JP2021017634A - Installation method of galvanic anode material - Google Patents

Installation method of galvanic anode material Download PDF

Info

Publication number
JP2021017634A
JP2021017634A JP2019134841A JP2019134841A JP2021017634A JP 2021017634 A JP2021017634 A JP 2021017634A JP 2019134841 A JP2019134841 A JP 2019134841A JP 2019134841 A JP2019134841 A JP 2019134841A JP 2021017634 A JP2021017634 A JP 2021017634A
Authority
JP
Japan
Prior art keywords
anode material
anchor
galvanic anode
concrete
cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019134841A
Other languages
Japanese (ja)
Other versions
JP7421279B2 (en
Inventor
直利 深川
Naotoshi Fukagawa
直利 深川
敏幸 青山
Toshiyuki Aoyama
敏幸 青山
知繁 鴨谷
Tomoshige Kamoya
知繁 鴨谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PS Mitsubishi Construction Co Ltd
Original Assignee
PS Mitsubishi Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PS Mitsubishi Construction Co Ltd filed Critical PS Mitsubishi Construction Co Ltd
Priority to JP2019134841A priority Critical patent/JP7421279B2/en
Publication of JP2021017634A publication Critical patent/JP2021017634A/en
Application granted granted Critical
Publication of JP7421279B2 publication Critical patent/JP7421279B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Building Environments (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

To provide electrochemical corrosion prevention structure of a concrete structure, facilitating installation of a galvanic anode material in a punctual anode method, repair of concrete after the installation of the galvanic anode material and replacement of the galvanic anode material.SOLUTION: A construction hole is drilled at a position of a steel material being a corrosion prevention object in a concrete surface of a concrete structure in which the steel material being the corrosion prevention object is embedded, an anchor hole is provided in a concrete surface in the vicinity of the construction hole, an anchor is installed in the anchor hole, a metallic coupling member is installed on a bottom face of the construction hole in such a way that the metallic coupling member contacts the steel material being the corrosion prevention object, then, an upper end of an electrochemical corrosion prevention unit is fastened to the anchor, thus the steel material being the corrosion prevention object and the galvanic anode material are electrically coupled together through a coupling member, a lead wire and the metallic rod material, wherein the electrochemical corrosion prevention unit comprises: a plate-shaped galvanic anode material; a cover forming a space three-dimensionally surrounding the galvanic anode material by the concrete surface and the inner surface of the cover; and a metallic rod material having a support supporting the galvanic anode material and the cover, and an upper end which can be detachably fitted to the anchor, and being electrically coupled to a coupling member by a lead wire.SELECTED DRAWING: Figure 1

Description

本発明は、高架道路や橋梁等を構成する鉄筋コンクリート床版や箱桁、地中に埋設されたボックスカルバート等のコンクリート構造物の電気化学的防食工法に用いられる点状陽極方式の流電陽極材の設置方法に関する。 INDUSTRIAL APPLICABILITY The present invention is a point-shaped anode material used in an electrochemical corrosion protection method for concrete structures such as reinforced concrete floor slabs and box girders constituting elevated roads and bridges, and box culverts buried in the ground. Regarding the installation method of.

例えば、高架道路や橋梁等を構成する鉄筋コンクリート床版やコンクリート箱桁のウェブ部、地中構造物を構成するボックスカルバート等のように、鉄筋等の鋼材が埋設された厚みのあるコンクリート部を有するコンクリート構造物では、コンクリートの中性化、コンクリートの材料に含まれる塩分、外部からの飛来塩分や凍結防止材等の影響(塩害)によって内部鋼材が腐食し、コンクリート構造物の劣化を招く場合がある。 For example, it has a thick concrete part in which steel materials such as reinforcing bars are embedded, such as a reinforced concrete floor slab that constitutes an elevated road or a bridge, a web part of a concrete box girder, or a box calvert that constitutes an underground structure. In concrete structures, the internal steel materials may corrode due to the neutralization of concrete, the salt contained in the concrete material, the incoming salt from the outside, the antifreeze material, etc. (salt damage), which may lead to deterioration of the concrete structure. is there.

このような鉄筋等の鋼材の腐食対策には、鋼材に電流を供給することにより鉄筋等の鋼材(以下、防食対象鋼材という)の腐食を防止する電気化学的防食工法が知られており、電流の供給方式によって外部電源方式と流電(犠牲)陽極方式とに大別される。 As a countermeasure against corrosion of steel materials such as reinforcing bars, an electrochemical corrosion protection method for preventing corrosion of steel materials such as reinforcing bars (hereinafter referred to as corrosion-preventing steel materials) by supplying an electric current to the steel materials is known. It is roughly divided into an external power supply method and a galvanic (sacrificial) anode method according to the supply method.

外部電源方式は、コンクリート表面又はコンクリート内部にチタン等からなる不溶性陽極を設置し、この不溶性陽極と陰極を成す鉄筋との間に直流電源装置を接続し、鉄筋に不溶性陽極から電流を供給するものであって、電流量を調節でき、長期の防食性にも優れていることから、鉄筋コンクリート構造物の電気化学的防食工法に多く用いられている。 In the external power supply system, an insoluble anode made of titanium or the like is installed on the concrete surface or inside the concrete, a DC power supply device is connected between the insoluble anode and the reinforcing bar forming the cathode, and current is supplied to the reinforcing bar from the insoluble anode. Moreover, since the amount of electric current can be adjusted and it is excellent in long-term corrosion protection, it is often used in the electrochemical corrosion protection method for reinforced concrete structures.

しかし、この種の外部電源方式による電気化学的防食工法は、外部電源装置やその制御装置等を必要とする為、設備費が高価であるとともに、その維持管理費も嵩むという問題があった。 However, this type of electrochemical corrosion protection method using an external power supply method requires an external power supply device and its control device, so that there is a problem that the equipment cost is high and the maintenance cost is also high.

それに対し、流電陽極方式は、防食対象鋼材に比べて酸化還元電位の低い亜鉛、アルミニウム等からなる流電陽極をコンクリート表面部に設置し、この流電陽極と鉄筋との電位差を利用して鉄筋に電流を供給するものであって、発生する電流量は小さいが、十分な防食効果が期待でき、且つ、外部電源等が不要で導入費用や維持管理費用が安価であることから、この方式による防食工法のコンクリート床版、コンクリート箱桁、ボックスカルバート等の各種コンクリート構造物への適用が望まれている。 On the other hand, in the current current anode method, a current current anode made of zinc, aluminum, etc., which has a lower oxidation-reduction potential than the steel material to be protected against corrosion, is installed on the concrete surface, and the potential difference between the current current anode and the reinforcing bar is used. This method supplies current to the reinforcing bar and generates a small amount of current, but it can be expected to have a sufficient anticorrosion effect, and it does not require an external power supply, etc., and the introduction cost and maintenance cost are low. It is desired to apply the anticorrosion method to various concrete structures such as concrete floor slabs, concrete box girders, and box calverts.

一方、コンクリート構造物の電気化学的防食構造では、防食対象鋼材が埋設されたコンクリート部に対する陽極の配置によって、面状陽極方式、線状陽極方式及び点状陽極方式に分類される。 On the other hand, the electrochemical corrosion-proof structure of a concrete structure is classified into a planar anode method, a linear anode method, and a point-shaped anode method according to the arrangement of the anode with respect to the concrete portion in which the steel material to be protected against corrosion is embedded.

面状陽極方式は、シート状又は網状に形成された陽極材をコンクリート部の表面に敷設するものであり、線状陽極方式では、コンクリート部表面に複数の溝を形成し、その溝に線状の陽極材が埋め込まれる(特許文献1参照)。点状陽極方式は、鉄筋量に応じてコンクリートに複数の穴を設け、そこに陽極を挿入した後、当該穴をセメント系の無収縮性モルタル等によって埋め戻し、陽極をコンクリート内に設置する工法である(特許文献2参照)。 In the planar anode method, a sheet-like or net-like anode material is laid on the surface of the concrete portion, and in the linear anode method, a plurality of grooves are formed on the surface of the concrete portion and the grooves are linear. (See Patent Document 1). The point-shaped anode method is a method in which a plurality of holes are provided in concrete according to the amount of reinforcing bars, the anode is inserted into the holes, the holes are backfilled with cement-based non-shrinkable mortar, and the anode is installed in the concrete. (See Patent Document 2).

