディ3である3個の部材は、2本或いはそれ以上の数の通しボルト16にて連結固着されている。この各ボディが3分割構造とするのは、その製作を容易にするためである。
以下、第1実施形態のミキサについて説明すると、前記アッパボディ1は、導入管部11の下端に下部本体13が形成され、該下部本体13の内方にはベンチュリVの縮流部12が形成されている〔図1(A)参照〕。該縮流部12の最下端周縁がベンチュリVの最狭部径Dとして構成されている。前記縮流部12の外方側で且つ前記下部本体13の内方側には、逆U字状の円還状の上部空間14が設けられている〔図1(A)参照〕。
次に、前記メインボディ2は、前記アッパボディ1と対を成す構成であり、下部管21と拡散部22とを備え、下端に下部管21が位置し、該下部管21の上側に、上方に向かって次第に拡大する拡散部22が形成されている。拡散部22は、アッパボディ1の縮流部12に接続され、下部管21は前記スロットルボディ3の管体31に接続する。拡散部22の最上端周縁が前記ベンチュリVの最狭部径Dとして構成されている。つまり、前記ベンチュリVは、前記アッパボディ1の縮流部12と前記記メインボディ2の拡散部22にて形成されている。また、前記メインボディ2の拡散部22の外側には、U字状の円還状の下部空間24が設けられている。つまり、アッパボディ1の上部空間14とメインボディ2の下部空間24とで断面O型状の円環状空間Nが形成されている。
前記メインボディ2の下端側には、第1入口部251を有する第1ボス部25と、第2入口部261を有する第2ボス部26が形成されている。第1ボス部25は第1入口部251を介して都市ガス燃料をミキサA内に流入させる役目をなす。また第1ボス部25は第2入口部261を介してミキサA内にLPG(液化石油ガス)を流入させる役目をなす。
第1ボス部25と第2ボス部26は、拡散部22又は下部管21の直径方向に沿って円筒状に突出する円筒管状に形成されたものである。さらに具体的には、拡散部22の直径方向に沿う延長線上で且つメインボディ2の外周側面両側から突出するように形成されている。つまり、第1ボス部25と第2ボス部26とは拡散部22又は下部管21の任意の直径線上に沿って略一直線方向に形成されたものである〔図1(B)参照〕。
また、第1ボス部25と第2ボス部26は、拡散部22又は下部管21の直径中心をメインボディ2の中心とし、その外周の適宜の位置に形成されることもある〔図1(B)の二点鎖線による第2ボス部26を参照〕。つまり、拡散部22又は下部管21とは拡散部22又は下部管21の直径中心を中心とし、相互に180度以外の位置に存在してもよく、径方向に沿って1直線上に配置されなくてもよい。
第1ボス部25は、前述したように中空円筒管状であり、その内部は円筒状空隙部25aとして形成されている。さらに、第1ボス部25には第1入口部251が形成されている。第1入口部251は、第1ボス部25に第1入口孔251hとして形成されるものであり、ミキサAの外部から供給されるガス燃料を、第1ボス部25の円筒状空隙部25a内に流入させる役目をなす。
第1入口部251は、具体的には中空管状のスリーブ251aと空隙状の管路251bとからなる。該管路251bと、前記第1入口孔251hとは連続している。そして、前記管路251bは前記第1入口孔251hを介して第1ボス部25の円筒状空隙部25aと連通する構成となっており、後述する第1燃料ジェット4Aに連通する〔図1(A),(C)参照〕。
そして、第1ボス部25の円筒状空隙部25aは、後述する下部空間24と連通している。また、第1ボス部25の円筒状空隙部25aにはメインボディ2の外方寄りの外方内ネジ部25bと内方寄りの内方内ネジ25cがそれぞれ形成されている。前記外方内ネジ部25bには、これと螺合する外ネジ部27aを有するブラインドプラグ27が締付固定され、第1ボス部25の円筒状空隙部25aの外方端側を閉鎖する。
また、第1ボス部25の円筒状空隙部25aの内方内ネジ25cには、これと螺合する外ネジ部41aを有する第1燃料ジェット4Aが螺合固着される。そして、第1入口部251の管路251bと第1ボス部25の円筒状空隙部25aでガス燃料の流路を構成するものであり、この第1入口部251と第1ボス部25により、ミキサAにおける都市ガス燃料の入り口を構成するものである。
また、第2ボス部26は、第1ボス部25と同様に中空円筒管状であり、その内部は円筒状空隙部26aとして形成されている。さらに、第2ボス部26には第2入口部261が形成されている。第2入口部261は、第2ボス部26に第2入口孔261hとして形成されるものであり、ミキサAの外部から供給されるガス燃料を、第2ボス部26の円筒状空隙部26a内に流入させる役目をなす。
第2入口部261は、前記第1入口部251と略同様の構成であり、具体的には中空管状のスリーブ261aと空隙状の管路261bとからなる。そして、該管路261bと、前記第2入口孔261hとは連続しており、前記管路261bは前記第2入口孔261hを介して第2ボス部26の円筒状空隙部26aと連通する構成となっており、後述する第2燃料ジェット4Bに連通する〔図1(A),(D)参照〕。
そして、第2ボス部26の円筒状空隙部26aは、後述する下部空間24と連通している。また、第2ボス部26の円筒状空隙部26aにはメインボディ2の外方寄りの外方内ネジ部26bと内方寄りの内方内ネジ26cがそれぞれ形成されている。前記外方内ネジ部26bには、これと螺合する外ネジ部27aを有するブラインドプラグ27が締付固定され、第2ボス部26の円筒状空隙部26aの外方端側を閉鎖する。
また、第2ボス部26の円筒状空隙部26aの内方内ネジ26cには、これと螺合する外ネジ部41aを有する第2燃料ジェット4Bが螺合固着される。そして、第2入口部261の管路261bと第2ボス部26の円筒状空隙部26aでガス燃料の流路を構成するものであり、この第2入口部261と第2ボス部26により、ミキサAにおけるLPG(液化石油ガス)の入り口を構成するものである。
第1ボス部25の円筒状空隙部25aの内径,第1入口部251の管路251b及び第1入口孔251hのそれぞれの内径は、第2ボス部26の円筒状空隙部26aの内径,第2入口部261の管路261b及び第2入口部261及び第1入口孔251hのそれぞれの内径よりも大きく形成される。つまり、ミキサAに対して、都市ガスが第1入口部251,第1ボス部25を介して一度に流入する量は、LPG(液化石油ガス)が第2入口部261,第2ボス部26を介して一度に流入する量よりも多くなるように設定されている。
第1ボス部25には、都市ガス燃料の流量制御用の第1燃料ジェット4Aが装着される。第2ボス部26には、LPG(液化石油ガス)燃料の流量制御用の第2燃料ジェット4Bが装着される。第1燃料ジェット4A及び第2燃料ジェット4Bの構造を説明する。第1燃料ジェット4Aと第2燃料ジェット4Bの構造は同一であり、各部位の符号も共通のものとする。第1燃料ジェット4A及び第2燃料ジェット4Bには、ジェット本体41の外周には外ネジ部41aが設けられている。
