JP2021017635A - Soft magnetic alloy powder and electronic component including the same - Google Patents

Soft magnetic alloy powder and electronic component including the same Download PDF

Info

Publication number
JP2021017635A
JP2021017635A JP2019135037A JP2019135037A JP2021017635A JP 2021017635 A JP2021017635 A JP 2021017635A JP 2019135037 A JP2019135037 A JP 2019135037A JP 2019135037 A JP2019135037 A JP 2019135037A JP 2021017635 A JP2021017635 A JP 2021017635A
Authority
JP
Japan
Prior art keywords
alloy powder
soft magnetic
magnetic alloy
electronic component
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019135037A
Other languages
Japanese (ja)
Other versions
JP7314678B2 (en
Inventor
泰志 木野
Yasushi Kino
泰志 木野
慎吾 林
Shingo Hayashi
慎吾 林
久也 小林
Hisaya Kobayashi
久也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Original Assignee
Sintokogio Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd filed Critical Sintokogio Ltd
Priority to JP2019135037A priority Critical patent/JP7314678B2/en
Priority to KR1020200070340A priority patent/KR20210011874A/en
Priority to TW109123496A priority patent/TW202103821A/en
Priority to CN202010710756.0A priority patent/CN112309664A/en
Publication of JP2021017635A publication Critical patent/JP2021017635A/en
Application granted granted Critical
Publication of JP7314678B2 publication Critical patent/JP7314678B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • B22F1/0003
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Abstract

To provide a soft magnetic alloy powder that enables an electronic component to be used in a high temperature environment.SOLUTION: A soft magnetic alloy powder contains Si: 1.2-8 wt.%, Cr: 0-9 wt.%, and Al: 0.75-1.25 wt.% with the balance being Fe and inevitable impurities. At 25°C to 150°C, the soft magnetic alloy powder has negative core loss temperature characteristics.

Description

本発明は、軟磁性合金粉末及びそれを用いた電子部品に関する。 The present invention relates to a soft magnetic alloy powder and an electronic component using the same.

近年、電源回路で使用されるパワーインダクタとしては、小型化・低背化の要求から大電流・高周波数で使用できる軟磁性材料が望まれている。従来、インダクタの主材料として酸化物であるフェライト系材料が使用されてきたが、飽和磁化が低いため小型化には不利である。そこで、近年は飽和磁化が高く小型・低背化に有利な合金系材料を使用したメタルインダクタが急増している。メタルインダクタには、鉄を主材料とした軟磁性合金粉末が用いられ、軟磁性合金粉末と樹脂とを混合し、圧縮成形した圧粉磁心などが知られている。 In recent years, as a power inductor used in a power supply circuit, a soft magnetic material that can be used at a large current and a high frequency has been desired due to the demand for miniaturization and low profile. Conventionally, a ferrite-based material, which is an oxide, has been used as the main material of an inductor, but it is disadvantageous for miniaturization due to its low saturation magnetization. Therefore, in recent years, the number of metal inductors using alloy-based materials, which have high saturation magnetization and are advantageous for miniaturization and low profile, is rapidly increasing. As the metal inductor, a soft magnetic alloy powder containing iron as a main material is used, and a powder magnetic core obtained by mixing a soft magnetic alloy powder and a resin and compression molding is known.

エネルギー問題への関心が高まる中、自動車の電動化やエレクトロニクスの省電力化が推進されており、より小型化が可能であり、エネルギー損失が少ない圧粉磁心が求められている。具体的に一例を挙げれば、自動車における、高い環境性能や運転性能を実現するための制御の高度化に対応するため、モーターやソレノイドなどのアクチュエータにECU(Electronic Control Unit)を実装する「機電一体化」に伴い、より高温環境であるエンジンルーム等にECUを設置したいという要望が高まってきており、より高温環境で使用可能なECU向けの圧粉磁心が求められている。 Amid growing interest in energy issues, electrification of automobiles and power saving of electronics are being promoted, and there is a demand for dust cores that can be made smaller and have less energy loss. To give a specific example, in order to respond to the sophistication of control to achieve high environmental performance and driving performance in automobiles, an ECU (Electronic Control Unit) is mounted on actuators such as motors and solenoids. Along with this, there is an increasing demand for installing an ECU in an engine room or the like, which is a higher temperature environment, and there is a demand for a dust core for an ECU that can be used in a higher temperature environment.

既存の軟磁性合金粉末を用いた圧粉磁芯は、温度の上昇とともにコア損失が増大すること、使用時におけるコア損失による発熱によりコア自体の温度が上昇することが知られている。この温度上昇によりコア損失が増大して発熱が大きくなり、これを繰り返すことによって熱暴走を引き起こす場合がある。このため、高温域でのコアロスの温度特性を改善することが検討されている。例えば、特許文献1には、特定の組成を有するFe−Si−Al系合金粉末を加圧成形した得られた成形体に熱処理を行うこと、引用文献2には、特定の組成を有するFe−Si−Al系合金粉末の表面に絶縁被膜を形成した軟磁性合金粉末が記載されている。しかしながら、Fe−Si−Al系合金粉末は硬く、塑性変形性に乏しいため高密度成形が困難であり、圧粉磁心の小型化に有利な高い飽和磁束密度を得ることが困難であった。 It is known that the core loss of a powder magnetic core using an existing soft magnetic alloy powder increases as the temperature rises, and the temperature of the core itself rises due to heat generated by the core loss during use. Due to this temperature rise, core loss increases and heat generation increases, and by repeating this, thermal runaway may occur. Therefore, it is being studied to improve the temperature characteristics of core loss in the high temperature range. For example, in Patent Document 1, heat treatment is performed on a molded product obtained by pressure-molding an Fe—Si—Al alloy powder having a specific composition, and in Cited Document 2, Fe− has a specific composition. A soft magnetic alloy powder having an insulating film formed on the surface of the Si—Al alloy powder is described. However, since the Fe—Si—Al alloy powder is hard and has poor plastic deformability, high-density molding is difficult, and it is difficult to obtain a high saturation magnetic flux density which is advantageous for miniaturization of the powder magnetic core.