特開2008−169462号公報Japanese Unexamined Patent Publication No. 2008-169462 特開2017−179526号公報JP-A-2017-179526

面状陽極方式は、陽極材によってコンクリート表面が覆われるので、腐食抑制効果がコンクリートの全面において漏れなく得られることが期待できる。しかし、コンクリート面が見えなくなるため、コンクリート表面側から防食効果を確認することが困難である。さらに、面状陽極方式は、防食対策を必要としない部位をも含めて陽極材によってコンクリート表面が全体的に覆われるため、部分的に防食したい場合に不向きである。線状陽極方式においても面状陽極方式ほどではないものの、やはり線状陽極の埋め込み部分が防食効果確認の際の障害物になる、部分的な防食対策に不向きであるなど、同様な課題がある。また、線状陽極方式は、埋め込んだ線状陽極材同士を導線で電気的に接続する必要があり、その作業に多大な手間を要する。 In the planar anode method, since the concrete surface is covered with the anode material, it can be expected that the corrosion suppressing effect can be obtained without leakage on the entire surface of the concrete. However, since the concrete surface cannot be seen, it is difficult to confirm the anticorrosion effect from the concrete surface side. Further, the planar anode method is not suitable when it is desired to partially protect the concrete surface because the concrete surface is entirely covered by the anode material including the portion that does not require anticorrosion measures. Although the linear anode method is not as good as the planar anode method, there are similar problems such as the embedded part of the linear anode becoming an obstacle when confirming the anticorrosion effect and being unsuitable for partial anticorrosion measures. .. Further, in the linear anode method, it is necessary to electrically connect the embedded linear anode materials to each other with a conducting wire, and the work requires a great deal of labor.

また、線状陽極方式および点状陽極方式では、陽極材をコンクリート構造物に埋設して防食対象鋼材と電気的に接続するために、防食対象鋼材が露出するまでコンクリートの表面部分を斫り取ることが行われることが多い。しかしながら、コンクリートの斫り作業、斫り取った部分の修復作業などに多大な手間と時間がかかる。また、このような埋設型の点状陽極方式は、流電陽極材をコンクリート構造物の表面に鉛直に挿入埋設することなどによって、コンクリート構造物の表面近くの鉄筋のみならず、それより奥にある鉄筋に対しても防食効果を得られることが期待できるものの、コンクリート構造物に流電陽極材を埋め込むための削孔をコアドリルなどの大がかりな器具を使ってくり抜く必要があり、やはり手間とコストが嵩む。 Further, in the linear anode method and the point anode method, in order to bury the anode material in the concrete structure and electrically connect it to the anticorrosion target steel material, the surface portion of the concrete is scraped until the anticorrosion target steel material is exposed. Often things are done. However, it takes a lot of time and effort to scrape concrete and repair the scraped part. Further, in such a buried type point-shaped anode method, by inserting and burying the electrocurrent anode material vertically on the surface of the concrete structure, not only the reinforcing bar near the surface of the concrete structure but also the inner part thereof. Although it can be expected that an anticorrosion effect can be obtained for a certain reinforcing bar, it is necessary to hollow out a hole for embedding a plumb bob anode material in a concrete structure using a large-scale instrument such as a core drill, which is also laborious and costly. Is bulky.

さらに、一般的には面状陽極方式、線状陽極方式ともコンクリート構造物表面全体に対して施されるが、電気防食が必要な領域は偏在していることが多いため、流電陽極材が局部的に溶解してしまい、一部交換が必要な場合であっても広範囲に交換する必要があった。 Further, in general, both the planar anode method and the linear anode method are applied to the entire surface of the concrete structure, but since the areas requiring electrolytic protection are often unevenly distributed, the galvanic anode material is used. It melted locally, and even if it needed to be partially replaced, it had to be replaced extensively.

本発明の目的は、点状陽極方式の流電陽極材の設置、流電陽極材の設置後のコンクリートの修復、および流電陽極材の交換が容易なコンクリート構造物の電気化学的防食構造を得ることのできる流電陽極材の設置方法を提供することにある。 An object of the present invention is to provide an electrochemical corrosion-proof structure of a concrete structure in which the installation of a point-shaped anode material, the restoration of concrete after the installation of the anode material, and the replacement of the anode material are easy. It is an object of the present invention to provide a method of installing a flow-electric anode material that can be obtained.

上記の課題を解決するために、本発明に係る一形態の流電陽極材の設置方法は、防食対象鋼材が埋設されたコンクリート構造物のコンクリート表面に前記防食対象鋼材の位置に合わせて削孔した施工孔の近傍の前記コンクリート表面にアンカー孔を設け、前記アンカー孔にアンカーを設置し、前記施工孔の底面に前記防食対象鋼材と接触するように金属製の接続部材を設置し、板状の流電陽極材と、この流電陽極材を前記コンクリート表面と自らの内面によって立体的に包囲する空間を形成するカバーと、前記流電陽極材ならびに前記カバーを支持する支持部および前記アンカーに着脱可能な上端部を有し、前記接続部材とリード線で電気的に接続された金属製棒材とを有する電気化学的防食ユニットの前記上端部を前記アンカーに固着することによって、前記防食対象鋼材と前記流電陽極材とを、前記接続部材、前記リード線および前記金属製棒材を通じて電気的に接続する。 In order to solve the above problems, the method of installing the electrocurrent anode material according to the present invention is to drill holes in the concrete surface of the concrete structure in which the anticorrosion target steel material is embedded according to the position of the anticorrosion target steel material. An anchor hole is provided on the concrete surface in the vicinity of the construction hole, an anchor is installed in the anchor hole, and a metal connecting member is installed on the bottom surface of the construction hole so as to come into contact with the anticorrosion target steel material. On the current flow anode material, a cover that forms a space that three-dimensionally surrounds the current flow anode material by the concrete surface and its own inner surface, the current flow anode material, a support portion that supports the cover, and the anchor. The anticorrosion target by fixing the upper end of the electrochemical anticorrosion unit having a detachable upper end and a metal rod electrically connected to the connecting member by a lead wire to the anchor. The steel material and the current flow anode material are electrically connected through the connecting member, the lead wire, and the metal rod material.

本発明の一形態の流電陽極材の設置方法によれば、点状陽極方式の流電陽極材をコンクリート構造物の外に取り付けることができる。このため、コンクリート構造物の防食対象鋼材と導通をとるために必要な部分だけコンクリート部を斫り取ればすむなど、コンクリート部の切削量をより少なく抑えることができ、流電陽極材の設置作業を効率的に行うことができる。さらに、流電陽極材をコンクリート構造物の外部に棒材を介して着脱可能な構成とすることによって、カバーを外すだけで流電陽極材の消耗状態を目視確認することができ、消耗がすすんだ流電陽極材の交換作業を含めた保守管理コストも低く抑えることができる。さらに、この設置方法によれば、コンクリート構造物において防食対象鋼材の位置に合わせて削孔した施工孔の位置に対して、電気化学的防食ユニットの位置を高い自由度で決めることができる。これにより、例えば、鉄筋コンクリート床版1の隅部や縁部など、設置が困難な場所にも、電気化学的防食ユニットを設置することができるなど、設置自由度を高めることができる。 According to the method of installing the galvanic anode material of one embodiment of the present invention, the galvanic anode material of the point-shaped anode type can be attached to the outside of the concrete structure. For this reason, it is possible to reduce the amount of cutting of the concrete part, such as scraping only the part necessary for conducting continuity with the anticorrosion target steel material of the concrete structure, and the installation work of the galvanic anode material. Can be done efficiently. Furthermore, by making the galvanic anode material removable from the outside of the concrete structure via a bar, it is possible to visually check the wear state of the galvanic anode material simply by removing the cover, and the wear is reduced. However, maintenance costs including replacement of galvanic anode materials can be kept low. Further, according to this installation method, the position of the electrochemical anticorrosion unit can be determined with a high degree of freedom with respect to the position of the construction hole drilled in accordance with the position of the anticorrosion target steel material in the concrete structure. As a result, the degree of freedom of installation can be increased, for example, the electrochemical anticorrosion unit can be installed in a place where installation is difficult, such as a corner or an edge of the reinforced concrete floor slab 1.

