JP2021017553A - Acrylic rubber bale excellent in storage stability and processability - Google Patents

Acrylic rubber bale excellent in storage stability and processability Download PDF

Info

Publication number
JP2021017553A
JP2021017553A JP2020015104A JP2020015104A JP2021017553A JP 2021017553 A JP2021017553 A JP 2021017553A JP 2020015104 A JP2020015104 A JP 2020015104A JP 2020015104 A JP2020015104 A JP 2020015104A JP 2021017553 A JP2021017553 A JP 2021017553A
Authority
JP
Japan
Prior art keywords
acrylic rubber
weight
rubber
acrylic
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020015104A
Other languages
Japanese (ja)
Other versions
JP7233388B2 (en
Inventor
増田 浩文
Hirofumi Masuda
浩文 増田
川中 孝文
Takafumi Kawanaka
孝文 川中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to PCT/JP2020/022320 priority Critical patent/WO2021014797A1/en
Priority to CN202080049000.4A priority patent/CN114072431A/en
Priority to EP20844898.5A priority patent/EP4001316A4/en
Priority to US17/626,633 priority patent/US20220315683A1/en
Priority to KR1020227000567A priority patent/KR20220038334A/en
Priority to KR1020217042526A priority patent/KR20220038295A/en
Priority to US17/626,067 priority patent/US20220259345A1/en
Priority to CN202080047949.0A priority patent/CN114051505B/en
Priority to EP20844247.5A priority patent/EP4001315A4/en
Priority to PCT/JP2020/027947 priority patent/WO2021015143A1/en
Publication of JP2021017553A publication Critical patent/JP2021017553A/en
Application granted granted Critical
Publication of JP7233388B2 publication Critical patent/JP7233388B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

To provide an acrylic rubber bale excellent in storage stability and processability, a method for producing the same, a rubber mixture containing the acrylic rubber bale, and a rubber crosslinked product thereof.SOLUTION: The acrylic rubber bale according to the present invention comprises an acrylic rubber having a reactive group and having a weight average molecular weight (Mw) of 100,000-5,000,000, and has a content of gel insoluble in methyl ethyl ketone less than or equal to 50 wt.%, and a specific gravity greater than or equal to 0.8.SELECTED DRAWING: None

Description

本発明は、アクリルゴムベール、その製造方法、ゴム混合物及びゴム架橋物に関し、さらに詳しくは、保存安定性と加工性に優れるアクリルゴムベール、その製造方法、該アクリルゴムベールを混合してなるゴム混合物、及びそれを架橋してなるゴム架橋物に関する。 The present invention relates to an acrylic rubber bale, a method for producing the same, a rubber mixture and a rubber crosslinked product. More specifically, the present invention relates to an acrylic rubber bale having excellent storage stability and processability, a method for producing the same, and a rubber obtained by mixing the acrylic rubber bale. The present invention relates to a mixture and a rubber cross-linked product obtained by cross-linking the mixture.

アクリルゴムは、アクリル酸エステルを主成分とする重合体であり、一般に耐熱性、耐油性及び耐オゾン性に優れたゴムとして知られ、自動車関連の分野などで広く用いられている。 Acrylic rubber is a polymer containing acrylic acid ester as a main component, and is generally known as rubber having excellent heat resistance, oil resistance, and ozone resistance, and is widely used in automobile-related fields and the like.

このようなアクリルゴムは、通常、アクリルゴムを構成する単量体成分を乳化重合し、得られた乳化重合液と凝固剤を接触させ、得られる含水クラムを乾燥した後にベール化され製品化される。 Such acrylic rubber is usually emulsion-polymerized with the monomer components constituting the acrylic rubber, brought into contact with the obtained emulsion polymerization solution and a coagulant, and the obtained hydrous crumb is dried and then veiled and commercialized. To.

例えば、特許文献1(特開2006−328239号公報)には、重合体ラテックスを凝固液と接触させることによりクラム状ゴム重合体を含むクラムスラリーを得る工程と、撹拌動力が1kW/m3以上である撹拌・破砕機能付きミキサーでクラムスラリーに含まれているクラム状ゴム重合体の破砕を行う工程と、クラム状ゴム重合体が破砕されたクラムスラリーから水分を取り除きクラム状ゴム重合体を得る脱水工程と、水分の取り除かれたクラム状ゴム重合体を加熱乾燥する工程とを備えてなるゴム重合体の製造方法が開示され、乾燥されたクラムは、フレーク状でベーラーに導入されて圧縮されベール化されることが記載されている。また、撹拌・破砕機能付きミキサーでの破砕は、クラムの最大幅が3〜20mm程度に調整することが好ましいと記載されている。ここで使用されるゴム重合体としては、乳化重合により得られた不飽和ニトリル−共役ジエン共重合体ラテックスが具体的に示され、また、エチルアクリレート/n−ブチルアクリレート共重合体、エチルアクリレート/n−ブチルアクリレート/2−メトキシエチルアクリレート共重合体などのアクリレートのみで構成される共重合体などに適用できることが示されている。しかしながら、アクリレートのみで構成されたアクリルゴムでは、耐熱性や圧縮永久歪特性などの架橋ゴム特性に劣る問題があった。 For example, Patent Document 1 (Japanese Unexamined Patent Publication No. 2006-328239) describes a step of obtaining a crumb slurry containing a crumb-like rubber polymer by bringing a polymer latex into contact with a coagulating liquid, and a stirring power of 1 kW / m3 or more. A step of crushing the crumb-shaped rubber polymer contained in the crumb slurry with a mixer having a stirring / crushing function, and dehydration of removing water from the crumb slurry in which the crumb-shaped rubber polymer is crushed to obtain a crumb-shaped rubber polymer. A method for producing a rubber polymer comprising a step and a step of heating and drying the moisture-removed crumb-like rubber polymer is disclosed, and the dried crumb is introduced into a baler in the form of flakes, compressed and veiled. It is stated that it will be polymerized. Further, it is described that it is preferable to adjust the maximum width of the crumb to about 3 to 20 mm for crushing with a mixer having a stirring / crushing function. As the rubber polymer used here, an unsaturated nitrile-conjugated diene copolymer latex obtained by emulsification polymerization is specifically shown, and ethyl acrylate / n-butyl acrylate copolymer and ethyl acrylate / It has been shown that it can be applied to a copolymer composed only of an acrylate such as an n-butyl acrylate / 2-methoxyethyl acrylate copolymer. However, acrylic rubber composed only of acrylate has a problem that it is inferior in crosslinked rubber characteristics such as heat resistance and compression set characteristics.

耐熱性や耐圧縮永久歪みに優れる反応性基を有するアクリルゴムとしては、例えば、特許文献2(国際公開第2018/116828号パンフレット)には、アクリル酸エチル、アクリル酸n−ブチル及びフマル酸モノn−ブチルからなる単量体成分を、乳化剤としてのラウリル硫酸ナトリウムとモノステアリン酸ポリエチレングリコールと水とでエマルジョン化し重合開始剤存在下で重合転化率95%に達するまで乳化重合したアクリルゴムラテックスを、硫酸マグネシウムと高分子凝集剤であるジメチルアミン−アンモニア−エピクロロヒドリン重縮合物との水溶液中に添加した後に85℃で撹拌してクラムスラリーを生成させ、次に該クラムスラリーを1回水洗後に100メッシュの金網に全量通させ固形分のみを捕捉しクラム状のアクリルゴムを回収する方法が開示されている。この方法によれば、得られた含水状態のクラムは、遠心分離などで脱水し、バンドドライヤーなどにより50〜120℃で乾燥し、ベーラーに導入されて圧縮されベール化されることが記載されている。しかしながら、かかる方法では、凝固反応で半凝固状態の含水クラムが多数発生し、凝固槽に多量に付着する問題や、洗浄による凝固剤や乳化剤の除去が十分にできないなどの問題があり、また、耐水性や保存安定性に劣り、また、バンバリーなどでの加工性に劣る問題があった。 Examples of acrylic rubber having a reactive group having excellent heat resistance and compression resistance permanent strain are described in Patent Document 2 (International Publication No. 2018/116828 pamphlet) as ethyl acrylate, n-butyl acrylate and mono-humarate. Acrylic rubber latex obtained by emulsifying a monomer component composed of n-butyl with sodium lauryl sulfate as an emulsifier, polyethylene glycol monostearate and water, and emulsion polymerization in the presence of a polymerization initiator until the polymerization conversion rate reaches 95%. , Magnesium sulfate and dimethylamine-ammonia-epichlorohydrin polycondensate, which is a polymer coagulant, are added to the aqueous solution and then stirred at 85 ° C. to generate a crumb slurry, and then the crumb slurry is added once. A method of recovering a crumb-shaped acrylic rubber by passing the entire amount through a 100-mesh wire net after washing with water to capture only the solid content is disclosed. According to this method, it is described that the obtained hydrous crumb is dehydrated by centrifugation or the like, dried at 50 to 120 ° C. by a band dryer or the like, introduced into a baler, compressed and veiled. There is. However, such a method has problems that a large amount of water-containing crumbs in a semi-coagulated state are generated in the coagulation reaction and a large amount of them adhere to the coagulation tank, and that the coagulant and emulsifier cannot be sufficiently removed by washing. There is a problem that it is inferior in water resistance and storage stability, and also inferior in processability in a vanbury or the like.

アクリルゴムのゲル量に関しては、例えば、特許文献3(特許第3599962号公報)には、アルキルアクリレート又はアルコキシアルキルアクリレート95〜99.9重量%と反応性の異なるラジカル反応性不飽和基を2個以上有する重合性単量体0.1〜5重量%をラジカル重合開始剤の存在下に共重合して得られたアセトン不溶解分であるゲル分率が5重量%以下であるアクリルゴム、補強性充填剤及び有機過酸化物系加硫剤からなる押出速度、ダイスウエル、表面肌などの押出加工性に優れたアクリルゴム組成物が開示されている。ここで使用されるゲル分率が非常に小さいアクリルゴムは、重合液が通常の酸性領域(重合前pH4、重合後pH3.4)で得られるゲル分率が高い(60%)のアクリルゴムに対し、重合液を炭酸水素ナトリウムなどでpH6〜8に調整することにより得られている。具体的には、水、乳化剤としてラウリル硫酸ナトリウムとポリオキシエチレンノニルフェニルエーテル、炭酸ナトリウム及びホウ酸を仕込んで75℃に調整した後、t−ブチルハイドロパーオキサイド、ロンガリット、エチレンジアミン四酢酸二ナトリウム、硫酸第一鉄を添加して(この時のpHは7.1)、次にエチルアクリレートとアリルメタクリレートの単量体成分を滴下して乳化重合行い、得られたエマルジョン(pH7)を硫酸ナトリウム水溶液を用いて塩析し、水洗・乾燥してアクリルゴムを得ている。しかしながら、(メタ)アクリル酸エステルを主成分とするアクリルゴムは、中性からアルカリ領域で分解し、加工性が改善されても保存安定性や強度特性に劣る問題があった。 Regarding the amount of gel of acrylic rubber, for example, Patent Document 3 (Japanese Patent No. 3599962) contains two radically reactive unsaturated groups having different reactivity with 95 to 99.9% by weight of alkyl acrylate or alkoxyalkyl acrylate. Acrylate rubber having a gel content of 5% by weight or less, which is an acetone-insoluble component obtained by copolymerizing 0.1 to 5% by weight of the above-mentioned polymerizable monomer in the presence of a radical polymerization initiator, is reinforced. An acrylic rubber composition comprising a sex filler and an organic peroxide-based vulcanizing agent and having excellent extrusion processability such as extrusion rate, die well, and surface surface is disclosed. The acrylic rubber used here having a very small gel fraction is an acrylic rubber having a high gel fraction (60%) obtained in a normal acidic region (pH 4 before polymerization, pH 3.4 after polymerization). On the other hand, it is obtained by adjusting the pH of the polymerization solution to 6 to 8 with sodium hydrogen carbonate or the like. Specifically, after adding water, sodium lauryl sulfate and polyoxyethylene nonylphenyl ether, sodium carbonate and boric acid as emulsifiers and adjusting the temperature to 75 ° C., t-butyl hydroperoxide, longalite, disodium ethylenediamine tetraacetate, Ferrous sulfate was added (pH at this time was 7.1), then the monomer components of ethyl acrylate and allyl methacrylate were added dropwise to carry out emulsion polymerization, and the obtained emulsion (pH 7) was subjected to sodium sulfate aqueous solution. Is salted using sodium chloride, washed with water and dried to obtain acrylic rubber. However, acrylic rubber containing (meth) acrylic ester as a main component decomposes in the neutral to alkaline region, and even if the processability is improved, there is a problem that the storage stability and strength characteristics are inferior.

また、特許文献4(国際公開第2018/143101号パンフレット)には、(メタ)アクリル酸エステルとイオン架橋性単量体とを乳化重合し、100℃における複素粘性率([η]100℃)が3,500Pa・s以下で、60℃における複素粘性率([η]60℃)と100℃における複素粘性率([η]100℃)との比([η]100℃/[η]60℃)が0.8以下であるアクリルゴムを用いて、補強剤と架橋剤を含むゴム組成物の押出成形性、特に吐出量、吐出長さ及び表面肌性を高める技術が開示されている。同技術で使用されるアクリルゴムのTHF(テトラヒドロフラン)不溶解分であるゲル量が、80重量%以下、好ましくは5〜80重量%であり、70%以下の範囲でできるだけ多く存在するのが好ましく、ゲル量が5%未満になると押出性が悪化すると記載されている。また、使用されるアクリルゴムの重量平均分子量(Mw)は、200,000〜1,000,000であり、重量平均分子量(Mw)が1,000,000を超えるとアクリルゴムの粘弾性が高くなりすぎて好ましくないこと記載されている。しかしながら、バンバリーなどの加工性を改良する手法については記載されていない。 Further, in Patent Document 4 (International Publication No. 2018/143101 pamphlet), a (meth) acrylic acid ester and an ion-crosslinkable monomer are emulsion-polymerized and have a complex viscosity at 100 ° C. ([η] 100 ° C.). Is 3,500 Pa · s or less, and the ratio of the complex viscosity at 60 ° C. ([η] 60 ° C.) to the complex viscosity at 100 ° C. ([η] 100 ° C.) ([η] 100 ° C./[η] 60 A technique for improving the extrusion moldability, particularly the discharge amount, the discharge length, and the surface texture of a rubber composition containing a reinforcing agent and a cross-linking agent by using an acrylic rubber having a ° C.) of 0.8 or less is disclosed. The amount of gel, which is a THF (tetrahydrofuran) insoluble component of acrylic rubber used in the same technique, is 80% by weight or less, preferably 5 to 80% by weight, and preferably exists as much as possible in the range of 70% or less. , It is stated that the extrudability deteriorates when the gel amount is less than 5%. The weight average molecular weight (Mw) of the acrylic rubber used is 200,000 to 1,000,000, and when the weight average molecular weight (Mw) exceeds 1,000,000, the viscoelasticity of the acrylic rubber is high. It is stated that it is too much to be preferable. However, there is no description of a method for improving workability such as Banbury.

特開2006−328239号公報Japanese Unexamined Patent Publication No. 2006-328239 国際公開第2018/116828号パンフレットInternational Publication No. 2018/116828 Pamphlet 特許第3599962号公報Japanese Patent No. 3599962 国際公開第2018/143101号パンフレットInternational Publication No. 2018/143101 Pamphlet

本発明は、かかる実状に鑑みてなされたものであり、保存安定性と加工性に優れるアクリルゴムベール、その製造方法、アクリルゴムベールを含んでなるゴム混合物、及びそのゴム架橋物を提供することを目的とする The present invention has been made in view of the above circumstances, and provides an acrylic rubber veil having excellent storage stability and processability, a method for producing the same, a rubber mixture containing the acrylic rubber veil, and a crosslinked rubber product thereof. With the goal

本発明者らは、上記課題に鑑み鋭意研究した結果、反応性基を有し、分子量、メチルエチルケトン不溶解のゲル量及び比重が特定であるアクリルゴムベールが保存安定性と加工性に高度に優れることを見出した。 As a result of diligent research in view of the above problems, the present inventors have highly excellent storage stability and processability in an acrylic rubber veil having a reactive group and having a specific molecular weight, a gel amount insoluble in methyl ethyl ketone and a specific gravity. I found that.

本発明者らは、また、アクリルゴムベールのゲル量バラツキ、高分子量領域を重点にした分子量分布、特定温度における複素粘性率及び灰分量を特定にすることで保存安定性と加工性が更に改善できることを見出した。 The present inventors also further improved storage stability and workability by specifying the gel amount variation of the acrylic rubber veil, the molecular weight distribution focusing on the high molecular weight region, the complex viscosity ratio at a specific temperature, and the ash content. I found out what I could do.

本発明者らは、また、反応性基含有単量体を含む単量体成分を乳化重合し凝固反応で生成した含水クラムを洗浄後にスクリュー型押出機で特定含水量まで乾燥しベール化することで保存安定性と加工性が高度に優れるアクリルゴムベールが製造できることを見出した。 The present inventors also carry out emulsion polymerization of a monomer component containing a reactive group-containing monomer, washing the water-containing crumb produced by the coagulation reaction, and then drying it to a specific water content with a screw extruder to bale it. It was found that an acrylic rubber bale with high storage stability and workability can be produced.

本発明者らは、また、アクリルゴムのゲル量は、製造工程でコントロールするのが非常に困難で製造されるアクリルゴムベールのゲル量を大きく変化しバンバリー混錬などの最適混錬時間をバラツカさせてしまうためにゴム混合物やゴム架橋物の物性を損ねていることがわかった。本発明においては、重合転化率を高めて乳化重合するとアクリルゴム中のゲル量が急増し加工性を悪化させるが、スクリュー型押出機を用いて特定含水量まで乾燥し実質的に水分を含まない状態でアクリルゴムを溶融混錬することで急増したゲル量が消失し、製造されるアクリルゴムベールの加工性が高度に改善され且つ加工性のバラツキが少なく安定化することを見出した。 We also found that the amount of acrylic rubber gel is very difficult to control in the manufacturing process, and the amount of acrylic rubber veil gel produced varies greatly, and the optimum kneading time such as Banbury kneading varies. It was found that the physical properties of the rubber mixture and the rubber crosslinked product were impaired because of the damage. In the present invention, when the polymerization conversion rate is increased and emulsion polymerization is carried out, the amount of gel in the acrylic rubber rapidly increases and the processability deteriorates, but it is dried to a specific water content using a screw type extruder and substantially does not contain water. It was found that by melt-kneading acrylic rubber in this state, the rapidly increased amount of gel disappears, the processability of the produced acrylic rubber veil is highly improved, and the processability is stable with little variation.

本発明者らは、また、含水クラムから水分を絞り出す脱水工程を設けること及び乳化重合液の凝固方法を特定することでアクリルゴムベール中の灰分量を低減させるとともに、耐水性と保存安定性を高め且つ加工性のバラツキを低減していることを見出した。 The present inventors also reduced the amount of ash in the acrylic rubber veil by providing a dehydration step for squeezing water from the hydrous crumb and specifying the coagulation method of the emulsion polymerization solution, and also improved water resistance and storage stability. It was found that it was enhanced and the variation in workability was reduced.

本発明者らは、これらの知見に基づいて本発明を完成させるに至ったものである。 The present inventors have completed the present invention based on these findings.

かくして本発明によれば、反応性基を有する重量平均分子量(Mw)が100,000〜5,000,000でアクリルゴムからなり、メチルエチルケトン不溶解なゲル量が50重量%以下で比重が0.8以上であるアクリルゴムベールが提供される。 Thus, according to the present invention, the weight average molecular weight (Mw) having a reactive group is 100,000 to 5,000,000, the gel is made of acrylic rubber, the amount of gel insoluble in methyl ethyl ketone is 50% by weight or less, and the specific gravity is 0. Acrylic rubber veils of 8 or more are provided.

本発明のアクリルゴムベールにおいて、アクリルゴムベールのゲル量を任意に20点測定したときの値が、(平均値−5)〜(平均値+5)重量%の範囲内に測定した20点全てが入ることが好ましい。なお、(平均値−5)〜(平均値+5)重量%の範囲とは、例えば測定したゲル量の平均値が20重量%であった場合には15〜25重量%の範囲を意味する。本明細書では、当該範囲を「平均値±5の範囲」のように表記する。当該範囲には下限値が含まれてもよく含まれなくてもよい。同様に、当該範囲には上限値が含まれてもよく含まれなくてもよい。 In the acrylic rubber veil of the present invention, when the gel amount of the acrylic rubber veil is arbitrarily measured at 20 points, all 20 points measured within the range of (mean value -5) to (mean value + 5)% by weight are all. It is preferable to enter. The range of (mean value −5) to (mean value + 5)% by weight means, for example, a range of 15 to 25% by weight when the average value of the measured gel amount is 20% by weight. In the present specification, the range is expressed as "a range of mean ± 5". The range may or may not include a lower limit. Similarly, the range may or may not include an upper limit.

本発明のアクリルゴムベールにおいて、重量平均分子量(Mw)が1,000,000〜5,000,000の範囲であることが好ましい。 In the acrylic rubber veil of the present invention, the weight average molecular weight (Mw) is preferably in the range of 1,000,000 to 5,000,000.

本発明のアクリルゴムベールにおいて、z平均分子量(Mz)と重量平均分子量(Mw)との比(Mz/Mw)が、1.3以上であることが好ましい。 In the acrylic rubber veil of the present invention, the ratio (Mz / Mw) of the z average molecular weight (Mz) to the weight average molecular weight (Mw) is preferably 1.3 or more.

本発明のアクリルゴムベールにおいて、pHが、6以下であることが好ましい。 In the acrylic rubber veil of the present invention, the pH is preferably 6 or less.

本発明のアクリルゴムベールにおいて、100℃における複素粘性率([η]100℃)が、1,500〜6,000Pa・sの範囲であることが好ましい。 In the acrylic rubber veil of the present invention, the complex viscosity at 100 ° C. ([η] 100 ° C.) is preferably in the range of 1,500 to 6,000 Pa · s.

本発明のアクリルゴムベールにおいて、100℃における複素粘性率([η]100℃)と60℃における複素粘性率([η]60℃)との比([η]100℃/[η]60℃)が、0.5以上であることが好ましい。 In the acrylic rubber veil of the present invention, the ratio of the complex viscosity at 100 ° C. ([η] 100 ° C.) to the complex viscosity at 60 ° C. ([η] 60 ° C.) ([η] 100 ° C./[η] 60 ° C. ) Is preferably 0.5 or more.

本発明のアクリルゴムベールにおいて、灰分が、0.5重量%以下であることが好ましい。 In the acrylic rubber veil of the present invention, the ash content is preferably 0.5% by weight or less.

本発明によれば、また、(メタ)アクリル酸エステルと反応性基含有単量体とを含む単量体成分を水と乳化剤とでエマルジョン化し重合触媒存在下に乳化重合し乳化重合液を得る乳化重合工程と、得られた乳化重合液と凝固液を接触させて含水クラムを生成する凝固工程と、生成した含水クラムを洗浄する洗浄工程と、洗浄した含水クラムを、脱水スリットを有する脱水バレルと減圧下の乾燥バレルと先端部にダイを有するスクリュー型押出機を用いて脱水バレルで含水量1〜40重量%まで脱水した後に乾燥バレルで含水量1重量%未満まで乾燥してシート状乾燥ゴムをダイから押し出す脱水・乾燥・成形工程と押し出されたシート状乾燥ゴムを積層してベール化するベール化工程と、を含むアクリルゴムベールの製造方法を提供することができる。 According to the present invention, a monomer component containing a (meth) acrylic acid ester and a reactive group-containing monomer is emulsified with water and an emulsifier and emulsified in the presence of a polymerization catalyst to obtain an emulsified polymer solution. A dehydration barrel having a dehydration slit for the emulsification polymerization step, the coagulation step of bringing the obtained emulsification polymer solution into contact with the coagulation liquid to generate a hydrous crumb, the cleaning step of washing the produced hydrous crumb, and the washed hydrous crumb. After dehydrating to a moisture content of 1 to 40% by weight in a dehydration barrel using a drying barrel under reduced pressure and a screw type extruder having a die at the tip, it is dried to a moisture content of less than 1% by weight in a drying barrel and dried in a sheet form. It is possible to provide a method for producing an acrylic rubber bale, which includes a dehydration / drying / molding step of extruding rubber from a die and a bale step of laminating and bale the extruded sheet-shaped dried rubber.

本発明によれば、また、前記アクリルゴムベールに、充填剤及び架橋剤を混合してなるゴム混合物が提供される。 According to the present invention, there is also provided a rubber mixture obtained by mixing a filler and a cross-linking agent with the acrylic rubber veil.

本発明によれば、さらに、前記ゴム混合物を架橋してなるゴム架橋物が提供される。 According to the present invention, a rubber crosslinked product obtained by cross-linking the rubber mixture is further provided.

本発明によれば、保存安定性と加工性に優れるアクリルゴムベール、その製造方法、該アクリルゴムベールを混合してなるゴム混合物及びそれを架橋してなるゴム架橋物が提供される。 According to the present invention, an acrylic rubber veil having excellent storage stability and processability, a method for producing the same, a rubber mixture obtained by mixing the acrylic rubber veil, and a rubber crosslinked product obtained by cross-linking the acrylic rubber veil are provided.

本発明の一実施形態に係るアクリルゴムベールの製造に用いられるアクリルゴム製造システムの一例を模式的に示す図である。It is a figure which shows typically an example of the acrylic rubber manufacturing system used for manufacturing the acrylic rubber veil which concerns on one Embodiment of this invention. 図1のスクリュー型押出機の構成を示す図である。It is a figure which shows the structure of the screw type extruder of FIG. 図1の冷却装置として用いられる搬送式冷却装置の構成を示す図である。It is a figure which shows the structure of the transport type cooling apparatus used as the cooling apparatus of FIG.

本発明のアクリルゴムベールは、反応性基を有する重量平均分子量(Mw)が100,000〜5,000,000でアクリルゴムからなり、メチルエチルケトン不溶解なゲル量が50重量%以下で比重が0.8以上であることを特徴とする。 The acrylic rubber veil of the present invention is made of acrylic rubber having a reactive group and a weight average molecular weight (Mw) of 100,000 to 5,000,000, and the amount of gel insoluble in methyl ethyl ketone is 50% by weight or less and the specific gravity is 0. It is characterized by being 0.8 or more.

<単量体成分>
本発明のアクリルゴムベールは、反応性基を有するアクリルゴムからなる。
<Monomer component>
The acrylic rubber veil of the present invention is made of acrylic rubber having a reactive group.

反応性基としては、格別な限定はなく使用目的に応じて適宜選択されるが、好ましくは、カルボキシル基、エポキシ基及びハロゲン基からなる群から選ばれる少なくとも1種の官能基であるときにアクリルゴムベールの架橋特性を高度に改善でき好適である。かかる反応性基を有するアクリルゴムとしては、アクリルゴムに後反応で反応性基を付与してもよいが、好ましくは反応性基含有単量体を共重合したものが好ましい。 The reactive group is appropriately selected according to the intended use without any particular limitation, but is preferably acrylic when it is at least one functional group selected from the group consisting of a carboxyl group, an epoxy group and a halogen group. It is suitable because the cross-linking characteristics of the rubber bale can be highly improved. As the acrylic rubber having such a reactive group, a reactive group may be imparted to the acrylic rubber by a post-reaction, but a copolymer of a reactive group-containing monomer is preferable.

本発明のアクリルゴムシートを構成するアクリルゴムとしては、また、(メタ)アクリル酸エステルを含むものが好ましく、(メタ)アクリル酸アルキルエステル及び(メタ)アクリル酸アルコキシアルキルエステルからなる群から選ばれる少なくとも1種の(メタ)アクリル酸エステルを含むものであることが好ましい。 The acrylic rubber constituting the acrylic rubber sheet of the present invention preferably contains (meth) acrylic acid ester, and is selected from the group consisting of (meth) acrylic acid alkyl ester and (meth) acrylic acid alkoxyalkyl ester. It preferably contains at least one (meth) acrylic acid ester.

好ましい反応性基を有するアクリルゴムの具体例としては、(メタ)アクリル酸アルキルエステル及び(メタ)アクリル酸アルコキシアルキルエステルからなる群から選ばれる少なくとも1種の(メタ)アクリル酸エステル、反応性基含有単量体、及び必要に応じて共重合可能なその他の単量体からなるものが挙げられる。 Specific examples of the acrylic rubber having a preferable reactive group include at least one (meth) acrylic acid ester selected from the group consisting of (meth) acrylic acid alkyl ester and (meth) acrylic acid alkoxyalkyl ester, and a reactive group. Examples thereof include those composed of a contained monomer and other monomers copolymerizable as required.

(メタ)アクリル酸アルキルエステルとしては、格別な限定はないが、通常炭素数が1〜12のアルキル基を有する(メタ)アクリル酸アルキルエステル、好ましくは炭素数1〜8のアルキルを有する(メタ)アクリル酸アルキルエステル、より好ましくは炭素数2〜6のアルキル基を有する(メタ)アクリル酸アルキルエステルである。 The (meth) acrylic acid alkyl ester is not particularly limited, but usually has a (meth) acrylic acid alkyl ester having an alkyl group having 1 to 12 carbon atoms, preferably an alkyl having 1 to 8 carbon atoms (meth). ) Acrylic acid alkyl ester, more preferably a (meth) acrylic acid alkyl ester having an alkyl group having 2 to 6 carbon atoms.

(メタ)アクリル酸アルキルエステルの具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸シクロヘキシルなどが挙げられ、(メタ)アクリル酸エチル、(メタ)アクリル酸n−ブチルが好ましく、アクリル酸エチル、アクリル酸n−ブチルがより好ましい。 Specific examples of the (meth) acrylic acid alkyl ester include methyl (meth) acrylic acid, ethyl (meth) acrylic acid, n-propyl (meth) acrylic acid, isopropyl (meth) acrylic acid, and n- (meth) acrylic acid. Butyl, isobutyl (meth) acrylate, n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate and the like, ethyl (meth) acrylate, (meth) acrylate n-butyl is preferable, and ethyl acrylate and n-butyl acrylate are more preferable.

(メタ)アクリル酸アルコキシアルキルエステルとしては、格別な限定はないが、通常2〜12のアルコキシアルキル基を有する(メタ)アクリル酸アルコキシアルキルエステル、好ましくは2〜8のアルコキシアルキル基を有する(メタ)アクリル酸アルコキシアルキルエステル、より好ましくは炭素数2〜6のアルコキシアルキル基を有する(メタ)アクリル酸アルコキシエステルである。 The (meth) alkoxyalkyl ester is not particularly limited, but usually has 2 to 12 alkoxyalkyl groups (meth) acrylic acid alkoxyalkyl ester, preferably 2 to 8 alkoxyalkyl groups (meth). ) Acrylic acid alkoxyalkyl ester, more preferably a (meth) acrylic acid alkoxy ester having an alkoxyalkyl group having 2 to 6 carbon atoms.

(メタ)アクリル酸アルコキシアルキルエステルの具体例としては、(メタ)アクリル酸メトキシメチル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸メトキシプロピル、(メタ)アクリル酸メトキシブチル、(メタ)アクリル酸エトキシメチル、(メタ)アクリル酸エトキシエチル、(メタ)アクリル酸プロポキシエチル、(メタ)アクリル酸ブトキシエチルなどが挙げられる。これらの中でも、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシエチルなどが好ましく、アクリル酸メトキシエチル、アクリル酸エトキシエチルがより好ましい。 Specific examples of the (meth) acrylate alkoxyalkyl ester include methoxymethyl (meth) acrylate, methoxyethyl (meth) acrylate, methoxypropyl (meth) acrylate, methoxybutyl (meth) acrylate, and (meth) acrylic. Examples thereof include ethoxymethyl acid, ethoxyethyl (meth) acrylate, propoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate and the like. Among these, methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate and the like are preferable, and methoxyethyl acrylate and ethoxyethyl acrylate are more preferable.

これら(メタ)アクリル酸アルキルエステル及び(メタ)アクリル酸アルコキシアルキルエステルからなる群から選ばれる少なくとも1種の(メタ)アクリル酸エステルは、それぞれ単独で、あるいは2種以上が組み合わせて用いられ、アクリルゴム中の割合は、通常50重量%以上、好ましくは70〜99.9重量%、より好ましくは80〜99.5重量%、最も好ましくは87〜99重量%である。単量体成分中の(メタ)アクリル酸エステル量が、過度に少ないと得られるアクリルゴムの耐候性、耐熱性、及び耐油性が低下するおそれがあり好ましくない。 At least one (meth) acrylic acid ester selected from the group consisting of these (meth) acrylic acid alkyl esters and (meth) acrylic acid alkoxyalkyl esters may be used alone or in combination of two or more, and acrylic. The proportion in the rubber is usually 50% by weight or more, preferably 70 to 99.9% by weight, more preferably 80 to 99.5% by weight, and most preferably 87 to 99% by weight. If the amount of (meth) acrylic acid ester in the monomer component is excessively small, the weather resistance, heat resistance, and oil resistance of the obtained acrylic rubber may decrease, which is not preferable.