国際公開公報2011/016207号International Publication No. 2011/016207 特開2012−9825号公報Japanese Unexamined Patent Publication No. 2012-9825

本発明は、電子部品の高温環境での使用を可能とする軟磁性合金粉末を提供することを目的とする。 An object of the present invention is to provide a soft magnetic alloy powder capable of using an electronic component in a high temperature environment.

本発明者らは、種々の研究を行った結果、負のコアロス温度特性を有する鉄基軟磁性合金の組成を見出し、本発明を完成するに至った。 As a result of various studies, the present inventors have found the composition of an iron-based soft magnetic alloy having a negative core loss temperature characteristic, and have completed the present invention.

即ち、本発明は、Si:1.2〜8重量%、Cr:0〜9重量%、及びAl:0.75〜1.25重量%を含み、残部がFe及び不可避的不純物である、軟磁性合金粉末であって、25℃から150℃において、負のコアロス温度特性を有する、軟磁性合金粉末である。 That is, the present invention contains Si: 1.2 to 8% by weight, Cr: 0 to 9% by weight, and Al: 0.75 to 1.25% by weight, and the balance is Fe and unavoidable impurities. A magnetic alloy powder, which is a soft magnetic alloy powder having a negative core loss temperature characteristic at 25 ° C to 150 ° C.

本発明の一態様によれば、Si:1.5〜7.5重量%、Cr:0〜8.5重量%、及びAl:0.8〜1.2重量%を含む、上記の軟磁性合金粉末が提供される。 According to one aspect of the present invention, the above-mentioned soft magnetism containing Si: 1.5 to 7.5% by weight, Cr: 0 to 8.5% by weight, and Al: 0.8 to 1.2% by weight. Alloy powders are provided.

本発明の一態様によれば、粒径(D50)が0.5〜50μmである、上記の軟磁性合金粉末が提供される。 According to one aspect of the present invention, the soft magnetic alloy powder having a particle size (D50) of 0.5 to 50 μm is provided.

本発明の一態様によれば、更に、Ca:0.001〜0.02重量%を含む、上記の軟磁性合金粉末が提供される。 According to one aspect of the present invention, the soft magnetic alloy powder further containing Ca: 0.001 to 0.02% by weight is provided.

本発明の一態様によれば、Ca:0.002〜0.01重量%を含む、上記の軟磁性合金粉末が提供される。 According to one aspect of the present invention, the soft magnetic alloy powder containing Ca: 0.002 to 0.01% by weight is provided.

本発明の一態様によれば、上記の軟磁性合金粉末を含む電子部品が提供される。 According to one aspect of the present invention, an electronic component containing the above-mentioned soft magnetic alloy powder is provided.

本発明の一態様によれば、圧粉磁心、電磁波吸収シールド又は電磁波吸収体である上記の電子部品が提供される。 According to one aspect of the present invention, the above-mentioned electronic component which is a dust core, an electromagnetic wave absorption shield, or an electromagnetic wave absorber is provided.

本発明の一態様によれば、上記の軟磁性合金粉末を加圧成形することを含む、電子部品の製造方法が提供される。 According to one aspect of the present invention, there is provided a method for manufacturing an electronic component, which comprises pressure molding the soft magnetic alloy powder.

本発明の一態様によれば、上記の軟磁性合金粉末を射出成形することを含む、電子部品の製造方法が提供される。 According to one aspect of the present invention, there is provided a method for manufacturing an electronic component, which comprises injection molding the above-mentioned soft magnetic alloy powder.

本発明は、電子部品の高温環境での使用を可能とする軟磁性合金粉末を提供することができる。 The present invention can provide a soft magnetic alloy powder that enables the use of electronic components in a high temperature environment.

以下、本発明の一実施形態について詳細に説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の効果を阻害しない範囲で適宜変更を加えて実施することができる。なお、以下の説明において、「A〜B」は、「A以上かつB以下」を意味する。 Hereinafter, one embodiment of the present invention will be described in detail. The present invention is not limited to the following embodiments, and can be carried out with appropriate modifications as long as the effects of the present invention are not impaired. In the following description, "A to B" means "A or more and B or less".

本実施形態に係る軟磁性合金粉末は、Siを1.2〜8重量%、好ましくは1.5〜7.5重量%、Crを0〜9重量%、好ましくは0〜8.5重量%、及びAlを0.75〜1.25重量%、好ましくは0.8〜1.2重量%含み、残部がFe及び不可避的不純物である。上記の量のSi、Cr及びAlを含む組成を有することにより、軟磁性合金粉末が、25℃から150℃において、負のコアロス温度特性を有する。この特性を有することにより、本実施形態に係る軟磁性合金粉末は、高温の環境下での使用において用いられる電子部品の材料として好適に用いられる。 The soft magnetic alloy powder according to the present embodiment contains 1.2 to 8% by weight of Si, preferably 1.5 to 7.5% by weight, and 0 to 9% by weight of Cr, preferably 0 to 8.5% by weight. , And Al in an amount of 0.75 to 1.25% by weight, preferably 0.8 to 1.2% by weight, and the balance is Fe and unavoidable impurities. By having the composition containing the above amounts of Si, Cr and Al, the soft magnetic alloy powder has a negative core loss temperature characteristic from 25 ° C. to 150 ° C. Due to this property, the soft magnetic alloy powder according to the present embodiment is suitably used as a material for electronic parts used in use in a high temperature environment.