本発明に係る第1の実施形態のコンクリート構造物の電気化学的防食構造を示す断面図である。It is sectional drawing which shows the electrochemical anticorrosion structure of the concrete structure of 1st Embodiment which concerns on this invention. 図1のコンクリート構造物の電気化学的防食構造における施工孔1H周辺の構造を拡大して示す断面図である。FIG. 5 is an enlarged cross-sectional view showing the structure around the construction hole 1H in the electrochemical anticorrosion structure of the concrete structure of FIG. 第1の実施形態の流電陽極材の設置方法の手順において施工孔の削孔段階を示す図である。It is a figure which shows the drilling stage of the construction hole in the procedure of the installation method of the galvanic anode material of 1st Embodiment. 第1の実施形態の流電陽極材の設置方法の手順において金属ネジの設置段階を示す図である。It is a figure which shows the installation stage of a metal screw in the procedure of the installation method of the galvanic anode material of 1st Embodiment. 第1の実施形態の流電陽極材の設置方法の手順においてアンカーへの取り付けボルトの固定段階を示す図である。It is a figure which shows the fixing step of the mounting bolt to an anchor in the procedure of the installation method of the galvanic anode material of 1st Embodiment. 第1の実施形態の流電陽極材の設置方法の手順において取り付けボルトおよび流電陽極材の取り付け段階を示す図である。It is a figure which shows the mounting step of the mounting bolt and the galvanic anode material in the procedure of the method of installing the galvanic anode material of 1st Embodiment. バックフィル材を充填する注入方法を説明するための断面図である。It is sectional drawing for demonstrating the injection method for filling a backfill material. 図7の注入方法において充填完了状態を示す断面図である。It is sectional drawing which shows the filling completion state in the injection method of FIG. バックフィル材を充填する余盛方法において、取り付け前のカバー内にバックフィル材18を余盛状態にして収容した段階を示す図である。FIG. 5 is a diagram showing a stage in which the backfill material 18 is housed in the cover before mounting in a surplus state in the surplus method of filling the backfill material. 図9の余盛方法において充填完了状態を示す断面図である。It is sectional drawing which shows the filling completion state in the surplus method of FIG. 図9の余盛方法において流電陽極材にバックフィル材を通過させるための貫通口を設けた例を示す断面図である。FIG. 5 is a cross-sectional view showing an example in which a through hole for passing a backfill material is provided in the galvanic anode material in the surplus method of FIG. 本発明に係る流電陽極材の設置方法の変形例を示す断面図である。It is sectional drawing which shows the modification of the installation method of the galvanic anode material which concerns on this invention. 本発明に係る流電陽極材の設置方法を採用したコンクリート箱桁を示す断面図である。It is sectional drawing which shows the concrete box girder which adopted the installation method of the galvanic anode material which concerns on this invention.

次に、本発明に係る実施形態を図面に基づいて説明する。 Next, an embodiment according to the present invention will be described with reference to the drawings.

<第1の実施形態>
図1は本発明に係る第1の実施形態のコンクリート構造物の電気化学的防食構造を示す断面図である。
同図において、コンクリート構造物である鉄筋コンクリート床版1には、下面1Uから所定距離離れた位置に防食対象鋼材である鉄筋2が配設されている。鉄筋コンクリート床版1の下面1Uには、点状陽極方式の電気化学的防食ユニット10が設置される。この電気化学的防食ユニット10は、棒材である取り付けボルト11と、流電陽極材13と、カバー15とを有する。
<First Embodiment>
FIG. 1 is a cross-sectional view showing an electrochemical anticorrosion structure of the concrete structure of the first embodiment according to the present invention.
In the figure, in the reinforced concrete floor slab 1 which is a concrete structure, a reinforcing bar 2 which is an anticorrosion target steel material is arranged at a position separated from the lower surface 1U by a predetermined distance. A point-shaped anode type electrochemical corrosion protection unit 10 is installed on the lower surface 1U of the reinforced concrete floor slab 1. The electrochemical anticorrosion unit 10 has a mounting bolt 11 which is a rod material, a galvanic anode material 13, and a cover 15.

取り付けボルト11は、鉄筋コンクリート床版1の下面1U側に電気化学的防食ユニット10を取り付けるための一本の棒状部材である。取り付けボルト11は例えばアルミニウム材、炭素鋼材などの耐食性を有する金属材料で構成される。取り付けボルト11の全長部分あるいはその一部の周面にはねじ山が設けられている。取り付けボルト11は、鉄筋コンクリート床版1に設置されたアンカー3に挿入されて固定される上端部11aと、流電陽極材13およびカバー15を互いに棒軸方向に離間した位置で支持する支持部11bとを有する。 The mounting bolt 11 is a rod-shaped member for mounting the electrochemical corrosion protection unit 10 on the lower surface 1U side of the reinforced concrete floor slab 1. The mounting bolt 11 is made of a metal material having corrosion resistance such as an aluminum material and a carbon steel material. A screw thread is provided on the entire length portion of the mounting bolt 11 or the peripheral surface of a part thereof. The mounting bolt 11 is a support portion 11b that supports the upper end portion 11a that is inserted and fixed to the anchor 3 installed on the reinforced concrete floor slab 1 and the galvanic anode material 13 and the cover 15 at positions separated from each other in the rod axis direction. And have.

本実施形態のコンクリート構造物の電気化学的防食構造では、鉄筋コンクリート床版1の下面1Uに、例えば鉄筋2の下端またはその近傍の深さにまでに達する鉄筋接続用の施工孔1Hが削孔される。この施工孔1Jの奥底面には、鉄筋コンクリート床版1の鉄筋2に対して互いの側面同士が接触するように金属ネジ5がねじ込んで設置される。 In the electrochemical anticorrosion structure of the concrete structure of the present embodiment, a construction hole 1H for connecting reinforcing bars is drilled in the lower surface 1U of the reinforced concrete floor slab 1 to reach a depth of, for example, the lower end of the reinforcing bar 2 or its vicinity. To. Metal screws 5 are screwed into the inner bottom surface of the construction hole 1J so that the side surfaces of the reinforced concrete floor slab 1 come into contact with each other.

図2は図1のコンクリート構造物の電気化学的防食構造における施工孔1J周辺の構造を拡大して示す断面図である。同図に示すように、施工孔1Jの底面1Kには、鉄筋2に対して互いの側面同士が接触するように、金属製の接続部材として、例えばタッピングネジなどの金属ネジ21がねじ込まれる。より詳細には、施工孔1Jの底面1Kには、鉄筋コンクリート床版1の下面1Uに対して直交方向にネジ孔5がハンドドリルなどを使用して穿孔され、このネジ孔5に金属ネジ21が鉄筋2の側面に接触しつつねじ込まれる。ネジ孔5にねじ込まれた金属ネジ21の頭部21aと施工孔1Jの底面1Kとの間には、リード線23の一端が接続された第1の端子金具25が挟持される。施工孔1Jは、例えば無収縮性モルタルあるいはバックフィル材などの充填材19によって埋められる。 FIG. 2 is an enlarged cross-sectional view showing the structure around the construction hole 1J in the electrochemical anticorrosion structure of the concrete structure of FIG. As shown in the figure, a metal screw 21 such as a tapping screw is screwed into the bottom surface 1K of the construction hole 1J as a metal connecting member so that the side surfaces of the reinforcing bar 2 come into contact with each other. More specifically, a screw hole 5 is drilled in the bottom surface 1K of the construction hole 1J in a direction orthogonal to the bottom surface 1U of the reinforced concrete floor slab 1 by using a hand drill or the like, and a metal screw 21 is formed in the screw hole 5. It is screwed in while contacting the side surface of the reinforcing bar 2. A first terminal fitting 25 to which one end of the lead wire 23 is connected is sandwiched between the head portion 21a of the metal screw 21 screwed into the screw hole 5 and the bottom surface 1K of the construction hole 1J. The construction hole 1J is filled with a filler 19 such as a non-shrinkable mortar or a backfill material.