反応性基含有単量体としては、格別な限定はなく使用目的に応じて適宜選択されるが、カルボキシル基、エポキシ基及びハロゲン基からなる群から選ばれる少なくとも1種の官能基を有する単量体が好ましい。 The reactive group-containing monomer is appropriately selected according to the intended use without any particular limitation, but is a single amount having at least one functional group selected from the group consisting of a carboxyl group, an epoxy group and a halogen group. The body is preferred.

カルボキシル基を有する単量体としては、格別な限定はないが、エチレン性不飽和カルボン酸を好適に用いることができる。エチレン性不飽和カルボン酸としては、例えば、エチレン性不飽和モノカルボン酸、エチレン性不飽和ジカルボン酸、エチレン性不飽和ジカルボン酸モノエステルなどが挙げられ、これらの中でも特にエチレン性不飽和ジカルボン酸モノエステルがアクリルゴムをゴム架橋物とした場合の耐圧縮永久歪み性をより高めることができ好ましい。 The monomer having a carboxyl group is not particularly limited, but an ethylenically unsaturated carboxylic acid can be preferably used. Examples of the ethylenically unsaturated carboxylic acid include ethylenically unsaturated monocarboxylic acid, ethylenically unsaturated dicarboxylic acid, and ethylenically unsaturated dicarboxylic acid monoester, and among these, ethylenically unsaturated dicarboxylic acid monoester. It is preferable that the ester can further enhance the compression-resistant permanent strain resistance when the acrylic rubber is made into a rubber crosslinked product.

エチレン性不飽和モノカルボン酸としては、格別な限定はないが、炭素数3〜12のエチレン性不飽和モノカルボン酸が好ましく、例えば、アクリル酸、メタクリル酸、α−エチルアクリル酸、クロトン酸、ケイ皮酸などを挙げることができる。 The ethylenically unsaturated monocarboxylic acid is not particularly limited, but an ethylenically unsaturated monocarboxylic acid having 3 to 12 carbon atoms is preferable, and for example, acrylic acid, methacrylic acid, α-ethylacrylic acid, crotonic acid, etc. Examples thereof include crotonic acid.

エチレン性不飽和ジカルボン酸としては、格別な限定はないが、炭素数4〜12のエチレン性不飽和ジカルボン酸が好ましく、例えば、フマル酸、マレイン酸などのブテンジオン酸、イタコン酸、シトラコン酸、クロロマレイン酸などを挙げることができる。なお、エチレン性不飽和ジカルボン酸は、無水物として存在しているものも含まれる。 The ethylenically unsaturated dicarboxylic acid is not particularly limited, but an ethylenically unsaturated dicarboxylic acid having 4 to 12 carbon atoms is preferable, and for example, butenedioic acid such as fumaric acid and maleic acid, itaconic acid, citraconic acid, and chloro. Maleic acid and the like can be mentioned. The ethylenically unsaturated dicarboxylic acid includes those existing as an anhydride.

エチレン性不飽和ジカルボン酸モノエステルとしては、格別な限定はないが、通常、炭素数4〜12のエチレン性不飽和ジカルボン酸と炭素数1〜12のアルキルモノエステル、好ましくは炭素数4〜6のエチレン性不飽和ジカルボン酸と炭素数2〜8のアルキルモノエステル、より好ましくは炭素数4のブテンジン酸の炭素数2〜6のアルキルモノエステルである。 The ethylenically unsaturated dicarboxylic acid monoester is not particularly limited, but is usually an ethylenically unsaturated dicarboxylic acid having 4 to 12 carbon atoms and an alkyl monoester having 1 to 12 carbon atoms, preferably 4 to 6 carbon atoms. Ethylene unsaturated dicarboxylic acid and an alkyl monoester having 2 to 8 carbon atoms, more preferably an alkyl monoester having 2 to 6 carbon atoms of buthenic acid having 4 carbon atoms.

エチレン性不飽和ジカルボン酸モノエステルの具体例としては、フマル酸モノメチル、フマル酸モノエチル、フマル酸モノn−ブチル、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノn−ブチル、フマル酸モノシクロペンチル、フマル酸モノシクロヘキシル、フマル酸モノシクロヘキセニル、マレイン酸モノシクロペンチル、マレイン酸モノシクロヘキシルなどのブテンジオン酸モノアルキルエステル;イタコン酸モノメチル、イタコン酸モノエチル、イタコン酸モノn−ブチル、イタコン酸モノシクロヘキシルなどのイタコン酸モノアルキルエステル;などが挙げられ、これらの中でもフマル酸モノn−ブチル、マレイン酸モノn−ブチルが好ましく、フマル酸モノn−ブチルが特に好ましい。 Specific examples of the ethylenically unsaturated dicarboxylic acid monoester include monomethyl fumarate, monoethyl fumarate, mono n-butyl fumarate, monomethyl maleate, monoethyl maleate, mono n-butyl maleate, monocyclopentyl fumarate, and fumarate. Butendionic acid monoalkyl esters such as monocyclohexyl acid, monocyclohexenyl fumarate, monocyclopentyl maleate, and monocyclohexyl maleate; Examples thereof include monoalkyl esters; among these, mono n-butyl fumarate and mono n-butyl maleate are preferable, and mono n-butyl fumarate is particularly preferable.

エポキシ基を有する単量体としては、例えば、(メタ)アクリル酸グリシジルなどのエポキシ基含有(メタ)アクリル酸エステル;アリルグリシジルエーテル、ビニルグリシジルエーテルなどのエポキシ基含有ビニルエーテル;などが挙げられる。 Examples of the monomer having an epoxy group include an epoxy group-containing (meth) acrylic acid ester such as glycidyl (meth) acrylate; an epoxy group-containing vinyl ether such as allyl glycidyl ether and vinyl glycidyl ether; and the like.

ハロゲン基を有する単量体としては、例えば、ハロゲン含有飽和カルボン酸の不飽和アルコールエステル、(メタ)アクリル酸ハロアルキルエステル、(メタ)アクリル酸ハロアシロキシアルキルエステル、(メタ)アクリル酸(ハロアセチルカルバモイルオキシ)アルキルエステル、ハロゲン含有不飽和エーテル、ハロゲン含有不飽和ケトン、ハロメチル基含有芳香族ビニル化合物、ハロゲン含有不飽和アミド、ハロアセチル基含有不飽和単量体などが挙げられる。 Examples of the monomer having a halogen group include unsaturated alcohol esters of halogen-containing saturated carboxylic acids, (meth) acrylic acid haloalkyl esters, (meth) acrylic acid haloacyloxyalkyl esters, and (meth) acrylic acids (haloacetylcarbamoyl). Oxy) alkyl esters, halogen-containing unsaturated ethers, halogen-containing unsaturated ketones, halomethyl group-containing aromatic vinyl compounds, halogen-containing unsaturated amides, haloacetyl group-containing unsaturated monomers and the like can be mentioned.

ハロゲン含有飽和カルボン酸の不飽和アルコールエステルとしては、例えば、クロロ酢酸ビニル、2−クロロプロピオン酸ビニル、クロロ酢酸アリルなどが挙げられる。(メタ)アクリル酸ハロアルキルエステルとしては、例えば、(メタ)アクリル酸クロロメチル、(メタ)アクリル酸1−クロロエチル、(メタ)アクリル酸2−クロロエチル、(メタ)アクリル酸1,2−ジクロロエチル、(メタ)アクリル酸2−クロロプロピル、(メタ)アクリル酸3−クロロプロピル、(メタ)アクリル酸2,3−ジクロロプロピルなどが挙げられる。(メタ)アクリル酸ハロアシロキシアルキルエステルとしては、例えば、(メタ)アクリル酸2−(クロロアセトキシ)エチル、(メタ)アクリル酸2−(クロロアセトキシ)プロピル、(メタ)アクリル酸3−(クロロアセトキシ)プロピル、(メタ)アクリル酸3−(ヒドロキシクロロアセトキシ)プロピルなどが挙げられる。(メタ)アクリル酸(ハロアセチルカルバモイルオキシ)アルキルエステルとしては、例えば、(メタ)アクリル酸2−(クロロアセチルカルバモイルオキシ)エチル、(メタ)アクリル酸3−(クロロアセチルカルバモイルオキシ)プロピルなどが挙げられる。ハロゲン含有不飽和エーテルとしては、例えば、クロロメチルビニルエーテル、2−クロロエチルビニルエーテル、3−クロロプロピルビニルエーテル、2−クロロエチルアリルエーテル、3−クロロプロピルアリルエーテルなどが挙げられる。ハロゲン含有不飽和ケトンとしては、例えば、2−クロロエチルビニルケトン、3−クロロプロピルビニルケトン、2−クロロエチルアリルケトンなどが挙げられる。ハロメチル基含有芳香族ビニル化合物としては、例えば、p−クロロメチルスチレン、m−クロロメチルスチレン、o−クロロメチルスチレン、p−クロロメチル−α−メチルスチレンなどが挙げられる。ハロゲン含有不飽和アミドとしては、例えば、N−クロロメチル(メタ)アクリルアミドなどが挙げられる。ハロアセチル基含有不飽和単量体としては、例えば、3−(ヒドロキシクロロアセトキシ)プロピルアリルエーテル、p−ビニルベンジルクロロ酢酸エステルなどが挙げられる。 Examples of the unsaturated alcohol ester of the halogen-containing saturated carboxylic acid include vinyl chloroacetate, vinyl 2-chloropropionate, and allyl chloroacetate. Examples of the (meth) acrylic acid haloalkyl ester include chloromethyl (meth) acrylic acid, 1-chloroethyl (meth) acrylic acid, 2-chloroethyl (meth) acrylic acid, and 1,2-dichloroethyl (meth) acrylic acid. Examples thereof include 2-chloropropyl (meth) acrylic acid, 3-chloropropyl (meth) acrylic acid, and 2,3-dichloropropyl (meth) acrylic acid. Examples of the (meth) acrylic acid haloacyloxyalkyl ester include (meth) acrylic acid 2- (chloroacetoxy) ethyl, (meth) acrylic acid 2- (chloroacetoxy) propyl, and (meth) acrylic acid 3- (chloroacetoxy). ) Propyl, 3- (hydroxychloroacetoxy) propyl (meth) acrylate and the like. Examples of the (meth) acrylic acid (haloacetylcarbamoyloxy) alkyl ester include (meth) acrylic acid 2- (chloroacetylcarbamoyloxy) ethyl and (meth) acrylic acid 3- (chloroacetylcarbamoyloxy) propyl. Be done. Examples of the halogen-containing unsaturated ether include chloromethyl vinyl ether, 2-chloroethyl vinyl ether, 3-chloropropyl vinyl ether, 2-chloroethyl allyl ether, 3-chloropropyl allyl ether and the like. Examples of the halogen-containing unsaturated ketone include 2-chloroethyl vinyl ketone, 3-chloropropyl vinyl ketone, 2-chloroethyl allyl ketone and the like. Examples of the halomethyl group-containing aromatic vinyl compound include p-chloromethylstyrene, m-chloromethylstyrene, o-chloromethylstyrene, and p-chloromethyl-α-methylstyrene. Examples of the halogen-containing unsaturated amide include N-chloromethyl (meth) acrylamide. Examples of the haloacetyl group-containing unsaturated monomer include 3- (hydroxychloroacetoxy) propylallyl ether and p-vinylbenzylchloroacetic acid ester.

これらの反応性基含有単量体は、それぞれ単独で、あるいは2種以上が組み合わせて用いられ、アクリルゴム中の割合は、通常0.01〜20重量%、好ましくは0.1〜10重量%、より好ましくは0.5〜5重量%、最も好ましくは1〜3重量%である。 Each of these reactive group-containing monomers is used alone or in combination of two or more, and the proportion in the acrylic rubber is usually 0.01 to 20% by weight, preferably 0.1 to 10% by weight. , More preferably 0.5 to 5% by weight, most preferably 1 to 3% by weight.

必要に応じて用いられるその他の単量体としては、上記単量体と共重合可能であれば格別な限定はなく、例えば、芳香族ビニル、エチレン性不飽和ニトリル、アクリルアミド系単量体、その他のオレフィン系単量体などが挙げられる。芳香族ビニルとしては、例えば、スチレン、α−メチルスチレン、ジビニルベンゼンなどが挙げられる。エチレン性不飽和ニトリルとしては、例えば、アクリロニトリル、メタクリロニトリルなどが挙げられる。アクリルアミド系単量体としては、例えば、アクリルアミド、メタクリルアミドなどが挙げられる。その他のオレフィン系単量体としては、例えば、エチレン、プロピレン、塩化ビニル、塩化ビニリデン、酢酸ビニル、エチルビニルエーテル、ブチルビニルエーテルなどが挙げられる。 The other monomer used as needed is not particularly limited as long as it can be copolymerized with the above-mentioned monomer. For example, aromatic vinyl, ethylenically unsaturated nitrile, acrylamide-based monomer, and the like. Olefin-based monomers and the like. Examples of aromatic vinyl include styrene, α-methylstyrene, divinylbenzene and the like. Examples of the ethylenically unsaturated nitrile include acrylonitrile and methacrylonitrile. Examples of the acrylamide-based monomer include acrylamide and methacrylamide. Examples of other olefin-based monomers include ethylene, propylene, vinyl chloride, vinylidene chloride, vinyl acetate, ethyl vinyl ether, and butyl vinyl ether.

これらのその他の単量体は、それぞれ単独で、あるいは2種以上を組み合わせられて用いられ、アクリルゴム中の割合は、通常0〜30重量%、好ましくは0〜20重量%、より好ましくは0〜15重量部、最も好ましくは0〜10重量部の範囲である。 These other monomers are used alone or in combination of two or more, and the proportion in the acrylic rubber is usually 0 to 30% by weight, preferably 0 to 20% by weight, more preferably 0. It is in the range of ~ 15 parts by weight, most preferably 0 to 10 parts by weight.

<アクリルゴム>
本発明のアクリルゴムベールを構成するアクリルゴムは、反応性基を有することを特徴とする。
<Acrylic rubber>
The acrylic rubber constituting the acrylic rubber veil of the present invention is characterized by having a reactive group.

反応性基の含有量は、使用目的に応じて適宜選択されればよいが、反応性基自体の重量割合で、通常0.001〜5重量%、好ましくは0.01〜3重量%、より好ましくは0.05〜1重量%、特に好ましくは0.1〜0.5重量%の範囲あるときに加工性、強度特性、耐圧縮永久歪み性、耐油性、耐寒性、及び耐水性などの特性が高度にバランスされ好適である。 The content of the reactive group may be appropriately selected according to the purpose of use, but is usually 0.001 to 5% by weight, preferably 0.01 to 3% by weight, based on the weight ratio of the reactive group itself. Workability, strength properties, compressive permanent strain resistance, oil resistance, cold resistance, water resistance, etc., preferably in the range of 0.05 to 1% by weight, particularly preferably 0.1 to 0.5% by weight, etc. The characteristics are highly balanced and suitable.

本発明のアクリルゴムベールを構成するアクリルゴムの具体例としては、(メタ)アクリル酸アルキルエステル及び(メタ)アクリル酸アルコキシアルキルエステルからなる群から選ばれる少なくとも1種の(メタ)アクリル酸エステル、反応性基含有単量体、及び必要に応じてその他の共重合可能な単量体からなり、それぞれのアクリルゴム中の割合は、(メタ)アクリル酸アルキルエステル及び(メタ)アクリル酸アルコキシアルキルエステルからなる群から選ばれる少なくとも1種の(メタ)アクリル酸エステル由来の結合単位が、通常50重量%以上、好ましくは70〜99.9重量%、より好ましくは80〜99.5重量%、特に好ましくは87〜99重量%の範囲であり、反応性基含有単量体由来の結合単位が、通常0.01〜20重量%、好ましくは0.1〜10重量%、より好ましくは0.5〜5重量%、特に好ましくは1〜3重量%の範囲であり、その他の単量体由来の結合単位が、通常0〜30重量%、好ましくは0〜20重量%、より好ましくは0〜15重量%、特に好ましくは0〜10重量%の範囲である。アクリルゴムのこれらの単量体由来の結合単位をこの範囲にすることにより本発明の目的が高度に達成できるとともにアクリルゴムベールを架橋物としたときに耐水性や耐圧縮永久歪み性を格段に改善され好適である。 Specific examples of the acrylic rubber constituting the acrylic rubber veil of the present invention include at least one (meth) acrylic acid ester selected from the group consisting of (meth) acrylic acid alkyl ester and (meth) acrylic acid alkoxyalkyl ester. It consists of a reactive group-containing monomer and, if necessary, other copolymerizable monomers, and the proportions in each acrylic rubber are (meth) acrylic acid alkyl ester and (meth) acrylic acid alkoxyalkyl ester. The binding unit derived from at least one (meth) acrylic acid ester selected from the group consisting of is usually 50% by weight or more, preferably 70 to 99.9% by weight, more preferably 80 to 99.5% by weight, particularly. It is preferably in the range of 87 to 99% by weight, and the bonding unit derived from the reactive group-containing monomer is usually 0.01 to 20% by weight, preferably 0.1 to 10% by weight, and more preferably 0.5. It is in the range of ~ 5% by weight, particularly preferably 1 to 3% by weight, and the binding unit derived from other monomers is usually 0 to 30% by weight, preferably 0 to 20% by weight, and more preferably 0 to 15% by weight. It is in the range of% by weight, particularly preferably 0 to 10% by weight. By setting the bonding unit derived from these monomers of acrylic rubber in this range, the object of the present invention can be highly achieved, and when the acrylic rubber veil is used as a crosslinked product, water resistance and compression set resistance are remarkably improved. It is improved and suitable.

本発明のアクリルゴムベールを構成するアクリルゴムの重量平均分子量(Mw)は、GPC−MALSで測定される絶対分子量で、100,000〜5,000,000、好ましくは500,000〜5,000,000、より好ましくは1,000,000〜5,000,000、特に好ましくは1,100,000〜3,500,000、最も好ましくは1,200,000〜2,500,000の範囲であるときにアクリルゴムベールの混合時の加工性、強度特性、及び圧縮永久歪みの特性が高度にバランスされ好適である。 The weight average molecular weight (Mw) of the acrylic rubber constituting the acrylic rubber veil of the present invention is an absolute molecular weight measured by GPC-MALS, which is 100,000 to 5,000,000, preferably 500,000 to 5,000. In the range of 000, more preferably 1,000,000 to 5,000,000, particularly preferably 1,100,000 to 3,500,000, most preferably 1,200,000 to 2,500,000. At one point, the processability, strength characteristics, and compression set characteristics of the acrylic rubber veil when mixed are highly balanced and suitable.

本発明のアクリルゴムベールを構成するアクリルゴムのz平均分子量(Mz)と重量平均分子量(Mw)との比(Mz/Mw)は、格別限定されるものではないが、GPC−MALSで測定される絶対分子量分布で、通常1.3以上、好ましくは1.4〜5、より好ましくは1.5〜2の範囲であるときにアクリルゴムベールの加工性と強度特性が高度にバランスされ且つ保存時の物性変化を緩和でき好適である。 The ratio (Mz / Mw) of the z average molecular weight (Mz) and the weight average molecular weight (Mw) of the acrylic rubber constituting the acrylic rubber veil of the present invention is not particularly limited, but is measured by GPC-MALS. The processability and strength characteristics of the acrylic rubber veil are highly balanced and preserved when the absolute molecular weight distribution is usually in the range of 1.3 or more, preferably 1.4 to 5, more preferably 1.5 to 2. It is suitable because it can alleviate changes in physical properties over time.

本発明のアクリルゴムベールを構成するアクリルゴムの重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、格別な限定はないが、GPC−MALSで測定される絶対分子量分布で、通常1.1〜8、好ましくは1.2〜7、より好ましくは1.4〜6の範囲であるときにアクリルゴムベールの加工性、強度特性及び耐圧縮永久歪み性が高度にバランスされ好適である。 The ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the acrylic rubber constituting the acrylic rubber veil of the present invention is not particularly limited, but is absolutely measured by GPC-MALS. When the molecular weight distribution is usually in the range of 1.1 to 8, preferably 1.2 to 7, and more preferably 1.4 to 6, the processability, strength characteristics, and compression set resistance of the acrylic rubber bale are high. It is well-balanced and suitable.

本発明のアクリルゴムベールを構成するアクリルゴムのガラス転移温度(Tg)は、格別限定されるものではないが、通常20℃以下、好ましくは10℃以下、より好ましくは0℃以下である。アクリルゴムのガラス転移温度(Tg)の下限値は、格別限定されるものではないが、通常―80℃以上、好ましくはー60℃以上、より好ましくは―40℃以上である。ガラス転移温度を前記下限以上とすることにより耐油性と耐熱性により優れたものとすることができ、前記上限以下とすることにより耐寒性と加工性により優れたものとすることができる。 The glass transition temperature (Tg) of the acrylic rubber constituting the acrylic rubber veil of the present invention is not particularly limited, but is usually 20 ° C. or lower, preferably 10 ° C. or lower, and more preferably 0 ° C. or lower. The lower limit of the glass transition temperature (Tg) of acrylic rubber is not particularly limited, but is usually −80 ° C. or higher, preferably −60 ° C. or higher, and more preferably −40 ° C. or higher. By setting the glass transition temperature to the lower limit or higher, the oil resistance and heat resistance can be improved, and by setting the glass transition temperature to the upper limit or lower, the cold resistance and workability can be improved.

本発明のアクリルゴムベール中のアクリルゴムの含有量は、使用目的に応じて適宜選択されるが、通常95重量%以上、好ましくは97重量%以上、より好ましくは98重量%以上である。 The content of acrylic rubber in the acrylic rubber veil of the present invention is appropriately selected depending on the intended use, but is usually 95% by weight or more, preferably 97% by weight or more, and more preferably 98% by weight or more.

<アクリルゴムベール>
本発明のアクリルゴムベールは、上記アクリルゴムからなり、且つゲル量と比重が特定であることを特徴とする。
<Acrylic rubber veil>
The acrylic rubber veil of the present invention is made of the above acrylic rubber, and is characterized in that the gel amount and specific gravity are specific.

本発明のアクリルゴムベールの大きさは、格別限定されるものではないが、幅が通常100〜800mm、好ましくは200〜500mm、より好ましくは250〜450mmの範囲で、長さが通常300〜1200mm、好ましくは400〜1000mm、より好ましくは500〜800mmの範囲で、高さが通常50〜500mm、好ましくは100〜300mm、より好ましくは150〜250mmの範囲である。 The size of the acrylic rubber veil of the present invention is not particularly limited, but the width is usually in the range of 100 to 800 mm, preferably 200 to 500 mm, more preferably 250 to 450 mm, and the length is usually 300 to 1200 mm. The height is usually in the range of 400 to 1000 mm, more preferably 500 to 800 mm, and the height is usually in the range of 50 to 500 mm, preferably 100 to 300 mm, more preferably 150 to 250 mm.

本発明のアクリルゴムベールのゲル量は、メチルエチルケトンの不溶解分で、50重量%以下、好ましくは30重量%以下、より好ましくは20重量%以下、特に好ましくは10重量%以下、最も好ましくは5重量%以下であるときに、加工性が高度に改善され好適である。なお、本発明のアクリルゴムベール中のメチルエチルケトン不溶解分であるゲル量は、使用する溶媒により特性が異なり、特にTHF(テトラハイドロフラン)不溶解のゲル量とは相関していなかった。 The gel amount of the acrylic rubber veil of the present invention is the insoluble content of methyl ethyl ketone, which is 50% by weight or less, preferably 30% by weight or less, more preferably 20% by weight or less, particularly preferably 10% by weight or less, and most preferably 5. When it is less than% by weight, the workability is highly improved and is suitable. The amount of gel, which is the insoluble matter of methyl ethyl ketone in the acrylic rubber veil of the present invention, has different characteristics depending on the solvent used, and does not particularly correlate with the amount of THF (tetrahydrofuran) insoluble gel.

本発明のアクリルゴムベールのゲル量を任意に20点測定したときの値は、格別限定されるものではないが、平均値±5の範囲内に20点全てが入る、好ましくは平均値±3の範囲内に20点全てが入るときに加工性バラツキが無くゴム混合物やゴム架橋物の諸物性が安定化されて好適である。 The value when the gel amount of the acrylic rubber veil of the present invention is arbitrarily measured at 20 points is not particularly limited, but all 20 points fall within the range of the average value ± 5, preferably the average value ± 3. When all 20 points are within the range of, there is no workability variation and various physical properties of the rubber mixture and the rubber crosslinked product are stabilized, which is suitable.

本発明のアクリルゴムべールの比重は、格別限定はないが、通常0.8以上、好ましくは0.8〜1.4、より好ましくは、0.9〜1.3、特に好ましくは0.95〜1.25、最も好ましくは1.0〜1.2の範囲であるときに保存安定性が高度に優れ好適である。アクリルゴムベールの比重が過度に小さいときは、アクリルゴムベール中に巻き込まれる空気量が多いことを示し酸化劣化など含めて保存安定性に大きく影響し好ましくない。 The specific gravity of the acrylic rubber veil of the present invention is not particularly limited, but is usually 0.8 or more, preferably 0.8 to 1.4, more preferably 0.9 to 1.3, and particularly preferably 0. When it is in the range of .95 to 1.25, most preferably 1.0 to 1.2, the storage stability is highly excellent and suitable. When the specific gravity of the acrylic rubber veil is excessively small, it indicates that the amount of air entrained in the acrylic rubber veil is large, which greatly affects the storage stability including oxidative deterioration, which is not preferable.

本発明のアクリルゴムベールの含水量は、格別な限定はないが、通常1重量%未満、好ましくは0.8重量%以下、より好ましくは0.6重量%以下であるときに加硫特性が最適化され耐熱性や耐水性などの特性が高度に優れ好適である。 The water content of the acrylic rubber veil of the present invention is not particularly limited, but the vulcanization property is usually less than 1% by weight, preferably 0.8% by weight or less, and more preferably 0.6% by weight or less. It is optimized and has excellent properties such as heat resistance and water resistance, and is suitable.

本発明のアクリルゴムベールのpHは、格別な限定はないが、通常6以下、好ましくは2〜6、より好ましくは2.5〜5.5、特に好ましくは3〜5の範囲であるときに保存安定性が高度に改善され好適である。 The pH of the acrylic rubber veil of the present invention is not particularly limited, but is usually 6 or less, preferably 2 to 6, more preferably 2.5 to 5.5, and particularly preferably 3 to 5. The storage stability is highly improved and is suitable.

本発明のアクリルゴムベールの灰分量は.格別限定されるものではないが、通常0.5重量%以下、好ましくは0.4重量%以下、より好ましくは0.3重量%以下、特に好ましくは0.2重量%以下、最も好ましくは0.15重量%以下であるときに、保存安定性や耐水性に優れ好適である。 The ash content of the acrylic rubber veil of the present invention is. Although not particularly limited, it is usually 0.5% by weight or less, preferably 0.4% by weight or less, more preferably 0.3% by weight or less, particularly preferably 0.2% by weight or less, and most preferably 0. When it is .15% by weight or less, it is excellent in storage stability and water resistance and is suitable.

本発明のアクリルゴムベールの灰分量の下限値は、格別限定されるものではないが、通常0.0001重量%以上、好ましくは0.0005重量%以上、より好ましくは0.001重量%以上、特に好ましくは0.005重量%以上、最も好ましくは0.01重量以上であるときに金属付着性が抑制され作業性に優れ好適である。 The lower limit of the ash content of the acrylic rubber veil of the present invention is not particularly limited, but is usually 0.0001% by weight or more, preferably 0.0005% by weight or more, and more preferably 0.001% by weight or more. Particularly preferably, when it is 0.005% by weight or more, and most preferably 0.01% by weight or more, metal adhesion is suppressed and workability is excellent.

本発明のアクリルゴムベールの灰分中のナトリウム、イオウ、カルシウム、マグネシウム及びリンからなる群から選ばれる少なくとも1種の元素の含有量は、格別な限定はないが、全灰分量に対する割合で、通常少なくとも30重量%、好ましくは50重量%以上、より好ましくは70重量%以上、特に好ましくは80重量%以上であるときに保存安定性と耐水性が高度に優れ好適である。 The content of at least one element selected from the group consisting of sodium, sulfur, calcium, magnesium and phosphorus in the ash content of the acrylic rubber veil of the present invention is not particularly limited, but is usually a ratio to the total ash content. When it is at least 30% by weight, preferably 50% by weight or more, more preferably 70% by weight or more, and particularly preferably 80% by weight or more, storage stability and water resistance are highly excellent and suitable.

本発明のアクリルゴムベールの灰分中のナトリウムとイオウの合計量は、格別な限定はないが、全灰分量に対する割合で、通常30重量%以上、好ましくは50重量%以上、より好ましくは70重量%以上、特に好ましくは80重量%以上であるときに保存安定性と耐水性が高度に優れ好適である。 The total amount of sodium and sulfur in the ash content of the acrylic rubber veil of the present invention is not particularly limited, but is usually 30% by weight or more, preferably 50% by weight or more, more preferably 70% by weight, as a ratio to the total ash content. % Or more, particularly preferably 80% by weight or more, the storage stability and water resistance are highly excellent and suitable.

本発明のアクリルゴムベールの灰分中のナトリウムとイオウとの比([Na]/[S])は、重量比で、0.4〜2.5、好ましくは0.6〜2、好ましくは0.8〜1.7、より好ましくは1〜1.5の範囲であるときに耐水性が高度に優れ好適である。 The ratio of sodium to sulfur ([Na] / [S]) in the ash content of the acrylic rubber veil of the present invention is 0.4 to 2.5, preferably 0.6 to 2, preferably 0 by weight. When it is in the range of .8 to 1.7, more preferably 1 to 1.5, the water resistance is highly excellent and suitable.

本発明のアクリルゴムベールの灰分中のマグネシウムとリンの合計量は、各別な限定はないが、全灰分量に対する割合で、通常30重量%以上、好ましくは50重量%以上、より好ましくは70重量%以上、特に好ましくは80重量%以上であるときに保存安定性と耐水性が高度に優れ好適である。 The total amount of magnesium and phosphorus in the ash content of the acrylic rubber veil of the present invention is not particularly limited, but is usually 30% by weight or more, preferably 50% by weight or more, more preferably 70% by weight or more, as a ratio to the total ash content. When it is by weight or more, particularly preferably 80% by weight or more, storage stability and water resistance are highly excellent and suitable.

本発明のアクリルゴムベールの灰分中のマグネシウムとリンとの比([Mg]/[P])は、重量比で、格別な限定は無いが、通常0.4〜2.5、好ましくは0.4〜1.3、より好ましくは0.4〜1、特に好ましくは0.45〜0.75、最も好ましくは0. The ratio of magnesium to phosphorus ([Mg] / [P]) in the ash content of the acrylic rubber veil of the present invention is a weight ratio and is not particularly limited, but is usually 0.4 to 2.5, preferably 0. .4 to 1.3, more preferably 0.4 to 1, particularly preferably 0.45 to 0.75, most preferably 0.

本発明のアクリルゴムベールの60℃における複素粘性率([η]60℃)は、格別限定されるものではないが、通常15,000Pa・s以下、好ましくは2,000〜10,000Pa・s、より好ましくは2,500〜7,000Pa・s、最も好ましくは2,700〜5,500Pa・sの範囲にあるとき加工性、耐油性及び形状保持性に優れ好適である。 The complex viscosity ([η] 60 ° C.) of the acrylic rubber veil of the present invention at 60 ° C. is not particularly limited, but is usually 15,000 Pa · s or less, preferably 2,000 to 10,000 Pa · s. , More preferably 2,500 to 7,000 Pa · s, and most preferably 2,700 to 5,500 Pa · s, which is excellent in processability, oil resistance and shape retention.

本発明のアクリルゴムベールの100℃における複素粘性率([η]100℃)は、格別限定されるものではないが、通常1,500〜6,000Pa・s、好ましくは2,000〜5,000Pa・s、より好ましくは2,500〜4,000Pa・s、最も好ましくは2,500〜3,500Pa・sの範囲であるときに加工性、耐油性、及び形状保持性に優れ好適である。 The complex viscosity ([η] 100 ° C.) of the acrylic rubber veil of the present invention at 100 ° C. is not particularly limited, but is usually 1,500 to 6,000 Pa · s, preferably 2,000 to 5, It is excellent in processability, oil resistance, and shape retention when it is in the range of 000 Pa · s, more preferably 2,500 to 4,000 Pa · s, and most preferably 2,500 to 3,500 Pa · s. ..