[その他の元素]
本実施形態に係る軟磁性合金粉末は、不可避的不純物として、N、S、O等の元素を目的とする特性に影響を与えない程度で含み得る。
[Other elements]
The soft magnetic alloy powder according to the present embodiment may contain elements such as N, S, and O as unavoidable impurities to the extent that they do not affect the desired properties.

[負のコアロス温度特性]
負のコアロス温度特性とは、軟磁性合金粉末のコアロスが温度に対して負の係数を有する、すなわち、軟磁性合金粉末のコアロスが温度の上昇とともに低下する特性を意味する。負のコアロス温度特性を有する本実施形態に係る軟磁性合金粉末は、温度の上昇とともにコア損失が低下するため、使用時におけるコア損失による発熱によるコア自体の温度の上昇が抑えられ、従来困難であった高温環境下で使用される電子部品の材料として好適な特性を有している。本実施形態に係る軟磁性合金粉末が、負のコアロス温度特性を有するのは、組成によって決定される磁歪定数が正の値を有することによるものと考えられる。
[Negative core loss temperature characteristics]
The negative core loss temperature characteristic means that the core loss of the soft magnetic alloy powder has a negative coefficient with respect to the temperature, that is, the core loss of the soft magnetic alloy powder decreases as the temperature rises. Since the soft magnetic alloy powder according to the present embodiment having a negative core loss temperature characteristic decreases the core loss as the temperature rises, the temperature rise of the core itself due to heat generation due to the core loss during use is suppressed, which is difficult in the past. It has properties suitable as a material for electronic components used in a high temperature environment. It is considered that the soft magnetic alloy powder according to the present embodiment has a negative core loss temperature characteristic because the magnetostrictive constant determined by the composition has a positive value.

本実施形態に係る軟磁性合金粉末は、粒径(D50)が0.5〜50μmであることが好ましい。「粒径」とは、メディアン径:D50を意味し、従来公知の方法、例えば、レーザー回折・散乱法により測定されるものである。上述の軟磁性合金粉末の飽和磁束密度(Bs)、透磁率及び負のコアロス温度特性に関する効果は、幅広い粒径を有する軟磁性合金粉末において得られるが、粒径(D50)が0.5〜50μm、好ましくは、0.5〜40μm、より好ましくは、0.5〜25μm、さらにより好ましくは、1.0〜20μmであることにより、特に、高い効果が得られる。 The soft magnetic alloy powder according to this embodiment preferably has a particle size (D50) of 0.5 to 50 μm. The "particle size" means the median diameter: D50, and is measured by a conventionally known method, for example, a laser diffraction / scattering method. The effects on the saturation magnetic flux density (Bs), magnetic permeability and negative core loss temperature characteristics of the soft magnetic alloy powder described above can be obtained in the soft magnetic alloy powder having a wide particle size, but the particle size (D50) is 0.5 to 0.5 to. A particularly high effect can be obtained by setting the thickness to 50 μm, preferably 0.5 to 40 μm, more preferably 0.5 to 25 μm, and even more preferably 1.0 to 20 μm.

本実施形態に係る軟磁性合金粉末は、更に、Caが添加されていることが好ましく、Caを0.001〜0.02重量%、好ましくは、0.002〜0.01重量%含む。Caを微量に含むことにより、軟磁性合金粉末の透磁率が向上、又はコアロスが低下する。上記範囲のCaが存在することにより、鉄基軟磁性合金粉末が低比表面積化し、粉末中の酸素量を低減させる。これは、酸素との親和性が高いCaにより、合金粉末作製のための溶湯の表面張力が変化することや溶湯の酸素量が変化することによる結果であると考えられる。なお、Caと同様に酸素との親和性が高い元素であれば、Caの場合と同様の効果を奏し得る。 The soft magnetic alloy powder according to the present embodiment further preferably contains Ca in an amount of 0.001 to 0.02% by weight, preferably 0.002 to 0.01% by weight. By containing a small amount of Ca, the magnetic permeability of the soft magnetic alloy powder is improved or the core loss is reduced. The presence of Ca in the above range reduces the specific surface area of the iron-based soft magnetic alloy powder and reduces the amount of oxygen in the powder. It is considered that this is a result of the change in the surface tension of the molten metal for producing the alloy powder and the change in the amount of oxygen in the molten metal due to Ca having a high affinity for oxygen. If the element has a high affinity for oxygen as in Ca, the same effect as in the case of Ca can be obtained.

[軟磁性合金粉末の製造方法]
本実施形態に係る軟磁性合金粉末は、金属粉末の製造方法として以下に例示する従来公知の方法により製造することができるが、本実施形態の組成を有すれば上述の磁気特性を有するため、製造方法は特に限定されない。
・アトマイズ法:水アトマイズ法、ガスアトマイズ法、遠心力アトマイズ法、等
・機械的プロセス法:粉砕法、メカニカルアロイング法、等
・メルトスピニング法
・回転電解法(REP法):プラズマREP法、等
・化学的プロセス法:酸化物還元法、塩化物還元法、湿式冶金技術、カーボニル反応法、等
[Manufacturing method of soft magnetic alloy powder]
The soft magnetic alloy powder according to the present embodiment can be produced by a conventionally known method exemplified below as a method for producing a metal powder, but since the composition of the present embodiment has the above-mentioned magnetic properties, it has the above-mentioned magnetic properties. The manufacturing method is not particularly limited.
・ Atomizing method: Water atomizing method, Gas atomizing method, Centrifugal force atomizing method, etc. ・ Mechanical process method: Grinding method, Mechanical alloying method, etc. ・ Melt spinning method ・ Rotational electrolysis method (REP method): Plasma REP method, etc. -Chemical process method: oxide reduction method, chloride reduction method, hydrometallurgical technology, carbonyl reaction method, etc.