そして、入口側から大径部42が、続いて小孔径dのオリフィス43が長さwとして出口側に通じて形成されている。該オリフィス43の出口側は前記メインボディ2の下部空間24に連通している。ここで、第1燃料ジェット4Aと第2燃料ジェット4Bのそれぞれの入口側と出口側とは、第1燃料ジェット4Aが第1ボス部25に、また第2燃料ジェット4Bが第2ボス部26に装着された状態から見た位置であり、入口側が第1ボス部25及び第1ボス部25のそれぞれの外方の位置であり、出口側とはメインボディ2の内方に向かう位置である。
また、前述したように第1ボス部25の円筒状空隙部25aの外方先端側及び第2ボス部26の円筒状空隙部26aの外方先端側にはブラインドプラグ27にて閉塞されている。第1ボス部25における円筒状空隙部25aにおいて、ブラインドプラグ27と第1燃料ジェット4Aとの間に都市ガスが流入する第1入口孔251hが開口されている。そして、小孔径dとベンチュリVの最小径Dとの関係は後述する。第1燃料ジェット4Aの外部端面に溝44が形成され、マイナスドライバ挿入用で回転調整可能に構成されている。
前記スロットルボディ3の管体31内には、スロットル32が軸支されたスロットルシャフト33に固着されて開閉自在に取り付けられている。アイドリングをごく低い回転数に設定する場合はベンチュリ部の負圧が小さいので、スロットル32の後流の負圧が大きいところに開口したアイドルホール34から燃料は主に供給される〔図1(A)参照〕。
その通路面積はアイドル燃料流量調整用のニードル35で調整可能に構成されている。エンジン運転中に該ニードル35が回らないように抵抗となる回り止めは固定スプリング36にて行う。或いは、ロックナットを使ってもよい。特にアイドリング回転数を低く設定する場合はスロットル32の開度が小さいので、該スロットル32を開く過程でまだ十分にベンチュリ負圧が発生していないときにも燃料を供給できるように、該スロットル32が少し開いたときに、この後流になる位置の前記管体31にステップホール37が開ロされている。
該ステップホール37及び前記アイドルホール34は、前記メインボディ2の下部空間24に連通している縦貫孔38を介して燃料が供給可能に構成されている。該縦貫孔38は前記メインボディ2及び前記スロットルボディ3にも連続している部位であり、さらに前記縦貫孔38の下端は塞がれ、前記ステップホール37の外端も塞がれている。その燃料の制御は該ステップホール37の孔の径で行うこともある。発電用のエンジンではアイドル回転数iを常用回転数かそれより若干低い回転数にすることが多い。この場合は前記ステップホール37、ニードル35、固定スプリング36、アイドルホール34は不要になる。
次に、ガス供給切替バルブ7は、種類の異なる都市ガス供給源91又はLPG(液化石油ガス)供給源92を備え、両者が混じることなく、何れか一方のガス燃料を確実にミキサAを介して発電用ガスエンジン93に供給するものである。ガス供給切替バルブ7は、バルブボディ71と、弁体72と、操作部73とを備えている(図8参照)。バルブボディ71は、筐体状のボディ本体711の内部に弁室712が形成されている。該弁室712は、後述する弁体72が配置される部屋である(図8参照)。バルブボディ71は、本体側部711a,頂部711b及び底部711cを備えている。本体側部711aと、頂部711bと、底部711cとによって、内部に空隙とした弁室712が構成される(図8参照)。
ボディ本体711の頂部711bには、後述する弁体72と操作レバーとを連結する操作用貫通孔711dが設けられている。本体側部711aは、円筒状或いは直方体,立方体状の筒体である。弁室712は、円筒状の空隙室である。筒状の本体側部711aの周壁には、ボディ本体711の外部と、内部の弁室712とを連通する貫通孔状の第1流入路713と第2流入路714と共有流出路715と共有流入路716と第1流出路717と第2流出路718とを備えている(図8参照)。
さらに、前記共有流出路715には、弁室712の内周側面における開口箇所において、周方向に流出内周凹部715aが形成されている(図8参照)。該流出内周凹部715aは、弁室712の内周側面712aに周方向に沿う窪み状の溝部として形成された部位であり、共有流出路715の弁室712の内周側開口と連通する。そして、切替操作における弁体72の回転範囲において、該弁体72の切替流入路722の排出側の開口722mが、常に前記流出内周凹部715aと連通できる範囲となるように、該流出内周凹部715aの周方向における形成範囲が設定される〔図8(B)参照〕。
前記共有流入路716には、弁室712の内周側面712aにおける開口箇所において、周方向に流入内周凹部716aが形成されている(図8参照)。該流入内周凹部716aは、弁室712の内周側面712aに周方向に沿う窪み状の溝部として形成された部位であり、共有流入路716の弁室712の内周側開口と連通する。そして、切替操作における弁体72の回転範囲において、該弁体72の切替流出路723の入口側の開口723mが、常に前記流入内周凹部716aと連通できる範囲となるように、該流入内周凹部716aの周方向における形成範囲が設定される〔図8(C)参照〕。
第1流入路713と第2流入路714と共有流出路715は、本体側部711aの頂部711b側寄りの位置で且つ同一周上に揃うように配置形成されている。また、第1流入路713と第1流出路717とは、その流路の方向は同一であり、同様に、第2流入路714と第2流出路718についても、その流路の方向は同一である〔図8(B),(C)参照〕。そして、第1流入路713と第1流出路717の組の流路方向と、第2流入路714と第2流出路718との組の流路の方向は異なる。
具体的には、第1流入路713と第1流出路717は、断面円形の弁室712の直径中心において角度として約90度程度異なる位置にある。同様に、第2流入路714と第2流出路718についても、断面円形の弁室712の直径中心において角度として約90度程度異なる位置にある。また、共有流出路715と共有流入路716における流路の方向は、同一である。頂部711bには、操作部73のための貫通孔711eが形成されている。前記第1流入路713と前記第1流出路717とは、その流路の方向は同一である。
弁体72は、弁本体部721と、切替流入路722と、切替流出路723とからなる。そして、弁本体部721に切替流入路722と切替流出路723とが軸芯線Lに沿ってずれるような位置関係で形成されている〔図8(A)参照〕。弁本体部721は、円筒形状に形成されている。その円筒形状とした弁本体部721の軸方向に軸芯線Lを設定し、該軸芯線Lを回転中心として弁室712内で回転可能な構成となっている。弁体72の弁本体部721の外周721aは、バルブボディ71の弁室712の内周側壁面に密着しつつ且つ円滑に回転することができる構成となっている。
弁体72の弁本体部721には、操作部73が設けられている。該操作部73は、バルブボディ71に対して、弁体72をバルブボディ71の外部より回転操作する役目をなすものである。操作部73は、操作軸731と操作レバー732とからなる。操作軸731は、弁体72の軸方向に沿って弁本体部721の軸方向一端から突出するように形成された軸部材である。