本発明のアクリルゴムベールの100℃における複素粘性率([η]100℃)と60℃における複素粘性率([η]60℃)との比([η]100℃/[η]60℃)は、格別限定はないが、通常0.5以上、好ましくは0.5〜0.98、より好ましくは0.6〜0.95、最も好ましくは0.75〜0.93の範囲であるときに加工性、耐油性、及び形状保持性が高度にバランスされ好適である。 The ratio of the complex viscosity ([η] 100 ° C.) of the acrylic rubber veil of the present invention at 100 ° C. to the complex viscosity ([η] 60 ° C.) at 60 ° C. ([η] 100 ° C./[η] 60 ° C.) Is not particularly limited, but is usually in the range of 0.5 or more, preferably 0.5 to 0.98, more preferably 0.6 to 0.95, and most preferably 0.75 to 0.93. In addition, workability, oil resistance, and shape retention are highly balanced and suitable.

本発明のアクリルゴムベールのムーニー粘度(ML1+4,100℃)は、格別限定されるものではないが、通常10〜150、好ましくは20〜100、より好ましくは25〜70の範囲であるときに加工性や強度特性が高度にバランスされ好適である。 The Mooney viscosity (ML1 + 4,100 ° C.) of the acrylic rubber veil of the present invention is not particularly limited, but is usually processed when it is in the range of 10 to 150, preferably 20 to 100, and more preferably 25 to 70. It is suitable because its properties and strength characteristics are highly balanced.

<アクリルゴムベールの製造方法>
上記アクリルゴムベールの製造方法は、格別限定されるものではないが、例えば、(メタ)アクリル酸エステルと反応性基含有単量体とを含む単量体成分を水と乳化剤とでエマルジョン化し重合触媒存在下に乳化重合し乳化重合液を得る乳化重合工程と、
得られた乳化重合液と凝固液を接触させて含水クラムを生成する凝固工程と、
生成した含水クラムを洗浄する洗浄工程と、
洗浄した含水クラムを、脱水スリットを有する脱水バレルと減圧下の乾燥バレルと先端部にダイを有するスクリュー型押出機を用いて脱水バレルで含水量1〜40重量%まで脱水した後に乾燥バレルで含水量1重量%未満まで乾燥してシート状乾燥ゴムをダイから押し出す脱水・乾燥・成形工程と、
を含むことで本発明に係るアクリルゴムベールを容易に製造することができる。
<Manufacturing method of acrylic rubber veil>
The method for producing the acrylic rubber bale is not particularly limited, but for example, a monomer component containing a (meth) acrylic acid ester and a reactive group-containing monomer is emulsion-polymerized with water and an emulsifier. In the emulsion polymerization step of obtaining an emulsion polymerization solution by emulsion polymerization in the presence of a catalyst,
A coagulation step of bringing the obtained emulsion polymerization solution into contact with the coagulation solution to form a hydrous crumb,
A cleaning process to clean the generated hydrous crumbs,
The washed water-containing crumb is dehydrated to a water content of 1 to 40% by weight in a dehydration barrel using a dehydration barrel having a dehydration slit, a drying barrel under reduced pressure, and a screw type extruder having a die at the tip, and then contained in the drying barrel. Dehydration / drying / molding process that dries to less than 1% by weight of water and extrudes sheet-shaped dry rubber from the die.
The acrylic rubber veil according to the present invention can be easily produced by including the above.

(乳化重合工程)
本発明のアクリルゴムベールの製造方法における乳化重合工程は、(メタ)アクリル酸エステルと反応性基含有単量体とを含む単量体成分を水と乳化剤とでエマルジョン化し重合触媒存在下に乳化重合し乳化重合液を得る工程である。
(Emulsion polymerization process)
In the emulsion polymerization step in the method for producing an acrylic rubber veil of the present invention, a monomer component containing a (meth) acrylic acid ester and a reactive group-containing monomer is emulsified with water and an emulsifier and emulsified in the presence of a polymerization catalyst. This is a step of polymerizing to obtain an emulsion polymerization solution.

使用される単量体成分は、前記単量体成分で記載されたものと同様であり、使用量は前記アクリルゴムベールを構成するアクリルゴムの単量体組成になるように適宜選択されればよく、通常は、前記アクリルゴムベールを構成するアクリルゴムの単量体組成と同等の量である。 The monomer component used is the same as that described in the monomer component, and the amount used may be appropriately selected so as to have the monomer composition of the acrylic rubber constituting the acrylic rubber veil. Often, the amount is usually the same as the monomer composition of the acrylic rubber constituting the acrylic rubber veil.

使用される乳化剤としては、格別な限定はなく常法に従えばよいが、例えば、アニオン性乳化剤、カチオン性乳化剤、ノニオン性乳化剤などを挙げることができる。これらの中でも、アニオン性乳化剤、ノニオン性乳化剤が好ましく、アニオン性乳化剤がより好ましく、リン酸系乳化剤、硫酸系乳化剤が特に好ましく、リン酸系乳化剤が最も好ましい。 The emulsifier used is not particularly limited and may follow a conventional method, and examples thereof include an anionic emulsifier, a cationic emulsifier, and a nonionic emulsifier. Among these, anionic emulsifiers and nonionic emulsifiers are preferable, anionic emulsifiers are more preferable, phosphoric acid-based emulsifiers and sulfuric acid-based emulsifiers are particularly preferable, and phosphoric acid-based emulsifiers are most preferable.

アニオン性乳化剤としては、通常使用されるものを格別な限定なく使用され、例えば、脂肪酸系乳化剤、スルホン酸系乳化剤、スルホコハク酸系乳化剤、硫酸系乳化剤、リン酸系乳化剤などが挙げられ、好ましくは硫酸系乳化剤である。 As the anionic emulsifier, those usually used are used without particular limitation, and examples thereof include fatty acid emulsifiers, sulfonic acid emulsifiers, sulfosuccinic acid emulsifiers, sulfuric acid emulsifiers, and phosphoric acid emulsifiers, and preferable ones. It is a sulfuric acid-based emulsifier.

脂肪酸系乳化剤としては、例えば、オクタン酸ナトリウム、デカン酸ナトリウム、ラウリル酸ナトリウム、ミリスチン酸ナトリウム、パルミチン酸ナトリウム、ステアリン酸ナトリウムなどが挙げられる。 Examples of the fatty acid-based emulsifier include sodium octanate, sodium decanoate, sodium laurate, sodium myristate, sodium palmitate, sodium stearate and the like.

スルホン酸系乳化剤としては、例えば、ヘキサンスルホン酸ナトリウム、オクタンスルホン酸ナトリウム、デカンスルホン酸ナトリウム、トルエンスルホン酸ナトリウム、クメンスルホン酸ナトリウム、オクチルベンゼンスルホン酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、ドデシルベンゼンスルホン酸アンモニウム、ナフタレンスルホン酸ナトリウム、アルキルナフタレンスルホン酸ナトリウム、アルキルジフェニルエーテルジスルホン酸ナトリウムなどを挙げることができる。 Examples of the sulfonic acid-based emulsifier include sodium hexane sulfonate, sodium octane sulfonate, sodium decane sulfonate, sodium toluene sulfonate, sodium cumene sulfonate, sodium octylbenzene sulfonate, sodium dodecylbenzene sulfonate, and dodecylbenzene sulfonic acid. Examples thereof include ammonium, sodium naphthalene sulfonate, sodium alkylnaphthalene sulfonate, sodium alkyldiphenyl ether disulfonate and the like.

スルホコハク酸系乳化剤としては、例えば、ジオクチルスルホコハク酸ナトリウム、ジヘキシルスルホコハク酸ナトリウムなどを挙げることができる。 Examples of the sulfosuccinic acid-based emulsifier include sodium dioctyl sulfosuccinate and sodium dihexyl sulfosuccinate.

硫酸系乳化剤としては、格別な限定はなく常法に従えばよいが、硫酸エステル塩が好適に用いることができる。硫酸エステル塩としては、例えば、ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム、ミリスチル硫酸ナトリウム、ラウレス硫酸ナトリウム、ポリオキシエチレンアルキル硫酸ナトリウム、ポリオキシエチレンアルキルアリール硫酸ナトリウムなどが挙げられ、好ましくはラウリル硫酸ナトリウムである。 The sulfuric acid-based emulsifier is not particularly limited and may follow a conventional method, but a sulfate ester salt can be preferably used. Examples of the sulfate ester salt include sodium lauryl sulfate, ammonium lauryl sulfate, sodium myristyl sulfate, sodium laureth sulfate, sodium polyoxyethylene alkyl sulfate, sodium polyoxyethylene alkylaryl sulfate, and the like, and sodium lauryl sulfate is preferable.

リン酸系乳化剤としては、例えば、ラウリルリン酸ナトリウム、ラウリルリン酸カリウム、ポリオキシアルキレンアルキルエーテルリン酸エステルナトリウムなどが挙げることができる。 Examples of the phosphoric acid-based emulsifier include sodium lauryl phosphate, potassium lauryl phosphate, sodium polyoxyalkylene alkyl ether phosphoric acid ester, and the like.

カチオン性乳化剤としては、例えば、アルキルトリメチルアンモニウムクロライド、ジアルキルアンモニウムクロライド、ベンジルアンモニウムクロライドなどを挙げることができる。 Examples of the cationic emulsifier include alkyltrimethylammonium chloride, dialkylammonium chloride, and benzylammonium chloride.

ノニオン性乳化剤としては、特に限定されないが、例えば、ポリオキシエチレンステアリン酸エステルなどのポリオキシアルキレン脂肪酸エステル;ポリオキシエチレンドデシルエーテルなどのポリオキシアルキレンアルキルエーテル;ポリオキシエチレンノニルフェニルエーテルなどのポリオキシアルキレンアルキルフェノールエーテル;ポリオキシエチレンソルビタンアルキルエステルなどを挙げることができ、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンアルキルフェノールエーテルが好ましく、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノールエーテルがより好ましい。 The nonionic emulsifier is not particularly limited, but for example, a polyoxyalkylene fatty acid ester such as polyoxyethylene stearate ester; a polyoxyalkylene alkyl ether such as polyoxyethylene dodecyl ether; and a polyoxy such as polyoxyethylene nonylphenyl ether. Alkylene alkylphenol ethers; polyoxyethylene sorbitan alkyl esters and the like can be mentioned, with polyoxyalkylene alkyl ethers and polyoxyalkylene alkyl phenol ethers being preferred, and polyoxyethylene alkyl ethers and polyoxyethylene alkyl phenol ethers being more preferred.

これら乳化剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができ、その使用量は、単量体成分100重量部に対して、通常0.01〜10重量部、好ましくは0.1〜5重量部、より好ましくは1〜3重量部の範囲である。 Each of these emulsifiers can be used alone or in combination of two or more, and the amount used is usually 0.01 to 10 parts by weight, preferably 0.1 parts by weight, based on 100 parts by weight of the monomer component. It is in the range of ~ 5 parts by weight, more preferably 1 to 3 parts by weight.

単量体成分と水と乳化剤との混合方法としては、常法に従えばよく、単量体と乳化剤と水とをホモジナイザーやディスクタービンなどの撹拌機などを用いて撹拌する方法などが挙げられる。水の使用量は、単量体成分100重量部に対して、通常10〜750重量部、好ましくは50〜500重量部、より好ましくは100〜400重量部の範囲である。 As a method of mixing the monomer component, water and emulsifier, a conventional method may be followed, and examples thereof include a method of stirring the monomer, emulsifier and water using a stirrer such as a homogenizer or a disk turbine. .. The amount of water used is usually in the range of 10 to 750 parts by weight, preferably 50 to 500 parts by weight, and more preferably 100 to 400 parts by weight with respect to 100 parts by weight of the monomer component.

使用される重合触媒としては、乳化重合で通常使われるものであれば格別な限定はないが、例えば、ラジカル発生剤と還元剤とからなるレドックス触媒を用いることができる。 The polymerization catalyst used is not particularly limited as long as it is usually used in emulsion polymerization, and for example, a redox catalyst composed of a radical generator and a reducing agent can be used.

ラジカル発生剤としては、例えば、過酸化物、アゾ化合物などが挙げられ、好ましくは過酸化物である。過酸化物としては、無機系過酸化物や有機系過酸化物が用いられる。 Examples of the radical generator include peroxides and azo compounds, and peroxides are preferable. As the peroxide, an inorganic peroxide or an organic peroxide is used.

無機系過酸化物としては、例えば、過硫酸ナトリウム、過硫酸カリウム、過酸化水素、過硫酸アンモニウムなどが挙げられ、これらの中でも過硫酸カリウム、過酸化水素、過硫酸アンモニウムが好ましく、過硫酸カリウムが特に好ましい。 Examples of the inorganic peroxide include sodium persulfate, potassium persulfate, hydrogen peroxide, ammonium persulfate and the like. Among these, potassium persulfate, hydrogen peroxide and ammonium persulfate are preferable, and potassium persulfate is particularly preferable. preferable.

有機系過酸化物としては、乳化重合で使用される公知のものであれば格別な限定は無く、例えば、2,2−ジ(4,4−ジ−(t−ブチルパーオキシ)シクロヘキシル)プロパン、1−ジ−(t−ヘキシルパーオキシ)シクロヘキサン、1,1−ジ−(t−ブチルパーオキシ)シクロヘキサン、4,4−ジ−(t−ブチルパーオキシ)吉草酸n−ブチル、2,2−ジ−(t−ブチルパーオキシ)ブタン、t−ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、パラメンタンハイドロパーオキサイド、ベンゾイルパーオキサイド、1,1,3,3−テトラエチルブチルハイドロパーオキサイド、t−ブチルクミルパーオキサイド、ジ−t−ブチルパーオキサイド、ジ−t−ヘキシルパーオキサイド、ジ(2−t−ブチルパーオキシイソプロピル)ベンゼン、ジクミルパーオキサイド、ジイソブチリルパーオキサイド、ジ(3,5,5−トリメチルヘキサノイル)パーオキサイド、ジラウロイルパーオキサイド、ジコハク酸パーオキサイド、ジベンゾイルパーオキサイド、ジ(3−メチルベンゾイル)パーオキサイド、ベンゾイル(3−メチルベンゾイル)パーオキサイド、ジイソブチリルパーオキシジカーボネート、ジ−n−プロピルパーオキシジカーボネート、ジ(2−エチルヘキシル)パーオキシジカーボネート、ジ−sec−ブチルパーオキシジカーボネート、1,1,3,3−テトラメチルブチルパーオキシネオデカネート、t−ヘキシルパーオキシピバレート、t−ブチルパーオキシネオデカネート、t−ヘキシルパーオキシピバレート、t−ブチルパーオキシピバレート、2,5−ジメチル−2,5−ジ(2−エチルヘキサノイルパーオキシ)ヘキサン、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサネート、t−ヘキシルパーオキシ−2−エチルヘキサネート、t−ブチルパーオキシ−3,5,5−トリメチルヘキサネート、t−ヘキスルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシイソプロピルモノカーボネート、t−ブイチルパーオキシ−2−エチルヘキシルモノカーボネート、2,5−ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン、t−ブチルパーオキシアセテート、t−ヘキシルパーオキシベンゾエート、t−ブチルパーオキシベンゾエート、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサンなどが挙げられ、これらの中でもジイソプロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイド、パラメンタンハイドロパーオキサイド、ベンゾイルパーオキサイドなどが好ましい。 The organic peroxide is not particularly limited as long as it is a known organic peroxide used in emulsion polymerization. For example, 2,2-di (4,5-di- (t-butylperoxy) cyclohexyl) propane. , 1-di- (t-hexyl peroxy) cyclohexane, 1,1-di- (t-butyl peroxy) cyclohexane, 4,4-di- (t-butyl peroxy) n-butyl valerate, 2, 2-Di- (t-butylperoxy) butane, t-butylhydroperoxide, cumenehydroperoxide, diisopropylbenzenehydroperoxide, paramentanhydroperoxide, benzoyl peroxide, 1,1,3,3-tetraethyl Butylhydroperoxide, t-butylcumyl peroxide, di-t-butyl peroxide, di-t-hexyl peroxide, di (2-t-butylperoxyisopropyl) benzene, dicumyl peroxide, diisobutyryl peroxide , Di (3,5,5-trimethylhexanoyl) peroxide, dilauroyl peroxide, disuccinic acid peroxide, dibenzoyl peroxide, di (3-methylbenzoyl) peroxide, benzoyl (3-methylbenzoyl) peroxide , Diisobutyryl peroxydicarbonate, di-n-propyl peroxydicarbonate, di (2-ethylhexyl) peroxydicarbonate, di-sec-butylperoxydicarbonate, 1,1,3,3-tetramethylbutyl Peroxyneodecanate, t-hexylperoxypivarate, t-butylperoxyneodecanate, t-hexylperoxypivarate, t-butylperoxypivarate, 2,5-dimethyl-2,5-di (2-Ethylhexanoylperoxy) hexane, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanate, t-hexylperoxy-2-ethylhexanate, t-butylperoxy-3 , 5,5-trimethylhexanate, t-hexulperoxyisopropyl monocarbonate, t-butylperoxyisopropyl monocarbonate, t-buylperoxy-2-ethylhexyl monocarbonate, 2,5-dimethyl-2,5 -Di (benzoylperoxy) hexane, t-butylperoxyacetate, t-hexylperoxybenzoate, t-butylperoxybenzoate, 2,5-dimethyl-2,5-di ( Examples thereof include t-butylperoxy) hexane, and among these, diisopropylbenzene hydroperoxide, cumene hydroperoxide, paramentan hydroperoxide, benzoyl peroxide and the like are preferable.

アゾ化合物としては、例えば、アゾビスイソプチロニトリル、4,4'−アゾビス(4−シアノ吉草酸)、2,2'−アゾビス[2−(2−イミダゾリン−2−イル)プロパン、2,2'−アゾビス(プロパン−2−カルボアミジン)、2,2'−アゾビス[N−(2−カルボキシエチル)−2−メチルプロパンアミド]、2,2'−アゾビス{2−[1−(2−ヒドロキシエチル)−2−イミダゾリン−2−イル]プロパン}、2,2'−アゾビス(1−イミノ−1−ピロリジノ−2−メチルプロパン)及び2,2'−アゾビス{2−メチル−N−[1,1−ビス(ヒドロキシメチル)−2−ヒドロキシエチル]プロパンアミド}などが挙げられる。 Examples of the azo compound include azobisisobutyronitrile, 4,4'-azobis (4-cyanovaleric acid), 2,2'-azobis [2- (2-imidazolin-2-yl) propane, 2,2. '-Azobis (Propane-2-carboamidine), 2,2'-Azobis [N- (2-carboxyethyl) -2-methylpropaneamide], 2,2'-Azobis {2- [1- (2- (2-) Hydroxyethyl) -2-imidazolin-2-yl] propane}, 2,2'-azobis (1-imino-1-pyrrolidino-2-methylpropane) and 2,2'-azobis {2-methyl-N- [ 1,1-bis (hydroxymethyl) -2-hydroxyethyl] propanamide} and the like.

これらのラジカル発生剤は、それぞれ単独で、あるいは2種類以上を組み合わせて用いることができ、その使用量は、単量体成分100重量部に対して、通常0.0001〜5重量部、好ましくは0.0005〜1重量部、より好ましくは0.001〜0.5重量部の範囲である。 Each of these radical generators can be used alone or in combination of two or more, and the amount used is usually 0.0001 to 5 parts by weight, preferably 0.0001 to 5 parts by weight, based on 100 parts by weight of the monomer component. It is in the range of 0.0005 to 1 part by weight, more preferably 0.001 to 0.5 part by weight.

還元剤としては、乳化重合のレドックス触媒で使用されるものであれば格別な限定なく用いることができるが、本発明においては、特に少なくとも2種の還元剤を用いることが好ましい。少なくとも2種の還元剤としては、例えば、還元状態にある金属イオン化合物とそれ以外の還元剤の組み合わせが好適である。 As the reducing agent, any one used in the redox catalyst of emulsion polymerization can be used without particular limitation, but in the present invention, it is particularly preferable to use at least two kinds of reducing agents. As the at least two types of reducing agents, for example, a combination of a metal ion compound in a reduced state and another reducing agent is suitable.

還元状態にある金属イオン化合物としては、特に限定されないが、例えば、硫酸第一鉄、ヘキサメチレンジアミン四酢酸鉄ナトリウム、ナフテン酸第一銅などが挙げられ、これらの中でも硫酸第一鉄が好ましい。これらの還元状態にある金属イオン化合物は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができ、その使用量は、単量体成分100重量部に対して、通常0.000001〜0.01重量部、好ましくは0.00001〜0.001重量部、より好ましくは0.00005〜0.0005重量部の範囲である。 The metal ion compound in the reduced state is not particularly limited, and examples thereof include ferrous sulfate, sodium hexamethylenediamine tetraacetate, and cuprous naphthenate, and among these, ferrous sulfate is preferable. Each of these reduced metal ion compounds can be used alone or in combination of two or more, and the amount used is usually 0.000001 to 0. With respect to 100 parts by weight of the monomer component. It is in the range of 01 parts by weight, preferably 0.00001 to 0.001 parts by weight, and more preferably 0.00005 to 0.0005 parts by weight.

それらの還元状態にある金属イオン化合物以外の還元剤としては、特に限定はないが、例えば、アスコルビン酸、アスコルビン酸ナトリウム、アスコルビン酸カリウムなどのアスコルビン酸又はその塩;エリソルビン酸、エリソルビン酸ナトリウム、エリソルビン酸カリウムなどのエリソルビン酸又はその塩;ヒドロキシメタンスルフィン酸ナトリウムなどのスルフィン酸塩;亜硫酸ナトリウム、亜硫酸カリウム、亜硫酸水素ナトリウム、アルデヒド亜硫酸水素ナトリウム、亜硫酸水素カリウムの亜硫酸塩;ピロ亜硫酸ナトリウム、ピロ亜硫酸カリウム、ピロ亜硫酸水素ナトリウム、ピロ亜硫酸水素カリウムなどのピロ亜硫酸塩;チオ硫酸ナトリウム、チオ硫酸カリウムなどのチオ硫酸塩;亜燐酸、亜燐酸ナトリウム、亜燐酸カリウム、亜燐酸水素ナトリウム、亜燐酸水素カリウムの亜燐酸又はその塩;ピロ亜燐酸、ピロ亜燐酸ナトリウム、ピロ亜燐酸カリウム、ピロ亜燐酸水素ナトリウム、ピロ亜燐酸水素カリウムなどのピロ亜燐酸又はその塩;ナトリウムホルムアルデヒドスルホキシレートなどが挙げられる。これらの中でも、アルコルビン酸又はその塩、ナトリウムホルムアルデヒドスルホキシレートなどが好ましく、特にアスコルビン酸又はその塩が好ましい。 The reducing agent other than the metal ion compound in the reduced state is not particularly limited, but is, for example, ascorbic acid such as ascorbic acid, sodium ascorbate, potassium ascorbate or a salt thereof; erythorbic acid, sodium erythorbicate, erythorbin. Elysorbic acid such as potassium acid or a salt thereof; sulphinate such as sodium hydroxymethane sulfite; sodium sulfite, potassium sulfite, sodium hydrogen sulfite, aldehyde sodium bisulfite, potassium hydrogen sulfite sulfite; sodium pyrosulfite, potassium pyrosulfite Pyro sulfites such as sodium bisulfite and potassium hydrogen pyrosulfite; thiosulfates such as sodium thiosulfite and potassium thiosulfite; of sodium bisulfite, sodium bisulfite, potassium bisulfite, sodium hydrogen phosphite, potassium hydrogen phosphite Pyrophosphoric acid or a salt thereof; pyroaphosphate or a salt thereof such as pyrophosphate, sodium pyrophosphate, potassium pyrophosphate, sodium bisulfite, potassium hydrogenpyrophosphate and the like; sodium formaldehyde sulfoxylate and the like. Among these, alcorbic acid or a salt thereof, sodium formaldehyde sulfoxylate and the like are preferable, and ascorbic acid or a salt thereof is particularly preferable.

これらの還元状態にある金属イオン化合物以外の還元剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができ、その使用量は、単量体成分100重量部に対し、通常0.001〜1重量部、好ましくは0.005〜0.5重量部、より好ましくは0.01〜0.3重量部の範囲である。 The reducing agents other than the metal ion compounds in the reduced state can be used alone or in combination of two or more, and the amount used is usually 0.001 with respect to 100 parts by weight of the monomer component. It is in the range of ~ 1 part by weight, preferably 0.005 to 0.5 parts by weight, and more preferably 0.01 to 0.3 parts by weight.

還元状態にある金属イオン化合物とそれ以外の還元剤との好ましい組み合わせは、硫酸第一鉄とアスコルビン酸若しくはその塩及び/又はナトリウムホルムアルデヒドスルホキシレートで、より好ましくは硫酸第一鉄とアスコルビン酸塩及び/又はナトリウムホルムアルデヒドスルホキシレート、最も好ましくは硫酸第一鉄とアルコルビン酸塩の組合せである。この時の、硫酸第一鉄の使用量は、単量体成分100重量部に対して、通常0.000001〜0.01重量部、好ましくは0.00001〜0.001重量部、より好ましくは0.00005〜0.0005重量部の範囲で、アスコルビン酸若しくはその塩及び/又はナトリウムホルムアルデヒドスルホキシレートの使用量は、単量体成分100重量部に対し、通常0.001〜1重量部、好ましくは0.005〜0.5重量部、より好ましくは0.01〜0.3重量部の範囲である。 A preferred combination of the reducing metal ion compound and the other reducing agent is ferrous sulfate and ascorbic acid or a salt thereof and / or sodium formaldehyde sulfoxylate, more preferably ferrous sulfate and ascorbate. And / or sodium formaldehyde sulfoxylate, most preferably a combination of ferrous sulfate and alcorbate. At this time, the amount of ferrous sulfate used is usually 0.000001 to 0.01 parts by weight, preferably 0.00001 to 0.001 parts by weight, more preferably 0.00001 parts by weight, based on 100 parts by weight of the monomer component. In the range of 0.00005 to 0.0005 parts by weight, the amount of ascorbic acid or a salt thereof and / or sodium formaldehyde sulfoxylate used is usually 0.001 to 1 part by weight with respect to 100 parts by weight of the monomer component. It is preferably in the range of 0.005 to 0.5 parts by weight, more preferably 0.01 to 0.3 parts by weight.

乳化重合反応における水の使用量は、前記単量体成分エマルジョン化時に使用したものだけでもよいが、重合に用いる単量体成分100重量部に対して、通常10〜1000重量部、好ましくは50〜500重量部、より好ましくは80〜400重量部、最も好ましくは100〜300重量部の範囲になるように調整される。 The amount of water used in the emulsion polymerization reaction may be only the one used at the time of emulsification of the monomer component, but is usually 10 to 1000 parts by weight, preferably 50 parts by weight, based on 100 parts by weight of the monomer component used for polymerization. It is adjusted to be in the range of ~ 500 parts by weight, more preferably 80 to 400 parts by weight, and most preferably 100 to 300 parts by weight.

乳化重合反応は、常法に従えばよく、回分式、半回分式、連続式のいずれでもよい。重合温度及び重合時間は、特に限定されず、使用する重合開始剤の種類などから適宜選択できる。重合温度は、通常0〜100℃、好ましくは5〜80℃、より好ましくは10〜50℃の範囲であり、重合時間は通常0.5〜100時間、好ましくは1〜10時間である。 The emulsion polymerization reaction may be carried out according to a conventional method, and may be a batch type, a semi-batch type or a continuous type. The polymerization temperature and the polymerization time are not particularly limited and can be appropriately selected from the type of polymerization initiator used and the like. The polymerization temperature is usually in the range of 0 to 100 ° C., preferably 5 to 80 ° C., more preferably 10 to 50 ° C., and the polymerization time is usually 0.5 to 100 hours, preferably 1 to 10 hours.

乳化重合反応の重合転化率は、格別限定はないが、通常80重量%以上、好ましくは90重量%以上、より好ましくは95重量%以上であるときに製造されるアクリルゴムベールの強度特性に優れ且つ単量体臭も無く好適である。重合停止に当たっては、重合停止剤を使用してもよい。 The polymerization conversion rate of the emulsion polymerization reaction is not particularly limited, but is excellent in the strength characteristics of the acrylic rubber bale produced when it is usually 80% by weight or more, preferably 90% by weight or more, and more preferably 95% by weight or more. Moreover, there is no monomeric odor and it is suitable. A polymerization inhibitor may be used to terminate the polymerization.

(凝固工程)
本発明のアクリルゴムシートの製造方法における凝固工程としては、上記得られた乳化重合液を撹拌している凝固液(凝固剤含有水溶液)に添加して含水クラムを生成させることを特徴とする。
(Coagulation process)
The coagulation step in the method for producing an acrylic rubber sheet of the present invention is characterized in that the obtained emulsion polymerization solution is added to a stirring coagulation solution (coagulant-containing aqueous solution) to generate a hydrous crumb.

凝固工程で使用される乳化重合液の固形分濃度は、格別な限定はないが、通常5〜50重量%、好ましくは10〜45重量%、より好ましくは20〜40重量%の範囲に調整される。 The solid content concentration of the emulsion polymerization solution used in the coagulation step is not particularly limited, but is usually adjusted to the range of 5 to 50% by weight, preferably 10 to 45% by weight, and more preferably 20 to 40% by weight. To.

使用される凝固剤としては、特に限定されないが、通常は金属塩が用いられる。金属塩としては、例えば、アルカリ金属、周期表第2族金属塩、その他の金属塩などが挙げられ、好ましくはアルカリ金属塩、周期表第2族金属塩、より好ましくは周期表第2族金属塩、特に好ましくはマグネシウム塩である。 The coagulant used is not particularly limited, but a metal salt is usually used. Examples of the metal salt include alkali metals, Group 2 metal salts of the Periodic Table, and other metal salts, preferably alkali metal salts, Group 2 metal salts of the Periodic Table, and more preferably Group 2 metals of the Periodic Table. A salt, particularly preferably a magnesium salt.

アルカリ金属塩としては、例えば、塩化ナトリウム、硝酸ナトリウム、硫酸ナトリウムなどのナトリウム塩;塩化カリウム、硝酸カリウム、硫酸カリウムなどのカリウム塩;塩化リチウム、硝酸リチウム、硫酸リチウムなどのリチウム塩などが挙げられ、これらの中でもナトリウム塩が好ましく、塩化ナトリウム、硫酸ナトリウムが特に好ましい。 Examples of the alkali metal salt include sodium salts such as sodium chloride, sodium nitrate and sodium sulfate; potassium salts such as potassium chloride, potassium nitrate and potassium sulfate; and lithium salts such as lithium chloride, lithium nitrate and lithium sulfate. Among these, sodium salts are preferable, and sodium chloride and sodium sulfate are particularly preferable.

周期表第2族金属塩としては、例えば、塩化マグネシウム、塩化カルシウム、硝酸マグネシウム、硝酸カルシウム、硫酸マグネシウム、硫酸カルシウムなどが挙げられ、好ましくは塩化カルシウム、硫酸マグネシウム、より好ましくは硫酸マグネシウムである。 Examples of the Group 2 metal salt of the periodic table include magnesium chloride, calcium chloride, magnesium nitrate, calcium nitrate, magnesium sulfate, calcium sulfate and the like, preferably calcium chloride, magnesium sulfate, and more preferably magnesium sulfate.

その他の金属塩としては、例えば、塩化亜鉛、塩化チタン、塩化マンガン、塩化鉄、塩化コバルト、塩化ニッケル、塩化アルミニウム、塩化スズ、硝酸亜鉛、硝酸チタン、硝酸マンガン、硝酸鉄、硝酸コバルト、硝酸ニッケル、硝酸アルミニウム、硝酸スズ、硫酸亜鉛、硫酸チタン、硫酸マンガン、硫酸鉄、硫酸コバルト、硫酸ニッケル、硫酸アルミニウム、硫酸スズなどが挙げられる。 Other metal salts include, for example, zinc chloride, titanium chloride, manganese chloride, iron chloride, cobalt chloride, nickel chloride, aluminum chloride, tin chloride, zinc nitrate, titanium nitrate, manganese nitrate, iron nitrate, cobalt nitrate, nickel nitrate. , Aluminum nitrate, tin nitrate, zinc sulfate, titanium sulfate, manganese sulfate, iron sulfate, cobalt sulfate, nickel sulfate, aluminum sulfate, tin sulfate and the like.

これらの凝固剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができ、その使用量は、単量体成分100重量部に対し、通常0.01〜100重量部、好ましくは0.1〜50重量部、より好ましくは1〜30重量部の範囲である。凝固剤がこの範囲にあるときに、アクリルゴムの凝固を充分なものとしながら、アクリルゴムベールを架橋した場合の耐圧縮永久歪み性や耐水性を高度に向上させることができるので好適である。 Each of these coagulants can be used alone or in combination of two or more, and the amount used is usually 0.01 to 100 parts by weight, preferably 0, with respect to 100 parts by weight of the monomer component. It is in the range of 1 to 50 parts by weight, more preferably 1 to 30 parts by weight. When the coagulant is in this range, it is preferable because it can sufficiently improve the coagulation of the acrylic rubber and highly improve the compression set resistance and water resistance when the acrylic rubber veil is crosslinked.