上に例示した製造方法の中で、特にアトマイズ法は小径且つ球形の軟磁性合金粉末を大気圧下で量産できる。中でも、水アトマイズ法を採用すると、安価に製造することができる。
水アトマイズ法を用いて軟磁性合金粉末を製造する場合、所望の組成に調整した材料を溶解した溶湯に対して、所望の冷却条件や粒径となるようにパラメータを設定した高圧の水を吹き付けることで、溶湯を飛散及び凝固させて粉末が得られる。その後、得られた粉末を乾燥、分級し、必要に応じて、表面処理を行い、目的とする軟磁性合金粉末を得ることができる。
Caを添加する場合、金属の形態であるCaを溶湯に添加することにより行い、添加する順番は問わないが、Caは酸化物になり易いため、目的とする合金組成に対し、ある程度過剰量のCaを添加することを要する。
Among the manufacturing methods exemplified above, the atomizing method can mass-produce small-diameter and spherical soft magnetic alloy powder under atmospheric pressure. Above all, if the water atomization method is adopted, it can be manufactured at low cost.
When the soft magnetic alloy powder is produced by the water atomization method, high-pressure water whose parameters are set so as to obtain the desired cooling conditions and particle size is sprayed on the molten metal in which the material adjusted to the desired composition is dissolved. As a result, the molten metal is scattered and solidified to obtain a powder. Then, the obtained powder is dried and classified, and if necessary, surface treatment is performed to obtain a desired soft magnetic alloy powder.
When Ca is added, it is carried out by adding Ca, which is in the form of a metal, to the molten metal, and the order of addition does not matter. It is necessary to add Ca.

本実施形態に係る電子部品は、上述の軟磁性合金粉末を含む。本実施形態に係る電子部品は、モーター、リアクトル、トランスなど、一般に用いられている電子部品のみならず、電磁弁、ソレノイド、センサーなどとして自動車等の輸送機器等、広く様々な産業分野おいて用いられる電子部品である。更には、本実施形態に係る電子部品は、特定の周波数の電磁波を吸収する目的で用いられる電磁波吸収シールドや電磁波吸収体である。
本実施形態に係る電子部品は、圧粉磁心、電磁波吸収シールド又は電磁波吸収体である。
The electronic component according to this embodiment includes the above-mentioned soft magnetic alloy powder. The electronic components according to this embodiment are used not only in commonly used electronic components such as motors, reactors and transformers, but also in a wide variety of industrial fields such as transportation equipment such as automobiles as solenoid valves, solenoids and sensors. It is an electronic component that is used. Further, the electronic component according to the present embodiment is an electromagnetic wave absorption shield or an electromagnetic wave absorber used for the purpose of absorbing electromagnetic waves of a specific frequency.
The electronic component according to this embodiment is a dust core, an electromagnetic wave absorption shield, or an electromagnetic wave absorber.

本実施形態に係る圧粉磁心、電磁波吸収シールド又は電磁波吸収体は、上述の軟磁性合金粉末を含む。好ましくは、本実施形態に係る圧粉磁心は、絶縁性や成形加工性を付与する樹脂等と混合され、造粒された形態の軟磁性合金粉末を含む。好ましくは、本実施形態に係る電磁波吸収シールドは、軟磁性合金粉末、樹脂及びインク等を混合して調製したペーストが少なくとも一部に塗布されている。好ましくは、本実施形態に係る電磁波吸収体は、軟磁性合金粉末、樹脂及びゴム等を混合して、所望の厚さに成型加工されたシートが少なくとも一部に貼り付けられている。 The powder magnetic core, the electromagnetic wave absorption shield, or the electromagnetic wave absorber according to the present embodiment includes the above-mentioned soft magnetic alloy powder. Preferably, the powder magnetic core according to the present embodiment contains a soft magnetic alloy powder in a granulated form mixed with a resin or the like that imparts insulating properties and molding processability. Preferably, the electromagnetic wave absorption shield according to the present embodiment is coated with at least a part of a paste prepared by mixing soft magnetic alloy powder, resin, ink and the like. Preferably, in the electromagnetic wave absorber according to the present embodiment, a sheet obtained by mixing soft magnetic alloy powder, resin, rubber, or the like and molding to a desired thickness is attached to at least a part of the electromagnetic wave absorber.

本実施形態に係る圧粉磁心は、例えば、
軟磁性合金粉末の表面に被膜を形成し、造粒紛を得る工程、
造粒紛を加圧成形し成形体を得る工程、
成形体を熱処理する工程、
を含む方法により製造される。
造粒紛を得る工程において、目的とする絶縁性、耐食性等を付与するため、エポキシ樹脂、シリコン樹脂、アクリル樹脂など、従来公知の樹脂などにより被膜が形成される。
熱処理する工程における温度は、550℃から950℃、好ましくは、600℃〜900℃である。また、加熱時間は、30分〜2時間程度とすることが好ましい。熱処理前の成形体を構成する軟磁性合金粉末には加圧成形により、透磁率の低下、コアロスの要因の一つであるヒステリシス損失の増大の原因となる歪が導入されており、前記の条件で成形体を熱処理することにより、歪を十分に除去することができる。熱処理は、窒素雰囲気などの不活性ガス雰囲気、または減圧雰囲気で行うことが好ましい。
The dust core according to this embodiment is, for example,
A process of forming a film on the surface of soft magnetic alloy powder to obtain granulated powder,
The process of press-molding granulated powder to obtain a molded product,
The process of heat-treating the molded product,
Manufactured by a method including.
In the step of obtaining the granulated powder, a film is formed of a conventionally known resin such as an epoxy resin, a silicone resin, or an acrylic resin in order to impart the desired insulating property, corrosion resistance, and the like.
The temperature in the heat treatment step is 550 ° C to 950 ° C, preferably 600 ° C to 900 ° C. The heating time is preferably about 30 minutes to 2 hours. The soft magnetic alloy powder that constitutes the molded product before heat treatment is subjected to pressure molding to introduce strain that causes a decrease in magnetic permeability and an increase in hysteresis loss, which is one of the causes of core loss. By heat-treating the molded product with, the strain can be sufficiently removed. The heat treatment is preferably carried out in an inert gas atmosphere such as a nitrogen atmosphere or a reduced pressure atmosphere.