操作軸731の軸端箇所には、操作レバー732が設けられている。該操作レバー732は、レバー部732aとレバーボス部732bとから構成され、該レバーボス部732bに操作軸731が貫通し、両者は相互に固着されている。具体的には、操作軸731の軸端付近に螺子部が設けられ、該螺子部と螺合するナット733が具備され、該ナット733の締付によって、操作軸731と操作レバー732とが固着される。
弁体72は、バルブボディ71の弁室712内に配置される。そして、弁体72は、バルブボディ71の外部から操作レバー732の回転操作によって、バルブボディ71の弁室712内で回転させることができる。操作部73の操作レバー732を操作することによって、弁体72は弁室712内にて軸芯線Lを回転中心として回転する。
弁体72の軸芯線Lとは、該弁体72がバルブボディ71の弁室712内を回転するときの回転中心軸となる線のことである。このように、弁体72には、弁本体部721に切替流入路722と切替流出路723が一体的に形成されている。これによって、作業員による操作部73の一度の操作で、第1ガス供給流路P1と第2ガス供給流路P2との流路の切替操作を行うことができ、しかも、誤操作を防止できるものである。
本発明のガス供給切替バルブ7は、2つの種類の異なるガス燃料を状況に応じて使い分けて稼働する発電用ガスエンジンのガス供給システムに適用される。まず異なる種類のガス(都市ガス又はLPG)の切替仕切りを行い、要求されるガス燃料をミキサAを介して発電用ガスエンジン93に供給する。そして、ガス供給切替バルブ7は、ガス供給システムにおいて第1ガス供給流路P1と第2ガス供給流路P2と低圧調整流路Pcとを構成する。
第1ガス供給流路P1は、都市ガス供給源91からミキサAに都市ガスを供給する供給流路を構成するものであり、第1流入路713,切替流入路722,共有流出路715,共有流入路716,切替流出路723,第1流出路717及び第1吸入流路61とを一連とする流路を構成する〔図4,図5(A)参照〕。また、第2ガス供給流路P2は、LPG(液化石油ガス)供給源92からミキサAにLPG(液化石油ガス)を供給する供給流路を構成するものであり、第2流入路714,切替流入路722,共有流出路715,共有流入路716,切替流出路723,第2流出路718及び第2吸入流路62とを一連とする流路を構成する。
ここで、都市ガスは、枝管,ガス管等の配管から供給される。また、LPG(液化石油ガス)供給源92は、LPG(液化石油ガス)がガスボンベ92aに充填され、このガスボンベ92aが設置される。さらに、ガスボンベ92aには手動バルブ92bが設けられている。そして、LPG(液化石油ガス)のガスボンベ92aは、都市ガスの供給が停止したときの緊急時における非常用のものであり、都市ガスが復旧するまでの期間を補完できるものである。
また、共有流出路715と共有流入路716との間には低圧調整流路Pcが具備される。該低圧調整流路Pcには低圧調整弁51が設けられている。低圧調整流路Pcは、第1ガス供給流路P1と第2ガス供給流路P2とにおいて共通の流路となる。つまり第1ガス供給流路P1と第2ガス供給流路P2は共に共通の低圧調整流路Pcを有するものである〔図4,図5(B)参照〕。
換言すれば、低圧調整流路Pcは、ガス供給切替バルブ7により第1ガス供給流路P1が選択されているときには、低圧調整流路Pcは第1ガス供給流路P1の一部を構成する流路に含まれる〔図4(A)参照〕。第2ガス供給流路P2が選択されているときには、低圧調整流路Pcは第2ガス供給流路P2の一部を構成する流路に含まれる〔図4(B)参照〕。そして、都市ガス供給源91或いはLPG(液化石油ガス)供給源92からのそれぞれのガスは、この低圧調整流路Pcを通過し、低圧調整弁51によって適正な圧力に設定され、後述するミキサ及びガスエンジンにガス燃料を供給する。
次に、図4,5において、本発明のミキサAがエンジンシステムの一部として機能するための構成を説明する。発電用ガスエンジン93が吸入する空気はエアクリーナ97のフィルタ97aで濾過されてミキサAに吸入される。だが、フィルタ97aの通気抵抗を避けられないため、大気圧より若干だが低くなる。そこで感圧ダイオードなどで出来た絶対圧センサ821で圧力を検出して信号をECU(エンジンコントロールユニット)81((以下「ECU81」という。)に送る。
ミキサAにはエアクリーナ97からの空気と低圧調整弁51からの燃料が流入し、ここで、混合されて吸気マニホールド94を通って発電用ガスエンジン93に吸入される。排気は排気マニホールド95から三元触媒96を通ってマフラ(図示せず)に入り消音して大気に放出される。
次に、ガス供給源から気化している燃料(LPG)がミキサAに流入するまでの過程を説明する。この説明では、ガス供給源はLPG供給源92とする。該ガス供給源はLPG供給源92のボンベ92aの交換時に閉じる手動バルブ92bが開けられると、前記ボンベ92a内の燃料は一次減圧弁92cで減圧されて電磁式の遮断弁52を通って電磁式の低圧調整弁51に流入する。ここでLPGの場合、常温でボンベ92a内では大部分が液状で内圧は10気圧程度である。これを一次減圧弁92cで数気圧(3.5気圧以下)に減圧する。この圧力の燃料(LPG)を電磁式の低圧調整弁51でフィルタ97aの下流を同じ圧力に調圧してミキサAに供給する。
発電用ガスエンジン93は発電用なので負荷の大小にかかわらず定常回転数(例えば、2400rpm)に維持される。その回転数を一定に保つための制御は図6(A)及び図6(B)のスロットル32の開度を制御することにより行う。電磁式のピックアップのクランク角センサ83の信号により、ECU81からの電気出力でスロットルシャフト33に取り付けられたステップモータ式のアクチュエータ39でスロットル32の開度を調整する。
電気負荷が増大するとエンジンへの要求トルクが増大するので、その抵抗によってエンジン回転数が低下する。常時クランク角センサ83で回転数の電気信号を検知してECU81に送っている。該ECU81で回転数が所定の回転数より低下したと判断すると、アクチュエータ39にスロットル32を開けるようにと信号を出す。この前記ECU81の信号と該ECU81にてエンジン回転数も常時検出している。
エンジン回転数を一定に維持するのに必要な混合気は本発明のミキサAから吸気マニホールド94を介して発電用ガスエンジン93のシリンダに吸入される。ここで前記ECU81に繋がる破線は各センサからの信号で該ECU81から出る実線の信号はアクチュエータを作動させる出力信号である。
次に、電磁式の遮断弁52と低圧調整弁51について図7で説明する。なお、遮断弁52と低圧調整弁51において共通する部材は同一名称とする。エンジン始動に際し、前記ECU81からの出力で双方の電磁弁のコイル51b及び52bが通電する。磁力線は磁性体のコア51a及び52aの磁極から磁性体の可動鉄心(アーマチュア)51c及び52cをまわる磁場を形成する。