鉄筋コンクリート床版1の下面1Uの施工孔1Jの近傍には、例えば本体打ち込み式メスネジタイプなどのアンカー3が設置され、このアンカー3のアンカー本体である中空筒状のスリーブ3Aに取り付けボルト11の上端部11aが螺入される。なお、アンカー3は導電性を有するものである必要はない。そして施工孔1J内で金属ネジ21の頭部21aと施工孔1Jの底面1Kとの間に挟持された第1の端子金具25に一端が接続されたリード線23の他端側の部分が施工孔1Jから鉄筋コンクリート床版1の下面1Uより下方に引き出され、そのリード線23の他端部は、第2の端子金具26を介して取り付けボルト11に電気的に接続される。 An anchor 3 such as a main body driving type female screw type is installed in the vicinity of the construction hole 1J on the lower surface 1U of the reinforced concrete floor slab 1, and the upper end of the mounting bolt 11 is attached to the hollow tubular sleeve 3A which is the anchor main body of the anchor 3. The portion 11a is screwed in. The anchor 3 does not have to be conductive. Then, the other end side portion of the lead wire 23 whose one end is connected to the first terminal fitting 25 sandwiched between the head portion 21a of the metal screw 21 and the bottom surface 1K of the construction hole 1J in the construction hole 1J is constructed. It is pulled out from the hole 1J below the lower surface 1U of the reinforced concrete floor slab 1, and the other end of the lead wire 23 is electrically connected to the mounting bolt 11 via the second terminal fitting 26.

アンカー3には、例えば、本体打ち込み式メスネジタイプの金属製のアンカー3などを用い得る。本体打ち込み式メスネジタイプのアンカー3は、鉄筋コンクリート床版1の下面1Uに削孔されたアンカー孔4に圧入保持されるアンカー本体である中空筒状のスリーブ3Aを有し、スリーブ3Aの一方端部には拡張部3Cが設けられる。拡張部3Cは、スリーブ3Aの軸方向上端部に開けられた開口3Fよりスリーブ3A内に押し込まれたプラグ3Eによって半径方向に拡張し、拡張部3Cの外周部3Bがアンカー孔4の内壁面4Aに喰い込む。これによって、アンカー3がアンカー孔4に固着する。また、スリーブ3Aには、軸方向他端面に開口したネジ孔3Jが設けられており、このネジ孔3Jに取り付けボルト11の上端部11aが螺入されることによって、取り付けボルト11がアンカー3に固定される。 As the anchor 3, for example, a metal anchor 3 of a main body driving type female screw type can be used. The main body driving type female screw type anchor 3 has a hollow tubular sleeve 3A which is an anchor main body press-fitted and held in an anchor hole 4 drilled in the lower surface 1U of the reinforced concrete floor slab 1, and one end of the sleeve 3A. Is provided with an extension 3C. The expansion portion 3C is expanded in the radial direction by a plug 3E pushed into the sleeve 3A from the opening 3F opened at the axial upper end portion of the sleeve 3A, and the outer peripheral portion 3B of the expansion portion 3C is the inner wall surface 4A of the anchor hole 4. To bite into. As a result, the anchor 3 is fixed to the anchor hole 4. Further, the sleeve 3A is provided with a screw hole 3J opened on the other end surface in the axial direction, and the upper end portion 11a of the mounting bolt 11 is screwed into the screw hole 3J so that the mounting bolt 11 becomes the anchor 3. It is fixed.

上記のように、施工孔1Jの底面1Kに鉄筋コンクリート床版1中の鉄筋2に対して互いの周面同士が接触するように金属ネジ5を設置する一方で、施工孔1Jの近傍の鉄筋コンクリート床版1の下面1Uにアンカー3を設置してこのアンカー3に金属製の取り付けボルト11の上端部11aを固定し、上記の金属ネジ5と取り付けボルト11とを、第1の端子金具25、リード線23および第2の端子金具26を通じて互いに電気的に接続することによって、鉄筋2と流電陽極材13との電位差に起因した防食電流が流れるようになっている。 As described above, the metal screws 5 are installed on the bottom surface 1K of the construction hole 1J so that the peripheral surfaces of the reinforcing bars 2 in the reinforced concrete floor slab 1 are in contact with each other, while the reinforced concrete floor in the vicinity of the construction hole 1J. An anchor 3 is installed on the lower surface 1U of the plate 1, the upper end portion 11a of the metal mounting bolt 11 is fixed to the anchor 3, and the above metal screw 5 and the mounting bolt 11 are connected to the first terminal fitting 25 and the lead. By electrically connecting to each other through the wire 23 and the second terminal fitting 26, an anticorrosion current due to the potential difference between the reinforcing bar 2 and the current current anode material 13 flows.

図1に戻って、取り付けボルト11の支持部11bには流電陽極材13とカバー15が支持される。流電陽極材13は、防食対象鋼材である鉄筋2に比べ酸化還元電位の低い材料例えば亜鉛、アルミニウム、マグネシウム合金等からなる板状例えば円盤状の部材である。流電陽極材13の例えば中心部などの所定の部位には取り付けボルト11が挿通される孔部13aがあり、流電陽極材13は、この孔部13aに挿通された取り付けボルト11に一対の取付金具14A、14Bによって取り付けられる。 Returning to FIG. 1, the galvanic anode material 13 and the cover 15 are supported on the support portion 11b of the mounting bolt 11. The galvanic anode material 13 is a plate-shaped or disk-shaped member made of a material having a lower redox potential than the reinforcing bar 2 which is a steel material subject to corrosion protection, such as zinc, aluminum, or magnesium alloy. A predetermined portion of the galvanic anode material 13, such as the central portion, has a hole 13a through which the mounting bolt 11 is inserted, and the galvanic anode material 13 is paired with the mounting bolt 11 inserted through the hole 13a. It is mounted by mounting brackets 14A and 14B.

カバー15は、上側が開口した筒形(円筒形あるいは多角筒型)であり、取り付けボルト11に取り付けられた流電陽極材13を、コンクリート表面1Uと自らの内面によって立体的に包囲する空間を形成する。カバー15は、取り付けボルト11の支持部11bの下端部分に座金付きナットなどの取付金具14Cを用いて着脱可能に取り付けられる。カバー15は、上部の開口周りの上端面15aを、パッキン材16を挟んで鉄筋コンクリート床版1の下面1Uに突き当てた状態にして設置される。 The cover 15 has a tubular shape (cylindrical or polygonal tubular shape) with an open upper side, and creates a space in which the galvanic anode material 13 attached to the mounting bolt 11 is three-dimensionally surrounded by the concrete surface 1U and its own inner surface. Form. The cover 15 is detachably attached to the lower end portion of the support portion 11b of the attachment bolt 11 by using a mounting bracket 14C such as a nut with a washer. The cover 15 is installed with the upper end surface 15a around the upper opening abutting against the lower surface 1U of the reinforced concrete floor slab 1 with the packing material 16 interposed therebetween.

流電陽極材13は、カバー15の内面とコンクリート表面1Uとで形成される立体空間の略中央に配置され、この空間内にはバックフィル材18が充填される。バックフィル材18は、流電陽極材13の周囲近傍の抵抗を下げることによって、流電陽極材13の溶解を容易にすることなどを目的とするものである。なお、バックフィル材18には、例えば石膏、ベントナイトなどを主剤とする流動性材料を用い得る。あるいは、フェノール樹脂連続発泡体等の保水性を有する多孔質部材内部に電解質溶液を含浸保持したものなども用い得る。 The galvanic anode material 13 is arranged substantially in the center of a three-dimensional space formed by the inner surface of the cover 15 and the concrete surface 1U, and the backfill material 18 is filled in this space. The backfill material 18 is intended to facilitate the dissolution of the galvanic anode material 13 by reducing the resistance in the vicinity of the periphery of the galvanic anode material 13. As the backfill material 18, for example, a fluid material containing gypsum, bentonite or the like as a main component can be used. Alternatively, a phenol resin continuous foam or the like in which an electrolyte solution is impregnated and held inside a porous member having water retention can also be used.