凝固液の凝固剤濃度は、通常0.1〜20重量%、好ましくは0.5〜15重量%、より好ましくは1〜10重量%、特に好ましくは1.5〜5の範囲であるときに生成する含水クラムの粒径を特定の領域に且つ均一に集束でき好適である。 The coagulant concentration of the coagulant is usually in the range of 0.1 to 20% by weight, preferably 0.5 to 15% by weight, more preferably 1 to 10% by weight, and particularly preferably 1.5 to 5. It is suitable because the particle size of the produced hydrous crumb can be uniformly focused in a specific region.

凝固液の温度は、格別限定はないが、通常40℃以上、好ましくは40〜90℃、より好ましくは50〜80℃の範囲であるときに均一な含水クラムが生成され好適である。 The temperature of the coagulating liquid is not particularly limited, but is preferably 40 ° C. or higher, preferably 40 to 90 ° C., more preferably 50 to 80 ° C., to form a uniform water-containing crumb.

撹拌されている凝固液の撹拌数(回転数)は、すなわち、撹拌装置の撹拌翼の回転数で、格別な限定はないが、通常100rpm以上、好ましくは200〜1000rpm、より好ましくは300〜900rpm、特に好ましくは400〜800rpmの範囲である。回転数はある程度激しく撹拌される回転数である方が、生成する含水クラム粒径を小さく且つ均一にでき好適であり、前記下限以上とすることにより、クラム粒径が過度に大きいものと小さいものとが生成するのを抑制でき、前記上限以下とすることにより、凝固反応の制御をより容易にできる。 The stirring speed (rotation speed) of the coagulated liquid being stirred is, that is, the rotation speed of the stirring blade of the stirring device, and is not particularly limited, but is usually 100 rpm or more, preferably 200 to 1000 rpm, and more preferably 300 to 900 rpm. , Especially preferably in the range of 400 to 800 rpm. It is preferable that the rotation speed is a rotation speed in which the mixture is vigorously agitated to some extent so that the water-containing crumb particle size to be generated can be made small and uniform. The formation of and can be suppressed, and the solidification reaction can be more easily controlled by setting the content to the upper limit or less.

撹拌されている凝固液の周速は、すなわち、撹拌装置の撹拌翼の外周の速度は、格別な限定はないが、一定程度まで激しく撹拌されている方が生成する含水クラム粒径を小さく且つ均一にでき好適で、通常0.5m/s以上、好ましくは1m/s以上、より好ましくは1.5m/s以上、特に好ましくは2m/s以上最も好ましくは2.5m/s以上である。一方周速の上限値は、格別限定されるものではないが、通常50m/s以下、好ましくは30m/s以下、より好ましくは25m/s以下、最も好ましくは20m/s以下であるときに凝固反応の制御が容易になり好適である。 The peripheral speed of the coagulated liquid being agitated, that is, the speed of the outer circumference of the stirring blade of the agitating device is not particularly limited, but the water-containing crumb particle size generated by being vigorously agitated to a certain degree is smaller and It can be made uniform and is preferable, usually 0.5 m / s or more, preferably 1 m / s or more, more preferably 1.5 m / s or more, particularly preferably 2 m / s or more, and most preferably 2.5 m / s or more. On the other hand, the upper limit of the peripheral speed is not particularly limited, but usually solidifies when it is 50 m / s or less, preferably 30 m / s or less, more preferably 25 m / s or less, and most preferably 20 m / s or less. It is suitable because the reaction can be easily controlled.

凝固工程における凝固反応の上記条件(接触方法、乳化重合液の固形分濃度、凝固液の濃度及び温度、凝固液の撹拌時の回転数及び周速、など)を特定範囲にすることで、生成する含水クラムの形状及びクラム径が均一で且つ集束化され、洗浄及び脱水時の乳化剤や凝固剤の除去が格段に向上し好適である。 It is produced by setting the above conditions of the coagulation reaction in the coagulation step (contact method, solid content concentration of emulsion polymerization solution, concentration and temperature of coagulation solution, rotation speed and peripheral speed of coagulation solution during stirring, etc.) within a specific range. The shape and crumb diameter of the hydrous crumb are uniform and focused, and the removal of emulsifiers and coagulants during washing and dehydration is remarkably improved, which is suitable.

(洗浄工程)
本発明のアクリルゴムベールの製造方法における洗浄工程は、上記生成した含水クラムを水で洗浄する工程である。
(Washing process)
The cleaning step in the method for producing an acrylic rubber veil of the present invention is a step of cleaning the produced hydrous crumb with water.

洗浄方法としては、格別限定されるものでなく常法に従えばよく、例えば、生成した含水クラムを多量の水と混合して行うことができる。 The cleaning method is not particularly limited and may follow a conventional method. For example, the produced hydrous crumb can be mixed with a large amount of water.

使用する水の量としては、特に限定されないが、前記単量体成分100重量部に対して、水洗1回当たりの量が、通常50重量部以上、好ましくは50〜15,000重量部、より好ましくは100〜10,000重量部、特に好ましくは150〜5,000重量部の範囲であるときに、アクリルゴム中の灰分量を効果的に低減することができ好適である。 The amount of water used is not particularly limited, but the amount per washing with water is usually 50 parts by weight or more, preferably 50 to 15,000 parts by weight, based on 100 parts by weight of the monomer component. The amount of ash in the acrylic rubber can be effectively reduced, preferably in the range of 100 to 10,000 parts by weight, particularly preferably in the range of 150 to 5,000 parts by weight.

水洗する水の温度としては、格別限定されるものではないが、温水を使うのが好ましく、通常40℃以上、好ましくは40〜100℃、より好ましくは50〜90℃、最も好ましくは60〜80℃のときに洗浄効率を格段に上げることができ好適である。 The temperature of the water to be washed with water is not particularly limited, but it is preferable to use warm water, usually 40 ° C. or higher, preferably 40 to 100 ° C., more preferably 50 to 90 ° C., and most preferably 60 to 80 ° C. It is suitable because the cleaning efficiency can be significantly increased at ℃.

洗浄水の温度を前記下限以上とすることにより、乳化剤や凝固剤が含水クラムから遊離して洗浄効率がより向上する。 By setting the temperature of the washing water to the above lower limit or higher, the emulsifier and the coagulant are released from the water-containing crumb, and the washing efficiency is further improved.

洗浄時間としては、格別な限定はないが、通常1〜120分、好ましくは2〜60分、より好ましくは3〜30分の範囲である。 The washing time is not particularly limited, but is usually in the range of 1 to 120 minutes, preferably 2 to 60 minutes, and more preferably 3 to 30 minutes.

洗浄回数としては、特に限定されず、通常1〜10回、好ましくは複数回、より好ましくは2〜3回である。なお、最終的に得られるアクリルゴム中の凝固剤の残留量を低減するという観点からは、水洗回数が多い方が望ましいが、前記含水クラムの形状及び含水クラム径を特定にすること及び/又は洗浄温度を前記範囲にすることで洗浄回数を格段に低減できる。 The number of washings is not particularly limited, and is usually 1 to 10 times, preferably a plurality of times, and more preferably 2 to 3 times. From the viewpoint of reducing the residual amount of the coagulant in the finally obtained acrylic rubber, it is desirable that the number of times of washing with water is large, but the shape and diameter of the water-containing crumb should be specified and / or By setting the cleaning temperature within the above range, the number of cleanings can be significantly reduced.

(脱水・乾燥・成形工程)
本発明のアクリルゴムベールの製造方法における脱水・乾燥・成形工程は、上記洗浄した含水クラムを、脱水スリットを有する脱水バレルと減圧下の乾燥バレルと先端部にダイを有するスクリュー型押出機を用いて脱水バレルで含水量1〜40重量%まで脱水した後に乾燥バレルで1重量%未満まで乾燥してシート状乾燥ゴムをダイから押し出すことを特徴とする。
(Dehydration / drying / molding process)
In the dehydration / drying / molding step in the method for producing an acrylic rubber bale of the present invention, the above-cleaned water-containing crumb is subjected to a dehydration barrel having a dehydration slit, a drying barrel under reduced pressure, and a screw type extruder having a die at the tip. It is characterized by dehydrating to a water content of 1 to 40% by weight in a dehydration barrel and then drying to less than 1% by weight in a drying barrel to extrude a sheet-shaped dry rubber from a die.

本発明においては、スクリュー型押出機に供給される含水クラムは、洗浄後に遊離水を除去(水切り)したものであることが好ましい。 In the present invention, the water-containing crumb supplied to the screw type extruder is preferably one in which free water is removed (drained) after washing.

水切り工程
本発明のアクリルゴムベールの製造方法において、上記水洗工程の後及び脱水・乾燥工程の前に、洗浄後の含水クラムから水切り機で遊離水を分離する水切り工程を設けることが脱水効率を上げる上で好適である。
Draining step In the method for producing an acrylic rubber bale of the present invention, it is necessary to provide a draining step for separating free water from the water-containing crumb after washing with a draining machine after the washing step and before the dehydration / drying step to improve the dehydration efficiency. It is suitable for raising.

水切り機としては、公知のものを格別な限定なく用いることができ、例えば、金網、スクリーン、電動篩機などが挙げられ、好ましくは金網、スクリーンである。 As the drainer, a known one can be used without particular limitation, and examples thereof include a wire mesh, a screen, an electric sieve, and the like, preferably a wire mesh and a screen.

水切り機目開きは、格別限定はないが、通常0.01〜5mm、好ましくは0.1〜1mm、より好ましくは0.2〜0.6mmの範囲であるときに、含水クラム損出が少なく且つ水切りが効率的にでき好適である。 The opening of the drainer is not particularly limited, but when it is usually in the range of 0.01 to 5 mm, preferably 0.1 to 1 mm, and more preferably 0.2 to 0.6 mm, the water content crumb loss is small. Moreover, draining can be done efficiently, which is suitable.

水切り後の含水クラムの含水量、すなわち脱水・乾燥工程に投入される含水クラムの含水量は、格別限定されるものではないが、通常50〜80重量%、好ましくは50〜70重量%、より好ましくは50〜60重量%の範囲である。 The water content of the water-containing crumb after draining, that is, the water content of the water-containing crumb put into the dehydration / drying step is not particularly limited, but is usually 50 to 80% by weight, preferably 50 to 70% by weight, and more. It is preferably in the range of 50 to 60% by weight.

水切り後の含水クラムの温度、すなわち脱水・乾燥工程に投入される含水クラムの温度は、格別限定されるものではないが、通常40℃以上、好ましくは40〜100℃、より好ましくは50〜90℃、特に好ましくは55〜85℃、最も好ましくは60〜80℃の範囲であるときに、本発明のアクリルゴムのように比熱が1.5〜2.5KJ/kg・Kと高く温度を上げにくい含水クラムをスクリュー型押出機を用いて効率よく脱水・乾燥でき好適である。 The temperature of the hydrous crumb after draining, that is, the temperature of the hydrous crumb put into the dehydration / drying step is not particularly limited, but is usually 40 ° C. or higher, preferably 40 to 100 ° C., more preferably 50 to 90 ° C. When the temperature is in the range of ° C., particularly preferably 55 to 85 ° C., most preferably 60 to 80 ° C., the temperature is raised as high as 1.5 to 2.5 KJ / kg · K as in the acrylic rubber of the present invention. It is suitable because difficult hydrous crumbs can be efficiently dehydrated and dried using a screw type extruder.

含水クラムの脱水(脱水バレル部)
含水クラムの脱水は、脱水スリットを有する脱水バレルで行われる。脱水スリットの目開きは、使用条件に応じて適宜選択されればよいが、通常0.01〜5mm、好ましくは0.1〜1mm、より好ましくは0.2〜0.6mmの範囲であるときに、含水クラム損出が少なく且つ断水クラムの脱水が効率的にでき好適である。
Dehydration of hydrous crumbs (dehydration barrel)
Dehydration of the hydrous crumb is carried out in a dehydration barrel having a dehydration slit. The opening of the dehydration slit may be appropriately selected according to the conditions of use, but is usually in the range of 0.01 to 5 mm, preferably 0.1 to 1 mm, and more preferably 0.2 to 0.6 mm. In addition, it is suitable because the water-containing crumb loss is small and the water-stopping crumb can be efficiently dehydrated.

スクリュー型押出機における脱水バレルの数は、格別限定されるものではないが、通常複数個、好ましくは2〜10個、より好ましくは3〜6個であるときに粘着性のアクリルゴムの脱水を効率よく行う上で好適である。 The number of dehydration barrels in the screw extruder is not particularly limited, but usually a plurality, preferably 2 to 10, more preferably 3 to 6, is used to dehydrate the adhesive acrylic rubber. It is suitable for efficient operation.

脱水バレルにおける含水クラムからの水の除去は、脱水スリットから液状で除去するもの(排水)、蒸気状で除去するもの(排蒸気)の二通りがあるが、本発明においては、排水は脱水、排蒸気は予備乾燥と定義して区別する。 There are two ways to remove water from the water-containing crumb in the dehydration barrel: one that removes water from the dehydration slit in liquid form (drainage) and one that removes water in the form of vapor (exhaust vapor). In the present invention, the drainage is dehydrated. Exhaust steam is defined as pre-drying to distinguish it.

脱水バレルを複数個備えるスクリュー型押出機を用いて行う場合は、排水及び排蒸気を組み合わせることで粘着性アクリルゴムの排水(脱水)と含水量低下が効率よくでき好適である。脱水バレルを3個以上備えるスクリュー型押出機の排水型脱水バレルか排蒸気型脱水バレルかの選択は、使用目的に応じて適宜行えばよいが、通常製造されるアクリルゴム中の灰分量を少なくする場合は排水型バレルを多くし、例えば脱水バレルが3個ある場合は排水型バレルを2個、脱水バレルが4個ある場合は排水型バレルを3個などと適宜選択する。 When using a screw type extruder equipped with a plurality of dehydration barrels, it is preferable to combine drainage and exhaust steam because drainage (dehydration) of the adhesive acrylic rubber and reduction of water content can be efficiently performed. The selection of the drainage type dehydration barrel or the exhaust steam type dehydration barrel of the screw type extruder equipped with three or more dehydration barrels may be appropriately performed according to the purpose of use, but the amount of ash in the acrylic rubber usually produced is small. In this case, the number of drainage barrels is increased. For example, when there are three dehydration barrels, two drainage barrels are selected, and when there are four dehydration barrels, three drainage barrels are appropriately selected.

脱水バレルの設定温度は、アクリルゴムの種類、灰分量、含水量、及び操業条件などにより適宜選択されるが、通常60〜150℃、好ましくは70〜140℃、より好ましくは80〜130℃の範囲である。排水状態で脱水する脱水バレルの設定温度は、通常60℃〜120℃、好ましくは70〜110℃、より好ましくは80〜100℃である。排蒸気状態で乾燥する脱水バレルの設定温度は、通常100〜150℃、好ましくは105〜140℃、より好ましくは110〜130℃の範囲である。 The set temperature of the dehydration barrel is appropriately selected depending on the type of acrylic rubber, ash content, water content, operating conditions, etc., but is usually 60 to 150 ° C., preferably 70 to 140 ° C., more preferably 80 to 130 ° C. The range. The set temperature of the dehydration barrel for dehydrating in the drained state is usually 60 ° C. to 120 ° C., preferably 70 to 110 ° C., and more preferably 80 to 100 ° C. The set temperature of the dehydration barrel that dries in the exhausted steam state is usually in the range of 100 to 150 ° C., preferably 105 to 140 ° C., and more preferably 110 to 130 ° C.

含水クラムから水分を絞り出す排水型の脱水後の含水量としては、格別な限定はないが、通常1〜45重量%、好ましくは1〜40重量%、より好ましくは5〜35重量%、特に好ましくは10〜35重量%であるときに生産性と灰分除去効率とが高度にバランスされ好適である。 The water content after dehydration of the drainage type that squeezes water from the water-containing crumb is not particularly limited, but is usually 1 to 45% by weight, preferably 1 to 40% by weight, more preferably 5 to 35% by weight, and particularly preferably. Is preferably 10 to 35% by weight because the productivity and the ash removal efficiency are highly balanced.

粘着性のアクリルゴムの脱水は、遠心分離機などを用いて行うと脱水スリット部にアクリルゴムが付着してしまい殆ど脱水できないが(含水量は約45〜55重量%程度まで)、本発明において、脱水スリットを有しスクリューで強制的に絞られるスクリュー型押出機を用いることによりここまで含水量を低減できるようになった。 When dehydration of adhesive acrylic rubber is performed using a centrifuge or the like, the acrylic rubber adheres to the dehydration slit portion and can hardly be dehydrated (water content is up to about 45 to 55% by weight), but in the present invention. By using a screw type extruder that has a dehydration slit and is forcibly squeezed with a screw, the water content can be reduced to this extent.

排水型脱水バレルと排蒸気型脱水バレルとを備える場合の含水クラムの脱水は、排水型脱水バレル部における排水後の含水量が通常5〜45重量%、好ましくは10〜40重量%、より好ましくは15〜35重量%、排蒸気型脱水バレル部における予備乾燥後の含水量が、通常1〜30重量%、好ましくは3〜20重量%、より好ましくは5〜15重量%である。 When the drainage type dehydration barrel and the exhaust steam type dehydration barrel are provided, the water content of the water-containing crumb in the drainage type dehydration barrel portion is usually 5 to 45% by weight, preferably 10 to 40% by weight, more preferably. Is 15 to 35% by weight, and the water content after pre-drying in the exhaust steam type dehydration barrel portion is usually 1 to 30% by weight, preferably 3 to 20% by weight, and more preferably 5 to 15% by weight.

脱水後の含水量を前記下限以上とすることにより、脱水時間を短縮できてアクリルゴムの変質を抑制でき、前記上限以下とすることにより灰分量を十分に低減することができる。 By setting the water content after dehydration to be equal to or higher than the lower limit, the dehydration time can be shortened and deterioration of acrylic rubber can be suppressed, and by setting it to be lower than the upper limit, the amount of ash can be sufficiently reduced.

含水クラムの乾燥(乾燥バレル部)
上記脱水後の含水クラムの乾燥は、減圧下の乾燥バレル部で行うことを特徴とする。
Drying of hydrous crumb (dry barrel)
The hydrous crumb after dehydration is dried in a drying barrel portion under reduced pressure.

乾燥バレルの減圧度は、適宜選択されればよいが、通常1〜50kPa,好ましくは2〜30kPa、より好ましくは3〜20kPaであるときに効率よく含水クラムを乾燥でき好適である。 The degree of decompression of the drying barrel may be appropriately selected, but it is preferable that the hydrous crumb can be efficiently dried when it is usually 1 to 50 kPa, preferably 2 to 30 kPa, and more preferably 3 to 20 kPa.

乾燥バレルの設定温度は、適宜選択されればよいが、通常100〜250℃、好ましくは110〜200℃、より好ましくは120〜180℃の範囲であるときに、アクリルゴムのヤケや変質がなく効率よく乾燥ができ且つアクリルゴムのゲル量を低減でき好適である。 The set temperature of the drying barrel may be appropriately selected, but when it is usually in the range of 100 to 250 ° C., preferably 110 to 200 ° C., more preferably 120 to 180 ° C., there is no discoloration or deterioration of the acrylic rubber. It is suitable because it can be dried efficiently and the amount of acrylic rubber gel can be reduced.

スクリュー型押出機における乾燥バレルの数は、格別限定されるものではないが、通常複数個、好ましくは2〜10個、より好ましくは3〜8個である。乾燥バレルが複数個有する場合の減圧度は、全ての乾燥バレルで近似した減圧度にしてもよいし、変えてもよい。乾燥バレルが複数個有する場合の設定温度は、全ての乾燥バレルで近似した温度にしてもよいし変えてもよいが、導入部(脱水バレルに近い方)の温度よりも排出部(ダイに近い方)の温度の方が高くするのが乾燥効率を上げることができ好適である。 The number of drying barrels in the screw type extruder is not particularly limited, but is usually a plurality, preferably 2 to 10 barrels, and more preferably 3 to 8 barrels. When there are a plurality of dry barrels, the degree of decompression may be an approximate degree of decompression for all the dry barrels, or may be changed. When there are multiple drying barrels, the set temperature may be an approximate temperature for all the drying barrels or may be changed, but it is closer to the discharge part (closer to the die) than the temperature of the introduction part (closer to the dehydration barrel). It is preferable that the temperature of (1) is higher because the drying efficiency can be increased.

乾燥後の乾燥ゴムの含水量は、通常1重量%未満、好ましくは0.8重量%以下、より好ましくは0.6重量%以下である。本発明においては、特にスクリュー型押出機内で乾燥ゴムの含水量がこの値(殆ど水が除去された状態)にして溶融押出しされることがアクリルゴムベールのゲル量を低減でき好適である。 The water content of the dried rubber after drying is usually less than 1% by weight, preferably 0.8% by weight or less, and more preferably 0.6% by weight or less. In the present invention, it is particularly preferable that the water content of the dried rubber is set to this value (in a state where almost all water is removed) and melt-extruded in the screw type extruder because the gel amount of the acrylic rubber veil can be reduced.

アクリルゴムの形状(ダイ部)
上記脱水バレル及び乾燥バレルのスクリュー部で脱水・乾燥されたアクリルゴムは、スクリューの無い整流のダイ部に送られる。スクリュー部とダイ部の間には、ブレーカープレートや金網を設けてもよいし、設けなくてもよい。
Acrylic rubber shape (die part)
The acrylic rubber dehydrated and dried by the screw portion of the dehydration barrel and the drying barrel is sent to the rectifying die portion without a screw. A breaker plate or wire mesh may or may not be provided between the screw portion and the die portion.

押出される乾燥ゴムは、ダイ形状を略長方形状にしてシート状に出すことにより空気の巻き込みが少なく比重の大きい保存安定性に優れる乾燥ゴムが得られ好適である。 The extruded dry rubber is suitable because the die shape is made substantially rectangular and the die is formed into a sheet, so that air entrainment is small, the specific gravity is large, and the dry rubber is excellent in storage stability.

ダイ部における樹脂圧は、格別限定されないが、通常0.1〜10MPa、好ましくは0.5〜5MPa、より好ましくは1〜3MPaの範囲としたときに、空気の巻き込みが少なく(比重が高く)且つ生産性に優れ好適である。 The resin pressure in the die portion is not particularly limited, but when it is usually in the range of 0.1 to 10 MPa, preferably 0.5 to 5 MPa, more preferably 1 to 3 MPa, there is little air entrainment (high specific gravity). Moreover, it is excellent in productivity and suitable.

スクリュー型押出機及び操業条件
使用されるスクリュー型押出機のスクリュー長(L)は、使用目的に応じて適宜選択されればよいが、通常3000〜15000mm、好ましくは4000〜10000mm、より好ましくは4500〜8000mmの範囲である。
Screw-type extruder and operating conditions The screw length (L) of the screw-type extruder used may be appropriately selected according to the purpose of use, but is usually 3000 to 15000 mm, preferably 4000 to 10000 mm, and more preferably 4500. The range is ~ 8000 mm.

使用されるスクリュー型押出機のスクリュー径(D)は、使用目的に応じて適宜選択されればよいが、通常50〜250mm、好ましくは100〜200mm、より好ましくは120〜160mmの範囲である。 The screw diameter (D) of the screw type extruder used may be appropriately selected depending on the intended use, but is usually in the range of 50 to 250 mm, preferably 100 to 200 mm, and more preferably 120 to 160 mm.

使用されるスクリュー型押出機のスクリュー長(L)とスクリュー径(D)との比(L/D)は、格別限定されるものではないが、通常10〜100、好ましくは20〜80、より好ましくは30〜60の範囲であるときに乾燥ゴムの分子量低下や焼けを起こさずに含水量を1重量%未満に出来好適である。 The ratio (L / D) of the screw length (L) to the screw diameter (D) of the screw type extruder used is not particularly limited, but is usually 10 to 100, preferably 20 to 80. It is preferable that the water content is less than 1% by weight without lowering the molecular weight or burning of the dried rubber when it is in the range of 30 to 60.

使用されるスクリュー型押出機の回転数(N)は、諸条件に応じて適宜選択されればよいが、通常10〜1000rpm、好ましくは50〜750rpm、より好ましくは100〜500rpm、最も好ましくは120〜300rpmであるときに、アクリルゴムの含水量とゲル量を効率よく低減でき好適である。 The rotation speed (N) of the screw type extruder used may be appropriately selected according to various conditions, but is usually 10 to 1000 rpm, preferably 50 to 750 rpm, more preferably 100 to 500 rpm, and most preferably 120. At ~ 300 rpm, the water content and gel amount of acrylic rubber can be efficiently reduced, which is preferable.

使用されるスクリュー型押出機の押出量(Q)は、格別限定されないが、通常100〜1,500kg/hr、好ましくは300〜1200kg/hr、より好ましくは400〜1000kg/hr、最も好ましくは500〜800kg/hrの範囲である。 The extrusion amount (Q) of the screw type extruder used is not particularly limited, but is usually 100 to 1,500 kg / hr, preferably 300 to 1200 kg / hr, more preferably 400 to 1000 kg / hr, and most preferably 500. It is in the range of ~ 800 kg / hr.

使用されるスクリュー型押出機の押出量(Q)と回転数(N)の比(Q/N)は、格別限定されるものではないが、通常2〜10、好ましくは3〜8、より好ましくは4〜6の範囲である。 The ratio (Q / N) of the extrusion amount (Q) to the rotation speed (N) of the screw type extruder used is not particularly limited, but is usually 2 to 10, preferably 3 to 8, more preferably. Is in the range of 4-6.

シート状乾燥ゴム
スクリュー型押出機から押し出される乾燥ゴムの形状は、シート状であり、この時に空気の巻き込きこまず比重を大きくでき保存安定性が高度に改善され好適である。スクリュー型押出機から押し出されるシート状乾燥ゴムは、通常、冷却され切断されてアクリルゴムシートとして使用される。
Sheet-shaped dry rubber The shape of the dry rubber extruded from the screw-type extruder is sheet-like, and at this time, the specific gravity can be increased without entraining air, and the storage stability is highly improved, which is suitable. The sheet-shaped dry rubber extruded from the screw type extruder is usually cooled and cut to be used as an acrylic rubber sheet.

スクリュー型押出機から押し出されるシート状乾燥ゴムの厚さは、格別な限定はないが、通常1〜40mm、好ましくは2〜35mm、より好ましくは3〜30mm、最も好ましくは5〜25mmの範囲であるときに作業性、生産性に優れ好適である。特にシート状乾燥ゴムの熱伝導度が0.15〜0.35W/mKと低いために冷却効率を上げ生産性を格段に向上させる場合のシート状乾燥ゴムの厚さは、通常1〜30mm、好ましくは2〜25mm、より好ましくは3〜15mm、特に好ましくは4〜12mmの範囲である。 The thickness of the sheet-shaped dry rubber extruded from the screw type extruder is not particularly limited, but is usually in the range of 1 to 40 mm, preferably 2 to 35 mm, more preferably 3 to 30 mm, and most preferably 5 to 25 mm. It is suitable because it has excellent workability and productivity at some time. In particular, since the thermal conductivity of the sheet-shaped dry rubber is as low as 0.15 to 0.35 W / mK, the thickness of the sheet-shaped dry rubber is usually 1 to 30 mm when the cooling efficiency is increased and the productivity is remarkably improved. The range is preferably 2 to 25 mm, more preferably 3 to 15 mm, and particularly preferably 4 to 12 mm.

スクリュー型押出機から押し出されるシート状乾燥ゴムの幅は、使用目的に応じて適宜選択されるが、通常300〜1200mm、好ましくは400〜1000mm、より好ましくは500〜800mmの範囲である。 The width of the sheet-shaped dry rubber extruded from the screw type extruder is appropriately selected depending on the intended use, but is usually in the range of 300 to 1200 mm, preferably 400 to 1000 mm, and more preferably 500 to 800 mm.

スクリュー型押出機から押し出される乾燥ゴムの温度は、格別限定されるものではないが、通常100〜200℃、好ましくは110〜180℃、より好ましくは120〜160℃の範囲である。 The temperature of the dry rubber extruded from the screw type extruder is not particularly limited, but is usually in the range of 100 to 200 ° C., preferably 110 to 180 ° C., and more preferably 120 to 160 ° C.

スクリュー型押出機から押し出される乾燥ゴムの含水量は、1重量%未満、好ましくは0.8重量%以下、より好ましくは0.6重量%以下である。 The water content of the dry rubber extruded from the screw type extruder is less than 1% by weight, preferably 0.8% by weight or less, and more preferably 0.6% by weight or less.

スクリュー型押出機から押し出されるシート状乾燥ゴムの100℃における複素粘性率([η]100℃)は、格別限定されるものではないが、通常1,500〜6,000Pa・s、好ましくは2,000〜5,000Pa・s、より好ましくは2,500〜4,000Pa・s、最も好ましくは2,500〜3,500Pa・sの範囲であるときに、シートとしての押出性と形状保持性とが高度にバランスされ好適である。すなわち、下限以上とすることにより押出性により優れるものとでき、上限以下とすることによりシート状乾燥ゴムの形状の崩れや破断を抑制できる。 The complex viscosity ([η] 100 ° C.) of the sheet-shaped dry rubber extruded from the screw type extruder at 100 ° C. is not particularly limited, but is usually 1,500 to 6,000 Pa · s, preferably 2. Extrudability and shape retention as a sheet when it is in the range of 5,000 to 5,000 Pa · s, more preferably 2,500 to 4,000 Pa · s, and most preferably 2,500 to 3,500 Pa · s. Is highly balanced and suitable. That is, when it is set to the lower limit or more, the extrudability can be improved, and when it is set to the upper limit or less, the shape of the sheet-shaped dried rubber can be suppressed from collapsing or breaking.

本発明においては、スクリュー型押出機から押し出されたシート状乾燥ゴムは、切断後に積層してベール化するのが巻き込む空気量も少なく保存安定性に優れ好適である。シート状乾燥ゴムの切断は、格別な限定はないが、本発明のアクリルゴムベールのアクリルゴムは粘着性が強いことから、空気を巻き込まずに連続的に切断するために、シート状乾燥ゴムを冷却してから行うのが好ましい。 In the present invention, the sheet-shaped dry rubber extruded from the screw type extruder is suitable because it is laminated after cutting and veiled because the amount of air involved is small and the storage stability is excellent. The cutting of the sheet-shaped dry rubber is not particularly limited, but since the acrylic rubber of the acrylic rubber veil of the present invention has strong adhesiveness, the sheet-shaped dry rubber is used for continuous cutting without entraining air. It is preferable to cool it down.

シート状乾燥ゴムの切断温度は、格別な限定はないが、通常60℃以下、好ましくは55℃以下、より好ましくは50℃以下であるときに、切断性と生産性とが高度にバランスされ好適である。 The cutting temperature of the sheet-shaped dry rubber is not particularly limited, but when it is usually 60 ° C. or lower, preferably 55 ° C. or lower, more preferably 50 ° C. or lower, the cutability and productivity are highly balanced and preferable. Is.

シート状乾燥ゴムの60℃における複素粘性率([η]60℃)は、格別限定されるものではないが、通常15,000Pa・s以下、好ましくは2,000〜10,000Pa・s、より好ましくは2,500〜7,000Pa・s、最も好ましくは2,700〜5,500Pa・sの範囲にあるときに空気を巻き込まずに且つ連続的に切断ができ好適である。 The complex viscosity ([η] 60 ° C.) of the sheet-shaped dry rubber at 60 ° C. is not particularly limited, but is usually 15,000 Pa · s or less, preferably 2,000 to 10,000 Pa · s. When it is preferably in the range of 2,500 to 7,000 Pa · s, most preferably 2,700 to 5,500 Pa · s, it is preferable that it can be cut continuously without entraining air.

シート状乾燥ゴムの100℃における複素粘性率([η]100℃)と60℃における複素粘性率([η]60℃)との比([η]100℃/[η]60℃)は、格別限定はないが、通常0.5以上、好ましくは0.5〜0.98、より好ましくは0.6〜0.95、最も好ましくは0.75〜0.93の範囲であるときに空気巻き込み性が少なく、且つ切断と生産性が高度にバランスされ好適である。 The ratio of the complex viscosity at 100 ° C. ([η] 100 ° C.) to the complex viscosity at 60 ° C. ([η] 60 ° C.) ([η] 100 ° C./[η] 60 ° C.) of the sheet-shaped dry rubber is Although there is no particular limitation, air is usually in the range of 0.5 or more, preferably 0.5 to 0.98, more preferably 0.6 to 0.95, and most preferably 0.75 to 0.93. It is suitable because it has low entanglement and has a high balance between cutting and productivity.

シート状乾燥ゴムの冷却方法としては、格別限定はなく室温に放置してもよいが、シート状乾燥ゴムの熱伝導度が0.15〜0.35W/mKと非常に小さいために、送風あるいは冷房下での空冷方式、水を吹き付ける水かけ方式、水中に浸漬する浸漬方式などの強制冷却が生産性を上げるために好ましく、特に送風あるいは冷下での空冷方式が好適である。 The method for cooling the sheet-shaped dry rubber is not particularly limited and may be left at room temperature. However, since the thermal conductivity of the sheet-shaped dry rubber is very small, 0.15 to 0.35 W / mK, it is blown or blown. Forced cooling such as an air cooling method under cooling, a water spraying method in which water is sprayed, or an immersion method in which water is immersed is preferable in order to increase productivity, and an air cooling method in which air is blown or cooled is particularly preferable.