これにより結果的にコア51a及び52aが可動鉄心51c及び52cを引きつける。これによって可動鉄心51c及び52cはスプリング51d及び52dの力に打ち勝って、それまでゴムのような弾性体のシール部材51e及び52eで塞いでいた燃料通路を開く。安全のために設けけられている遮断弁52は燃料通路の単純なオンオフ弁であり、発電用ガスエンジン93が稼働している間は常時コイル51b及び52bには通電されたままである。
また、前記低圧調整弁51内に設けられた燃料室51fの中には前記エアクリーナ97内に取り付けられていた絶対圧センサ821と同じ特性の絶対圧センサ822が取り付けられている。前記ECU81でこの2つのセンサからの信号を比較して、もしも前記絶対圧センサ822の中の圧力が高ければコイル51bへの通電をオフにする。
前記燃料室51f内の燃料がミキサで消費されると、該燃料室51fの内圧が低下するので前記コイル51bに通電してシール部材51eを開いて燃料を前記燃料室51f内に流入させる。このようにしてミキサに供給する燃料の圧力をエアクリーナ97のエアフィルタ97aの下流の圧力と同じに保っことができる。
ここで、燃料通路が遮断される時間は燃料室51fの容積が大きくなると長くなり、燃料絞り51gの内径が大きくなると開いている時間が短くなる。すなわち燃料室51fの容積と燃料絞り51gの内径でオンオフする時間を調整することができる。
図1の構造のミキサで目標の空燃比(吸入した空気の質量/供給した燃料の質量)を得ることができる原理を説明する。
以下の内容は、都市ガス及びLPG(液化石油ガス)の何れにも当て嵌まるものである。
空気の密度ρ(kg/m
燃料の密度ρ(kg/m
ベンチュリ部の空気速度V(m/s)
オリフィス部の燃料速度v(m/s)
ベンチュリ径D(m)
オリフィス径d(m)
単位時間あたりに流れる空気の質量m(kg/s)
単位時間あたりに流れる燃料の質量m(kg/s)
空燃比A/F=m/m
とするとベンチュリ部を流れる空気の単位時間あたりの質量は、
=(ベンチュリ部の面積)×(ベンチュリ部の空気速度)×(空気の密度)
=π/4・D・V・ρ(kg/s)
同様にオリフィスを流れる燃料の単位時間あたりの質量は、
=π/4・d・V・ρ(kg/s)
従って、空燃比は
A/F=(π/4・D・V・ρ)/(π/4・d・V・ρ)=
(D・V・ρ)/(d・V・ρ)・・・・(1)
一方、ベンチュリ部で発生する負圧P(Pa)はベルヌーイの定理により、
P=1/2・ρ・V (Pa)
となる。この負圧がベンチュリ周りの空間Nを満たし、オリフィス43の出口負圧となる。すなわち、先にも述べたようにオリフィス43の入口の圧力はエアクリーナ97のエアフィルタ97aの後流のミキサに流入する空気の圧力と同じになるように調節されているので、オリフィスの前後差圧はベンチュリ負圧と同じ
P(=1/2・ρ・V )(Pa)である。
(P=)1/2・ρ・v =1/2・ρ・v
これより、
Figure 2021017880
(2)を(1)のVに代入して整理すると、
Figure 2021017880
このように空燃比は空気と気体燃料の密度が決まれば、ベンチュリ径とオリフィス径の選択組み合わせで任意の空燃比を得ることができる。
すなわち、圧力が一定ならρとρは物性値なので一定、即ち、定数となる。従って
Figure 2021017880
は一定となり、空然比は一義的にベンチュリ最狭部の径の二乗とオリフィス径の二乗の比で決まる。
以下、都市ガス用の第1燃料ジェット4Aのオリフィス径d1及びLPG(液化石油ガス)用の第2燃料ジェット4Bのオリフィス径d2を求める。まず、都市ガス(メタンCH)の場合では、空燃比を都市ガスの理論空燃比である16.8に保つミキサを設計するときのオリフィス径d1を求める。
ベンチュリ径D=30mmとした場合、都市ガスの密度はρ。=0.714(kg/m)、空気の密度をρ=1.25kg/mとすると、
Figure 2021017880
これよりオリフィス径d1は8.41mmとなる。
次に、LPG(液化石油ガス,プロパンC)の場合では、この空燃比をLPG(プロパン)の理論空燃比である15.6に保つミキサを設計するときのオリフィス径d2を求める。
ベンチュリ径D=30mmとした場合、LPGの密度はρ。=1.96(kg/m3)、空気の密度をρ=1.25kg/mとすると、
Figure 2021017880
これよりオリフィス径d2は6.79mmとなる。
以上のことから第1燃料ジェット4Aのオリフィス径d1と、第2燃料ジェット4Bのオリフィス径d2との大小関係は、
Figure 2021017880
となる。このように、都市ガス燃料用の第1燃料ジェット4Aのオリフィス43の直径d1は、LPG(液化石油ガス)燃料用の第2燃料ジェット4Bのオリフィス43の直径d2よりもい大きい。
本発明のミキサAを860ccの2気筒のLPGエンジンに装着したときの空燃比の制御特性を図9に示す。回転数は2400rpm、実験時におけるアイドリング回転数は900rpmである。前記円環状スリットSの間隔Hは、前記アッパボティ1の端部を少し短く形成して形成する〔図1(A)参照〕。また、該アッパボティ1の端部は切除せずに、前記メインボディ2の端部を切断して前記間隔Hを形成することもある。さらには、両方を少しづつ切除して形成することもある。
また、図8の横軸はスロットル開度、縦軸は空気過剰率である。該空気過剰率とはその時の空燃比を理論空燃比で除した値で、1が理論空燃比、1より大きいと空気が多く混合気が薄いことを意味する。逆に1より小さければ空気が不足している状態、すなわち濃いことを意味する。前述のようにして理論空燃比になるように計算したオリフィスを装着したミキサは、ベッチュリ負圧が十分に発生するスロットル開度が30°以上の中負荷から全負荷まで、目標の理論空燃比を維持しているのが分かる。
だが、一方アイドルアジャストとステップホール37がないと、ベンチュリ負圧が小さく燃料を吸い出せない領域で空気過剰率は大きくなる。すなわち理論空燃比より薄くなってしまう。該アイドルアジャストとステップホールがあると破線のようにスロットル開度が小さいところでも目標の空燃比近くを維持している。
ここで、図1のベンチュリの内径Dと円環状スリットSと図1,図6(A)のオリフィス43の関係について説明する。円環状スリットSのガス燃料が通過する面積はπD×H(m2)である。この誘導式のHは、前記円環状スリットSの間隔である。これがオリフィス43の通路面積以上でないと、円環状スリットSの面積が律則となってオリフィス43が絞り効果を発揮できない。
これを式にすると、
π×D×H≧π/4・(d1又はd2)
すなわち H≧(d1又はd2)/4Dとなる。
また逆に大き過ぎると燃料が円環状スリットSの全周からではなく一部から流れ出るようになり、空気との混合が悪くなる。そこで前記円環状スリットSの範囲(間隔H)としては、
1.5x(d1又はd2)/4・D≧H≧(d1又はd2)/4・D
とするのがよい。
都市ガスとLPGのようにオリフィスの孔径dの値が異なる場合は、この式のαの値として大きい方の数値を用いる(都市ガスの方が大きくなる)。必ず、オリフィス面積よりもスリットの面積を大きくして、最小の通路面積がオリフィス部であるようにするためである。
エンジンの排気量が小さいエンジン(300cc以下)の場合は、アイドリング回転数を若干高くすると、アイドルアジャストとステップホールがなくても低負荷でも空気過剰率1近くを維持することができる。