なお、鉄筋コンクリート床版1の下面1Uに削孔した施工孔1Jは、例えばカバー15が取り付けられる前に、例えば無収縮性モルタルあるいはバックフィル材などの充填材19によって埋められてもよい。 The construction hole 1J drilled in the lower surface 1U of the reinforced concrete floor slab 1 may be filled with a filler 19 such as a non-shrinkable mortar or a backfill material before the cover 15 is attached.

<施工手順>
次に、本実施形態のコンクリート構造物の電気化学的防食構造に係る流電陽極材の設置方法の手順について図3から図8を用いて説明する。
まず、防食施工対象の鉄筋コンクリート床版1の設計図等を参照し、鉄筋コンクリート床版1内の防食対象鋼材である鉄筋2の位置を調べ、施工孔1Jの位置を決定する。あるいは、コンクリート内部探査レーダを使用して鉄筋2を探索して施工孔1Jの位置を決定してもよい。
<Construction procedure>
Next, the procedure of the method of installing the galvanic anode material according to the electrochemical anticorrosion structure of the concrete structure of the present embodiment will be described with reference to FIGS. 3 to 8.
First, the position of the reinforcing bar 2 which is the steel material to be protected against corrosion in the reinforced concrete plate 1 is examined with reference to the design drawing of the reinforced concrete plate 1 to be protected against corrosion, and the position of the construction hole 1J is determined. Alternatively, the position of the construction hole 1J may be determined by searching the reinforcing bar 2 using the concrete internal exploration radar.

次に、図3に示すように、鉄筋コンクリート床版1の下面1U側にドリルカッターなどを使って施工孔1Jを削孔する。この際、鉄筋2の位置を目視できる程度の深さまで削孔し、鉄筋2の直ぐ脇に金属ネジ21を設置可能な領域が確保されるように施工孔1Jの位置が決められる。 Next, as shown in FIG. 3, a construction hole 1J is drilled on the lower surface 1U side of the reinforced concrete floor slab 1 using a drill cutter or the like. At this time, the position of the reinforcing bar 2 is drilled to a depth that can be visually recognized, and the position of the construction hole 1J is determined so that an area where the metal screw 21 can be installed is secured immediately beside the reinforcing bar 2.

次に、図4に示すように、施工孔1Jの底面1Kにハンドドリルなどを用いてネジ孔5を穿孔し、このネジ孔5に金属ネジ21を螺入して設置する。このとき、金属ネジ21と鉄筋2の互いの側面同士が接触して両者の電気的な接続が確実に得られるように注意すべきである。ここで、金属ネジ21として鉄筋2より硬度の高いものを使用するとともに、ネジ孔5の内径を金属ネジ21の径よりネジ山分だけ小さいものとし、金属ネジ21をネジ孔5にねじ入れる際に金属ネジ21のネジ山をネジ孔5の内壁面に喰い込ませる。これによって鉄筋2と金属ネジ21との電気的接続がより確実になる。逆に、金属ネジ21として鉄筋2より硬度の低いものを使用し、金属ネジ21をネジ孔5にねじ込んだ際にネジ山が鉄筋2に潰された状態としてもよい。 Next, as shown in FIG. 4, a screw hole 5 is drilled in the bottom surface 1K of the construction hole 1J using a hand drill or the like, and a metal screw 21 is screwed into the screw hole 5 for installation. At this time, care should be taken to ensure that the side surfaces of the metal screw 21 and the reinforcing bar 2 come into contact with each other to ensure an electrical connection between the two. Here, when a metal screw 21 having a hardness higher than that of the reinforcing bar 2 is used, the inner diameter of the screw hole 5 is set to be smaller than the diameter of the metal screw 21 by the number of threads, and the metal screw 21 is screwed into the screw hole 5. The screw thread of the metal screw 21 is made to bite into the inner wall surface of the screw hole 5. This makes the electrical connection between the reinforcing bar 2 and the metal screw 21 more secure. On the contrary, a metal screw 21 having a hardness lower than that of the reinforcing bar 2 may be used, and the screw thread may be crushed by the reinforcing bar 2 when the metal screw 21 is screwed into the screw hole 5.

また、金属ネジ21をネジ孔5にねじ込む際、金属ネジ21の頭部21aと施工孔1Jの底面1Kとの間に、リード線23の一端が接続された第1の端子金具25を挟持する。このリード線23の他端には第2の端子金具26が接続されている。 Further, when the metal screw 21 is screwed into the screw hole 5, the first terminal fitting 25 to which one end of the lead wire 23 is connected is sandwiched between the head portion 21a of the metal screw 21 and the bottom surface 1K of the construction hole 1J. .. A second terminal fitting 26 is connected to the other end of the lead wire 23.

次に、図5に示すように、鉄筋コンクリート床版1の下面1Uに削孔した施工孔1Jを、例えば無収縮性モルタルやバックフィル材などの充填剤19で埋める。なお、この工程は、カバー15内にバックフィル材18を充填する際に同時に施工孔1Jもバックフィル材で埋める場合には省くことができる。 Next, as shown in FIG. 5, the construction hole 1J drilled in the lower surface 1U of the reinforced concrete floor slab 1 is filled with a filler 19 such as a non-shrinkable mortar or a backfill material. This step can be omitted when the construction hole 1J is also filled with the backfill material at the same time when the backfill material 18 is filled in the cover 15.

一方、施工孔1Jの近傍の鉄筋コンクリート床版1の下面1Uにハンドドリルなどを用いてアンカー孔4を穿孔し、このアンカー孔4にアンカー3を圧入して設置する。 On the other hand, an anchor hole 4 is drilled in the lower surface 1U of the reinforced concrete floor slab 1 in the vicinity of the construction hole 1J using a hand drill or the like, and the anchor 3 is press-fitted into the anchor hole 4 for installation.

続いて、図6に示すように、取り付けボルト11の上端部11aをアンカー3のスリーブ3Aのネジ孔3J内に螺入してアンカー3に取り付けボルト11を固定し、この取り付けボルト11の支持部11bに流電陽極材13を上下一対の座金付きナットなどの取付金具14A、14Bで取り付ける。取り付けボルト11において流電陽極材13が取り付けられる高さ位置は、鉄筋コンクリート床版1の下面1Uより低い位置であり、あるいは、バックフィル材18の充填性を考慮すると、鉄筋コンクリート床版1の下面1Uから下方に突出した取り付けボルト11の略中間の高さ位置が適当である。すなわち、鉄筋コンクリート床版1の下面1Uから流電陽極材13までの隙間が狭すぎると、その隙間部分にバックフィル材18が十分充填されない可能性があるからである。 Subsequently, as shown in FIG. 6, the upper end portion 11a of the mounting bolt 11 is screwed into the screw hole 3J of the sleeve 3A of the anchor 3 to fix the mounting bolt 11 to the anchor 3, and the support portion of the mounting bolt 11 is fixed. The galvanic anode material 13 is attached to 11b with mounting brackets 14A and 14B such as a pair of upper and lower seated nuts. The height position at which the electrocurrent anode material 13 is attached to the mounting bolt 11 is lower than the lower surface 1U of the reinforced concrete floor slab 1, or considering the filling property of the backfill material 18, the lower surface 1U of the reinforced concrete floor slab 1 is taken into consideration. A height position substantially in the middle of the mounting bolt 11 protruding downward from the above is appropriate. That is, if the gap from the lower surface 1U of the reinforced concrete floor slab 1 to the galvanic anode material 13 is too narrow, the backfill material 18 may not be sufficiently filled in the gap portion.