本実施形態に係る電子部品の製造方法は、上述の軟磁性合金粉末を射出成形することを含む。射出成形により高精度で複雑な形状に成形加工することできる。成形加工後に、必要に応じて、脱脂、熱処理などを行い、所望の形状、特性を有する電子部品が得られる。 The method for manufacturing an electronic component according to the present embodiment includes injection molding the above-mentioned soft magnetic alloy powder. By injection molding, it is possible to mold into a complicated shape with high precision. After the molding process, degreasing, heat treatment and the like are performed as necessary to obtain an electronic component having a desired shape and characteristics.

以下に本発明の実施例を示す。本発明の内容はこれらの実施例により限定して解釈されるものではない。 Examples of the present invention are shown below. The content of the present invention is not construed as being limited by these examples.

[軟磁性合金粉末の製造]
表1、2に示される各組成に調整した材料を、高周波誘導炉にて溶解し、水アトマイズ法を用いて軟磁性合金粉末を得た。水アトマイズ法の条件は以下の通りである。
<水アトマイズ条件>
・水圧:100MPa
・水量:100L/分
・水温:20℃
・オリフィス径:φ4mm
・溶湯温度:1800℃
[Manufacturing of soft magnetic alloy powder]
The materials adjusted to each composition shown in Tables 1 and 2 were melted in a high-frequency induction furnace, and a soft magnetic alloy powder was obtained by using a water atomization method. The conditions of the water atomization method are as follows.
<Water atomization conditions>
・ Water pressure: 100 MPa
・ Water volume: 100 L / min ・ Water temperature: 20 ° C
・ Orifice diameter: φ4 mm
・ Molten temperature: 1800 ℃

得られた軟磁性合金粉末を振動真空乾燥機(VU−60:中央化工機製)により乾燥させた。乾燥条件は以下の通りである。
<乾燥条件>
・温度 100℃
・圧力 10kPa以下
・時間 60分
乾燥後の軟磁性合金粉末の組成についての定量分析をICP発光分析装置〔SPS3500DD:日立ハイテクサイエンス製〕にて行った。
The obtained soft magnetic alloy powder was dried by a vibration vacuum dryer (VU-60: manufactured by Chuo Kakohki). The drying conditions are as follows.
<Drying conditions>
・ Temperature 100 ℃
-Pressure 10 kPa or less, time 60 minutes Quantitative analysis of the composition of the soft magnetic alloy powder after drying was performed with an ICP emission spectrometer [SPS3500DD: manufactured by Hitachi High-Tech Science].

乾燥後の軟磁性合金粉末を気流分級装置(ターボクラシファイア:日清エンジニアリング製)により分級し、目的とする軟磁性合金粉末を得た。得られた軟磁性合金粉末の粒径(D50)は、湿式粒度分析装置〔MT3300EX II:マイクロトラック・ベル製〕を用いて測定した。 The dried soft magnetic alloy powder was classified by an air flow classifier (Turbo Classifier: manufactured by Nisshin Engineering) to obtain the desired soft magnetic alloy powder. The particle size (D50) of the obtained soft magnetic alloy powder was measured using a wet particle size analyzer [MT3300EX II: manufactured by Microtrac Bell].

[試料の作製]
上述のように製造した各軟磁性合金粉末をエポキシ樹脂と混合して造粒紛を製造した。軟磁性合金粉末とエポキシ樹脂との配合量は、重量比で、軟磁性合金粉末:エポキシ樹脂=97:3であった。
各造粒紛をリング状に圧粉成形(成形圧力:500MPa)して圧粉磁心(外径:15mm、内径:9mm、厚さ:3mm)を作製した。
各圧粉磁心に対し、以下のように評価を行った。
圧粉磁心に線径:0.3mmの銅線をバイファイラ巻きしたトロイダルコアを作製し評価試料とした。BHアナライザ〔SY8258:岩通計測製〕を用いて、測定周波数:1MHz、最大磁束密度:25mTの条件で25℃から150℃の温度範囲にてコアロスを測定した。続いて、測定周波数:1MHz、最大磁束密度:10mTの条件で150℃の温度にて透磁率を測定した。
[Preparation of sample]
Each soft magnetic alloy powder produced as described above was mixed with an epoxy resin to produce a granulated powder. The blending amount of the soft magnetic alloy powder and the epoxy resin was a weight ratio of soft magnetic alloy powder: epoxy resin = 97: 3.
Each granulated powder was powder-molded into a ring shape (molding pressure: 500 MPa) to prepare a powder magnetic core (outer diameter: 15 mm, inner diameter: 9 mm, thickness: 3 mm).
Each dust core was evaluated as follows.
A toroidal core in which a copper wire having a wire diameter of 0.3 mm was wound around a dust core by bifilar was prepared and used as an evaluation sample. Using a BH analyzer [SY8258: manufactured by Iwatsu Electric Co., Ltd.], the core loss was measured in the temperature range of 25 ° C. to 150 ° C. under the conditions of measurement frequency: 1 MHz and maximum magnetic flux density: 25 mT. Subsequently, the magnetic permeability was measured at a temperature of 150 ° C. under the conditions of a measurement frequency of 1 MHz and a maximum magnetic flux density of 10 mT.