高地や気温の変化、エアフィルタの目詰まりや部品の精度の影響などで空然比が微妙に変化するのを吸収して、常に精度高く理論空然比に維持するためには、排気マニホールドに装着したOセンサ84で空然比を検出して、フィードバック制御を行う。
薄ければ絶対圧センサ82で検出したミキサ入り口の空気の絶対圧より、アクチュエータで検出した燃料室51f内の絶対圧が高くなるようにコイル51bへの通電時間を長くする。また、逆に濃ければ燃料室51f内の絶対圧が低くなるようにコイル51bへの通電時間を減らす。これによってさらに理論空然比の維持精度が向上する。
燃料のLPGを空気と均質に混合するために、ベンチュリVの最狭部径Dの全周に円環状スリットSを創成する簡便な構造について説明する。図1では、アッパボディ1の縮流部12の周縁を僅かな量凹ませて円環状スリットSを形成する構造を説明した。該円環状スリットSはベンチュリVの最狭部径D、オリフィス43のオリフィス径d1又はd2とが関数関係にある。
燃料を濃くするために第1燃料ジェット4Aの燃料オリフィス径d1又は第2燃料ジェット4Bのオリフィス径d2を大きくしたら、前記円環状スリットSも広げる必要がある。つまり、この隙間Hを広げることである。また、出力を上げるために前記ベンチュリVを大きくする場合も同様である。さらに、前記アッパボディ1の中心部を周囲より精度よくへこませるのには加工コストがかかる。また、深く削り過ぎた場合は周囲を削ることで、つじつまを合わせることになると加工に時間を要することになる。
本発明の第2実施形態について、図2及び図3に基づいて説明する。ます、アッパボディ1とメインボディ2ともベンチュリV箇所の周囲と同じ高さに一気に平面加工をして、図4及び図5に示すようなガスケット状で厚さtのスペーサ19をこの間に鋏み込んで、前記円環状スリットSの間隔Hを創成する。このとき、間隔H=厚さtとする。
さらに、前記スペーサ19の厚みtにおいて、該厚みtの異なる適宜の厚さt1、t2、t3等を揃えておき、細かな調整に対応可能にすることも多い〔図3(C)参照〕。また、前記スペーサ19はステンレスやアルミの薄板などで作ることもある。前記スペーサ19において、内径部19aは前記円環状空間Nの外形と同一径に形成されている。
また、スペーサ19の外形部19bは、アッパボディ1の下端部又はメインボディ2の上端部の外形断面形状と同等又は略同等に形成されている(図2,図3参照)。図2においてアッパボディ1の平面図は省略しているが、図1(B)に示されているアッパボディ1と同一形状である。具体的には、アッパボディ1の下端部の形状が略楕円形状であれば、スペーサ19の外形部19bも略楕円形状である。また、アッパボディ1の下端部の形状が正方形又は長方形等の略方形所であれば、スペーサ19の外形部19bも同等の略方形状である。
もしも、ガスの漏れが心配ならば、前記スペーサ19と前記アッパボディ1及びメインボディ2との間に液体パッキングを薄く塗布してもよい。また、前記アッパボディ1の下面と前記メインボディ2の上面にグランド溝を掘ってOリングを入れてもよい。ベンチュリの最狭部径の二乗とオリフィス径の二乗の比を一定に保ち、目標の空然比になるように燃料を供給するとともに、空気と燃料が均質に混合するように前記円環状スリットの面積をオリフィス径の面積と同じか、この1.5倍以内とすることもある。
次に、本発明のミキサAを備えた発電用ガスエンジン93のガス供給システムの構成を説明する(図4,図5参照)。このシステムには、ECU81が具備されており、ガス供給切替バルブ7のバルブボディ71には、流通するガス燃料の種類を判別するガス判別センサ85が具備されている。該ガス判別センサ85によってECU81は、ガスの種別、つまり都市ガス又はLPG(液化石油ガス)であるか否かを判断する。
本発明では、システム内に都市ガス供給源91とLPG(液化石油ガス)供給源92とが備わっている。そして、ガス供給切替バルブ7は、都市ガス供給源91及びLPG(液化石油ガス)供給源92の両方と連通されており、ガス供給切替バルブ7の操作部73の操作レバー732の切替操作によって、流路が切替えられて仕切られ第1ガス供給流路P1又は第2ガス供給流路P2の何れか一方のみが開通され、他方は遮断される。ガス供給切替バルブ7における操作部73の操作レバー732の操作は、作業員により人為的に行われる。
ここでは、第1ガス供給流路P1は、都市ガス専用とし、第2ガス供給流路P2はLPG(液化石油ガス)専用としている。通常時は、発電用ガスエンジン93には、都市ガスが使用され、ガス供給切替バルブ7は、第1ガス供給流路P1を開通状態とし、都市ガスは、ミキサAの第1入口部251を介して発電用ガスエンジン93に供給される。そして、通常時においては、ガス供給切替バルブ7は、第2ガス供給流路P2を遮断状態としている〔図4(A),(B)参照〕。
緊急時には、都市ガスは供給を停止する。緊急時とは具体的には地震等の災害発生時である。このときには、LPG(液化石油ガス)供給源92のガスボンベ92aの手動バルブ92bを開き、次いで、ガス供給切替バルブ7の操作部73の操作レバー732を操作して、第1ガス供給流路P1から第2ガス供給流路P2に切り替え、第1ガス供給流路P1を遮断し、第2ガス供給流路P2を開通させる。これによって、LPG(液化石油ガス)は、ミキサAの第2入口部261を介して発電用ガスエンジン93に供給される。
そして、発電用ガスエンジン93は、通常では該発電用ガスエンジン93が吸入する空気は図示しないエアクリーナ97のフィルタ97aで濾過されてミキサAに吸入される。ミキサAには、ガス供給切替バルブ7の切替操作によって仕切られた都市ガス又はLPG(液化石油ガス)の何れか一方が低圧調整流路Pcの低圧調整弁51を通過することによって減圧されたガス燃料が流入し、ここで、混合されて吸気マニホールド71を通ってエンジン7に吸入される。排気は排気マニホールド71から三元触媒96を通ってマフラ(図示せず)に入り消音して大気に放出される。
本発明は、発電用ガスエンジンに利用について説明したが、本ミキサは構造が簡単で、ガスエンジンが吸入する混合気の空燃比を理論空燃比(都市ガスの場合は16.8であり、プロパンの場合は15.6である)に制御することができる。複雑な制御を行なわなくても、該ミキサと排気系に配設した三元触媒96により、排気中の有害成分HC(炭化水素)、CO(一酸化炭素)、NOx(窒素酸化物)を同時に大幅に低減することが可能になるので、自動車用のガスエンジンにも利用することができるものである。
1…アッパボディ、12…縮流部、14…上部空間、19…スペーサ、
2…メインボディ、21…下部空間、22…拡散部、25…第1ボス部、
251…第1入口部、26…第2ボス部、261…第2入口部、3…スロットルボディ、32…スロットル、4A…第1燃料ジェット、4B…第2燃料ジェット、
51…低圧調整弁、7…ガス供給切替バルブ、71…バルブボディ、
713…第1流入路、714…第2流入路、717…第1流出路、718…第2流出路、
72…弁体、73…操作部、81…ECU、85…ガス判別センサ、