次に、図1に示したように、取り付けボルト11の支持部11bに取付金具14Cでカバー15を取り付けるとともに、鉄筋コンクリート床版1の下面1Uとカバー15の内面とによって形成される立体空間内にバックフィル材18を充填する。 Next, as shown in FIG. 1, the cover 15 is attached to the support portion 11b of the mounting bolt 11 with the mounting bracket 14C, and in the three-dimensional space formed by the lower surface 1U of the reinforced concrete floor slab 1 and the inner surface of the cover 15. The backfill material 18 is filled.

以上のように、この第1の実施形態のコンクリート構造物の電気化学的防食構造および流電陽極材の設置方法によれば、点状陽極方式の流電陽極材13を鉄筋コンクリート床版1の外に取り付けることができる。これにより、流電陽極材を鉄筋コンクリート床版1のコンクリート部に埋め込む工法に比べ、コンクリート部の切削量を低く抑えることができる。具体的には、鉄筋コンクリート床版1中の鉄筋2と導通をとるために必要な部分だけコンクリート部を削孔すれば済む。このコンクリート切削量の低減によって、流電陽極材を含む電気化学的防食ユニットの設置作業を効率的に行うことが可能になる。さらに、流電陽極材13を鉄筋コンクリート床版1の外に取り付けたことによって、カバー15を外すだけで流電陽極材13の防食による消耗状態を目視確認することができる。したがって、コンクリート部に流電陽極材を埋め込む工法などに比べ、流電陽極材13の交換作業を速やかに行うことができ、保守管理コストを低減できる。さらに、この第1の実施形態のコンクリート構造物の電気化学的防食構造および流電陽極材の設置方法によれば、鉄筋2に金属ネジ21を接触させるために削孔した施工孔1Jから離れた位置に流電陽極材13を配置することができる。このため、例えば、鉄筋コンクリート床版1の隅部や縁部など、設置が困難な場所にも、電気化学的防食ユニット10を設置することができるなど、設置自由度を高めることができる。 As described above, according to the electrochemical anticorrosion structure of the concrete structure of the first embodiment and the method of installing the galvanic anode material, the point-shaped anode type galvanic anode material 13 is placed outside the reinforced concrete floor slab 1. Can be attached to. As a result, the amount of cutting of the concrete portion can be suppressed lower than the method of embedding the galvanic anode material in the concrete portion of the reinforced concrete floor slab 1. Specifically, it is sufficient to drill a hole in the concrete portion only in a portion necessary for conducting continuity with the reinforcing bar 2 in the reinforced concrete floor slab 1. By reducing the amount of concrete cut, it becomes possible to efficiently perform the installation work of the electrochemical corrosion protection unit including the galvanic anode material. Further, by attaching the galvanic anode material 13 to the outside of the reinforced concrete floor slab 1, it is possible to visually check the wear state of the galvanic anode material 13 due to corrosion protection simply by removing the cover 15. Therefore, as compared with the method of embedding the galvanic anode material in the concrete portion, the galvanic anode material 13 can be replaced more quickly, and the maintenance management cost can be reduced. Further, according to the electrochemical anticorrosion structure of the concrete structure of the first embodiment and the method of installing the electrocurrent anode material, the concrete structure is separated from the construction hole 1J drilled in order to bring the metal screw 21 into contact with the reinforcing bar 2. The electrodynamic anode material 13 can be arranged at the position. Therefore, for example, the electrochemical corrosion protection unit 10 can be installed in a place where installation is difficult, such as a corner or an edge of the reinforced concrete floor slab 1, and the degree of freedom of installation can be increased.

<バックフィル材の充填方法>
次に、流動性のバックフィル材18を鉄筋コンクリート床版1の下面1Uとカバー15の内面とによって形成される立体空間内に充填する方法について説明する。
流動性のバックフィル材を充填する方法には、注入方法と余盛方法がある。
<Filling method of backfill material>
Next, a method of filling the fluid backfill material 18 into the three-dimensional space formed by the lower surface 1U of the reinforced concrete floor slab 1 and the inner surface of the cover 15 will be described.
There are two methods for filling the fluid backfill material: an injection method and a surplus method.

注入方法は、取り付けボルト11の支持部11bにカバー15を仮止めした状態でバックフィル材18を注入する方法である。図7に示すように、カバー15内に流動性のバックフィル材18を注入するために、カバー15には注入口15bが設けられる。注入口15bは、例えば、カバー15の取り付け完了状態において底部となる部位などに設けられることが好ましい。注入口15bにバックフィル材供給用のノズル17を指し込み、ノズル17を通じてカバー15内にバックフィル材18を注入(圧入)する。 The injection method is a method of injecting the backfill material 18 with the cover 15 temporarily fixed to the support portion 11b of the mounting bolt 11. As shown in FIG. 7, the cover 15 is provided with an injection port 15b in order to inject the fluid backfill material 18 into the cover 15. The injection port 15b is preferably provided, for example, at a portion that becomes the bottom when the cover 15 is completely attached. The nozzle 17 for supplying the backfill material is pointed into the injection port 15b, and the backfill material 18 is injected (press-fitted) into the cover 15 through the nozzle 17.

カバー15内へのバックフィル材18の注入によってカバー15内の空間のエアーEがバックフィル材18で置き換えられることに伴って、エアーEがスムースにカバー15外に排出されるように、バックフィル材18の注入時、鉄筋コンクリート床版1の下面1Uとカバー15の上部開口周りの端面15aに接着されたパッキン材16の端面との間に適度な隙間Gを確保しておくことが望ましい。 The back fill so that the air E is smoothly discharged to the outside of the cover 15 as the air E in the space inside the cover 15 is replaced by the back fill material 18 by injecting the back fill material 18 into the cover 15. When the material 18 is injected, it is desirable to secure an appropriate gap G between the lower surface 1U of the reinforced concrete floor slab 1 and the end surface of the packing material 16 adhered to the end surface 15a around the upper opening of the cover 15.

図8に示すように、カバー15内がバックフィル材18でほぼ満たされると、上記の隙間Gからバックフィル材18が溢れ出すので、この状態をバックフィル材18の充填完了状態と見なしてバックフィル材18の注入を終了し、ノズル17を外すとともに注入口15bを蓋などで塞ぐ。 As shown in FIG. 8, when the inside of the cover 15 is almost filled with the backfill material 18, the backfill material 18 overflows from the gap G described above. Therefore, this state is regarded as the filling completed state of the backfill material 18 and the back is backed. The injection of the fill material 18 is completed, the nozzle 17 is removed, and the injection port 15b is closed with a lid or the like.

この後、カバー15を、開口周りの上端面15aに接着されたパッキン材16の端面が鉄筋コンクリート床版1の下面1Uに突き当たる高さまでを持ち上げ、取り付け金具14Cでカバー15の高さ位置を固定する。もって電気化学的防食ユニット10の取り付けが完了する。 After that, the cover 15 is lifted up to a height at which the end surface of the packing material 16 adhered to the upper end surface 15a around the opening abuts on the lower surface 1U of the reinforced concrete floor slab 1, and the height position of the cover 15 is fixed by the mounting bracket 14C. .. The installation of the electrochemical anticorrosion unit 10 is completed.

図9、図10は余盛方法を説明するための図である。
図9に示すように、予め、例えばカバー15を取り付けボルト11に取り付ける前などに、カバー15内に、鉄筋コンクリート床版1の下面1Uとカバー15の内面とにより形成される空間(流電陽極材13が占める空間を除く。)を満たすのに十分な量のバックフィル材18を余盛状態で入れる。
9 and 10 are diagrams for explaining the surplus method.
As shown in FIG. 9, a space (galvanic anode material) formed in the cover 15 by the lower surface 1U of the reinforced concrete floor slab 1 and the inner surface of the cover 15 in advance, for example, before attaching the cover 15 to the mounting bolt 11. A sufficient amount of backfill material 18 is added in an extra state to fill the space occupied by 13.).