シート状乾燥ゴムの空冷方式では、例えば、スクリュー型押出機からベルトコンベアなどの搬送機上にシート状乾燥ゴムを押し出し、冷風を吹き付ける中で搬送し冷却することができる。冷風の温度は、格別限定されるものではないが、通常0〜25℃、好ましくは5〜25℃、より好ましくは10〜20℃の範囲である。冷却される長さは、格別限定はないが、通常5〜500m、好ましくは10〜200m、より好ましくは20〜100mの範囲である。シート状乾燥ゴムの冷却速度は、格別限定されるものではないが、通常50℃/hr以上、より好ましくは100℃/hr以上、より好ましくは150℃/hr以上であるときに切断が特に容易になり好適である。 In the air-cooled method of sheet-shaped dry rubber, for example, the sheet-shaped dry rubber can be extruded from a screw-type extruder onto a conveyor such as a belt conveyor, and can be conveyed and cooled while blowing cold air. The temperature of the cold air is not particularly limited, but is usually in the range of 0 to 25 ° C, preferably 5 to 25 ° C, and more preferably 10 to 20 ° C. The length to be cooled is not particularly limited, but is usually in the range of 5 to 500 m, preferably 10 to 200 m, and more preferably 20 to 100 m. The cooling rate of the sheet-shaped dry rubber is not particularly limited, but it is particularly easy to cut when it is usually 50 ° C./hr or more, more preferably 100 ° C./hr or more, and more preferably 150 ° C./hr or more. It is suitable.

シート状乾燥ゴムの切断長さは、格別な限定はなく製造するアクリルゴムベールの大きさに合わせて適宜選択すればよいが、通常100〜800mm、好ましくは200〜500mm、より好ましくは250〜450mmの範囲である。 The cutting length of the sheet-shaped dry rubber is not particularly limited and may be appropriately selected according to the size of the acrylic rubber bale to be manufactured, but is usually 100 to 800 mm, preferably 200 to 500 mm, more preferably 250 to 450 mm. Is the range of.

(ベール化工程)
本発明のアクリルゴムベールの製造方法におけるベール化工程は、上記シート状乾燥ゴムを積層してベール化するものである。
(Veiling process)
The bale step in the method for producing an acrylic rubber veil of the present invention is to laminate the above sheet-shaped dry rubber to make a veil.

シート状乾燥ゴムの積層温度は、格別限定はないが、通常30℃以上、好ましくは35℃以上、より好ましくは40℃以上であるときに積層時に巻き込まれる空気を逃がすことができ好適である。積層枚数は、アクリルゴムベールの大きさあるいは重さに応じて適宜選択されればよい。 The laminating temperature of the sheet-shaped dry rubber is not particularly limited, but is preferably 30 ° C. or higher, preferably 35 ° C. or higher, more preferably 40 ° C. or higher, because air entrained during laminating can escape. The number of laminated layers may be appropriately selected according to the size or weight of the acrylic rubber veil.

かくして得られる本発明のアクリルゴムベールは、クラム状アクリルゴムに比べ操作性や保存安定性に優れ、アクリルゴムベールをそのまま、あるいは必要量を切断してバンバリー、ロールなどの混合機に投入して用いることができる。 The acrylic rubber veil of the present invention thus obtained has excellent operability and storage stability as compared with crumb-shaped acrylic rubber, and the acrylic rubber veil can be used as it is or cut into a required amount and put into a mixer such as a vanbury or roll. Can be used.

<ゴム混合物>
本発明のゴム混合物は、前記アクリルゴムベールに、充填剤、架橋剤を混合してなることを特徴とする。
<Rubber mixture>
The rubber mixture of the present invention is characterized in that the acrylic rubber veil is mixed with a filler and a cross-linking agent.

充填剤としては、格別な限定はないが、例えば、補強性充填剤、非補強性充填剤などが挙げられ、好ましくは補強性充填剤である。 The filler is not particularly limited, and examples thereof include a reinforcing filler and a non-reinforcing filler, and a reinforcing filler is preferable.

補強性充填剤としては、例えば、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、及びグラファイトなどのカーボンブラック;湿式シリカ、乾式シリカ、コロイダルシリカなどのシリカ;などを挙げることができる。非補強性充填剤としては、石英粉末、ケイソウ土、亜鉛華、塩基性炭酸マグネシウム、活性炭酸カルシウム、ケイ酸マグネシウム、ケイ酸アルミニウム、二酸化チタン、タルク、硫酸アルミニウム、硫酸カルシウム、硫酸バリウムなどを挙げることができる。 Examples of the reinforcing filler include carbon black such as furnace black, acetylene black, thermal black, channel black, and graphite; silica such as wet silica, dry silica, and colloidal silica; and the like. Examples of the non-reinforcing filler include quartz powder, silica soil, zinc oxide, basic magnesium carbonate, active calcium carbonate, magnesium silicate, aluminum silicate, titanium dioxide, talc, aluminum sulfate, calcium sulfate, barium sulfate and the like. be able to.

これらの充填剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができ、その配合量は、本発明の効果を損ねない範囲で適宜選択され、アクリルゴムベール100重量部に対して、通常1〜200重量部、好ましくは10〜150重量部、より好ましくは20〜100重量部の範囲である。 Each of these fillers can be used alone or in combination of two or more, and the blending amount thereof is appropriately selected within a range that does not impair the effect of the present invention, with respect to 100 parts by weight of the acrylic rubber veil. It is usually in the range of 1 to 200 parts by weight, preferably 10 to 150 parts by weight, and more preferably 20 to 100 parts by weight.

架橋剤としては、アクリルゴムベールを構成するアクリルゴムに含有される反応性基の種類や用途に応じて適宜選択されればよいが、アクリルゴムベールを架橋できるものであれば格別限定はされず、例えば、ジアミン化合物などの多価アミン化合物、及びその炭酸塩;硫黄化合物;硫黄供与体;トリアジンチオール化合物;多価エポキシ化合物;有機カルボン酸アンモニウム塩;有機過酸化物;多価カルボン酸;四級オニウム塩;イミダゾール化合物;イソシアヌル酸化合物;有機過酸化物;トリアジン化合物;などの従来公知の架橋剤を用いることができる。これらの中でも、多価アミン化合物、カルボン酸アンモニウム塩、ジチオカルバミン酸金属塩及びトリアジンチオール化合物が好ましく、ヘキサメチレンジアミンカーバメート、2,2'−ビス〔4−(4−アミノフェノキシ)フェニル〕プロパン、安息香酸アンモニウム、2,4,6−トリメルカプト−1,3,5−トリアジンが特に好ましい。 The cross-linking agent may be appropriately selected according to the type and application of the reactive group contained in the acrylic rubber constituting the acrylic rubber bale, but is not particularly limited as long as it can cross-link the acrylic rubber bale. , For example, polyvalent amine compounds such as diamine compounds, and carbonates thereof; sulfur compounds; sulfur donors; triazinethiol compounds; polyvalent epoxy compounds; ammonium organic carboxylates; organic peroxides; polyvalent carboxylic acids; Conventionally known cross-linking agents such as a secondary onium salt; an imidazole compound; an isocyanuric acid compound; an organic peroxide; and a triazine compound; can be used. Among these, polyvalent amine compounds, ammonium carboxylates, metal dithiocarbamic acid salts and triazinethiol compounds are preferable, hexamethylenediamine carbamate, 2,2'-bis [4- (4-aminophenoxy) phenyl] propane, and benzoate. Ammonium acid, 2,4,6-trimercapto-1,3,5-triazine is particularly preferred.

使用するアクリルゴムベールがカルボキシル基含有アクリルゴムで構成される場合は、架橋剤として、多価アミン化合物、及びその炭酸塩を用いることが好ましい。多価アミン化合物としては、例えば、ヘキサメチレンジアミン、ヘキサメチレンジアミンカーバメート、N,N'−ジシンナミリデン−1,6−ヘキサンジアミンなどの脂肪族多価アミン化合物;4,4'−メチレンジアニリン、p−フェニレンジアミン、m−フェニレンジアミン、4,4'−ジアミノジフェニルエーテル、3,4'−ジアミノジフェニルエーテル、4,4'−(m−フェニレンジイソプロピリデン)ジアニリン、4,4'−(p−フェニレンジイソプロピリデン)ジアニリン、2,2'−ビス〔4−(4−アミノフェノキシ)フェニル〕プロパン、4,4'−ジアミノベンズアニリド、4,4'−ビス(4−アミノフェノキシ)ビフェニル、m−キシリレンジアミン、p−キシリレンジアミン、1,3,5−ベンゼントリアミンなどの芳香族多価アミン化合物;などが挙げられる。これらの中でも、ヘキサメチレンジアミンカーバメート、2,2'−ビス〔4−(4−アミノフェノキシ)フェニル〕プロパンなどが好ましい。 When the acrylic rubber veil to be used is composed of a carboxyl group-containing acrylic rubber, it is preferable to use a polyvalent amine compound and a carbonate thereof as a cross-linking agent. Examples of the polyvalent amine compound include aliphatic polyvalent amine compounds such as hexamethylenediamine, hexamethylenediamine carbamate, and N, N'-dicinnamylidene-1,6-hexanediamine; 4,4'-methylenedianiline, p. -Phenylenediamine, m-Phenylenediamine, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-(m-Phenylenediisopropyridene) dianiline, 4,4'-(p-phenylenedi) Isopropylidene) dianiline, 2,2'-bis [4- (4-aminophenoxy) phenyl] propane, 4,4'-diaminobenzanilide, 4,4'-bis (4-aminophenoxy) biphenyl, m-xyli Aromatic polyvalent amine compounds such as rangeamine, p-xylylenediamine, 1,3,5-benzenetriamine; and the like. Among these, hexamethylenediamine carbamate, 2,2'-bis [4- (4-aminophenoxy) phenyl] propane and the like are preferable.

使用するアクリルゴムベールがエポキシ基含有アクリルゴムで構成される場合は、架橋剤として、ヘキサメチレンジアミン、ヘキサメチレンジアミンカーバメートなどの脂肪族多価アミン化合物、及びその炭酸塩;4,4'−メチレンジアニリンなどの芳香族多価アミン化合物;安息香酸アンモニウム、アジピン酸アンモニウムなそのカルボン酸アンモニウム塩;ジメチルジチオカルバミン酸亜鉛などのジチオカルバミン酸金属塩;テトラデカン二酸などの多価カルボン酸;セチルトリメチルアンモニウムブロマイドなどの四級オニウム塩;2−メチルイミダゾールなどのイミダゾール化合物;イソシアヌル酸アンモニウムなどのイソシアヌル酸化合物;などを用いることができ、これらの中でもカルボン酸アンモニウム塩及びジチオカルバミン酸金属塩が好ましく、安息香酸アンモニウムがより好ましい。 When the acrylic rubber veil to be used is composed of an epoxy group-containing acrylic rubber, the cross-linking agent is an aliphatic polyvalent amine compound such as hexamethylenediamine or hexamethylenediamine carbamate, and a carbonate thereof; 4,4'-methylene. Aromatic polyvalent amine compounds such as dianiline; ammonium carboxylic acid salts such as ammonium benzoate and ammonium adipate; metal dithiocarbamic acid salts such as zinc dimethyldithiocarbamate; polyvalent carboxylic acids such as tetradecanodic acid; cetyltrimethylammonium bromide Tertiary onium salts such as; imidazole compounds such as 2-methylimidazole; isocyanuric acid compounds such as ammonium isocyanurate; among these, ammonium carboxylic acid salt and metal dithiocarbamate salt are preferable, and ammonium benzoate is preferable. Is more preferable.

使用するアクリルゴムベールがハロゲン原子含有アクリルゴムで構成される場合は、架橋剤として、硫黄、硫黄供与体、トリアジンチオール化合物を用いることが好ましい。硫黄供与体としては、例えば、ジペンタメチレンチウラムヘキササルファイド、トリエチルチウラムジサルファイドなどが挙げられる。トリアジン化合物としては、例えば、6−トリメルカプト−s−トリアジン、2−アニリノ−4,6−ジチオール−s−トリアジン、1−ジブチルアミノ−3,5−ジメルカプトトリアジン、2−ジブチルアミノ−4,6−ジチオール−s−トリアジン、1−フェニルアミノ−3,5−ジメルカプトトリアジン、2,4,6−トリメルカプト−1,3,5−トリアジン、1−ヘキシルアミノ−3,5−ジメルカプトトリアジンなどが挙げられ、これらの中でも、2,4,6−トリメルカプト−1,3,5−トリアジンが好ましい。 When the acrylic rubber veil to be used is composed of a halogen atom-containing acrylic rubber, it is preferable to use sulfur, a sulfur donor, or a triazine thiol compound as a cross-linking agent. Examples of the sulfur donor include dipentamethylene thiuram hexasulfide and triethyl thiuram disulfide. Examples of the triazine compound include 6-trimercapto-s-triazine, 2-anilino-4,6-dithiol-s-triazine, 1-dibutylamino-3,5-dimercaptotriazine, 2-dibutylamino-4, 6-Dithiol-s-Triazine, 1-Phenylamino-3,5-Dimercaptotriazine, 2,4,6-Trimercapto-1,3,5-Triazine, 1-Hexylamino-3,5-Dimercaptotriazine Among these, 2,4,6-trimercapto-1,3,5-triazine is preferable.

これらの架橋剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができ、その配合量は、アクリルゴムベール100重量部に対し、通常0.001〜20重量部、好ましくは0.1〜10重量部、より好ましくは0.1〜5重量部である。架橋剤の配合量をこの範囲とすることにより、ゴム弾性を充分なものとしながら、ゴム架橋物としての機械的強度を優れたものとすることができ好適である。 Each of these cross-linking agents can be used alone or in combination of two or more, and the blending amount thereof is usually 0.001 to 20 parts by weight, preferably 0.1 parts by weight, based on 100 parts by weight of the acrylic rubber veil. It is 10 parts by weight, more preferably 0.1 to 5 parts by weight. By setting the blending amount of the cross-linking agent within this range, it is possible to make the mechanical strength of the rubber cross-linked product excellent while making the rubber elasticity sufficient, which is preferable.

本発明のゴム混合物は、必要に応じて前記アクリルゴムベール以外のその他のゴム成分を用いることができる。 In the rubber mixture of the present invention, other rubber components other than the acrylic rubber veil can be used, if necessary.

必要に応じて使用されるその他のゴム成分としては、格別な限定はなく、例えば、天然ゴム、ポリブタジエンゴム、ポリイソプレンゴム、スチレン−ブタジエンゴム、アクリロニトリル−ブタジエンゴム、シリコンゴム、フッ素ゴム、オレフィン系エラストマー、スチレン系エラストマー、塩化ビニル系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、ポリウレタン系エラストマー、ポリシロキサン系エラストマーなどを挙げることができる。その他のゴム成分の形状は、格別限定されるものではなく、例えば、クラム状、シート状、ベール状などいずれでもよい。 Other rubber components used as needed are not particularly limited, for example, natural rubber, polybutadiene rubber, polyisoprene rubber, styrene-butadiene rubber, acrylonitrile-butadiene rubber, silicon rubber, fluororubber, olefin-based. Examples thereof include elastomers, styrene-based elastomers, vinyl chloride-based elastomers, polyester-based elastomers, polyamide-based elastomers, polyurethane-based elastomers, and polysiloxane-based elastomers. The shape of the other rubber components is not particularly limited, and may be, for example, a crumb shape, a sheet shape, a veil shape, or the like.

これらのその他のゴム成分は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。これらのその他のゴム成分の使用量は、本発明の効果を損ねない範囲で適宜選択される。 These other rubber components can be used alone or in combination of two or more. The amount of these other rubber components used is appropriately selected within a range that does not impair the effects of the present invention.

本発明のゴム混合物は、必要に応じて老化防止剤を配合することができる。老化防止剤としては、特に限定されないが、2,6−ジ−t−ブチル−4−メチルフェノール、2,6−ジ−t−ブチルフェノール、ブチルヒドロキシアニソール、2,6−ジ−t−ブチル−α−ジメチルアミノ−p−クレゾール、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、スチレン化フェノール、2,2'−メチレン−ビス(6−α−メチル−ベンジル−p−クレゾール)、4,4'−メチレンビス(2,6−ジ−t−ブチルフェノール)、2,2'−メチレン−ビス(4−メチル−6−t−ブチルフェノール)、2,4−ビス[(オクチルチオ)メチル]−6−メチルフェノール、2,2'−チオビス−(4−メチル−6−t−ブチルフェノール)、4,4'−チオビス−(6−t−ブチル−o−クレゾール)、2,6−ジ−t−ブチル−4−(4,6−ビス(オクチルチオ)−1,3,5−トリアジン−2−イルアミノ)フェノールなどのその他のフェノール系老化防止剤;トリス(ノニルフェニル)ホスファイト、ジフェニルイソデシルホスファイト、テトラフェニルジプロピレングリコール・ジホスファイトなどの亜燐酸エステル系老化防止剤;チオジプロピオン酸ジラウリルなどの硫黄エステル系老化防止剤;フェニル−α−ナフチルアミン、フェニル−β−ナフチルアミン、p−(p−トルエンスルホニルアミド)−ジフェニルアミン、4,4'―(α,α−ジメチルベンジル)ジフェニルアミン、N,N−ジフェニル−p−フェニレンジアミン、N−イソプロピル−N'−フェニル−p−フェニレンジアミン、ブチルアルデヒド−アニリン縮合物などのアミン系老化防止剤;2−メルカプトベンズイミダゾールなどのイミダゾール系老化防止剤;6−エトキシ−2,2,4−トリメチル−1,2−ジヒドロキノリンなどのキノリン系老化防止剤;2,5−ジ−(t−アミル)ハイドロキノンなどのハイドロキノン系老化防止剤;などが挙げられる。これらの中でも特に、アミン系老化防止剤が好ましい。 The rubber mixture of the present invention can be blended with an anti-aging agent, if necessary. The anti-aging agent is not particularly limited, but is 2,6-di-t-butyl-4-methylphenol, 2,6-di-t-butylphenol, butylhydroxyanisole, 2,6-di-t-butyl-. α-Dimethylamino-p-cresol, octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, styrenated phenol, 2,2'-methylene-bis (6-α-methyl-) Benzyl-p-cresol), 4,4'-methylenebis (2,6-di-t-butylphenol), 2,2'-methylene-bis (4-methyl-6-t-butylphenol), 2,4-bis [(Octylthio) Methyl] -6-methylphenol, 2,2'-thiobis- (4-methyl-6-t-butylphenol), 4,4'-thiobis- (6-t-butyl-o-cresol), Other phenolic antioxidants such as 2,6-di-t-butyl-4- (4,6-bis (octylthio) -1,3,5-triazine-2-ylamino) phenol; tris (nonylphenyl) Phenolic acid ester anti-aging agents such as phosphite, diphenylisodecylphosphite, tetraphenyldipropylene glycol diphosphite; sulfur ester anti-aging agents such as dilauryl thiodipropionate; phenyl-α-naphthylamine, phenyl-β- Naftylamine, p- (p-toluenesulfonylamide) -diphenylamine, 4,4'-(α, α-dimethylbenzyl) diphenylamine, N, N-diphenyl-p-phenylenediamine, N-isopropyl-N'-phenyl-p -Amine-based antioxidants such as phenylenediamine, butylaldehyde-aniline condensate; imidazole-based antioxidants such as 2-mercaptobenzimidazole; 6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinolin, etc. Kinolin-based anti-aging agents; hydroquinone-based anti-aging agents such as 2,5-di- (t-amyl) hydroquinone; and the like. Of these, amine-based anti-aging agents are particularly preferable.

これらの老化防止剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができ、その配合量は、アクリルゴムベール100重量部に対して、0.01〜15重量部、好ましくは0.1〜10重量部、より好ましくは1〜5重量部の範囲である。 These anti-aging agents can be used alone or in combination of two or more, and the blending amount thereof is 0.01 to 15 parts by weight, preferably 0.% by weight, based on 100 parts by weight of the acrylic rubber veil. It is in the range of 1 to 10 parts by weight, more preferably 1 to 5 parts by weight.

本発明のゴム混合物は、上記本発明のアクリルゴムベール、充填剤、架橋剤及び必要に応じてその他のゴム成分や老化防止剤を含み、更に、必要に応じて当該技術分野で通常使用される他の添加剤、例えば、架橋助剤、架橋促進剤、架橋遅延剤、シランカップリング剤、可塑剤、加工助剤、滑材、顔料、着色剤、帯電防止剤、発泡剤などを任意に配合できる。これらのその他の配合剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができ、その配合量は、本発明の効果を損ねない範囲で適宜選択される。 The rubber mixture of the present invention contains the acrylic rubber veil of the present invention, a filler, a cross-linking agent and, if necessary, other rubber components and an anti-aging agent, and is usually used in the art as necessary. Optional blending of other additives such as cross-linking aids, cross-linking accelerators, cross-linking retarders, silane coupling agents, plasticizers, processing aids, rubbers, pigments, colorants, antistatic agents, foaming agents, etc. it can. These other compounding agents can be used alone or in combination of two or more, and the compounding amount thereof is appropriately selected within a range that does not impair the effects of the present invention.

<ゴム混合物の製造方法>
本発明のゴム混合物の製造方法としては、本発明のアクリルゴムベールに、前記充填剤、架橋剤及び必要に応じて含有できる前記その他のゴム成分、老化防止剤及びその他の配合剤を混合する方法が挙げられ、混合には、従来ゴム加工分野において利用されている任意の手段、例えば、オープンロール、バンバリーミキサー、各種ニーダー類などを利用することができる。すなわち、これらの混合機を用いて、アクリルゴムベールと、前記充填剤、架橋剤などを直接混合、好ましくは直接混錬することにより混合できる。
<Manufacturing method of rubber mixture>
As a method for producing a rubber mixture of the present invention, the acrylic rubber veil of the present invention is mixed with the filler, a cross-linking agent and other rubber components, an antiaging agent and other compounding agents which can be contained if necessary. For the mixing, any means conventionally used in the rubber processing field, for example, an open roll, a Banbury mixer, various kneaders and the like can be used. That is, using these mixers, the acrylic rubber veil can be mixed by directly mixing the filler, the cross-linking agent and the like, preferably by directly kneading.

その場合において、アクリルゴムベールは、得られたベールをそのままでも、分割(切断など)して用いてもよい。 In that case, the acrylic rubber bale may be used as it is or after being divided (cut or the like).

各成分の混合手順は、格別な限定はないが、例えば、熱で反応や分解しにくい成分を充分に混合した後、熱で反応や分解しやすい成分である架橋剤などを反応や分解が起こらない温度で短時間に混合する二段階混合が好ましい。具体的には、1段目にアクリルゴムベールと充填剤を混合した後に、2段目で架橋剤を混合することが好ましい。その他のゴム成分と老化防止剤は通常1段目に混合され、架橋促進剤は2段目、その他の配合剤は適宜選択されればよい。 The mixing procedure of each component is not particularly limited, but for example, after sufficiently mixing the components that are difficult to react or decompose with heat, the reaction or decomposition occurs with a cross-linking agent that is a component that easily reacts or decomposes with heat. Two-step mixing is preferred, in which the mixture is mixed in a short time at no temperature. Specifically, it is preferable to mix the acrylic rubber veil and the filler in the first step and then mix the cross-linking agent in the second step. Other rubber components and anti-aging agents are usually mixed in the first stage, the cross-linking accelerator may be selected in the second stage, and other compounding agents may be appropriately selected.

かくして得られる本発明のゴム混合物のムーニー粘度(ML1+4,100℃;コンパンドムーニー)は、格別限定されるものではないが、通常10〜150、好ましくは20〜100、より好ましくは25〜80の範囲である。 The Mooney viscosity (ML1 + 4,100 ° C.; compound Mooney) of the rubber mixture of the present invention thus obtained is not particularly limited, but is usually in the range of 10 to 150, preferably 20 to 100, and more preferably 25 to 80. Is.

<ゴム架橋物>
本発明のゴム架橋物は、上記ゴム混合物を架橋してなるものである。
<Rubber crosslinked product>
The rubber crosslinked product of the present invention is obtained by cross-linking the above rubber mixture.

本発明のゴム架橋物は、本発明のゴム混合物を用い、所望の形状に対応した成形機、例えば、押出機、射出成形機、圧縮機、及びロールなどにより成形を行い、加熱することにより架橋反応を行い、ゴム架橋物として形状を固定化することにより製造することができる。この場合においては、予め成形した後に架橋しても、成形と同時に架橋を行ってもよい。成形温度は、通常10〜200℃、好ましくは25〜150℃である。架橋温度は、通常100〜250℃、好ましくは130〜220℃、より好ましくは150〜200℃であり、架橋時間は、通常0.1分〜10時間、好ましくは1分〜5時間である。加熱方法としては、プレス加熱、蒸気加熱、オーブン加熱、及び熱風加熱などのゴムの架橋に用いられる方法を適宜選択すればよい。 The rubber crosslinked product of the present invention is formed by using the rubber mixture of the present invention with a molding machine corresponding to a desired shape, for example, an extruder, an injection molding machine, a compressor, a roll, or the like, and is crosslinked by heating. It can be produced by carrying out a reaction and fixing the shape as a rubber crosslinked product. In this case, cross-linking may be performed after molding in advance, or cross-linking may be performed at the same time as molding. The molding temperature is usually 10 to 200 ° C, preferably 25 to 150 ° C. The cross-linking temperature is usually 100 to 250 ° C., preferably 130 to 220 ° C., more preferably 150 to 200 ° C., and the cross-linking time is usually 0.1 minutes to 10 hours, preferably 1 minute to 5 hours. As the heating method, a method used for cross-linking rubber such as press heating, steam heating, oven heating, and hot air heating may be appropriately selected.

本発明のゴム架橋物は、ゴム架橋物の形状、大きさなどによっては、更に加熱して二次架橋を行ってもよい。二次架橋は、加熱方法、架橋温度、形状などにより異なるが、好ましくは1〜48時間行う。加熱方法、加熱温度は適宜選択すればよい。 The rubber crosslinked product of the present invention may be further heated for secondary cross-linking depending on the shape and size of the rubber cross-linked product. The secondary cross-linking varies depending on the heating method, cross-linking temperature, shape and the like, but is preferably carried out for 1 to 48 hours. The heating method and heating temperature may be appropriately selected.

本発明のゴム架橋物は、例えば、O−リング、パッキン、ダイアフラム、オイルシール、シャフトシール、ベアリングシース、メカニカルシール、ウエルヘッドシール、電気・電子機器用シール、空気圧縮機器用シールなどのシール材;シリンダブロックとシリンダヘッドとの連結部に装着されるロッカーカバーガスケット、オイルパンとシリンダヘッドあるいはトランスミッションケースとの連結部に装着されるオイルパンガスケット、正極、電解質板及び負極を備えた単位セルを挟み込む一対のハウジング間に装着された燃料電池セパレーター用ガスケット、ハードディスクドライブのトップカバー用ガスケットなどの各種ガスケット;緩衝材、防振材;電線被覆材;工業用ベルト類;チューブ・ホース類;シート類;などとして好適に用いられる。 The rubber crosslinked product of the present invention is a sealing material such as an O-ring, packing, diaphragm, oil seal, shaft seal, bearing sheath, mechanical seal, well head seal, seal for electric / electronic equipment, seal for air compression equipment, and the like. A unit cell equipped with a rocker cover gasket attached to the connecting portion between the cylinder block and the cylinder head, an oil pan gasket attached to the connecting portion between the oil pan and the cylinder head or the transmission case, a positive electrode, an electrolyte plate and a negative electrode. Various gaskets such as gaskets for fuel cell separators and gaskets for top covers of hard disk drives mounted between a pair of sandwiched housings; cushioning material, vibration isolator; wire coating material; industrial belts; tubes and hoses; sheets It is preferably used as;

本発明のゴム架橋物は、また、自動車用途に用いられる押し出し成形型品及び型架橋製品として、例えば、燃料ホース、フィラーネックホース、ベントホース、ペーパーホース、オイルホースなどの燃料タンクなどの燃料油系ホース、ターボエアーホース、ミッションコントロールホースなどのエアー系ホース、ラジエターホース、ヒーターホース、ブレーキホース、エアコンホースなどの各種ホース類に好適に用いられる。 The rubber cross-linked product of the present invention is also used as an extruded molded product and a molded cross-linked product used in automobile applications, for example, fuel oil for fuel tanks such as fuel hoses, filler neck hoses, bent hoses, paper hoses, and oil hoses. It is suitably used for various hoses such as air hoses such as system hoses, turbo air hoses and mission control hoses, radiator hoses, heater hoses, brake hoses and air conditioner hoses.

<アクリルゴムベールの製造に用いられる装置構成>
次に、本発明の一実施形態に係るアクリルゴムベールの製造に用いられる装置構成について説明する。図1は、本発明の一実施形態に係るアクリルゴムベールの製造に用いられる装置構成を有するアクリルゴム製造システムの一例を模式的に示す図である。本発明に係るアクリルゴムの製造には、例えば、図1に示すアクリルゴム製造システム1を使用することができる。
<Device configuration used for manufacturing acrylic rubber veils>
Next, an apparatus configuration used for manufacturing an acrylic rubber veil according to an embodiment of the present invention will be described. FIG. 1 is a diagram schematically showing an example of an acrylic rubber manufacturing system having an apparatus configuration used for manufacturing an acrylic rubber veil according to an embodiment of the present invention. For the production of the acrylic rubber according to the present invention, for example, the acrylic rubber production system 1 shown in FIG. 1 can be used.

図1に示すアクリルゴム製造システム1は、不図示の乳化重合反応器、凝固装置3、洗浄装置4、水切り機43、スクリュー型押出機5、冷却装置6、ベール化装置7により構成されている。 The acrylic rubber manufacturing system 1 shown in FIG. 1 is composed of an emulsion polymerization reactor (not shown), a coagulation device 3, a cleaning device 4, a drainer 43, a screw type extruder 5, a cooling device 6, and a bale device 7. ..

乳化重合反応器は、上述した乳化重合工程に係る処理を行うように構成されている。図1には不図示であるが、この乳化重合反応器は、例えば重合反応槽、反応温度を制御する温度制御部、モータ及び撹拌翼を備えた撹拌装置を有する。乳化重合反応器では、アクリルゴムを形成するための単量体成分に水と乳化剤とを混合して撹拌機で適切に撹拌しながらエマルジョン化し、重合触媒存在下において乳化重合することで乳化重合液を得ることができる。乳化重合反応器は、回分式、半回分式、連続式のいずれであってもよく、槽型反応器、管型反応器のいずれであってもよい。 The emulsion polymerization reactor is configured to perform the treatment related to the emulsion polymerization step described above. Although not shown in FIG. 1, this emulsion polymerization reactor includes, for example, a polymerization reaction tank, a temperature control unit for controlling the reaction temperature, a motor, and a stirring device including a stirring blade. In the emulsion polymerization reactor, water and an emulsifier are mixed with a monomer component for forming acrylic rubber, emulsified while appropriately stirring with a stirrer, and emulsion polymerization is carried out in the presence of a polymerization catalyst to obtain an emulsion polymerization solution. Can be obtained. The emulsion polymerization reactor may be a batch type, a semi-batch type, or a continuous type, and may be any of a tank type reactor and a tube type reactor.

図1に示す凝固装置3は、上述した凝固工程に係る処理を行うように構成されている。図1に模式的に図示されているように、凝固装置3は、例えば撹拌槽30、撹拌槽30内を加熱する加熱部31、撹拌槽30内の温度を制御する不図示の温度制御部、モータ32及び撹拌翼33を備えた撹拌装置34、撹拌翼33の回転数及び回転速度を制御する不図示の駆動制御部を有する。凝固装置3では、乳化重合反応器で得られた乳化重合液を、凝固剤としての凝固液と接触させて凝固させることにより含水クラムを生成することができる。 The coagulation device 3 shown in FIG. 1 is configured to perform the process related to the coagulation step described above. As schematically shown in FIG. 1, the coagulation device 3 includes, for example, a stirring tank 30, a heating unit 31 for heating the inside of the stirring tank 30, and a temperature control unit (not shown) for controlling the temperature inside the stirring tank 30. It has a stirring device 34 including a motor 32 and a stirring blade 33, and a drive control unit (not shown) that controls the rotation speed and rotation speed of the stirring blade 33. In the coagulation apparatus 3, a hydrous crumb can be produced by bringing the emulsion polymerization solution obtained by the emulsion polymerization reactor into contact with the coagulation solution as a coagulant and coagulating it.