91…都市ガス供給源、92…LPG供給源、93…発電用ガスエンジン、
V…ベンチュリ、N…円環状空間、S…円環状スリット。
そこで、発明者は上記課題を解決すべく鋭意,研究を重ねた結果、請求項1の発明を、 外部空気の導入管部の下側にベンチュリの縮流部を形成し該縮流部の外側には、逆U字状の円環状の上部空間が設けられたアッパボディと、前記縮流部に連続するベンチュリの拡散部の外側にはU字状の円環状の下部空間が設けられ、該下部空間には外周側から都市ガス燃料用の第1入口部と第1燃料ジェット及びLPG燃料用の第2入口部及び第2燃料ジェットを備えたメインボディと、前記下部空間と前記上部空間とからなる断面O型状の円環状空間と、前記メインボディに連続してスロットルを設けたスロットルボディを備え、前記縮流部及び前記拡散部の端部周縁との間であって、前記ベンチュリの最狭部箇所に隙間としての円環状スリットが形成されると共に、前記第1燃料ジェット及び前記第2燃料ジェットの出口側は前記メインボディに連通されてなるる発電用ガスエンジンのミキサとしたことにより、上記課題を解決した。
請求項5の発明を、請求項1,2,3又は4に記載の発電用ガスエンジンのミキサ構造において、前記ベンチュリの最狭部径の二乗と前記第1燃料ジェット及び前記第2燃料ジェットのオリフィス径の二乗の比を一定に保つようにしてなる発電用ガスエンジンのミキサとしたことにより、上記課題を解決した。請求項6の発明を、請求項1,2,3,4又は5に記載の発電用ガスエンジンのミキサ構造において、前記メインボディの外周側には第1ボス部と第2ボス部が形成され、前記第1ボス部には前記第1入口部と前記第1燃料ジェットが設けられ、前記第2ボス部には前記第2入口部と前記第2燃料ジェットが設けられ、前記メインボディの外周で且つ前記ベンチュリの径方向の両側又は外周の周上となる位置に設けられてなる発電用ガスエンジンのミキサとしたことにより、上記課題を解決した。
請求項7の発明を、都市ガス及びLPGを使用可能な発電用ガスエンジンと、外部空気の導入管部の下側にベンチュリの縮流部を形成し該縮流部の外側には、逆U字状の円環状の上部空間が設けられたアッパボディと、前記縮流部に連続するベンチュリの拡散部の外側にはU字状の円環状の下部空間が設けられ、該下部空間には外周側から都市ガス燃料用の第1入口部と第1燃料ジェット及びLPG燃料用の第2入口部及び第2燃料ジェットを備えたメインボディと、前記下部空間と前記上部空間とからなる断面O型状の円環状空間と、前記メインボディに連続してスロットルを設けたスロットルボディを備え、前記縮流部及び前記拡散部の端部周縁との間であって、前記ベンチュリの最狭部箇所に隙間としての円環状スリットが形成されると共に、前記第1燃料ジェット及び前記第2燃料ジェットの出口側は前記メインボディに連通されてなるミキサと、都市ガス供給源と、LPG供給源と、弁室と都市ガスが流入且つ流出する第1流入路及び第1流出路と、LPGが流入且つ流出する第2流入路と第2流出路を備えたバルブボディと、該バルブボディに収納され前記第1流入路と前記第1流出路とがなす流路又は前記第2流入路と前記第2流出路とがなす流路の何れか一方を開通し他方を遮断する弁体とを備えたガス供給切替バルブとを備え、前記都市ガス供給源と前記ミキサの第1入口部とが前記ガス供給切替バルブの前記第1流入路と前記第1流出路を介して連通され、前記LPG供給源と前記ミキサの第2入口部とが前記ガス供給切替バルブの前記第2流入路と前記第1流出路とを介して連通されてなる発電用ガスエンジンのガス供給システムとしたことにより上記課題を解決した。
以下、第1実施形態のミキサについて説明すると、前記アッパボディ1は、導入管部11の下端に下部本体13が形成され、該下部本体13の内方にはベンチュリVの縮流部12が形成されている〔図1(A)参照〕。該縮流部12の最下端周縁がベンチュリVの最狭部径Dとして構成されている。前記縮流部12の外方側で且つ前記下部本体13の内方側には、逆U字状の円環状の上部空間14が設けられている〔図1(A)参照〕。
次に、前記メインボディ2は、前記アッパボディ1と対を成す構成であり、下部管21と拡散部22とを備え、下端に下部管21が位置し、該下部管21の上側に、上方に向かって次第に拡大する拡散部22が形成されている。拡散部22は、アッパボディ1の縮流部12に接続され、下部管21は前記スロットルボディ3の管体31に接続する。拡散部22の最上端周縁が前記ベンチュリVの最狭部径Dとして構成されている。つまり、前記ベンチュリVは、前記アッパボディ1の縮流部12と前記記メインボディ2の拡散部22にて形成されている。また、前記メインボディ2の拡散部22の外側には、U字状の円環状の下部空間24が設けられている。つまり、アッパボディ1の上部空間14とメインボディ2の下部空間24とで断面O型状の円環状空間Nが形成されている。
前記メインボディ2の下端側には、第1入口部251を有する第1ボス部25と、第2入口部261を有する第2ボス部26が形成されている。第1ボス部25は第1入口部251を介して都市ガス燃料をミキサA内に流入させる役目をなす。また第2ボス部26は第2入口部261を介してミキサA内にLPG(液化石油ガス)を流入させる役目をなす。
その通路面積はアイドル燃料流量調整用のニードル35で調整可能に構成されている。エンジン運転中に該ニードル35が回らないように抵抗となる回り止めは固定スプリング36にて行う。或いは、ロックナットを使ってもよい。特にアイドリング回転数を低く設定する場合はスロットル32の開度が小さいので、該スロットル32を開く過程でまだ十分にベンチュリ負圧が発生していないときにも燃料を供給できるように、該スロットル32が少し開いたときに、この後流になる位置の前記管体31にステップホール37が開されている。
ここで、図1のベンチュリの内径Dと円環状スリットSと図1,図6(A)のオリフィス43の関係について説明する。円環状スリットSのガス燃料が通過する面積はπD×H(m2)である。この誘導式のHは、前記円環状スリットSの間隔である。これがオリフィス43の通路面積以上でないと、円環状スリットSの面積が律速となってオリフィス43が絞り効果を発揮できない。
前記燃料室51f内の燃料がミキサで消費されると、該燃料室51fの内圧が低下するので前記コイル51bに通電してシール部材51eを開いて燃料を前記燃料室51f内に流入させる。このようにしてミキサに供給する燃料の圧力をエアクリーナ97のエアフィルタ97aの下流の圧力と同じに保ことができる。
これを式にすると、
π×D×H≧π/4・(d1又はd2)
すなわち H≧(d1又はd2)/4Dとなる。
また逆に大き過ぎると燃料が円環状スリットSの全周からではなく一部から流れ出るようになり、空気との混合が悪くなる。そこで前記円環状スリットSの範囲(間隔H)としては、
1.5x(d1又はd2)/4・D≧H≧(d1又はd2)/4・D
とするのがよい。
都市ガスとLPGのようにオリフィスの孔径dの値が異なる場合は、この式の値として大きい方の数値を用いる(都市ガスの方が大きくなる)。必ず、オリフィス面積よりもスリットの面積を大きくして、最小の通路面積がオリフィス部であるようにするためである。