次に、図10に示すように、カバー15の底面に設けられた孔部(図示省略)に取り付けボルト11の支持部11bを挿入し、カバー15を鉄筋コンクリート床版1の下面1Uへ向けて持ち上げる。カバー15が鉄筋コンクリート床版1の下面1Uに接近したところで、カバー15内のバックフィル材18の余剰分がカバー15と鉄筋コンクリート床版1の下面1Uとの隙間Gから溢れはじめる。したがって、カバー15の開口周りのパッキン材16の端面が鉄筋コンクリート床版1の下面1Uに突き当たった時点では、鉄筋コンクリート床版1の下面1Uとカバー15の内面とにより形成される立体空間内にバックフィル材18が満たされた状態となる。最後に、図1に示したように、カバー15を取り付けボルト11の支持部11bに取付金具14Cで高さ位置を固定する。以上で、バックフィル材18が充填された電気化学的防食ユニット10の取り付けが完了する。 Next, as shown in FIG. 10, the support portion 11b of the mounting bolt 11 is inserted into the hole (not shown) provided on the bottom surface of the cover 15, and the cover 15 is lifted toward the lower surface 1U of the reinforced concrete floor slab 1. .. When the cover 15 approaches the lower surface 1U of the reinforced concrete floor slab 1, the surplus portion of the backfill material 18 in the cover 15 begins to overflow from the gap G between the cover 15 and the lower surface 1U of the reinforced concrete floor slab 1. Therefore, when the end surface of the packing material 16 around the opening of the cover 15 hits the lower surface 1U of the reinforced concrete floor slab 1, the backfill is formed in the three-dimensional space formed by the lower surface 1U of the reinforced concrete floor slab 1 and the inner surface of the cover 15. The material 18 is filled. Finally, as shown in FIG. 1, the cover 15 is fixed to the support portion 11b of the mounting bolt 11 at the height position by the mounting bracket 14C. This completes the installation of the electrochemical anticorrosion unit 10 filled with the backfill material 18.

また、流電陽極材13の上面と鉄筋コンクリート床版1の下面1Uとの間の空間にバックフィル材18が十分回り込むように、図11に示すように、流電陽極材13にバックフィル材18を通過させるための貫通口13bを設けてもよい。 Further, as shown in FIG. 11, the backfill material 18 is attached to the galvanic anode material 13 so that the backfill material 18 sufficiently wraps around the space between the upper surface of the galvanic anode material 13 and the lower surface 1U of the reinforced concrete floor slab 1. A through port 13b may be provided for passing through.

この余盛方法によれば、上記の注入方法に比べ、バックフィル材18の充填を短時間に行うことができる。また、バックフィル材18をカバー15内に余盛状態に入れる作業は、地上で下向きで行うことができる。よって、上記の注入方法に比べ、作業効率に優れ、カバー15に注入口を設けたり、注入口を塞ぐための蓋を用意する必要がないため、低コスト化を期待できる。 According to this surplus method, the backfill material 18 can be filled in a shorter time than the above injection method. Further, the work of putting the backfill material 18 into the cover 15 in an extra-filled state can be performed downward on the ground. Therefore, as compared with the above injection method, the work efficiency is excellent, and it is not necessary to provide an injection port on the cover 15 or to prepare a lid for closing the injection port, so that cost reduction can be expected.

<変形例>
次に、上記実施形態の変形例を示す。
図12は、本発明に係る流電陽極材の設置方法の変形例を示す断面図である。
本変形例は、取り付けボルト11の鉄筋コンクリート床版1への固定および鉄筋2との電気的接続に金属製のクリップ部材6を用いた例である。
<Modification example>
Next, a modified example of the above embodiment will be shown.
FIG. 12 is a cross-sectional view showing a modified example of the method for installing the galvanic anode material according to the present invention.
This modified example is an example in which a metal clip member 6 is used for fixing the mounting bolt 11 to the reinforced concrete floor slab 1 and electrically connecting to the reinforcing bar 2.

クリップ部材6は、バネ鋼板などのバネ鋼材から曲げ加工などによって製作され得るものであり、基部6aと、互いに対向する一対の脚部6b、6cからなる。基部6aは、鉄筋2の外周形状に対応する略円筒形の断面形状を有し、鉄筋2を内側に嵌め込むことによって鉄筋2に掛止される。一対の脚部6b、6cは基部6aから延設された部分であり、取り付けボルト11の上端部11aを両側より挟持する。それぞれの脚部6b、6cは鉄筋2を基部6aの内側に嵌め込むために脚部6b、6c間を通過する際に内側から外に押圧されて開脚し、鉄筋2が基部6a内に収まると弾性復元力によって閉脚して鉄筋2を基部6a内にホールドする。この後、閉脚状態の一対の脚部6b、6cの間に、取り付けボルト11の上端部11aが挿入され、溶着あるいは接着などによって互いに固着される。 The clip member 6 can be manufactured from a spring steel material such as a spring steel plate by bending or the like, and includes a base portion 6a and a pair of leg portions 6b and 6c facing each other. The base portion 6a has a substantially cylindrical cross-sectional shape corresponding to the outer peripheral shape of the reinforcing bar 2, and is hooked on the reinforcing bar 2 by fitting the reinforcing bar 2 inward. The pair of leg portions 6b and 6c are portions extending from the base portion 6a, and sandwich the upper end portions 11a of the mounting bolts 11 from both sides. The legs 6b and 6c are pressed from the inside to the outside when passing between the legs 6b and 6c in order to fit the reinforcing bar 2 inside the base 6a, and the legs are opened, and the reinforcing bar 2 fits in the base 6a. The rebar 2 is held in the base portion 6a by closing the legs by the elastic restoring force. After that, the upper end portion 11a of the mounting bolt 11 is inserted between the pair of leg portions 6b and 6c in the closed leg state, and is fixed to each other by welding or adhesion.

以降は、第1の実施形態の設置方法と同様に、施工孔1M内への充填材の充填、流電陽極材13およびカバー15の取り付け、バックフィル材18の充填が行われて防食ユニットの設置作業が完了となる。 After that, in the same manner as the installation method of the first embodiment, the filling material is filled in the construction hole 1M, the galvanic anode material 13 and the cover 15 are attached, and the backfill material 18 is filled, so that the anticorrosion unit is filled. The installation work is completed.

なお、この変形例では、鉄筋2をクリップ部材6の基部6aの内側に嵌め込むために、施工孔1Mの奥に露出した鉄筋2の全周囲のコンクリート部を斫り取ることによってクリップ設置空間7を形成する必要がある。 In this modified example, in order to fit the reinforcing bar 2 inside the base portion 6a of the clip member 6, the clip installation space 7 is formed by scraping the concrete portion around the entire reinforcing bar 2 exposed in the back of the construction hole 1M. Need to be formed.

なお、本発明に係るコンクリート構造物の電気化学的防食構造は、上述の鉄筋コンクリート床版の例に限定されず、例えば、コンクリート箱桁や、地中に埋設されたボックスカルバート、その他のコンクリート構造物にも適用することができる。 The electrochemical anticorrosion structure of the concrete structure according to the present invention is not limited to the above-mentioned example of the reinforced concrete floor slab, and is, for example, a concrete box girder, a box culvert buried in the ground, or other concrete structure. It can also be applied to.

図13はコンクリート箱桁に本発明に係るコンクリート構造物の電気化学的防食構造を採用した施行例を示す断面図である。
この施工例では、コンクリート箱桁30の下床版32の下側の鉄筋2、および各ウェブ33、34の外側の鉄筋2を防食対象鋼材とするため、下床版32の下側面と各ウェブ33、34の外側面にそれぞれ電気的に独立した電気化学的防食ユニット10が設置される。
なお、下床版32の上側の鉄筋、各ウェブ33、34の内側の鉄筋、あるいは上床版31の鉄筋2を防食対象鋼材とする場合も同様に、その防食対象鋼材である鉄筋2の配置位置に近いコンクリート面側に電気化学的防食ユニット10を設置すればよい。
FIG. 13 is a cross-sectional view showing an implementation example in which the electrochemical anticorrosion structure of the concrete structure according to the present invention is adopted for the concrete box girder.
In this construction example, since the reinforcing bars 2 on the lower side of the lower floor slab 32 of the concrete box girder 30 and the reinforcing bars 2 on the outside of the webs 33 and 34 are used as corrosion-proof target steel materials, the lower side surface of the lower floor slab 32 and each web Electrically independent electrochemical anticorrosion units 10 are installed on the outer surfaces of 33 and 34, respectively.
Similarly, when the upper reinforcing bar of the lower floor slab 32, the inner reinforcing bar of each of the webs 33 and 34, or the reinforcing bar 2 of the upper floor slab 31 is used as the anticorrosion target steel material, the arrangement position of the anticorrosion target steel bar 2 The electrochemical anticorrosion unit 10 may be installed on the concrete surface side close to the above.