凝固装置3では、例えば、乳化重合液と凝固液との接触は、乳化重合液を撹拌しているマグネシウム塩水溶液中に添加する方法が採用される。すなわち、凝固装置3の撹拌槽30に凝固液を充填しておき、この凝固液に乳化重合液を添加及び接触させて乳化重合液を凝固させることによって含水クラムが生成される。 In the coagulation device 3, for example, a method of adding the emulsion polymerization solution to the stirring magnesium salt aqueous solution is adopted for the contact between the emulsion polymerization solution and the coagulation solution. That is, a water-containing crumb is generated by filling the stirring tank 30 of the coagulation device 3 with a coagulation liquid and adding and contacting the emulsion polymerization liquid with the coagulation liquid to coagulate the emulsion polymerization liquid.

凝固装置3の加熱部31は、撹拌槽30に充填された凝固液を加熱するよう構成されている。また、凝固装置3の温度制御部は、温度計で計測された撹拌槽30内の温度を監視しながら加熱部31による加熱動作を制御することで、撹拌槽30内の温度を制御するように構成されている。撹拌槽30内の凝固液の温度は、温度制御部によって、通常40℃以上、好ましくは40〜90℃、より好ましくは50〜80℃の範囲となるよう制御される。 The heating unit 31 of the coagulation device 3 is configured to heat the coagulation liquid filled in the stirring tank 30. Further, the temperature control unit of the coagulation device 3 controls the temperature inside the stirring tank 30 by controlling the heating operation by the heating unit 31 while monitoring the temperature inside the stirring tank 30 measured by the thermometer. It is configured. The temperature of the coagulating liquid in the stirring tank 30 is controlled by the temperature control unit so as to be usually in the range of 40 ° C. or higher, preferably 40 to 90 ° C., and more preferably 50 to 80 ° C.

凝固装置3の撹拌装置34は、撹拌槽30に充填された凝固液を撹拌するように構成されている。具体的には、撹拌装置34は、回転動力を生み出すモータ32と、モータ32の回転軸に対して垂直方向に広がる撹拌翼33を備えている。撹拌翼33は、撹拌槽30に充填された凝固液内で、モータ32の回転動力により回転軸を中心として回転することで凝固液を流動させることができる。撹拌翼33の形状や大きさ、設置数などは特に限定されない。 The stirring device 34 of the coagulating device 3 is configured to stir the coagulating liquid filled in the stirring tank 30. Specifically, the stirring device 34 includes a motor 32 that generates rotational power and a stirring blade 33 that extends in a direction perpendicular to the rotation axis of the motor 32. The stirring blade 33 can flow the coagulating liquid by rotating around the rotation axis by the rotational power of the motor 32 in the coagulating liquid filled in the stirring tank 30. The shape and size of the stirring blade 33, the number of installations, and the like are not particularly limited.

凝固装置3の駆動制御部は、撹拌装置34のモータ32の回転駆動を制御して、撹拌装置34の撹拌翼33の回転数及び回転速度を所定値に設定するように構成されている。凝固液の撹拌数が、例えば、通常100rpm以上、好ましくは200〜1000rpm、より好ましくは300〜900rpm、特に好ましくは400〜800rpmの範囲となるように、駆動制御部によって撹拌翼33の回転が制御される。凝固液の周速が、通常0.5m/s以上、好ましくは1m/s以上、より好ましくは1.5m/s以上、特に好ましくは2m/s以上、最も好ましくは2.5m/s以上となるように、駆動制御部によって撹拌翼33の回転が制御される。さらに、凝固液の周速の上限値が、通常50m/s以下、好ましくは30m/s以下、より好ましくは25m/s以下、最も好ましくは20m/s以下となるように、駆動制御部によって撹拌翼33の回転が制御される。 The drive control unit of the solidifying device 3 is configured to control the rotational drive of the motor 32 of the stirring device 34 to set the rotation speed and the rotation speed of the stirring blade 33 of the stirring device 34 to predetermined values. The rotation of the stirring blade 33 is controlled by the drive control unit so that the stirring number of the coagulating liquid is, for example, usually 100 rpm or more, preferably 200 to 1000 rpm, more preferably 300 to 900 rpm, and particularly preferably 400 to 800 rpm. Will be done. The peripheral speed of the coagulant is usually 0.5 m / s or more, preferably 1 m / s or more, more preferably 1.5 m / s or more, particularly preferably 2 m / s or more, and most preferably 2.5 m / s or more. The rotation of the stirring blade 33 is controlled by the drive control unit. Further, the drive control unit agitates the coagulant so that the upper limit of the peripheral speed is usually 50 m / s or less, preferably 30 m / s or less, more preferably 25 m / s or less, and most preferably 20 m / s or less. The rotation of the wing 33 is controlled.

図1に示す洗浄装置4は、上述した洗浄工程に係る処理を行うように構成されている。図1に模式的に図示されているように、洗浄装置4は、例えば洗浄槽40、洗浄槽40内を加熱する加熱部41、洗浄槽40内の温度を制御する不図示の温度制御部を有する。洗浄装置4では、凝固装置3で生成された含水クラムを多量の水と混合して洗浄することにより、最終的に得られるアクリルゴムベール中の灰分量を効果的に低減することができる。 The cleaning device 4 shown in FIG. 1 is configured to perform the processing related to the cleaning step described above. As schematically shown in FIG. 1, the cleaning device 4 includes, for example, a cleaning tank 40, a heating unit 41 that heats the inside of the cleaning tank 40, and a temperature control unit (not shown) that controls the temperature inside the cleaning tank 40. Have. In the cleaning device 4, the amount of ash in the finally obtained acrylic rubber veil can be effectively reduced by mixing the water-containing crumb generated by the coagulation device 3 with a large amount of water and cleaning.

洗浄装置4の加熱部41は、洗浄槽40内を加熱するよう構成されている。また、洗浄装置4の温度制御部は、温度計で計測された洗浄槽40内の温度を監視しながら加熱部41による加熱動作を制御することで、洗浄槽40内の温度を制御するように構成されている。上述したように、洗浄槽40内の洗浄水の温度は、通常40℃以上、好ましくは40〜100℃、より好ましくは50〜90℃、最も好ましくは60〜80℃の範囲となるよう制御される。 The heating unit 41 of the cleaning device 4 is configured to heat the inside of the cleaning tank 40. Further, the temperature control unit of the cleaning device 4 controls the temperature inside the cleaning tank 40 by controlling the heating operation by the heating unit 41 while monitoring the temperature inside the cleaning tank 40 measured by the thermometer. It is configured. As described above, the temperature of the washing water in the washing tank 40 is usually controlled to be in the range of 40 ° C. or higher, preferably 40 to 100 ° C., more preferably 50 to 90 ° C., and most preferably 60 to 80 ° C. To.

洗浄装置4で洗浄された含水クラムは、脱水工程及び乾燥工程を行うスクリュー型押出機5に供給される。このとき、洗浄後の含水クラムは、遊離水を分離することが可能な水切り機43を通ってスクリュー型押出機5に供給されることが好ましい。水切り機43には、例えば金網、スクリーン、電動篩機などを用いることができる。 The water-containing crumb washed by the washing device 4 is supplied to the screw type extruder 5 that performs the dehydration step and the drying step. At this time, it is preferable that the water-containing crumb after cleaning is supplied to the screw type extruder 5 through a drainer 43 capable of separating free water. For the drainer 43, for example, a wire mesh, a screen, an electric sieve, or the like can be used.

また、洗浄後の含水クラムがスクリュー型押出機5に供給される際、含水クラムの温度は40℃以上、更に60℃以上であることが好ましい。例えば、洗浄装置4における水洗に用いられる水の温度を60℃以上(例えば70℃)とすることで、スクリュー型押出機5に供給された際の含水クラムの温度を60℃以上に維持することができるようにしてもよく、洗浄装置4からスクリュー型押出機5に搬送する際に含水クラムの温度が40℃以上、好ましくは60℃以上となるよう加温してもよい。これにより、後工程である脱水工程及び乾燥工程を効果的に行うことが可能となり、最終的に得られる乾燥ゴムの含水率を大幅に低減させることが可能となる。 Further, when the water-containing crumb after cleaning is supplied to the screw type extruder 5, the temperature of the water-containing crumb is preferably 40 ° C. or higher, more preferably 60 ° C. or higher. For example, by setting the temperature of the water used for washing in the washing device 4 to 60 ° C. or higher (for example, 70 ° C.), the temperature of the water-containing crumb when supplied to the screw type extruder 5 is maintained at 60 ° C. or higher. The temperature of the hydrous crumb may be 40 ° C. or higher, preferably 60 ° C. or higher when it is conveyed from the cleaning device 4 to the screw type extruder 5. As a result, the dehydration step and the drying step, which are the subsequent steps, can be effectively performed, and the water content of the finally obtained dried rubber can be significantly reduced.

図1に示すスクリュー型押出機5は、上述した脱水工程及び乾燥工程に係る処理を行うように構成されている。なお、図1には好適な例としてスクリュー型押出機5が図示されているが、脱水工程に係る処理を行う脱水機として遠心分離機やスクイザーなどを用いてもよく、乾燥工程に係る処理を行う乾燥機として熱風乾燥機、減圧乾燥機、エキスパンダー乾燥機、ニーダー型乾燥機などを用いてもよい。 The screw type extruder 5 shown in FIG. 1 is configured to perform the processes related to the above-mentioned dehydration step and drying step. Although the screw type extruder 5 is shown as a suitable example in FIG. 1, a centrifuge, a squeezer, or the like may be used as the dehydrator for performing the treatment related to the dehydration step. A hot air dryer, a vacuum dryer, an expander dryer, a kneader type dryer, or the like may be used as the dryer.

スクリュー型押出機5は、脱水工程及び乾燥工程を経て得られる乾燥ゴムを所定の形状に成形して排出するように構成されている。具体的には、スクリュー型押出機5は、洗浄装置4で洗浄された含水クラムを脱水する脱水機としての機能を有する脱水バレル部53と、含水クラムを乾燥する乾燥機としての機能を有する乾燥バレル部54とを備えており、さらにスクリュー型押出機5の下流側に含水クラムを成形する成形機能を有するダイ59を備えて構成されている。 The screw type extruder 5 is configured to mold the dried rubber obtained through the dehydration step and the drying step into a predetermined shape and discharge it. Specifically, the screw type extruder 5 has a dehydration barrel portion 53 having a function as a dehydrator for dehydrating the hydrous crumb washed by the cleaning device 4, and a drying machine having a function as a dryer for drying the hydrous crumb. A barrel portion 54 is provided, and a die 59 having a molding function for forming a water-containing crumb is provided on the downstream side of the screw type extruder 5.

以下、図2を参照しながら、スクリュー型押出機5の構成について説明する。図2は、図1で示したスクリュー型押出機5として好適な一具体例の構成を示している。このスクリュー型押出機5により、上述した脱水・乾燥工程を好適に行うことができる。 Hereinafter, the configuration of the screw type extruder 5 will be described with reference to FIG. FIG. 2 shows a configuration of a specific example suitable for the screw type extruder 5 shown in FIG. With this screw type extruder 5, the above-mentioned dehydration / drying step can be suitably performed.

図2に示すスクリュー型押出機5は、バレルユニット51内に不図示の一対のスクリューを備えてなる二軸スクリュー型の押出乾燥機である。スクリュー型押出機5は、バレルユニット51内の一対のスクリューを回転駆動する駆動ユニット50を有する。駆動ユニット50は、バレルユニット51の上流端(図2で左端)に取り付けられている。また、スクリュー型押出機5は、バレルユニット51の下流端(図2で右端)にダイ59を有する。 The screw type extruder 5 shown in FIG. 2 is a biaxial screw type extruder / dryer provided with a pair of screws (not shown) in the barrel unit 51. The screw type extruder 5 has a drive unit 50 that rotationally drives a pair of screws in the barrel unit 51. The drive unit 50 is attached to the upstream end (left end in FIG. 2) of the barrel unit 51. Further, the screw type extruder 5 has a die 59 at the downstream end (right end in FIG. 2) of the barrel unit 51.

バレルユニット51は、上流側から下流側(図2で左側から右側)にわたり、供給バレル部52、脱水バレル部53、乾燥バレル部54を有する。 The barrel unit 51 has a supply barrel portion 52, a dehydration barrel portion 53, and a dry barrel portion 54 from the upstream side to the downstream side (from the left side to the right side in FIG. 2).

供給バレル部52は、2つの供給バレル、すなわち、第1の供給バレル52a及び第2の供給バレル52bにより構成されている。 The supply barrel portion 52 is composed of two supply barrels, that is, a first supply barrel 52a and a second supply barrel 52b.

また、脱水バレル部53は、3つの脱水バレル、すなわち、第1の脱水バレル53a、第2の脱水バレル53b及び第3の脱水バレル53cにより構成されている。 Further, the dehydration barrel portion 53 is composed of three dehydration barrels, that is, a first dehydration barrel 53a, a second dehydration barrel 53b, and a third dehydration barrel 53c.

また、乾燥バレル部54は、8個の乾燥バレル、すなわち、第1の乾燥バレル54a、第2の乾燥バレル54b、第3の乾燥バレル54c、第4の乾燥バレル54d、第5の乾燥バレル54e、第6の乾燥バレル54f、第7の乾燥バレル54g、第8の乾燥バレル54hにより構成されている。 Further, the drying barrel portion 54 includes eight drying barrels, that is, a first drying barrel 54a, a second drying barrel 54b, a third drying barrel 54c, a fourth drying barrel 54d, and a fifth drying barrel 54e. , A sixth dry barrel 54f, a seventh dry barrel 54g, and an eighth dry barrel 54h.

このようにバレルユニット51は、分割された13個の各バレル52a〜52b,53a〜53c,54a〜54hが上流側から下流側にわたり連結されて構成されている。 As described above, the barrel unit 51 is configured by connecting the 13 divided barrels 52a to 52b, 53a to 53c, 54a to 54h from the upstream side to the downstream side.

また、スクリュー型押出機5は、上記各バレル52a〜52b,53a〜53c,54a〜54hを個別に加熱して、各バレル52a〜52b,53a〜53c,54a〜54h内の含水クラムをそれぞれ所定温度に加熱する不図示の加熱手段を有する。加熱手段は、各バレル52a〜52b,53a〜53c,54a〜54hに対応する数を備える。そのような加熱手段としては、例えば、各バレル52a〜52b,53a〜53c,54a〜54h内に形成されたスチーム流通ジャケットにスチーム供給手段から高温スチームを供給するなどの構成が採用されるが、これに限定はされない。また、スクリュー型押出機5は、各バレル52a〜52b,53a〜53c,54a〜54hに対応する各加熱手段の設定温度を制御する不図示の温度制御手段を有する。 Further, the screw type extruder 5 individually heats the barrels 52a to 52b, 53a to 53c, 54a to 54h, and determines the water content crumbs in the barrels 52a to 52b, 53a to 53c, 54a to 54h, respectively. It has a heating means (not shown) for heating to a temperature. The heating means includes a number corresponding to each barrel 52a to 52b, 53a to 53c, 54a to 54h. As such a heating means, for example, a configuration is adopted in which high-temperature steam is supplied from the steam supply means to the steam distribution jackets formed in the barrels 52a to 52b, 53a to 53c, 54a to 54h. It is not limited to this. Further, the screw type extruder 5 has a temperature control means (not shown) that controls a set temperature of each heating means corresponding to each barrel 52a to 52b, 53a to 53c, 54a to 54h.

なお、バレルユニット51における各バレル部52、53、54をそれぞれ構成する供給バレル、脱水バレル及び乾燥バレルの設置数は、図2に示す態様に限定されるものではなく、乾燥処理するアクリルゴムの含水クラムの含水量などに応じた数に設定することができる。 The number of supply barrels, dehydration barrels, and drying barrels that constitute each barrel portion 52, 53, 54 in the barrel unit 51 is not limited to the mode shown in FIG. 2, and the acrylic rubber to be dried is used. The number can be set according to the water content of the water-containing crumb.

例えば、供給バレル部52の供給バレルの設置数は例えば1〜3個とされる。また、脱水バレル部53の脱水バレルの設置数は、例えば2〜10個が好ましく、3〜6個とすると、粘着性のアクリルゴムの含水クラムの脱水を効率よく行うことができるのでより好ましい。また、乾燥バレル部54の乾燥バレルの設置数は、例えば2〜10個が好ましく、3〜8個であるとより好ましい。 For example, the number of supply barrels installed in the supply barrel portion 52 is, for example, 1 to 3. The number of dehydration barrels installed in the dehydration barrel portion 53 is preferably, for example, 2 to 10, and more preferably 3 to 6, because dehydration of the water-containing crumb of the adhesive acrylic rubber can be efficiently performed. Further, the number of dry barrels installed in the dry barrel portion 54 is preferably, for example, 2 to 10, and more preferably 3 to 8.

バレルユニット51内の一対のスクリューは、駆動ユニット50に格納されたモータなどの駆動手段によって回転駆動される。一対のスクリューはバレルユニット51内の上流側から下流側にわたって延在しており、回転駆動されることで、供給バレル部52に供給された含水クラムを混合しながら下流側に搬送することができるようになっている。一対のスクリューとしては、互いに山部と谷部とが噛み合わされる状態とされた二軸噛合型であることが好ましく、これにより、含水クラムの脱水効率及び乾燥効率を高めることができる。 The pair of screws in the barrel unit 51 are rotationally driven by a driving means such as a motor housed in the driving unit 50. The pair of screws extend from the upstream side to the downstream side in the barrel unit 51, and by being rotationally driven, the water-containing crumbs supplied to the supply barrel portion 52 can be conveyed to the downstream side while being mixed. It has become like. The pair of screws is preferably a biaxial meshing type in which the peaks and valleys are meshed with each other, whereby the dehydration efficiency and the drying efficiency of the hydrous crumb can be improved.

また、一対のスクリューの回転方向は、同方向でも異方向でもよいが、セルフクリーニングの性能面からは同方向に回転する形式のものが好ましい。一対のスクリューのスクリュー形状としては、特に限定されず、各バレル部52、53、54において必要とされる形状であればよく、特に限定されない。 Further, the rotation direction of the pair of screws may be the same direction or different directions, but from the viewpoint of self-cleaning performance, a type that rotates in the same direction is preferable. The screw shape of the pair of screws is not particularly limited as long as it is a shape required for each of the barrel portions 52, 53, 54, and is not particularly limited.

供給バレル部52は、含水クラムをバレルユニット51内に供給する領域である。供給バレル部52の第1の供給バレル52aは、バレルユニット51内に含水クラムを供給するフィード口55を有する。 The supply barrel portion 52 is a region for supplying the water-containing crumb into the barrel unit 51. The first supply barrel 52a of the supply barrel portion 52 has a feed port 55 for supplying a water-containing crumb in the barrel unit 51.

脱水バレル部53は、含水クラムから、凝固剤などが含まれる液体(セラム水)を分離し排出する領域である。 The dehydration barrel portion 53 is a region for separating and discharging a liquid (serum water) containing a coagulant or the like from the hydrous crumb.

脱水バレル部53を構成する第1〜第3の脱水バレル53a〜53cは、含水クラムの水分を外部に排出する脱水スリット56a、56b、56cをそれぞれ有する。各脱水スリット56a、56b、56cは、各脱水バレル53a〜53cにそれぞれ複数形成されている。 The first to third dehydration barrels 53a to 53c constituting the dehydration barrel portion 53 have dehydration slits 56a, 56b, and 56c for discharging the water content of the hydrous crumb to the outside, respectively. A plurality of the dehydration slits 56a, 56b, 56c are formed in the dehydration barrels 53a to 53c, respectively.

各脱水スリット56a、56b、56cのスリット幅すなわち目開きは、使用条件に応じて適宜選択されればよく、通常で0.01〜5mmとされ、含水クラムの損出が少なく、且つ含水クラムの脱水が効率的にできる点から、好ましくは0.1〜1mmであり、0.2〜0.6mmであればより好ましい。 The slit widths, that is, the openings of the dehydration slits 56a, 56b, and 56c may be appropriately selected according to the usage conditions, and are usually 0.01 to 5 mm, so that the water-containing crumbs are less damaged and the water-containing crumbs have little loss. From the viewpoint of efficient dehydration, it is preferably 0.1 to 1 mm, and more preferably 0.2 to 0.6 mm.

脱水バレル部53の各脱水バレル53a〜53cにおける含水クラムからの水分の除去は、それぞれの脱水スリット56a、56b、56cから液状で除去する場合と、蒸気状で除去する場合との二通りがある。本実施形態の脱水バレル部53においては、水分を液状で除去する場合を排水と定義し、蒸気状で除去する場合を排蒸気と定義して区別する。 There are two ways to remove water from the water-containing crumbs in each of the dehydration barrels 53a to 53c of the dehydration barrel portion 53: a liquid removal from the dehydration slits 56a, 56b, 56c, and a vapor removal. .. In the dehydration barrel portion 53 of the present embodiment, the case where water is removed in liquid form is defined as wastewater, and the case where water is removed in vapor form is defined as exhaust steam.

脱水バレル部53においては、排水及び排蒸気を組み合わせることで、粘着性アクリルゴムの含水率を低下させることが効率よくできるので好適である。脱水バレル部53では、第1〜第3の脱水バレル53a〜53cのうち、どの脱水バレルで排水又は排蒸気を行うかは、使用目的に応じて適宜に設定すればよいが、通常製造されるアクリルゴム中の灰分量を少なくする場合は、排水を行う脱水バレルを多くするとよい。その場合、例えば図2に示すように、上流側の第1及び第2の脱水バレル53a、53bで排水を行い、下流側の第3の脱水バレル53cで排蒸気を行う。また、例えば脱水バレル部53が4つの脱水バレルを有する場合には、例えば上流側の3つの脱水バレルで排水を行い、下流側の1つの脱水バレルで排蒸気を行うといった態様が考えられる。一方、含水量を低減する場合には、排蒸気を行う脱水バレルを多くするとよい。 The dehydration barrel portion 53 is suitable because the water content of the adhesive acrylic rubber can be efficiently reduced by combining drainage and exhaust steam. In the dehydration barrel portion 53, which of the first to third dehydration barrels 53a to 53c is used for drainage or exhaust steam may be appropriately set according to the purpose of use, but is usually manufactured. When reducing the amount of ash in the acrylic rubber, it is advisable to increase the number of dehydration barrels for draining. In that case, for example, as shown in FIG. 2, drainage is performed in the first and second dehydration barrels 53a and 53b on the upstream side, and steam is discharged in the third dehydration barrel 53c on the downstream side. Further, for example, when the dehydration barrel portion 53 has four dehydration barrels, for example, drainage may be performed by three dehydration barrels on the upstream side, and steam may be exhausted by one dehydration barrel on the downstream side. On the other hand, when reducing the water content, it is preferable to increase the number of dehydration barrels for exhausting steam.

脱水バレル部53の設定温度は、上述の脱水・乾燥工程で述べたように、通常60〜150℃、好ましくは70〜140℃、より好ましくは80〜130℃の範囲であり、排水状態で脱水する脱水バレルの設定温度は、通常60℃〜120℃、好ましくは70〜110℃、より好ましくは80〜100℃であり、排蒸気状態で脱水する脱水バレルの設定温度は、通常100〜150℃、好ましくは105〜140℃、より好ましくは110〜130℃の範囲である。 As described in the above-mentioned dehydration / drying step, the set temperature of the dehydration barrel portion 53 is usually in the range of 60 to 150 ° C., preferably 70 to 140 ° C., more preferably 80 to 130 ° C., and is dehydrated in the drained state. The set temperature of the dehydration barrel to be dehydrated is usually 60 ° C. to 120 ° C., preferably 70 to 110 ° C., more preferably 80 to 100 ° C., and the set temperature of the dehydration barrel to be dehydrated in the exhausted steam state is usually 100 to 150 ° C. The temperature is preferably in the range of 105 to 140 ° C, more preferably 110 to 130 ° C.

乾燥バレル部54は、脱水後の含水クラムを減圧下で乾燥させる領域である。乾燥バレル部54を構成する第1〜第8の乾燥バレル54a〜54hのうち、第2の乾燥バレル54b、第4の乾燥バレル54d、第6の乾燥バレル54f及び第8の乾燥バレル54hは、脱気のためのベント口58a、58b、58c、58dをそれぞれ有する。各ベント口58a、58b、58c、58dには、不図示のベント配管がそれぞれ接続されている。 The drying barrel portion 54 is a region for drying the hydrous crumb after dehydration under reduced pressure. Of the first to eighth dry barrels 54a to 54h constituting the dry barrel portion 54, the second dry barrel 54b, the fourth dry barrel 54d, the sixth dry barrel 54f, and the eighth dry barrel 54h are It has vent ports 58a, 58b, 58c, and 58d for degassing, respectively. Vent pipes (not shown) are connected to the vent ports 58a, 58b, 58c, and 58d, respectively.

各ベント配管の末端には不図示の真空ポンプがそれぞれ接続されており、それら真空ポンプの作動により、乾燥バレル部54内が所定圧力に減圧されるようになっている。スクリュー型押出機5は、それら真空ポンプの作動を制御して乾燥バレル部54内の減圧度を制御する図示せぬ圧力制御手段を有する。 Vacuum pumps (not shown) are connected to the ends of the vent pipes, and the operation of the vacuum pumps reduces the pressure inside the drying barrel portion 54 to a predetermined pressure. The screw type extruder 5 has a pressure control means (not shown) that controls the operation of these vacuum pumps to control the degree of decompression in the drying barrel portion 54.

乾燥バレル部54での減圧度は適宜選択されればよいが、上述したように、通常1〜50kPa、好ましくは2〜30kPa、より好ましくは3〜20kPaに設定される。 The degree of decompression in the dry barrel portion 54 may be appropriately selected, but as described above, it is usually set to 1 to 50 kPa, preferably 2 to 30 kPa, and more preferably 3 to 20 kPa.

また、乾燥バレル部54内の設定温度は適宜選択されればよいが、上述したように、通常100〜250℃、好ましくは110〜200℃、より好ましくは120〜180℃に設定される。 The set temperature in the drying barrel portion 54 may be appropriately selected, but as described above, it is usually set to 100 to 250 ° C., preferably 110 to 200 ° C., and more preferably 120 to 180 ° C.

乾燥バレル部54を構成する各乾燥バレル54a〜54hにおいては、全ての乾燥バレル54a〜54h内の設定温度を近似した値にしてもよいし、異ならせてもよいが、上流側(脱水バレル部53側)の温度よりも下流側(ダイ59側)の温度の方を高温に設定すると、乾燥効率が向上するので好ましい。 In each of the dry barrels 54a to 54h constituting the dry barrel portion 54, the set temperatures in all the dry barrels 54a to 54h may be approximated or different, but on the upstream side (dehydrated barrel portion). It is preferable to set the temperature on the downstream side (die 59 side) to a higher temperature than the temperature on the downstream side (53 side) because the drying efficiency is improved.

ダイ59は、バレルユニット51の下流端に配置される金型であり、所定のノズル形状の吐出口を有する。乾燥バレル部54で乾燥処理されたアクリルゴムは、ダイ59の吐出口を通過することで、所定のノズル形状に応じた形状に押出成形される。ダイ59を通過するアクリルゴムは、ダイ59のノズル形状に応じて、粒状、柱状、丸棒状、シート状など、種々の形状に成形される。例えば、ダイ59の吐出口を略長方形状とすることで、アクリルゴムをシート状に押出成形することができる。スクリューとダイ59との間には、ブレーカープレートや金網を設けてもよいし、設けなくてもよい。 The die 59 is a mold arranged at the downstream end of the barrel unit 51, and has a discharge port having a predetermined nozzle shape. The acrylic rubber dried by the drying barrel portion 54 is extruded into a shape corresponding to a predetermined nozzle shape by passing through the discharge port of the die 59. The acrylic rubber that passes through the die 59 is formed into various shapes such as granular, columnar, round bar, and sheet depending on the nozzle shape of the die 59. For example, by making the discharge port of the die 59 substantially rectangular, the acrylic rubber can be extruded into a sheet shape. A breaker plate or wire mesh may or may not be provided between the screw and the die 59.

本実施形態に係るスクリュー型押出機5によれば、以下のようにして、原料のアクリルゴムの含水クラムがシート状の乾燥ゴムに押出成形される。 According to the screw type extruder 5 according to the present embodiment, the water-containing crumb of the raw material acrylic rubber is extruded into a sheet-shaped dry rubber as follows.

洗浄工程を経て得られたアクリルゴムの含水クラムは、フィード口55から供給バレル部52に供給される。供給バレル部52に供給された含水クラムは、バレルユニット51内の一対のスクリューの回転により、供給バレル部52から脱水バレル部53に送られる。脱水バレル部53では、前述したように第1〜第3の脱水バレル53a〜53cにそれぞれ設けられた脱水スリット56a、56b、56cから、含水クラムに含まれる水分の排水や排蒸気が行われて、含水クラムが脱水処理される。 The water-containing crumb of acrylic rubber obtained through the cleaning step is supplied from the feed port 55 to the supply barrel portion 52. The water-containing crumb supplied to the supply barrel portion 52 is sent from the supply barrel portion 52 to the dehydration barrel portion 53 by the rotation of the pair of screws in the barrel unit 51. In the dehydration barrel portion 53, as described above, the water contained in the water-containing crumb is drained and exhausted from the dehydration slits 56a, 56b, 56c provided in the first to third dehydration barrels 53a to 53c, respectively. , The hydrous crumb is dehydrated.

脱水バレル部53で脱水された含水クラムは、バレルユニット51内の一対のスクリューの回転により乾燥バレル部54に送られる。乾燥バレル部54に送られた含水クラムは可塑化混合されて融体となり、発熱して昇温しながら下流側へ運ばれる。そして、このアクリルゴムの融体中に含まれる水分が気化し、その水分(蒸気)が各ベント口58a、58b、58c、58dにそれぞれ接続された不図示のベント配管を通じて外部へ排出される。 The water-containing crumb dehydrated by the dehydration barrel portion 53 is sent to the dry barrel portion 54 by the rotation of a pair of screws in the barrel unit 51. The hydrous crumb sent to the dry barrel portion 54 is plasticized and mixed to form a melt, which generates heat and is carried to the downstream side while raising the temperature. Then, the water contained in the melt of the acrylic rubber is vaporized, and the water (steam) is discharged to the outside through vent pipes (not shown) connected to the vent ports 58a, 58b, 58c, and 58d, respectively.

上記のように乾燥バレル部54を通過することで含水クラムは乾燥処理されてアクリルゴムの融体となり、そのアクリルゴムはバレルユニット51内の一対のスクリューの回転によりダイ59に供給され、シート状の乾燥ゴムとしてダイ59から押し出される。 By passing through the dry barrel portion 54 as described above, the hydrous crumb is dried and becomes a melt of acrylic rubber, and the acrylic rubber is supplied to the die 59 by the rotation of a pair of screws in the barrel unit 51 to form a sheet. It is extruded from the die 59 as a dry rubber.

ここで、本実施形態に係るスクリュー型押出機5の操業条件の一例を挙げる。 Here, an example of the operating conditions of the screw type extruder 5 according to the present embodiment will be given.

バレルユニット51内の一対のスクリューの回転数(N)は、諸条件に応じて適宜選択されればよく、通常で10〜1000rpmとされ、アクリルゴムベールの含水量とゲル量を効率よく低減できる点から、好ましくは50〜750rpm、より好ましくは100〜500rpmであり、120〜300rpmが最も好ましい。 The rotation speed (N) of the pair of screws in the barrel unit 51 may be appropriately selected according to various conditions, and is usually 10 to 1000 rpm, and the water content and gel amount of the acrylic rubber veil can be efficiently reduced. From the point of view, it is preferably 50 to 750 rpm, more preferably 100 to 500 rpm, and most preferably 120 to 300 rpm.

また、アクリルゴムの押出量(Q)は、格別限定されないが、通常で100〜1500kg/hrとされ、好ましくは300〜1200kg/hr、より好ましくは400〜1000kg/hrであり、500〜800kg/hrが最も好ましい。 The extrusion amount (Q) of acrylic rubber is not particularly limited, but is usually 100 to 1500 kg / hr, preferably 300 to 1200 kg / hr, more preferably 400 to 1000 kg / hr, and 500 to 800 kg / hr. hr is most preferred.

また、アクリルゴムの押出量(Q)とスクリューの回転数(N)との比(Q/N)は、格別限定されないが、通常で1〜20とされ、好ましくは2〜10、より好ましくは3〜8であり、4〜6が特に好ましい。 The ratio (Q / N) of the extrusion amount (Q) of the acrylic rubber to the rotation speed (N) of the screw is not particularly limited, but is usually 1 to 20, preferably 2 to 10, and more preferably. It is 3 to 8, and 4 to 6 is particularly preferable.