Claims (9)

  1. 外部空気の導入管部の下側にベンチュリの縮流部を形成し該縮流部の外側には、逆U字状の円環状の上部空間が設けられたアッパボディと、前記縮流部に連続するベンチュリの拡散部の外側にはU字状の円環状の下部空間が設けられ該下部空間と前記上部空間とからなる断面O型状の円環状空間が形成され、該円環状空間には外周側から都市ガス燃料用の第1入口部と第1燃料ジェット及びLPG燃料用の第2入口部及び第2燃料ジェットを備えたメインボディと、該メインボディに連続してスロットルを設けたスロットルボディを備え、前記縮流部及び前記拡散部の端部周縁との間であって、前記ベンチュリの最狭部箇所に隙間としての円環状スリットが形成されると共に、前記第1燃料ジェット及び前記第2燃料ジェットの出口側は前記メインボディに連通されてなることを特徴とする発電用ガスエンジンのミキサ。
  2. 請求項1における発電用ガスエンジンのミキサ構造において、前記隙間としての円環状スリットの隙間が一定間隔としてなることを特徴とする発電用ガスエンジンのミキサ。
  3. 請求項1における発電用ガスエンジンのミキサ構造において、前記隙間としての円環状スリットの隙間が可変間隔としてなることを特徴とする発電用ガスエンジンのミキサ。
  4. 請求項1又は3における発電用ガスエンジンのミキサ構造において、前記隙間としての円環状スリットの隙間に対して、厚みが適宜異なるスペーサが介在されてなり、該スペーサの内径部は前記円環状空間の外形と同一径に形成され且つその外形部は前記アッパボディの下端部の外形断面形状と同等に形成されてなることを特徴とする発電用ガスエンジンのミキサ。
  5. 請求項1,2,3又は4に記載の発電用ガスエンジンのミキサ構造において、前記ベンチュリの最狭部径の二乗と前記燃料ジェットのオリフィス径の二乗の比を一定に保つようにしてなることを特徴とする発電用ガスエンジンのミキサ。
  6. 請求項1,2,3,4又は5に記載の発電用ガスエンジンのミキサ構造において、前記メインボディの外周側には第1ボス部と第2ボス部が形成され、前記第1ボス部には前記第1入口部と前記第1燃料ジェットが設けられ、前記第2ボス部には前記第2入口部と前記第2燃料ジェットが設けられ、前記メインボディの外周で且つ前記ベンチュリの径方向の両側又は外周の周上となる位置に設けられてなることを特徴とする発電用ガスエンジンのミキサ。
  7. 都市ガス及びLPGを使用可能な発電用ガスエンジンと、外部空気の導入管部の下側にベンチュリの縮流部を形成し該縮流部の外側には、逆U字状の円環状の上部空間が設けられたアッパボディと、前記縮流部に連続するベンチュリの拡散部の外側にはU字状の円環状の下部空間が設けられ該下部空間と前記上部空間とからなる断面O型状の円環状空間が形成され、該円環状空間には外周側から都市ガス燃料用の第1入口部と第1燃料ジェット及びLPG燃料用の第2入口部及び第2燃料ジェットを備えたメインボディと、該メインボディに連続してスロットルを設けたスロットルボディを備え、前記縮流部及び前記拡散部の端部周縁との間であって、前記ベンチュリの最狭部箇所に隙間としての円環状スリットが形成されると共に、前記第1燃料ジェット及び前記第2燃料ジェットの出口側は前記メインボディに連通されてなるミキサと、都市ガス供給源と、LPG供給源と、弁室と都市ガスが流入且つ流出する第1流入路及び第1流出路と、LPGが流入且つ流出する第2流入路と第2流出路を備えたバルブボディと、該バルブボディに収納され前記第1流入路と前記第1流出路とがなす流路又は前記第2流入路と前記第2流出路とがなす流路の何れか一方を開通し他方を遮断する弁体とを備えたガス供給切替バルブとを備え、前記都市ガス供給源と前記ミキサの第1入口部とが前記ガス供給切替バルブの前記第1流入路と前記第1流出路を介して連通され、前記LPG供給源と前記ミキサの第2入口部とが前記ガス供給切替バルブの前記第2流入路と前記第1流出路とを介して連通されてなることを特徴とする発電用ガスエンジンのガス供給システム。
  8. 請求項7に記載の発電用ガスエンジンのガス供給システムにおいて、ECU及び低圧調整弁が具備され、前記ECUからの命令にてガス種に応じて前記低圧調整弁によって適正圧力となるように作動することを特徴とする発電用ガスエンジンのガス供給システム。
  9. 請求項7又は8に記載の発電用ガスエンジンのガス供給システムにおいて、ECUが具備され、ガス供給切替バルブにはガス判別センサが設けられると共に前記ECUと繋がり、前記ガス供給切替バルブを通過するガス種を前記ガス判別センサと前記ECUにて判別してなることを特徴とする発電用ガスエンジンのガス供給システム。
JP2019135708A 2019-07-23 2019-07-23 発電用ガスエンジンのミキサ及びガス供給システム Active JP6653911B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019135708A JP6653911B1 (ja) 2019-07-23 2019-07-23 発電用ガスエンジンのミキサ及びガス供給システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019135708A JP6653911B1 (ja) 2019-07-23 2019-07-23 発電用ガスエンジンのミキサ及びガス供給システム