[評価結果]
評価結果を表1、2に示す。
表1、2中の「温度特性」における〇、△、×の記号は、温度上昇に伴いコアロスが上昇した場合が×、25℃から120℃の温度領域で負のコアロス温度特性を有するが120℃を超えた温度領域でコアロスが上昇した場合が△、120℃から150℃の温度領域で負のコアロス温度特性を有する場合及びコアロスが上昇しなかった場合が○であることを意味する。
表1、2中の「磁気特性」における◎、〇、△、×の記号は、150℃における透磁率及びコアロスを、同一のD50を有し、且つAl及びCaを除いて同一の組成を有する比較例と比較した結果である。(例えば、実施例1−(1)から1−(11)は比較例1、実施例2−(1)から2−(11)は比較例2との比較であり、実施例5から12は、それぞれ比較例5から12との比較である。)評価基準は以下の通りである。
×・・・透磁率及びコアロスのいずれも向上しなかった場合
△・・・透磁率又はコアロスのいずれか一方のみが向上した場合
○・・・透磁率又はコアロスのいずれもが向上した場合
◎・・・透磁率又はコアロスのいずれもが共に20%以上向上した場合
ここで、透磁率の向上とは、透磁率の測定値が上昇したことを意味し、コアロスの向上とは、コアロスが低下したことを意味する。
[Evaluation results]
The evaluation results are shown in Tables 1 and 2.
The symbols 〇, Δ, and × in “Temperature characteristics” in Tables 1 and 2 are × when the core loss increases with the temperature rise, and have negative core loss temperature characteristics in the temperature range of 25 ° C to 120 ° C, but 120. It means that the case where the core loss increases in the temperature range exceeding ° C. is Δ, and the case where the core loss has a negative core loss temperature characteristic in the temperature range of 120 ° C. to 150 ° C. and the case where the core loss does not increase is ◯.
The symbols ⊚, 〇, Δ, and × in "Magnetic characteristics" in Tables 1 and 2 have the same magnetic permeability and core loss at 150 ° C., have the same D50, and have the same composition except for Al and Ca. This is the result of comparison with the comparative example. (For example, Examples 1- (1) to 1- (11) are comparisons with Comparative Example 1, Examples 2- (1) to 2- (11) are comparisons with Comparative Example 2, and Examples 5 to 12 are. , Each is a comparison with Comparative Examples 5 to 12.) The evaluation criteria are as follows.
× ・ ・ ・ When neither the magnetic permeability or the core loss is improved △ ・ ・ ・ When only one of the magnetic permeability and the core loss is improved ○ ・ ・ ・ When both the magnetic permeability and the core loss are improved ◎ ・When both the magnetic permeability and the core loss are improved by 20% or more Here, the improvement of the magnetic permeability means that the measured value of the magnetic permeability is increased, and the improvement of the core loss is the decrease of the core loss. Means that.

Figure 2021017635
Figure 2021017635
Figure 2021017635
Figure 2021017635

表1、2に示されるように、実施例に係る軟磁性合金粉末を用いた圧粉磁心は、驚くべきことに、25℃から120℃の温度領域のみならず、120℃から150℃の非常に高い温度領域においても、負のコアロス温度特性を有する。また、実施例に係る軟磁性合金粉末を用いた圧粉磁心は、比較例に係る軟磁性合金粉末(既存のFe−Si系合金粉末、Fe−Si−Cr系合金)を用いた圧粉磁心に比べ、驚くべきことに、150℃という非常に高い温度において、透磁率及びコアロスの少なくともいずれかが向上している。すなわち、本発明の軟磁性合金粉末は、高温環境下で使用可能な電子部品、特に圧粉磁心の材料等として優れた特性を有する。
更に、Caが添加されている軟磁性合金粉末を用いた圧粉磁心は、驚くべきことに、Caが添加されていない軟磁性合金粉末を用いた圧粉磁心に比べ、透磁率及びコアロスがより向上している。
表1、2に示されるように、本発明は、粉末の粒径(D50)に依存せず、上述した効果を奏していることが分かる。
以上のように、本発明の軟磁性合金粉末は、電子部品の高温環境での使用を可能とする優れた特性を有するものである。
As shown in Tables 1 and 2, the powder magnetic core using the soft magnetic alloy powder according to the examples is surprisingly not only in the temperature range of 25 ° C. to 120 ° C., but also in the extremely high temperature range of 120 ° C. to 150 ° C. It has a negative core loss temperature characteristic even in a very high temperature range. Further, the powder magnetic core using the soft magnetic alloy powder according to the example is a powder magnetic core using the soft magnetic alloy powder (existing Fe—Si alloy powder, Fe—Si—Cr alloy) according to the comparative example. Surprisingly, at a very high temperature of 150 ° C., at least one of the magnetic permeability and the core loss is improved. That is, the soft magnetic alloy powder of the present invention has excellent properties as an electronic component that can be used in a high temperature environment, particularly as a material for a dust core.
Furthermore, the powder metallurgy using the soft magnetic alloy powder to which Ca is added is surprisingly higher in magnetic permeability and core loss than the powder metallurgy using the soft magnetic alloy powder to which Ca is not added. It is improving.
As shown in Tables 1 and 2, it can be seen that the present invention exerts the above-mentioned effects without depending on the particle size (D50) of the powder.
As described above, the soft magnetic alloy powder of the present invention has excellent properties that enable the use of electronic components in a high temperature environment.

(変形例)
上記実施例では、一実施形態の軟磁性合金粉末を用いた電子部品として、加圧成形により製造した圧粉磁心を例に説明したが、一実施形態はこの例示に限定されない。例えば、射出成形によって製造される電子部品である。負のコアロス温度特性を有する本発明の軟磁性合金粉末が用いられている電子部品が、高温環境下で好適に使用可能であることは、上記実施例の結果からも明らかである。
(Modification example)
In the above embodiment, as an electronic component using the soft magnetic alloy powder of one embodiment, a powder magnetic core manufactured by pressure molding has been described as an example, but one embodiment is not limited to this example. For example, an electronic component manufactured by injection molding. It is clear from the results of the above examples that the electronic component in which the soft magnetic alloy powder of the present invention having a negative core loss temperature characteristic is used can be suitably used in a high temperature environment.