図1に示す冷却装置6は、脱水機による脱水工程及び乾燥機による乾燥工程を経て得られた乾燥ゴムを冷却するように構成されている。冷却装置6による冷却方式としては、送風あるいは冷房下での空冷方式、水を吹き付ける水かけ方式、水中に浸漬する浸漬方式などを含む様々な方式を採用することが可能である。また、室温下に放置することで、乾燥ゴムを冷却するようにしてもよい。 The cooling device 6 shown in FIG. 1 is configured to cool the dried rubber obtained through the dehydration step by the dehydrator and the drying step by the dryer. As the cooling method by the cooling device 6, various methods including an air cooling method by blowing air or cooling, a watering method of spraying water, a dipping method of immersing in water, and the like can be adopted. Further, the dried rubber may be cooled by leaving it at room temperature.

上述したように、ダイ59のノズル形状に応じて、スクリュー型押出機5から排出された乾燥ゴムは、粒状、柱状、丸棒状、シート状など、種々の形状に押出成形される。以下、図3を参照しながら、冷却装置6の一例として、シート状に成形されたシート状乾燥ゴム10を冷却する搬送式冷却装置60について説明する。 As described above, the dried rubber discharged from the screw type extruder 5 is extruded into various shapes such as granular, columnar, round bar, and sheet according to the nozzle shape of the die 59. Hereinafter, as an example of the cooling device 6, the transport type cooling device 60 for cooling the sheet-shaped dry rubber 10 formed into a sheet shape will be described with reference to FIG.

図3は、図1で示した冷却装置6として好適な搬送式冷却装置60の構成を示している。図3に示す搬送式冷却装置60は、スクリュー型押出機5のダイ59の吐出口から排出されたシート状乾燥ゴム10を搬送しながら、空冷方式によって冷却するよう構成されている。この搬送式冷却装置60を用いることで、スクリュー型押出機5から排出されたシート状乾燥ゴムを好適に冷却することができる。 FIG. 3 shows the configuration of a transport type cooling device 60 suitable as the cooling device 6 shown in FIG. The transport type cooling device 60 shown in FIG. 3 is configured to cool the sheet-shaped dry rubber 10 discharged from the discharge port of the die 59 of the screw type extruder 5 by an air cooling method while transporting the sheet-shaped dry rubber 10. By using this transport type cooling device 60, the sheet-shaped dry rubber discharged from the screw type extruder 5 can be suitably cooled.

図3に示す搬送式冷却装置60は、例えば、図2に示したスクリュー型押出機5のダイ59に直結するか、又はダイ59の近傍に設置して使用される。 The transport type cooling device 60 shown in FIG. 3 is used, for example, directly connected to the die 59 of the screw type extruder 5 shown in FIG. 2 or installed in the vicinity of the die 59.

搬送式冷却装置60は、スクリュー型押出機5のダイ59から排出されるシート状乾燥ゴム10を図3中矢印A方向に搬送するコンベア61と、コンベア61上のシート状乾燥ゴム10に冷風を吹き付ける冷却手段65とを有する。 The transport-type cooling device 60 sends cold air to the conveyor 61 that conveys the sheet-shaped dry rubber 10 discharged from the die 59 of the screw-type extruder 5 in the direction of arrow A in FIG. 3 and the sheet-shaped dry rubber 10 on the conveyor 61. It has a cooling means 65 for spraying.

コンベア61は、ローラ62、63と、これらローラ62、63に巻架され、シート状乾燥ゴム10がその上に載せられるコンベアベルト64とを有する。コンベア61は、コンベアベルト64上にスクリュー型押出機5のダイ59から排出されたシート状乾燥ゴム10を連続して下流側(図3で右側)に搬送するよう構成されている。 The conveyor 61 has rollers 62 and 63, and a conveyor belt 64 that is wound around the rollers 62 and 63 and on which the sheet-shaped dry rubber 10 is placed. The conveyor 61 is configured to continuously convey the sheet-shaped dry rubber 10 discharged from the die 59 of the screw type extruder 5 to the downstream side (right side in FIG. 3) on the conveyor belt 64.

冷却手段65は、特に限定されないが、例えば、不図示の冷却風発生手段から送られてくる冷却風をコンベアベルト64上のシート状乾燥ゴム10の表面に吹き付けることができるような構成を有するものなどが挙げられる。 The cooling means 65 is not particularly limited, but has, for example, a structure capable of blowing the cooling air sent from the cooling air generating means (not shown) onto the surface of the sheet-shaped dry rubber 10 on the conveyor belt 64. And so on.

搬送式冷却装置60のコンベア61及び冷却手段65の長さ(冷却風の吹き付けが可能な部分の長さ)L1は、特に限定されないが、例えば10〜100mであり、好ましくは20〜50mである。また、搬送式冷却装置60におけるシート状乾燥ゴム10の搬送速度は、コンベア61及び冷却手段65の長さL1、スクリュー型押出機5のダイ59から排出されるシート状乾燥ゴム10の排出速度、目標とする冷却速度や冷却時間などに応じて適宜調整すればよいが、例えば10〜100m/hrであり、より好ましくは15〜70m/hrである。 The length (length of the portion where the cooling air can be blown) L1 of the conveyor 61 and the cooling means 65 of the transport type cooling device 60 is not particularly limited, but is, for example, 10 to 100 m, preferably 20 to 50 m. .. Further, the transport speed of the sheet-shaped dry rubber 10 in the transport-type cooling device 60 is the length L1 of the conveyor 61 and the cooling means 65, the discharge speed of the sheet-shaped dry rubber 10 discharged from the die 59 of the screw type extruder 5. It may be appropriately adjusted according to the target cooling rate, cooling time, etc., but is, for example, 10 to 100 m / hr, more preferably 15 to 70 m / hr.

図3に示す搬送式冷却装置60によれば、スクリュー型押出機5のダイ59から排出されるシート状乾燥ゴム10をコンベア61にて搬送しつつ、シート状乾燥ゴム10に対し冷却手段65から冷却風を吹き付けることにより、シート状乾燥ゴム10の冷却が行われる。 According to the transport type cooling device 60 shown in FIG. 3, the sheet-shaped dry rubber 10 discharged from the die 59 of the screw type extruder 5 is conveyed by the conveyor 61, and the sheet-shaped dry rubber 10 is transported from the cooling means 65. The sheet-shaped dry rubber 10 is cooled by blowing cooling air.

なお、搬送式冷却装置60としては、図3に示すような1つのコンベア61及び1つの冷却手段65を備える構成に特に限定されず、2つ以上のコンベア61と、これに対応する2つ以上の冷却手段65とを備えるような構成としてもよい。その場合には、2つ以上のコンベア61及び冷却手段65のそれぞれの総合長さを上記範囲とすればよい。 The transport type cooling device 60 is not particularly limited to a configuration including one conveyor 61 and one cooling means 65 as shown in FIG. 3, and two or more conveyors 61 and two or more corresponding conveyors 61. It may be configured to include the cooling means 65 of the above. In that case, the total length of each of the two or more conveyors 61 and the cooling means 65 may be within the above range.

図1に示すベール化装置7は、スクリュー型押出機5から押出成形され、さらに冷却装置6で冷却された乾燥ゴムを加工して、一塊のブロックであるベールを製造するよう構成されている。上述したように、スクリュー型押出機5は、乾燥ゴムを粒状、柱状、丸棒状、シート状など、種々の形状に押出成形することが可能であり、ベール化装置7は、このように種々の形状に成形された乾燥ゴムをベール化するように構成されている。ベール化装置7によって製造されるアクリルゴムベールの重さや形状などは特に限定されないが、例えば約20kgの略直方体形状のアクリルゴムベールが製造される。 The bale device 7 shown in FIG. 1 is configured to extrude from a screw type extruder 5 and further process a dry rubber cooled by the cooling device 6 to produce a bale which is a block. As described above, the screw type extruder 5 can extrude the dried rubber into various shapes such as granular, columnar, round bar, and sheet, and the bale device 7 has various shapes as described above. It is configured to veil dry rubber molded into a shape. The weight and shape of the acrylic rubber bale produced by the bale-forming device 7 are not particularly limited, but for example, an acrylic rubber bale having a substantially rectangular parallelepiped shape of about 20 kg is produced.

ベール化装置7は、例えばベーラーを備え、冷却された乾燥ゴムをベーラーにより圧縮することでアクリルゴムベールを製造してもよい。 The bale device 7 may include, for example, a baler, and may manufacture an acrylic rubber bale by compressing the cooled dry rubber with the baler.

また、スクリュー型押出機5によってシート状乾燥ゴム10を製造した場合には、シート状乾燥ゴム10を積層したアクリルゴムベールを製造してもよい。例えば、図3に示す搬送式冷却装置60の下流側に配置されるベール化装置7に、シート状乾燥ゴム10を切断するカッティング機構が設けられていてもよい。具体的には、ベール化装置7のカッティング機構は、例えば、冷却されたシート状乾燥ゴム10を連続的に所定の間隔で切断して、所定の大きさのカットシート状乾燥ゴム16に加工するように構成されている。カッティング機構により所定の大きさに切断されたカットシート状乾燥ゴム16を複数枚積層することで、カットシート状乾燥ゴム16を積層したアクリルゴムベールを製造することができる。 Further, when the sheet-shaped dry rubber 10 is manufactured by the screw type extruder 5, an acrylic rubber veil in which the sheet-shaped dry rubber 10 is laminated may be manufactured. For example, the bale-forming device 7 arranged on the downstream side of the transport-type cooling device 60 shown in FIG. 3 may be provided with a cutting mechanism for cutting the sheet-shaped dry rubber 10. Specifically, the cutting mechanism of the bale device 7 continuously cuts the cooled sheet-shaped dry rubber 10 at predetermined intervals and processes it into a cut sheet-shaped dry rubber 16 having a predetermined size. It is configured as follows. By laminating a plurality of cut sheet-shaped dry rubbers 16 cut to a predetermined size by a cutting mechanism, an acrylic rubber veil in which the cut-sheet-shaped dry rubbers 16 are laminated can be manufactured.

カットシート状乾燥ゴム16を積層したアクリルゴムベールを製造する場合には、例えば40℃以上のカットシート状乾燥ゴム16を積層することが好ましい。40℃以上のカットシート状乾燥ゴム16を積層することで、更なる冷却及び自重による圧縮によって良好な空気抜けが実現される。 When producing an acrylic rubber veil on which the cut sheet-shaped dry rubber 16 is laminated, it is preferable to laminate the cut sheet-shaped dry rubber 16 at 40 ° C. or higher, for example. By laminating the cut sheet-shaped dry rubber 16 at 40 ° C. or higher, good air release is realized by further cooling and compression by its own weight.

以下に、実施例及び比較例を挙げて、本発明についてより具体的に説明する。なお、各例中の「部」、「%」及び「比」は、特に断りのない限り、重量基準である。
各種の物性については、以下の方法に従って評価した。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. In addition, "part", "%" and "ratio" in each example are weight-based unless otherwise specified.
Various physical properties were evaluated according to the following methods.

[単量体組成]
アクリルゴムにおける単量体組成に関して、アクリルゴム中の各単量体単位の単量体構成はH−NMRで確認し、アクリルゴム中に反応性基の活性が残存していること及びその各反応性基含有量は下記試験法で確認した。
[Monomer composition]
Regarding the monomer composition in acrylic rubber, the monomer composition of each monomer unit in acrylic rubber was confirmed by 1 H-NMR, and the activity of the reactive group remained in acrylic rubber and each reaction thereof. The sex group content was confirmed by the following test method.

また、各単量体単位のアクリルゴム中の含有割合は、各単量体の重合反応に用いた使用量及び重合転化率から算出した。具体的には、重合反応は乳化重合反応でその重合転化率は、未反応の単量体がいずれも確認できない略100%であったことから、各単量体単位の含有割合を各単量体の使用量と同一とした。 The content ratio of each monomer unit in the acrylic rubber was calculated from the amount used in the polymerization reaction of each monomer and the polymerization conversion rate. Specifically, since the polymerization reaction was an emulsion polymerization reaction and the polymerization conversion rate was approximately 100% in which none of the unreacted monomers could be confirmed, the content ratio of each monomer unit was set to a single amount. It was the same as the amount used by the body.

[反応性基含有量]
アクリルゴムの反応性基の含有量は、下記方法によりアクリルゴムベール中の含有量を測定した。
(1)カルボキシル基量は、アクリルゴムベールをアセトンに溶解し水酸化カリウム溶液で電位差滴定を行うことにより算出した。
(2)エポキシ基量は、アクリルゴムベールをメチルエチルケトンに溶解し、それに規定量の塩酸を加えてエポキシ基と反応させ、残留した塩酸量を水酸化カリウムで滴定することにより算出した。
(3)塩素量は、アクリルゴムベールを燃焼フラスコ中で完全燃焼させ、発生する塩素を水に吸収させ硝酸銀で滴定することにより算出した。
[Reactive group content]
The content of the reactive group of the acrylic rubber was measured in the acrylic rubber veil by the following method.
(1) The amount of carboxyl groups was calculated by dissolving an acrylic rubber veil in acetone and performing potentiometric titration with a potassium hydroxide solution.
(2) The amount of epoxy group was calculated by dissolving an acrylic rubber veil in methyl ethyl ketone, adding a specified amount of hydrochloric acid to the mixture to react with the epoxy group, and titrating the remaining amount of hydrochloric acid with potassium hydroxide.
(3) The amount of chlorine was calculated by completely burning an acrylic rubber veil in a combustion flask, absorbing the generated chlorine in water, and titrating with silver nitrate.

[灰分量]
アクリルゴムベール中に含まれる灰分量(%)は、JIS K6228 A法に準じて測定した。
[Ash content]
The amount of ash (%) contained in the acrylic rubber veil was measured according to the JIS K6228 A method.

[灰分成分量]
アクリルゴムベール灰分中の各成分量(ppm)は、上記の灰分量測定の差異に採取した灰分をΦ20mmの滴定濾紙に圧着し、ZSX Primus(Rigaku社製)を用いてXRF測定した。
[Amount of ash component]
The amount of each component (ppm) in the acrylic rubber veil ash content was measured by XRF using ZSX Primus (manufactured by Rigaku) by pressing the collected ash content onto a Φ20 mm titration filter paper in the difference in the above ash content measurement.

[ゲル量]
アクリルゴムベールのゲル量(%)は、メチルエチルケトンに対する不溶解分の量であり、以下の方法により求めた。
[Gel amount]
The gel amount (%) of the acrylic rubber veil was the amount of the insoluble matter in methyl ethyl ketone, and was determined by the following method.

アクリルゴムベール0.2g程度を秤量(Xg)し、100mlメチルエチルケトンに浸漬させて室温で24時間放置後、80メッシュ金網を用いてメチルエチルケトンに対する不溶解分を濾別した濾液、すなわち、メチルエチルケトンに溶解するゴム成分のみが溶解した濾液を蒸発乾燥固化させた乾燥固形分(Yg)を秤量し、下式により算出した。
ゲル量(%)=100×(X−Y)/X
About 0.2 g of acrylic rubber veil is weighed (Xg), immersed in 100 ml methyl ethyl ketone, left at room temperature for 24 hours, and then dissolved in a filtrate obtained by filtering out the insoluble matter in methyl ethyl ketone using an 80 mesh wire mesh, that is, methyl ethyl ketone. The dry solid content (Yg) obtained by evaporating and solidifying the filtrate in which only the rubber component was dissolved was weighed and calculated by the following formula.
Gel amount (%) = 100 × (XY) / X

[比重]
アクリルゴムベールの比重は、JIS K6268架橋ゴム−密度測定のA法に準じて測定した。
[specific gravity]
The specific gravity of the acrylic rubber veil was measured according to the method A of JIS K6268 crosslinked rubber-density measurement.

[ガラス転移温度(Tg)]
アクリルゴムのガラス転移温度(Tg)は、示差走査型熱量計(DSC、製品名「X−DSC7000」、日立ハイテクサイエンス社製)を用いて測定した。
[Glass transition temperature (Tg)]
The glass transition temperature (Tg) of acrylic rubber was measured using a differential scanning calorimeter (DSC, product name "X-DSC7000", manufactured by Hitachi High-Tech Science Co., Ltd.).

[pH]
アクリルゴムベールのpHは、6g(±0.05g)のアクリルゴムベールをテトラヒドロフラン100gで溶解後、蒸留水2.0mlを添加し完全に溶解したことを確認後にpH電極で測定した。
[PH]
The pH of the acrylic rubber veil was measured with a pH electrode after confirming that 6 g (± 0.05 g) of the acrylic rubber veil was dissolved in 100 g of tetrahydrofuran, and 2.0 ml of distilled water was added to completely dissolve the acrylic rubber veil.

[含水量]
アクリルゴムベールの含水量(%)は、JIS K6238−1:オーブンA(揮発分測定)法に準じて測定した。
[Water content]
The water content (%) of the acrylic rubber veil was measured according to the JIS K6230-1: Oven A (volatile content measurement) method.

[分子量及び分子量分布]
アクリルゴムの重量平均分子量(Mw)及び分子量分布(Mw/Mn及びMz/Mw)は、溶媒としてジメチルホルムアミドに塩化リチウムが0.05mol/L、37%濃塩酸が0.01%の濃度でそれぞれ添加された溶液を用いた、GPC−MALS法により測定される絶対分子量及び絶対分子量分布である。具体的には、GPC(Gel Permeation Chromatography)装置に多角度レーザ光散乱光度計(MALS)及び示差屈折率計(RI)を組み入れ、GPC装置でサイズ分別された分子鎖溶液の光散乱強度及び屈折率差を、溶出時間を追って測定することにより、溶質の分子量とその含有率を順次計算し求めた。GPC装置による測定条件及び測定方法は、以下のとおりである。
カラム:TSKgel α−M 2本(φ7.8mm×30cm、東ソー社製)
温度:カラム 40℃
流速:0.8ml/mm
試料調整:試料10mgに溶媒5mlを加え、室温で緩やかに撹拌した(溶解を視認)。その後0.5μmフィルターを用いてろ過を行った。
注入量:0.200ml
[Molecular weight and molecular weight distribution]
The weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn and Mz / Mw) of the acrylic rubber are as follows: dimethylformamide as a solvent, lithium chloride at a concentration of 0.05 mol / L, and 37% concentrated hydrochloric acid at a concentration of 0.01%, respectively. It is an absolute molecular weight and an absolute molecular weight distribution measured by the GPC-MALS method using the added solution. Specifically, a multi-angle laser light scattering photometric meter (MALS) and a differential refractometer (RI) are incorporated into a GPC (Gel Permeation Chromatography) device, and the light scattering intensity and refraction of the molecular chain solution size-sorted by the GPC device are incorporated. The molecular weight of the solute and its content were sequentially calculated and obtained by measuring the rate difference with the elution time. The measurement conditions and measurement method by the GPC device are as follows.
Column: 2 TSKgel α-M (φ7.8 mm x 30 cm, manufactured by Tosoh Corporation)
Temperature: Column 40 ° C
Flow velocity: 0.8 ml / mm
Sample preparation: 5 ml of solvent was added to 10 mg of sample, and the mixture was gently stirred at room temperature (dissolution was visually observed). Then, filtration was performed using a 0.5 μm filter.
Injection volume: 0.200 ml

[複素粘性率]
アクリルゴムベールの複素粘性率ηは、動的粘弾性測定装置「ラバープロセスアナライザRPA−2000」(アルファテクノロジー社製)を用いて、歪み473%、1Hzにて温度分散(40〜120℃)を測定し、各温度における複素粘性率ηを求めた。ここでは、上述の動的粘弾性のうち60℃における動的粘弾性を複素粘性率η(60℃)とし、100℃における動的粘弾性を複素粘性率η(100℃)として、η(100℃)/η(60℃)、η(60℃)/η(100℃)の値を算出した。
[Complex viscosity]
The complex viscosity η of the acrylic rubber bale is subjected to temperature dispersion (40 to 120 ° C.) at a strain of 473% and 1 Hz using a dynamic viscoelasticity measuring device “Rubber Process Analyzer RPA-2000” (manufactured by Alpha Technology). The measurement was performed to determine the complex viscoelasticity η at each temperature. Here, among the above-mentioned dynamic viscoelasticities, the dynamic viscoelasticity at 60 ° C. is defined as the complex viscoelasticity η (60 ° C.), and the dynamic viscoelasticity at 100 ° C. is defined as the complex viscoelasticity η (100 ° C.) The values of ° C.) / η (60 ° C.) and η (60 ° C.) / η (100 ° C.) were calculated.

[ムーニー粘度(ML1+4,100℃)]
アクリルゴムベールのムーニー粘度(ML1+4,100℃)は、JIS K6300の未架橋ゴム物理試験法に従って測定した。
[Moony Viscosity (ML1 + 4,100 ° C)]
The Mooney viscosity (ML1 + 4,100 ° C.) of the acrylic rubber veil was measured according to the uncrosslinked rubber physical test method of JIS K6300.

[ゲル量のバラツキ性評価]
ゴム試料のゲル量のバラツキ評価は、ゴム試料20部(20kg)から任意に選択した20点のゲル量を測定し、下記基準に基づき評価した。
◎:測定した20点のゲル量の平均値を算出し、平均値±3の範囲内に測定した20点全てが入っているもの
〇:測定した20点のゲル量の平均値を算出し、平均値±5の範囲内に測定した20点全てが入っていたもの(平均値±3の範囲では測定した20点のうち1点でも外れてしまうが、平均値±5の範囲内には20点全てが入るもの)
×:測定した20点のゲル量の平均値を算出し、平均値±5の範囲から測定した20点のうち1点でも外れたもの
[Evaluation of variation in gel amount]
The variation in the gel amount of the rubber sample was evaluated by measuring the gel amount of 20 points arbitrarily selected from 20 parts (20 kg) of the rubber sample and evaluating based on the following criteria.
⊚: The average value of the measured 20-point gel amount was calculated, and all the measured 20 points were within the range of the average value ± 3. 〇: The average value of the measured 20-point gel amount was calculated. All 20 points measured within the range of mean ± 5 were included (in the range of mean ± 3, even one of the 20 points measured would be off, but within the range of mean ± 5 20 (Those that contain all the points)
X: The average value of the gel amount of the measured 20 points was calculated, and even one of the 20 points measured from the range of the average value ± 5 deviated.

[保存安定性]
ゴム試料の保存安定性は、ゴム試料を45℃×80%RHの恒温恒湿度槽(ESPEC社製SH−222)に投入し、7日間試験前後のゴム試料を使用してゴム混合物のムーニースコーチ最低粘度(Vm)をJIS K6300−1:2013に準じてLロータを用いて125℃で測定し試験損後の変化率を算出した。Vm変化率は、比較例2の変化率を100とする指数で評価した(指数が小さいほど保存安定性に優れる)。
[Storage stability]
For the storage stability of the rubber sample, the rubber sample was placed in a constant temperature and humidity chamber (SH-222 manufactured by ESPEC) at 45 ° C. × 80% RH, and the rubber sample before and after the test for 7 days was used as a Mooney scorch of the rubber mixture. The minimum viscosity (Vm) was measured at 125 ° C. using an L rotor according to JIS K6300-1: 2013, and the rate of change after the test loss was calculated. The Vm change rate was evaluated by an index with the change rate of Comparative Example 2 as 100 (the smaller the index, the better the storage stability).

[加工性評価]
ゴム試料の加工性は、ゴム試料を50℃に加温されたバンバリーミキサーに投入し1分間素練り後、表1記載のゴム混合物配合の配合剤Aを投入して1段目のゴム混合物が一体化して最大トルク値を示すまでの時間、すなわちBIT(Black Incorporation Time)を測定し、比較例2を100とする指数で評価した(指数が小さいほど加工性に優れる)。
[Evaluation of workability]
Regarding the processability of the rubber sample, the rubber sample was put into a Banbury mixer heated to 50 ° C. and kneaded for 1 minute, and then the compounding agent A containing the rubber mixture shown in Table 1 was added to obtain the rubber mixture in the first stage. The time required to integrate and show the maximum torque value, that is, BIT (Black Incorporation Time) was measured and evaluated with an index of Comparative Example 2 as 100 (the smaller the index, the better the workability).

[耐水性評価]
ゴム試料の耐水性は、JIS K6258に準拠してゴム試料の架橋物を温度85℃蒸留水中に100時間浸漬させて浸漬試験を行い、浸漬前後の体積変化率を下記式に従って算出し、比較例2を100とする指数で評価した(指数が小さいほど耐水性に優れる)。
[Water resistance evaluation]
The water resistance of the rubber sample is determined by immersing the crosslinked product of the rubber sample in distilled water at a temperature of 85 ° C. for 100 hours in accordance with JIS K6258 for a dipping test, and calculating the volume change rate before and after dipping according to the following formula. It was evaluated by an index with 2 as 100 (the smaller the index, the better the water resistance).

浸漬前後の体積変化率(%)=((浸漬後の試験片体積―浸漬前の試験片体積)/浸漬前の試験片体積)×100 Volume change rate before and after immersion (%) = ((Test piece volume after immersion-Test piece volume before immersion) / Test piece volume before immersion) x 100

[常態物性評価]
ゴム試料の常態物性は、JIS K6251に従いゴム試料のゴム架橋物を破断強度、100%引張応力及び破断伸びを測定し以下の基準で評価した。
(1)破断強度は、10MPa以上を◎、10MPa未満を×として評価した。
(2)100%引張応力は、5MPa以上を◎、5MPa未満を×として評価した。
(3)破断伸びは、150%以上を◎、150%未満を×として評価した。
[Evaluation of normal physical properties]
The normal physical properties of the rubber sample were evaluated according to the following criteria by measuring the breaking strength, 100% tensile stress and breaking elongation of the crosslinked rubber sample of the rubber sample according to JIS K6251.
(1) The breaking strength was evaluated as ⊚ for 10 MPa or more and × for less than 10 MPa.
(2) For 100% tensile stress, 5 MPa or more was evaluated as ⊚, and less than 5 MPa was evaluated as x.
(3) The elongation at break was evaluated as ⊚ for 150% or more and x for less than 150%.

[実施例1]
ホモミキサーを備えた混合容器に、純水46部、アクリル酸エチル28部、アクリル酸n−ブチル38部、アクリル酸メトキシエチル27部、アクリロニトリル5部及びアリルグリシジルエーテル2部、及び乳化剤としてノニルフェニルオキシヘキサオキシエチレンリン酸エステルナトリウム塩1.8部を仕込み撹拌して単量体エマルジョンを得た。
[Example 1]
In a mixing container equipped with a homomixer, 46 parts of pure water, 28 parts of ethyl acrylate, 38 parts of n-butyl acrylate, 27 parts of methoxyethyl acrylate, 5 parts of acrylonitrile and 2 parts of allyl glycidyl ether, and nonylphenyl as an emulsifier. 1.8 parts of oxyhexaoxyethylene phosphate sodium salt was charged and stirred to obtain a monomeric emulsion.

次に、温度計、撹拌装置を備えた重合反応槽に、純水170部及び上記で得られた単量体エマルジョン3部を投入し、窒素気流下で12℃まで冷却した。次に、重合反応槽中に、単量体エマルジョンの残部、硫酸第一鉄0.00033部、アスコルビン酸ナトリウム0.264部、及び過硫酸カリウム0.22部を3時間かけて連続的に滴下した。その後、重合反応内の温度を23℃に保った状態にて反応を継続し、重合転化率が略100%に達したことを確認し、重合停止剤としてのハイドロキノンを添加して重合反応を停止し乳化重合液を得た。 Next, 170 parts of pure water and 3 parts of the monomer emulsion obtained above were put into a polymerization reaction tank equipped with a thermometer and a stirrer, and cooled to 12 ° C. under a nitrogen stream. Next, the rest of the monomer emulsion, 0.00033 parts of ferrous sulfate, 0.264 parts of sodium ascorbate, and 0.22 parts of potassium persulfate were continuously added dropwise to the polymerization reaction tank over 3 hours. did. After that, the reaction was continued while the temperature in the polymerization reaction was kept at 23 ° C., it was confirmed that the polymerization conversion rate reached approximately 100%, and hydroquinone as a polymerization terminator was added to stop the polymerization reaction. An emulsion polymerization solution was obtained.

温度計と撹拌装置を備えた凝固槽で、80℃に加温した激しく撹拌(600回転:周速3.1m/s)した2%硫酸マグネシウム水溶液(凝固液)中に、得られた乳化重合液を80℃に加温して連続的に添加して重合体を凝固させ濾別して含水クラムを得た。 Emulsion polymerization obtained in a 2% magnesium sulfate aqueous solution (coagulant) heated to 80 ° C. and vigorously stirred (600 rpm: peripheral speed 3.1 m / s) in a coagulation tank equipped with a thermometer and a stirrer. The liquid was heated to 80 ° C. and continuously added to solidify the polymer and filtered off to obtain a hydrous crumb.

次に、凝固槽内に194部の温水(70℃)を添加して15分間撹拌した後に水分を排出させ、再度194部の温水(70℃)を添加して15分間撹拌して含水クラムの洗浄を行った。洗浄した含水クラムを、スクリュー型押出機15に供給し、脱水・乾燥して幅300mmで厚さ10mmのシート状乾燥ゴムを押し出した。次に、スクリュー型押出機15に直結して設けた搬送式冷却装置を用いて、シート状乾燥ゴムを冷却速度200℃/hrで冷却した。 Next, 194 parts of warm water (70 ° C.) was added to the coagulation tank and stirred for 15 minutes, then the water was discharged, and 194 parts of warm water (70 ° C.) was added again and stirred for 15 minutes. Cleaning was performed. The washed hydrous crumb was supplied to the screw type extruder 15, dehydrated and dried, and a sheet-shaped dry rubber having a width of 300 mm and a thickness of 10 mm was extruded. Next, the sheet-shaped dry rubber was cooled at a cooling rate of 200 ° C./hr by using a transport-type cooling device directly connected to the screw type extruder 15.

なお、本実施例1で用いたスクリュー型押出機は、1つの供給バレル、3つの脱水バレル(第1〜第3の脱水バレル)、5つの乾燥バレル(第1〜第5の乾燥バレル)で構成されている。第1及び第2の脱水バレルは排水を行い、第3の脱水バレルは排蒸気を行うようになっている。スクリュー型押出機の操業条件は、以下のとおりとした。 The screw type extruder used in the first embodiment has one supply barrel, three dehydration barrels (first to third dehydration barrels), and five drying barrels (first to fifth drying barrels). It is configured. The first and second dehydration barrels are designed to drain water, and the third dehydration barrel is designed to drain steam. The operating conditions of the screw type extruder are as follows.

含水量:
・第2の脱水バレルでの排水後の含水クラムの含水量:20%
・第3の脱水バレルでの排蒸気後の含水クラムの含水量:10%
・第5の乾燥バレルでの乾燥後の含水クラムの含水量:0.4%
Moisture content:
Moisture content of the hydrous crumb after drainage in the second dehydration barrel: 20%
Moisture content of the hydrous crumb after steam exhaust in the third dehydration barrel: 10%
Moisture content of the hydrous crumb after drying in the 5th drying barrel: 0.4%

ゴム温度:
・第1の供給バレルに供給する含水クラムの温度:65℃
・スクリュー型押出機から排出されるゴムの温度:140℃
Rubber temperature:
-The temperature of the hydrous crumb supplied to the first supply barrel: 65 ° C.
・ Temperature of rubber discharged from screw type extruder: 140 ℃

脱水バレル部の設定温度:
・第1の脱水バレル:90℃
・第2の脱水バレル:100℃
・第3の脱水バレル:120℃
・第1の乾燥バレル:120℃
・第2の乾燥バレル:130℃
・第3の乾燥バレル:140℃
・第4の乾燥バレル:160℃
・第5の乾燥バレル:180℃
Set temperature of dehydration barrel:
-First dehydration barrel: 90 ° C
-Second dehydration barrel: 100 ° C
-Third dehydration barrel: 120 ° C
-First drying barrel: 120 ° C
-Second drying barrel: 130 ° C
-Third drying barrel: 140 ° C
・ Fourth drying barrel: 160 ° C
・ Fifth drying barrel: 180 ° C

運転条件:
・バレルユニット内のスクリューの直径(D):132mm
・バレルユニット内のスクリューの全長(L):4620mm
・L/D:35
・バレルユニット内のスクリューの回転数:135rpm
・ダイからのゴムの押出量:700kg/hr
・ダイの樹脂圧:2MPa
Operating conditions:
-Screw diameter (D) in the barrel unit: 132 mm
-Overall length (L) of the screw in the barrel unit: 4620 mm
・ L / D: 35
・ Screw rotation speed in the barrel unit: 135 rpm
-Rubber extrusion amount from die: 700 kg / hr
・ Die resin pressure: 2MPa

押し出されたシート状乾燥ゴムを、50℃まで冷却してからカッターで切断して、40℃以下にならない内に20部(20kg)になるように積層してアクリルゴムベール(A)を得た。得られたアクリルゴムベール(A)の反応性基含有量、灰分量、灰分成分量、比重、ゲル量、pH、ガラス転移温度(Tg)、含水量、分子量、分子量分布、複素粘性率及びムーニー粘度(ML1+4,100℃)を測定しそれらの結果を表2に示した。また、アクリルゴムベール(A)のゲル量のバラツキ性を評価しその結果を表2に示した。 The extruded sheet-shaped dry rubber was cooled to 50 ° C., cut with a cutter, and laminated to 20 parts (20 kg) before the temperature fell below 40 ° C. to obtain an acrylic rubber veil (A). .. Reactive group content, ash content, ash component content, specific gravity, gel amount, pH, glass transition temperature (Tg), water content, molecular weight, molecular weight distribution, complex viscosity and Moony of the obtained acrylic rubber veil (A) The viscosities (ML1 + 4,100 ° C.) were measured and the results are shown in Table 2. In addition, the variation in the gel amount of the acrylic rubber veil (A) was evaluated, and the results are shown in Table 2.