以上、鉄筋2を防食対象鋼材とする場合について説明したが、コンクリート構造物中の例えば鉄骨など、その他の鋼材を防食対象鋼材とする場合においても、本発明は応用し得るものである。 Although the case where the reinforcing bar 2 is used as the corrosion-proof target steel material has been described above, the present invention can also be applied to the case where other steel materials such as steel frames in the concrete structure are used as the corrosion-proof target steel material.

1…鉄筋コンクリート床版
1J…施工孔
2…鉄筋
3…アンカー
4…アンカー孔
10…電気化学的防食ユニット
11…取り付けボルト
11a…上端部
11b…支持部
13…流電陽極材
15…カバー
18…バックフィル材
21…金属ネジ
23…リード線
1 ... Reinforced concrete floor slab 1J ... Construction hole 2 ... Reinforcing bar 3 ... Anchor 4 ... Anchor hole 10 ... Electrochemical anticorrosion unit 11 ... Mounting bolt 11a ... Upper end 11b ... Support 13 ... Current anode material 15 ... Cover 18 ... Back Fill material 21 ... Metal screw 23 ... Lead wire

Claims (3)

防食対象鋼材が埋設されたコンクリート構造物のコンクリート表面に前記防食対象鋼材の位置に合わせて施工孔を削孔し、
該施工孔の近傍の前記コンクリート表面にアンカー孔を設け、
前記アンカー孔にアンカーを設置し、
前記施工孔の底面に前記防食対象鋼材と接触するように金属製の接続部材を設置し、
板状の流電陽極材と、この流電陽極材を前記コンクリート表面と自らの内面によって立体的に包囲する空間を形成するカバーと、前記流電陽極材ならびに前記カバーを支持する支持部および前記アンカーに着脱可能な上端部を有し、前記接続部材とリード線で電気的に接続された金属製棒材とを有する電気化学的防食ユニットの前記上端部を前記アンカーに固着することによって、前記防食対象鋼材と前記流電陽極材とを、前記接続部材、前記リード線および前記金属製棒材を通じて電気的に接続する
流電陽極材の設置方法。
A construction hole is drilled on the concrete surface of the concrete structure in which the anticorrosion target steel material is embedded according to the position of the anticorrosion target steel material.
Anchor holes are provided on the concrete surface near the construction holes.
An anchor is installed in the anchor hole,
A metal connecting member is installed on the bottom surface of the construction hole so as to come into contact with the anticorrosion target steel material.
A plate-shaped flow-electric anode material, a cover that forms a space that three-dimensionally surrounds the flow-electric anode material by the concrete surface and its own inner surface, the flow-electric anode material, a support portion that supports the cover, and the above. The said by fixing the upper end of the electrochemical anticorrosion unit having a detachable upper end to the anchor and having the connecting member and a metal rod electrically connected by a lead wire to the anchor. A method for installing a flow current anode material that electrically connects a steel material to be protected against corrosion and the current flow anode material through the connection member, the lead wire, and the metal rod.
請求項1に記載の流電陽極材の設置方法であって、
前記接続部材は、金属ネジである
流電陽極材の設置方法。
The method for installing a galvanic anode material according to claim 1.
The connecting member is a method for installing a galvanic anode material which is a metal screw.
請求項1に記載の流電陽極材の設置方法であって、
前記接続部材は、金属製クリップ部材である
流電陽極材の設置方法。
The method for installing a galvanic anode material according to claim 1.
The connecting member is a method for installing a galvanic anode material which is a metal clip member.
JP2019134841A 2019-07-22 2019-07-22 How to install galvanic anode material Active JP7421279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019134841A JP7421279B2 (en) 2019-07-22 2019-07-22 How to install galvanic anode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019134841A JP7421279B2 (en) 2019-07-22 2019-07-22 How to install galvanic anode material

Publications (2)

Publication Number Publication Date
JP2021017634A true JP2021017634A (en) 2021-02-15
JP7421279B2 JP7421279B2 (en) 2024-01-24

Family

ID=74564143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019134841A Active JP7421279B2 (en) 2019-07-22 2019-07-22 How to install galvanic anode material

Country Status (1)

Country Link
JP (1) JP7421279B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199785A (en) * 1986-02-25 1987-09-03 Nippon Boshoku Kogyo Kk Electrode body for electrolytic protection
JP2017171948A (en) * 2016-03-18 2017-09-28 株式会社ピーエス三菱 Lead wire electric connection structure to steel bar in steel bar concrete structure in concrete repairing method using electricity and lead wire electric connection method
JP2017179526A (en) * 2016-03-31 2017-10-05 株式会社ピーエス三菱 Corrosion suppression structure of concrete structure
JP2017179527A (en) * 2016-03-31 2017-10-05 株式会社ピーエス三菱 Galvanic anode unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199785A (en) * 1986-02-25 1987-09-03 Nippon Boshoku Kogyo Kk Electrode body for electrolytic protection
JP2017171948A (en) * 2016-03-18 2017-09-28 株式会社ピーエス三菱 Lead wire electric connection structure to steel bar in steel bar concrete structure in concrete repairing method using electricity and lead wire electric connection method
JP2017179526A (en) * 2016-03-31 2017-10-05 株式会社ピーエス三菱 Corrosion suppression structure of concrete structure
JP2017179527A (en) * 2016-03-31 2017-10-05 株式会社ピーエス三菱 Galvanic anode unit

Also Published As

Publication number Publication date
JP7421279B2 (en) 2024-01-24

Similar Documents

Publication Publication Date Title
JP6733124B2 (en) Corrosion suppression structure for concrete structures
JP6393350B2 (en) Repair method for existing waterways
GB2464346A (en) Repair of reinforced concrete structures using sacrificial anodes
JP2017171948A (en) Lead wire electric connection structure to steel bar in steel bar concrete structure in concrete repairing method using electricity and lead wire electric connection method
US7731875B2 (en) Sacrificial anodes in concrete patch repair
JP6875467B2 (en) How to install galvanic anode material
JP2009167592A (en) Method for joining pc (prestressed concrete) beam and steel beam together
JP6875468B2 (en) How to install galvanic anode material
JP2017179527A (en) Galvanic anode unit
JP7421279B2 (en) How to install galvanic anode material
JP2019085752A (en) Foundation structure
JP2016098596A (en) Simple repair method and simple repair structure of reinforced concrete structure without requiring cross section repair using sacrificial anode material
JP7421433B2 (en) How to install galvanic anode material
JP7061738B2 (en) Construction method of tubular structure
JP4882039B2 (en) Replacing existing guard fences for bridges
JP4978861B2 (en) Electrocorrosion protection method for existing PC girder ends
JP6640573B2 (en) Galvanic anode unit and anticorrosion structure of concrete structure using it
US7235961B1 (en) Method for managing corrosion of an underground structure
KR101071353B1 (en) Method for constructuring assembling-type steel pier having exellent corrosion resistant
JP4444350B2 (en) Renewal method of bearing device and support structure of concrete girder
JP4824737B2 (en) Anode body for cathodic protection, concrete structure provided with the anode body, and method for producing anode body for cathodic protection
JP2002020886A (en) Electric corrosion prevention device for concrete structure and electric corrosion prevention method
JP2020094487A (en) Reinforcement structure and reinforcement method of steel bar concrete floor slab
JP6031274B2 (en) Installation method of anode material for cathodic protection
JP2016169543A (en) Reinforcement structure and reinforcement method of reinforced concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220415

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230502

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230831

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240112

R150 Certificate of patent or registration of utility model

Ref document number: 7421279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150