一実施形態の電子部品の他の例示として、電磁波吸収シールドや電磁波吸収体が挙げられる。電磁波吸収シールドは、特定の周波数の電磁波をカットする目的で用いられるもので、例えば携帯電話等のモバイル機器のケース等に設置される。電磁波吸収シールドは、磁性粉末、樹脂及びインク等を目的とする特性が得られるように調製、混合させてペーストにし、このペーストを適応箇所に塗布することで得られる。なお、ペーストを作製する際には、磁性粉末の分散を促すために真空脱泡を行ってもよい。 Other examples of the electronic component of one embodiment include an electromagnetic wave absorption shield and an electromagnetic wave absorber. The electromagnetic wave absorption shield is used for the purpose of cutting electromagnetic waves of a specific frequency, and is installed in, for example, a case of a mobile device such as a mobile phone. The electromagnetic wave absorption shield is obtained by preparing and mixing magnetic powder, resin, ink and the like so as to obtain the desired characteristics to form a paste, and applying this paste to an applicable portion. When producing the paste, vacuum defoaming may be performed in order to promote the dispersion of the magnetic powder.

電磁波吸収体は、特定の周波数の電磁波をカットする目的で用いられるもので、例えばETC(電子料金収受システム)のゲートやEMC試験等で用いる電波暗室で使われている。電磁波吸収体は、磁性粉末、樹脂及びゴムを目的とする特性が得られるように調製、混合させてシート状に成形し、このシートを適応箇所に貼り付けることで得られる。 The electromagnetic wave absorber is used for the purpose of cutting electromagnetic waves of a specific frequency, and is used, for example, in an ETC (Electronic Toll Collection System) gate or an anechoic chamber used in an EMC test. The electromagnetic wave absorber can be obtained by preparing and mixing magnetic powder, resin and rubber so as to obtain the desired characteristics, forming a sheet, and attaching this sheet to an applicable place.

Claims (9)

Si:1.2〜8重量%、
Cr:0〜9重量%、及び
Al:0.75〜1.25重量%
を含み、残部がFe及び不可避的不純物である、軟磁性合金粉末であって、
25℃から150℃において、負のコアロス温度特性を有する、軟磁性合金粉末。
Si: 1.2-8% by weight,
Cr: 0-9% by weight, and Al: 0.75-1.25% by weight
A soft magnetic alloy powder containing Fe and unavoidable impurities in the balance.
A soft magnetic alloy powder having a negative core loss temperature characteristic at 25 ° C to 150 ° C.
Si:1.5〜7.5重量%、
Cr:0〜8.5重量%、及び
Al:0.8〜1.2重量%
を含む、請求項1に記載の軟磁性合金粉末。
Si: 1.5 to 7.5% by weight,
Cr: 0-8.5% by weight, and Al: 0.8-1.2% by weight
The soft magnetic alloy powder according to claim 1.
粒径(D50)が0.5〜50μmである、請求項1又は2に記載の軟磁性合金粉末。 The soft magnetic alloy powder according to claim 1 or 2, wherein the particle size (D50) is 0.5 to 50 μm. 更に、Ca:0.001〜0.02重量%を含む、請求項1から3のいずれか一項に記載の軟磁性合金粉末。 The soft magnetic alloy powder according to any one of claims 1 to 3, further comprising Ca: 0.001 to 0.02% by weight. Ca:0.002〜0.01重量%を含む、請求項4に記載の軟磁性合金粉末。 The soft magnetic alloy powder according to claim 4, which contains Ca: 0.002 to 0.01% by weight. 請求項1から5のいずれか一項に記載の軟磁性合金粉末を含む、電子部品。 An electronic component comprising the soft magnetic alloy powder according to any one of claims 1 to 5. 圧粉磁心、電磁波吸収シールド又は電磁波吸収体である、請求項6に記載の電子部品。 The electronic component according to claim 6, which is a dust core, an electromagnetic wave absorption shield, or an electromagnetic wave absorber. 請求項1から5のいずれか一項に記載の軟磁性合金粉末を加圧成形することを含む、電子部品の製造方法。 A method for manufacturing an electronic component, which comprises press-molding the soft magnetic alloy powder according to any one of claims 1 to 5. 請求項1から5のいずれか一項に記載の軟磁性合金粉末を射出成形することを含む、電子部品の製造方法。 A method for manufacturing an electronic component, which comprises injection molding the soft magnetic alloy powder according to any one of claims 1 to 5.
JP2019135037A 2019-07-23 2019-07-23 SOFT MAGNETIC ALLOY POWDER AND ELECTRONIC COMPONENTS USING SAME Active JP7314678B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019135037A JP7314678B2 (en) 2019-07-23 2019-07-23 SOFT MAGNETIC ALLOY POWDER AND ELECTRONIC COMPONENTS USING SAME
KR1020200070340A KR20210011874A (en) 2019-07-23 2020-06-10 Soft magnetic alloy powder and electronic parts using the same
TW109123496A TW202103821A (en) 2019-07-23 2020-07-13 Soft magnetic alloy powder and electronic components using the same having a characteristic of negative magnetic core loss temperature within a range from 25 DEG C to 150 DEG C
CN202010710756.0A CN112309664A (en) 2019-07-23 2020-07-22 Soft magnetic alloy powder and electronic device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019135037A JP7314678B2 (en) 2019-07-23 2019-07-23 SOFT MAGNETIC ALLOY POWDER AND ELECTRONIC COMPONENTS USING SAME

Publications (2)

Publication Number Publication Date
JP2021017635A true JP2021017635A (en) 2021-02-15
JP7314678B2 JP7314678B2 (en) 2023-07-26