Publications (2)

Publication Number Publication Date
JP6653911B1 JP6653911B1 (ja) 2020-02-26
JP2021017880A true JP2021017880A (ja) 2021-02-15

Family

ID=69624556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019135708A Active JP6653911B1 (ja) 2019-07-23 2019-07-23 発電用ガスエンジンのミキサ及びガス供給システム

Country Status (1)

Country Link
JP (1) JP6653911B1 (ja)

Also Published As

Publication number Publication date
JP6653911B1 (ja) 2020-02-26

Similar Documents

Publication Publication Date Title
US5377646A (en) Liquid petroleum gas fuel delivery systems
US7591257B2 (en) Fuel selection device
US6276345B1 (en) Dual fuel system for an internal combustion engine
US20110226218A1 (en) Secondary Fuel Premixing Controller for an Air Intake Manifold of a Combustion Engine
US7640726B2 (en) Injector assembly having multiple manifolds for propellant delivery
EP2496818B1 (en) Producer gas carburettor
CN106255818A (zh) 具有扫气流体流动的化油器
US4351300A (en) LP Gas carburetor
AU769334B2 (en) Electromagnetic valve for gaseous fluids
JP6653911B1 (ja) 発電用ガスエンジンのミキサ及びガス供給システム
JP6600111B1 (ja) 発電用ガスエンジンのミキサ構造
US4425898A (en) Gaseous fuel-air mixture device
JP6587770B1 (ja) ガス供給切替バルブ及び発電用ガスエンジンのガス供給システム
US20080236552A1 (en) Mixture Device for Gaseous Fuel and Air
US4694811A (en) Air-gas mixing device with dual-control fuel valve
US4703742A (en) Air-gas mixing device with dual-control fuel valve
WO1993000508A1 (en) Air induction control device
EP3914821B1 (en) Air:fuel ratio control in a gas engine supplied with a weak fuel gas via a venturi mixer
CA1130669A (en) Fuel mixing device
US20240151394A1 (en) Mixing device for a gas heater
JP2006329041A (ja) 異種ガス燃料切り換え調圧装置
RU2101541C1 (ru) Система питания двигателя внутреннего сгорания жидким и газообразным топливом
US9272615B1 (en) Vapor transport fuel intake system
ES2189641A1 (es) Sistema de alimentacion de combustible para motores de cuatro tiempos.
MXPA00000120A (en) Dual fuel system for an internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190809

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190809

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200120

R150 Certificate of patent or registration of utility model

Ref document number: 6653911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350