Family

ID=74483556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019135037A Active JP7314678B2 (en) 2019-07-23 2019-07-23 SOFT MAGNETIC ALLOY POWDER AND ELECTRONIC COMPONENTS USING SAME

Country Status (4)

Country Link
JP (1) JP7314678B2 (en)
KR (1) KR20210011874A (en)
CN (1) CN112309664A (en)
TW (1) TW202103821A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124202A (en) * 1985-08-15 1987-06-05 Kobe Steel Ltd Magnetic powder for electromagnetic clutch
JP2002134308A (en) * 2000-10-23 2002-05-10 Sanyo Special Steel Co Ltd Electromagnetic wave absorbent material powder
JP2003129104A (en) * 2001-10-24 2003-05-08 Sanyo Special Steel Co Ltd Powder for compacting core
JP2006114695A (en) * 2004-10-14 2006-04-27 Daido Steel Co Ltd Magnetic body
JP2008240041A (en) * 2007-03-26 2008-10-09 Seiko Epson Corp Soft magnetic powder, powder magnetic core and magnetic element
JP2009019264A (en) * 2007-06-11 2009-01-29 Nippon Piston Ring Co Ltd Soft magnetic iron-based sintered member
JP2014204051A (en) * 2013-04-09 2014-10-27 山陽特殊製鋼株式会社 Soft magnetic flat-particle powder, and magnetic sheet arranged by use thereof
JP2015220244A (en) * 2014-05-14 2015-12-07 Tdk株式会社 Soft magnetic metal powder and soft magnetic metal powder compact core
JP2018182040A (en) * 2017-04-12 2018-11-15 山陽特殊製鋼株式会社 Powder for powder-compact magnetic core
JP2020015936A (en) * 2018-07-24 2020-01-30 山陽特殊製鋼株式会社 Powder for magnetic member

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102473501A (en) 2009-08-04 2012-05-23 松下电器产业株式会社 Composite magnetic body and method for producing the same
JP5374537B2 (en) 2010-05-28 2013-12-25 住友電気工業株式会社 Soft magnetic powder, granulated powder, dust core, electromagnetic component, and method for manufacturing dust core

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124202A (en) * 1985-08-15 1987-06-05 Kobe Steel Ltd Magnetic powder for electromagnetic clutch
JP2002134308A (en) * 2000-10-23 2002-05-10 Sanyo Special Steel Co Ltd Electromagnetic wave absorbent material powder
JP2003129104A (en) * 2001-10-24 2003-05-08 Sanyo Special Steel Co Ltd Powder for compacting core
JP2006114695A (en) * 2004-10-14 2006-04-27 Daido Steel Co Ltd Magnetic body
JP2008240041A (en) * 2007-03-26 2008-10-09 Seiko Epson Corp Soft magnetic powder, powder magnetic core and magnetic element
JP2009019264A (en) * 2007-06-11 2009-01-29 Nippon Piston Ring Co Ltd Soft magnetic iron-based sintered member
JP2014204051A (en) * 2013-04-09 2014-10-27 山陽特殊製鋼株式会社 Soft magnetic flat-particle powder, and magnetic sheet arranged by use thereof
JP2015220244A (en) * 2014-05-14 2015-12-07 Tdk株式会社 Soft magnetic metal powder and soft magnetic metal powder compact core
JP2018182040A (en) * 2017-04-12 2018-11-15 山陽特殊製鋼株式会社 Powder for powder-compact magnetic core
JP2020015936A (en) * 2018-07-24 2020-01-30 山陽特殊製鋼株式会社 Powder for magnetic member

Also Published As

Publication number Publication date
CN112309664A (en) 2021-02-02
TW202103821A (en) 2021-02-01
KR20210011874A (en) 2021-02-02
JP7314678B2 (en) 2023-07-26

Similar Documents

Publication Publication Date Title
KR101881952B1 (en) Iron group-based soft magnetic powder
US9196404B2 (en) Soft magnetic powder, dust core, and magnetic device
JP5924480B2 (en) Magnetic powder material, low-loss composite magnetic material including the magnetic powder material, and magnetic element including the low-loss composite magnetic material
JP2008135674A (en) Soft magnetic alloy powder, compact, and inductance element
JP2010272604A (en) Soft magnetic powder and dust core using the same, and inductor and method of manufacturing the same
WO2018179812A1 (en) Dust core
JP2013191839A (en) Dust core and powder for magnetic core used therefor
KR102144824B1 (en) Soft magnetic metal powder and compressed powder core
JP5187599B2 (en) Soft magnetic composite material and core for reactor
JP2011049586A (en) Reactor
JP7314678B2 (en) SOFT MAGNETIC ALLOY POWDER AND ELECTRONIC COMPONENTS USING SAME
JP7428013B2 (en) Soft magnetic alloy powder, electronic parts and manufacturing method thereof
JP2012023392A (en) Reactor
CN111745152B (en) Soft magnetic alloy powder, electronic component, and method for producing same
JP2015062245A (en) Soft magnetic composite material
JP2020111826A (en) Iron-based soft magnetic alloy powder
CN111618292B (en) Iron-based metallic glass alloy powder
TWI824977B (en) Iron-based amorphous magnetic powder core and a manufacturing method thereof
JP2004014613A (en) PROCESS FOR PRODUCING Fe-Co BASED COMPOSITE SOFT MAGNETIC SINTERED ALLOY HAVING HIGH DENSITY AND HIGH PERMEABILITY
KR20180061508A (en) Fabricationg method of soft magnet powder
JP2004270016A (en) Powder for dust core
US20230191481A1 (en) Metal powder, green compact thereof, and method for producing them
CN116259461A (en) Soft magnetic powder and powder magnetic core
CN115064328A (en) Low-power-consumption soft magnetic alloy material and preparation method thereof
JP2016149559A (en) Soft magnetic composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230626

R150 Certificate of patent or registration of utility model

Ref document number: 7314678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150