次に、バンバリーミキサーを用いて、アクリルゴムベール(A)100部と表1記載の「配合1」の配合剤Aを投入して、50℃で5分間混合した。このときのBITを測定してアクリルゴムベールの加工性を評価しその結果を表2に示した。 Next, using a Bunbury mixer, 100 parts of the acrylic rubber veil (A) and the compounding agent A of "formulation 1" shown in Table 1 were added and mixed at 50 ° C. for 5 minutes. The BIT at this time was measured to evaluate the processability of the acrylic rubber bale, and the results are shown in Table 2.

次に、得られた混合物を50℃のロールに移して、表1記載の「配合1」の配合剤Bを混合してゴム混合物を得た。得られたゴム混合物及び保存安定性試験後のアクリルゴムベール(A)を用いて同様に作製したゴム混合物のムーニースコーチ最低粘度(Vm)を測定しその変化率を表2に示した。 Next, the obtained mixture was transferred to a roll at 50 ° C., and the compounding agent B of "Formulation 1" shown in Table 1 was mixed to obtain a rubber mixture. The Mooney Scorch minimum viscosity (Vm) of the rubber mixture thus prepared using the obtained rubber mixture and the acrylic rubber veil (A) after the storage stability test was measured, and the rate of change is shown in Table 2.

得られたゴム混合物を、縦15cm、横15cm、深さ0.2cmの金型に入れ、プレス圧10MPaで加圧しながら180℃で10分間プレスすることにより一次架橋し、次に、得られた一次架橋物を、ギヤー式オーブンにて、更に180℃、2時間の条件で加熱して二次架橋させることにより、シート状のゴム架橋物を得た。そして、得られたシート状のゴム架橋物から3cm×2cm×0.2cmの試験片を切り取り耐水性評価及び常態物性を評価してそれらの結果を表2に示した。 The obtained rubber mixture was placed in a mold having a length of 15 cm, a width of 15 cm, and a depth of 0.2 cm, and was first crosslinked by pressing at 180 ° C. for 10 minutes while pressurizing at a press pressure of 10 MPa, and then obtained. The primary crosslinked product was further heated in a gear oven at 180 ° C. for 2 hours for secondary cross-linking to obtain a sheet-shaped rubber crosslinked product. Then, a 3 cm × 2 cm × 0.2 cm test piece was cut out from the obtained sheet-shaped rubber crosslinked product, and the water resistance evaluation and the normal physical properties were evaluated, and the results are shown in Table 2.

[実施例2]
単量体成分を、アクリル酸エチル42.2部、アクリル酸n−ブチル35部、アクリル酸メトキシエチル20部、アクリロニトリル1.5部及びクロロ酢酸ビニル1.3部に、乳化剤をトリデシルオキシヘキサオキシエチレンリン酸エステルナトリウム塩に変更する以外は実施例1と同様に行いアクリルゴムベール(B)を得て各特性(「配合2」に変更して)を評価した。それらの結果を表2に示した。
[Example 2]
The monomer component was 42.2 parts of ethyl acrylate, 35 parts of n-butyl acrylate, 20 parts of methoxyethyl acrylate, 1.5 parts of acrylonitrile and 1.3 parts of vinyl chloroacetate, and the emulsifier was tridecyloxyhexa. Acrylic rubber veil (B) was obtained in the same manner as in Example 1 except that the sodium salt was changed to oxyethylene phosphate sodium salt, and each characteristic (changed to "formulation 2") was evaluated. The results are shown in Table 2.

[実施例3]
スクリュー型押出機の第1脱水バレルの温度を100℃、第2の脱水バレルの温度を120℃に変えて第1の脱水バレルのみで排水を行うようにし、且つ、第1の脱水バレルでの排水後の含水クラムの含水量を30%に変更する以外は実施例1と同様に行い、アクリルゴムベール(C)を得て各特性を評価した。それらの結果を表2に示した。
[Example 3]
The temperature of the first dehydration barrel of the screw type extruder is changed to 100 ° C., and the temperature of the second dehydration barrel is changed to 120 ° C. so that drainage is performed only by the first dehydration barrel, and in the first dehydration barrel. The same procedure as in Example 1 was carried out except that the water content of the water-containing crumb after drainage was changed to 30%, and an acrylic rubber bale (C) was obtained and each characteristic was evaluated. The results are shown in Table 2.

[実施例4]
スクリュー型押出機の第1脱水バレルの温度を100℃、第2の脱水バレルの温度を120℃に変えて第1の脱水バレルのみで排水を行うようにし、且つ、第1の脱水バレルでの排水後の含水クラムの含水量を30%に変更する以外は実施例2と同様に行い、アクリルゴムベール(D)を得て各特性を評価した。それらの結果を表2に示した。
[Example 4]
The temperature of the first dehydration barrel of the screw type extruder is changed to 100 ° C., and the temperature of the second dehydration barrel is changed to 120 ° C. so that drainage is performed only by the first dehydration barrel, and in the first dehydration barrel. The same procedure as in Example 2 was carried out except that the water content of the water-containing crumb after drainage was changed to 30%, and an acrylic rubber bale (D) was obtained and each characteristic was evaluated. The results are shown in Table 2.

[比較例1]
実施例2と同様に乳化重合を行った乳化重合液(回転数100rpm、周速0.5m/s)に80℃に加温した0.7%硫酸マグネシウム水溶液(凝固液)を連続的に添加して重合体を凝固させ濾別して含水クラムを得た。次に、得られた含水クラムを194部の温水(70℃)を添加して15分間撹拌した後に水分を排出させ、再度194部の温水(70℃)を添加して15分間の洗浄を行った後に、160℃の熱風乾燥機で乾燥させて含水量0.4重量%のクラム状アクリルゴム(E)を得た。得られたクラム状アクリルゴム(E)の各特性(「配合2」)を評価して表2に示した。
[Comparative Example 1]
A 0.7% magnesium sulfate aqueous solution (coagulant) heated to 80 ° C. was continuously added to the emulsion polymer solution (rotation speed 100 rpm, peripheral speed 0.5 m / s) subjected to emulsion polymerization in the same manner as in Example 2. The polymer was coagulated and filtered off to obtain a hydrous crumb. Next, 194 parts of warm water (70 ° C.) was added to the obtained hydrous crumb and stirred for 15 minutes, then the water was discharged, and 194 parts of warm water (70 ° C.) was added again to wash for 15 minutes. After that, it was dried with a hot air dryer at 160 ° C. to obtain a crumb-shaped acrylic rubber (E) having a water content of 0.4% by weight. Each characteristic (“blending 2”) of the obtained crumb-shaped acrylic rubber (E) was evaluated and shown in Table 2.

[比較例2]
ホモミキサーを備えた混合容器に、純水46部、アクリル酸エチル42.2部、アクリル酸n−ブチル35部、アクリル酸メトキシエチル20部、アクリロニトリル1.5部、クロロ酢酸ビニル1.3部、乳化剤としてラウリル硫酸ナトリウム0.709部及びポリオキシエチレンドデシルエーテル(分子量1500)1.82部を仕込み撹拌して単量体エマルジョンを得た。
[Comparative Example 2]
In a mixing container equipped with a homomixer, 46 parts of pure water, 42.2 parts of ethyl acrylate, 35 parts of n-butyl acrylate, 20 parts of methoxyethyl acrylate, 1.5 parts of acrylonitrile, 1.3 parts of vinyl chloroacetate As an emulsifier, 0.709 parts of sodium lauryl sulfate and 1.82 parts of polyoxyethylene dodecyl ether (molecular weight 1500) were charged and stirred to obtain a monomer emulsion.

次に、温度計、撹拌装置を備えた重合反応槽に、純水170部及び上記で得られた単量体エマルジョン3部を投入し、窒素気流下で12℃まで冷却した。次に、重合反応槽中に、単量体エマルジョンの残部、硫酸第一鉄0.00033部、アスコルビン酸ナトリウム0.264部、及び過硫酸カリウム0.22部を3時間かけて連続的に滴下した。その後、重合反応内の温度を23℃に保った状態にて反応を継続し、重合転化率が略100%に達したことを確認し、重合停止剤としてのハイドロキノンを添加して重合反応を停止し乳化重合液を得た。 Next, 170 parts of pure water and 3 parts of the monomer emulsion obtained above were put into a polymerization reaction tank equipped with a thermometer and a stirrer, and cooled to 12 ° C. under a nitrogen stream. Next, the rest of the monomer emulsion, 0.00033 parts of ferrous sulfate, 0.264 parts of sodium ascorbate, and 0.22 parts of potassium persulfate were continuously added dropwise to the polymerization reaction tank over 3 hours. did. After that, the reaction was continued while the temperature in the polymerization reaction was kept at 23 ° C., it was confirmed that the polymerization conversion rate reached approximately 100%, and hydroquinone as a polymerization terminator was added to stop the polymerization reaction. An emulsion polymerization solution was obtained.

次に、乳化重合液を80℃に加温した後に0.7%硫酸ナトリウム水溶液(凝固液)連続的に添加して重合体を凝固させ濾別して含水クラムを得た。得られた含水クラム100部に対し、工業用水194部を添加し、25℃、5分間撹拌した後、凝固槽から水分を排出する含水クラムの洗浄を4回行い、次に、pH3の硫酸水溶液194部を添加して25℃で5分間撹拌した後、凝固槽から水分を排出させて酸洗浄を1回行った後、純水194部添加して純水洗浄を1回行った後に、160℃の熱風乾燥機で乾燥させて含水量0.4重量%のクラム状アクリルゴム(F)を得た。得られたクラム状アクリルゴム(F)の各特性(「配合2」)を評価して表2に示した。 Next, after heating the emulsion polymerization solution to 80 ° C., a 0.7% sodium sulfate aqueous solution (coagulation solution) was continuously added to coagulate the polymer and filter it off to obtain a hydrous crumb. To 100 parts of the obtained hydrous crumb, 194 parts of industrial water was added, and after stirring at 25 ° C. for 5 minutes, the hydrous crumb for discharging water from the coagulation tank was washed four times, and then a sulfuric acid aqueous solution having a pH of 3 was washed. After adding 194 parts and stirring at 25 ° C. for 5 minutes, water is discharged from the coagulation tank to perform acid cleaning once, then 194 parts of pure water is added and pure water cleaning is performed once, and then 160. A crumb-shaped acrylic rubber (F) having a water content of 0.4% by weight was obtained by drying with a hot air dryer at ° C. Each characteristic (“blending 2”) of the obtained crumb-shaped acrylic rubber (F) was evaluated and shown in Table 2.

表2から、反応性基を有する重量平均分子量(Mw)が100,000〜5,000,000でアクリルゴムからなり、メチルエチルケトン不溶解なゲル量が50重量%以下で比重が0.9以上であるアクリルゴムベール(A)〜(D)は、保存安定性と加工性が高度に優れていることがわかる(実施例1〜4)。 From Table 2, the weight average molecular weight (Mw) having a reactive group is 100,000 to 5,000,000, the gel is made of acrylic rubber, the amount of gel insoluble in methyl ethyl ketone is 50% by weight or less, and the specific gravity is 0.9 or more. It can be seen that certain acrylic rubber veils (A) to (D) are highly excellent in storage stability and processability (Examples 1 to 4).

保存安定性については、45℃×80%RHの恒温恒湿槽投入前後のムーニースコーチ最低粘度(Vm)の変化率を評価しているが、本発明にアクリルゴムベール(A)〜(D)は、クラム状アクリルゴム(E)及び(F)と比べて圧倒的に優れていることがわかる(実施例1〜4と比較例1〜2との比較)。これは、アクリルゴムベール(A)〜(D)の比重がクラム状アクリルゴム(E)及び(F)と比べると格段に高く、殆ど空気を含まない状態になっているために保存安定性が向上していると思われる。 Regarding storage stability, the rate of change in the minimum viscosity (Vm) of the Mooney scorch before and after putting it in a constant temperature and humidity chamber of 45 ° C. x 80% RH is evaluated. In the present invention, acrylic rubber veils (A) to (D) Is overwhelmingly superior to the crumb-shaped acrylic rubbers (E) and (F) (comparison between Examples 1 to 4 and Comparative Examples 1 and 2). This is because the specific gravities of the acrylic rubber veils (A) to (D) are much higher than those of the crumb-shaped acrylic rubbers (E) and (F), and the storage stability is high because they contain almost no air. It seems to be improving.

ゲル量のバラツキ性については、任意に選択した20点のゲル量を測定し、平均値±3の範囲内に測定した20点全ての測定値が入っているか否か、あるいは平均値±5の範囲内に20点全ての測定値が入っているか否かで判断したが、本発明のアクリルゴムベール(A)〜(D)は、クラム状アクリルゴム(E)及び(F)と比べて圧倒的にバラツキ性に優れ、ベール内でのゲル量のバラツキが少ないことがわかる(実施例1〜4と比較例1との比較)。ゲル量は、バンバリーなどの加工性に直接影響して、これが変化するとゴム混合物及びゴム架橋物の諸物性がバラツキ結果として諸物性を悪化させてしまうので好ましくない。それに対して、本発明のアクリルゴムベール(A)〜(D)は、ゲル量のバラツキがなく、安定したゴム混合物やゴム架橋物を与えることができる。 Regarding the variation in the amount of gel, the amount of gel at 20 points arbitrarily selected was measured, and whether or not all the measured values of all 20 points measured within the range of the average value ± 3 were included, or the average value was ± 5. It was judged whether or not all the measured values of 20 points were within the range, but the acrylic rubber veils (A) to (D) of the present invention were overwhelming as compared with the crumb-shaped acrylic rubbers (E) and (F). It can be seen that the variation is excellent and the amount of gel in the bale is small (comparison between Examples 1 to 4 and Comparative Example 1). The amount of gel directly affects the processability of Banbury and the like, and if this is changed, the physical properties of the rubber mixture and the crosslinked rubber will vary, resulting in deterioration of the physical properties, which is not preferable. On the other hand, the acrylic rubber veils (A) to (D) of the present invention have no variation in the amount of gel and can provide a stable rubber mixture or rubber crosslinked product.

加工性については、本発明では強度特性を上げるために乳化重合の重合転化率を高めているが、重合転化率を上げていくと急激にゲル量が増加しアクリルゴムの加工性を悪化させてしまったが、スクリュー型押出機内で実質的に水分が無い状態(含水量1%未満)まで乾燥させ溶融混錬されることで急増したゲルが消失し、アクリルゴムベールの加工性と強度を高度にバランスされていることがわかる(実施例1〜4と比較例1との比較)。 Regarding workability, in the present invention, the polymerization conversion rate of emulsion polymerization is increased in order to improve the strength characteristics, but as the polymerization conversion rate is increased, the amount of gel rapidly increases and the processability of acrylic rubber deteriorates. However, the gel that has rapidly increased disappears when it is dried and melt-kneaded in a screw-type extruder to a state where there is virtually no moisture (water content less than 1%), and the processability and strength of the acrylic rubber veil are improved. It can be seen that the balance is (comparison between Examples 1 to 4 and Comparative Example 1).

表2から、また、反応性基量、比重、ゲル量、ガラス転移温度(Tg)、pH、含水量、重量平均分子量(Mw)、z平均分子量(Mz)と重量平均分子量(Mw)との比(Mz/Mw)、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)、100℃における複素粘性率η(100℃)、60℃における複素粘性率η(60℃)、100℃と60℃における複素粘性率の比(η100℃/η60℃)及びムーニー粘度(1+4,100℃)が特定範囲にあるアクリルゴムベール(A)〜(D)は、保存安定性と加工性が格段に優れるとともに耐水性や常態物性(強度特性)にも優れていることがわかる(実施例1〜4)。 From Table 2, also, the reactive group weight, specific gravity, gel weight, glass transition temperature (Tg), pH, water content, weight average molecular weight (Mw), z average molecular weight (Mz) and weight average molecular weight (Mw). Ratio (Mz / Mw), Ratio of weight average molecular weight (Mw) to number average molecular weight (Mn) (Mw / Mn), complex viscosity η (100 ° C) at 100 ° C, complex viscosity η (60 ° C) at 60 ° C Acrylic rubber veils (A) to (D) having a specific range of complex viscosity ratios (η100 ° C./η60 ° C.) and Mooney viscosity (1 + 4,100 ° C.) at 100 ° C. and 60 ° C. are storage stability. It can be seen that the processability is remarkably excellent, and the water resistance and normal physical properties (strength characteristics) are also excellent (Examples 1 to 4).

1 アクリルゴム製造システム
3 凝固装置
4 洗浄装置
5 スクリュー型押出機
6 冷却装置
7 ベール化装置
1 Acrylic rubber manufacturing system 3 Coagulation equipment 4 Cleaning equipment 5 Screw type extruder 6 Cooling equipment 7 Veiling equipment

[分子量及び分子量分布]
アクリルゴムの重量平均分子量(Mw)及び分子量分布(Mz/Mw)は、溶媒としてジメチルホルムアミドに塩化リチウムが0.05mol/L、37%濃塩酸が0.01%の濃度でそれぞれ添加された溶液を用いた、GPC−MALS法により測定される絶対分子量及び絶対分子量分布である。具体的には、GPC(Gel Permeation Chromatography)装置に多角度レーザ光散乱光度計(MALS)及び示差屈折率計(RI)を組み入れ、GPC装置でサイズ分別された分子鎖溶液の光散乱強度及び屈折率差を、溶出時間を追って測定することにより、溶質の分子量とその含有率を順次計算し求めた。GPC装置による測定条件及び測定方法は、以下のとおりである。
カラム:TSKgel α−M 2本(φ7.8mm×30cm、東ソー社製)
温度:カラム 40℃
流速:0.8ml/mm
試料調整:試料10mgに溶媒5mlを加え、室温で緩やかに撹拌した(溶解を視認)。その後0.5μmフィルターを用いてろ過を行った。
注入量:0.200ml
[Molecular weight and molecular weight distribution]
Regarding the weight average molecular weight (Mw) and molecular weight distribution ( Mz / Mw) of the acrylic rubber, lithium chloride was added to dimethylformamide at a concentration of 0.05 mol / L and 37% concentrated hydrochloric acid was added at a concentration of 0.01%, respectively. It is an absolute molecular weight and an absolute molecular weight distribution measured by the GPC-MALS method using a solution. Specifically, a multi-angle laser light scattering photometric meter (MALS) and a differential refractometer (RI) are incorporated into a GPC (Gel Permeation Chromatography) device, and the light scattering intensity and refraction of the molecular chain solution size-sorted by the GPC device are incorporated. The molecular weight of the solute and its content were sequentially calculated and obtained by measuring the rate difference with the elution time. The measurement conditions and measurement method by the GPC device are as follows.
Column: 2 TSKgel α-M (φ7.8 mm x 30 cm, manufactured by Tosoh Corporation)
Temperature: Column 40 ° C
Flow velocity: 0.8 ml / mm
Sample preparation: 5 ml of solvent was added to 10 mg of sample, and the mixture was gently stirred at room temperature (dissolution was visually observed). Then, filtration was performed using a 0.5 μm filter.
Injection volume: 0.200 ml

表2から、また、反応性基量、比重、ゲル量、ガラス転移温度(Tg)、pH、含水量、重量平均分子量(Mw)、z平均分子量(Mz)と重量平均分子量(Mw)との比(Mz/Mw)、100℃における複素粘性率η(100℃)、60℃における複素粘性率η(60℃)、100℃と60℃における複素粘性率の比(η100℃/η60℃)及びムーニー粘度(1+4,100℃)が特定範囲にあるアクリルゴムベール(A)〜(D)は、保存安定性と加工性が格段に優れるとともに耐水性や常態物性(強度特性)にも優れていることがわかる(実施例1〜4)。 From Table 2, also, the reactive group weight, specific gravity, gel weight, glass transition temperature (Tg), pH, water content, weight average molecular weight (Mw), z average molecular weight (Mz) and weight average molecular weight (Mw). Ratio (Mz / Mw ), complex viscosity at 100 ° C. η (100 ° C.), complex viscosity at 60 ° C. η (60 ° C.), ratio of complex viscosity at 100 ° C. and 60 ° C. (η100 ° C./η60 ° C.) and Acrylic rubber veils (A) to (D) having a Mooney viscosity (1 + 4,100 ° C.) in a specific range are remarkably excellent in storage stability and workability, as well as in water resistance and normal physical properties (strength characteristics). It can be seen (Examples 1 to 4).

Claims (11)

反応性基を有する重量平均分子量(Mw)が100,000〜5,000,000でアクリルゴムからなり、メチルエチルケトン不溶解なゲル量が50重量%以下で比重が0.8以上であるアクリルゴムベール。 Acrylic rubber veil having a reactive group, having a weight average molecular weight (Mw) of 100,000 to 5,000,000 and consisting of acrylic rubber, having a gel amount insoluble in methyl ethyl ketone of 50% by weight or less and a specific gravity of 0.8 or more. .. アクリルゴムベールのゲル量を任意に20点測定したときの値が、(平均値−5)〜(平均値+5)重量%の範囲内に測定した20点全てが入る請求項1記載のアクリルゴムベール。 The acrylic rubber according to claim 1, wherein the value when the gel amount of the acrylic rubber veil is arbitrarily measured at 20 points falls within the range of (mean value -5) to (mean value + 5)% by weight. Veil. 重量平均分子量(Mw)が1,000,000〜5,000,000の範囲である請求項1又は2に記載のアクリルゴムベール。 The acrylic rubber veil according to claim 1 or 2, wherein the weight average molecular weight (Mw) is in the range of 1,000,000 to 5,000,000. z平均分子量(Mz)と重量平均分子量(Mw)との比(Mz/Mw)が、1.3以上である請求項1〜3のいずれかに記載のアクリルゴムベール。 The acrylic rubber veil according to any one of claims 1 to 3, wherein the ratio (Mz / Mw) of the z average molecular weight (Mz) to the weight average molecular weight (Mw) is 1.3 or more. pHが、6以下である請求項1〜4のいずれかに記載のアクリルゴムベール The acrylic rubber veil according to any one of claims 1 to 4, which has a pH of 6 or less. 100℃における複素粘性率([η]100℃)が、1,500〜6,000Pa・sの範囲である請求項1〜5のいずれかに記載のアクリルゴムベール。 The acrylic rubber veil according to any one of claims 1 to 5, wherein the complex viscosity ([η] 100 ° C.) at 100 ° C. is in the range of 1,500 to 6,000 Pa · s. 100℃における複素粘性率([η]100℃)と60℃における複素粘性率([η]60℃)との比([η]100℃/[η]60℃)が、0.5以上である請求項1〜6のいずれかに記載のアクリルゴムベール。 When the ratio ([η] 100 ° C / [η] 60 ° C) of the complex viscosity at 100 ° C ([η] 100 ° C) to the complex viscosity at 60 ° C ([η] 60 ° C) is 0.5 or more. The acrylic rubber bale according to any one of claims 1 to 6. 灰分が、0.5重量%以下である請求項1〜7いずれかに記載のアクリルゴムベール。 The acrylic rubber veil according to any one of claims 1 to 7, wherein the ash content is 0.5% by weight or less. (メタ)アクリル酸エステルと反応性基含有単量体とを含む単量体成分を水と乳化剤とでエマルジョン化し重合触媒存在下に乳化重合し乳化重合液を得る乳化重合工程と、
得られた乳化重合液と凝固液を接触させて含水クラムを生成する凝固工程と、
生成した含水クラムを洗浄する洗浄工程と、
洗浄した含水クラムを、脱水スリットを有する脱水バレルと減圧下の乾燥バレルと先端部にダイを有するスクリュー型押出機を用いて脱水バレルで含水量1〜40重量%まで脱水した後に乾燥バレルで含水量1重量%未満まで乾燥してシート状乾燥ゴムをダイから押し出す脱水・乾燥・成形工程と、
押し出されたシート状乾燥ゴムを積層してベール化するベール化工程と、を含む請求項1〜8のいずれかに記載のアクリルゴムベールの製造方法。
An emulsion polymerization step in which a monomer component containing a (meth) acrylic acid ester and a reactive group-containing monomer is emulsified with water and an emulsifier and emulsion-polymerized in the presence of a polymerization catalyst to obtain an emulsion polymerization solution.
A coagulation step of bringing the obtained emulsion polymerization solution into contact with the coagulation solution to form a hydrous crumb,
A cleaning process to clean the generated hydrous crumbs,
The washed water-containing crumb is dehydrated to a water content of 1 to 40% by weight in a dehydration barrel using a dehydration barrel having a dehydration slit, a drying barrel under reduced pressure, and a screw type extruder having a die at the tip, and then contained in the drying barrel. Dehydration / drying / molding process that dries to less than 1% by weight of water and extrudes sheet-shaped dry rubber from the die.
The method for producing an acrylic rubber veil according to any one of claims 1 to 8, further comprising a bale-forming step of laminating and bale-forming extruded sheet-shaped dry rubber.
請求項1〜8のいずれかに記載のアクリルゴムベールに、充填剤及び架橋剤を混合してなるゴム混合物。 A rubber mixture obtained by mixing a filler and a cross-linking agent with the acrylic rubber veil according to any one of claims 1 to 8. 請求項10記載のゴム混合物を架橋してなるゴム架橋物。 A rubber crosslinked product obtained by cross-linking the rubber mixture according to claim 10.
JP2020015104A 2019-07-19 2020-01-31 Acrylic rubber veil with excellent storage stability and workability Active JP7233388B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CN202080049000.4A CN114072431A (en) 2019-07-19 2020-06-05 Acrylic rubber bale with excellent storage stability and processability
EP20844898.5A EP4001316A4 (en) 2019-07-19 2020-06-05 Acrylic-rubber bale with excellent storage stability and processability
US17/626,633 US20220315683A1 (en) 2019-07-19 2020-06-05 Acrylic rubber bale excellent in storage stability and processability
KR1020227000567A KR20220038334A (en) 2019-07-19 2020-06-05 Acrylic rubber veil with excellent storage stability and processability
PCT/JP2020/022320 WO2021014797A1 (en) 2019-07-19 2020-06-05 Acrylic-rubber bale with excellent storage stability and processability
US17/626,067 US20220259345A1 (en) 2019-07-19 2020-07-17 Acrylic rubber bale excellent in storage stability and processability
KR1020217042526A KR20220038295A (en) 2019-07-19 2020-07-17 Acrylic rubber veil with excellent storage stability and processability
CN202080047949.0A CN114051505B (en) 2019-07-19 2020-07-17 Acrylic rubber bag excellent in storage stability and processability
EP20844247.5A EP4001315A4 (en) 2019-07-19 2020-07-17 Acrylic rubber bale having excellent storage stability and workability
PCT/JP2020/027947 WO2021015143A1 (en) 2019-07-19 2020-07-17 Acrylic rubber bale having excellent storage stability and workability

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019134158 2019-07-19
JP2019134158 2019-07-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2020129426A Division JP7265507B2 (en) 2019-07-19 2020-07-30 Acrylic rubber veil with excellent storage stability and workability
JP2020129425A Division JP7212012B2 (en) 2019-07-19 2020-07-30 Acrylic rubber veil with excellent storage stability and workability

Publications (2)

Publication Number Publication Date
JP2021017553A true JP2021017553A (en) 2021-02-15
JP7233388B2 JP7233388B2 (en) 2023-03-06

Family

ID=74563052

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2020015104A Active JP7233388B2 (en) 2019-07-19 2020-01-31 Acrylic rubber veil with excellent storage stability and workability
JP2020129426A Active JP7265507B2 (en) 2019-07-19 2020-07-30 Acrylic rubber veil with excellent storage stability and workability
JP2020129425A Active JP7212012B2 (en) 2019-07-19 2020-07-30 Acrylic rubber veil with excellent storage stability and workability
JP2020198361A Pending JP2021028403A (en) 2019-07-19 2020-11-30 Acrylic rubber bale excellent in storage stability and processability

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2020129426A Active JP7265507B2 (en) 2019-07-19 2020-07-30 Acrylic rubber veil with excellent storage stability and workability
JP2020129425A Active JP7212012B2 (en) 2019-07-19 2020-07-30 Acrylic rubber veil with excellent storage stability and workability
JP2020198361A Pending JP2021028403A (en) 2019-07-19 2020-11-30 Acrylic rubber bale excellent in storage stability and processability

Country Status (1)

Country Link
JP (4) JP7233388B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021246517A1 (en) * 2020-06-05 2021-12-09 日本ゼオン株式会社 Acrylic rubber bale having excellent roll processability, banbury processability, water resistance, strength characteristics and compression set resistance characteristics
WO2021261215A1 (en) * 2020-06-23 2021-12-30 日本ゼオン株式会社 Acrylic rubber bale having excellent banbury processability and water resistance

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114127137B (en) * 2019-07-19 2024-03-01 日本瑞翁株式会社 Acrylic rubber bag excellent in strength characteristics and workability
EP4000839A4 (en) * 2019-07-19 2023-08-30 Zeon Corporation Acrylic-rubber bale with excellent storage stability and processability
JPWO2021246510A1 (en) * 2020-06-05 2021-12-09

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004131654A (en) * 2002-10-11 2004-04-30 Nippon Zeon Co Ltd Method for recovery of polymer and recovering apparatus
WO2018101146A1 (en) * 2016-11-30 2018-06-07 株式会社大阪ソーダ Acrylic copolymer, and crosslinked product thereof
WO2018147142A1 (en) * 2017-02-09 2018-08-16 日本ゼオン株式会社 Acrylic rubber
JP2019119772A (en) * 2017-12-28 2019-07-22 日本ゼオン株式会社 Process for producing acrylic rubber
WO2019208821A1 (en) * 2018-04-27 2019-10-31 日本ゼオン株式会社 Method for producing acrylic rubber, and acrylic rubber obtained by said production method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004525231A (en) 2001-04-11 2004-08-19 ザ ルブリゾル コーポレイション Lubricants containing olefin copolymers and acrylate copolymers
CN101341677B (en) 2005-10-21 2012-01-11 松下电器产业株式会社 Inter-carrier interference removal device and reception device using the same
JP2009172964A (en) 2008-01-28 2009-08-06 Bridgestone Corp Method of manufacturing rubber material molding
JP2012224765A (en) 2011-04-20 2012-11-15 Jsr Corp Composition for thermally conductive sheet
JP2013177565A (en) 2012-02-08 2013-09-09 Nitto Denko Corp Method of manufacturing heat conductive sheet
JP6180159B2 (en) 2013-04-04 2017-08-16 デクセリアルズ株式会社 Anisotropic conductive film, connection method, and joined body
JP6287190B2 (en) 2013-12-26 2018-03-07 日立化成株式会社 Temporary fixing resin composition, temporary fixing resin film, and temporary fixing resin film sheet
JP6813031B2 (en) 2016-12-22 2021-01-13 日本ゼオン株式会社 Acrylic rubber, acrylic rubber composition, acrylic rubber crosslinked product, and method for producing acrylic rubber
JPWO2018143101A1 (en) 2017-01-31 2019-11-21 日本ゼオン株式会社 Acrylic rubber, acrylic rubber composition, and crosslinked acrylic rubber
JP2020015104A (en) * 2018-07-23 2020-01-30 株式会社不二越 Tap

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004131654A (en) * 2002-10-11 2004-04-30 Nippon Zeon Co Ltd Method for recovery of polymer and recovering apparatus
WO2018101146A1 (en) * 2016-11-30 2018-06-07 株式会社大阪ソーダ Acrylic copolymer, and crosslinked product thereof
WO2018147142A1 (en) * 2017-02-09 2018-08-16 日本ゼオン株式会社 Acrylic rubber
JP2019119772A (en) * 2017-12-28 2019-07-22 日本ゼオン株式会社 Process for producing acrylic rubber
WO2019208821A1 (en) * 2018-04-27 2019-10-31 日本ゼオン株式会社 Method for producing acrylic rubber, and acrylic rubber obtained by said production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021246517A1 (en) * 2020-06-05 2021-12-09 日本ゼオン株式会社 Acrylic rubber bale having excellent roll processability, banbury processability, water resistance, strength characteristics and compression set resistance characteristics
WO2021261215A1 (en) * 2020-06-23 2021-12-30 日本ゼオン株式会社 Acrylic rubber bale having excellent banbury processability and water resistance

Also Published As

Publication number Publication date
JP2021028403A (en) 2021-02-25
JP7233388B2 (en) 2023-03-06
JP2021017599A (en) 2021-02-15
JP2021017598A (en) 2021-02-15
JP7212012B2 (en) 2023-01-24
JP7265507B2 (en) 2023-04-26

Similar Documents

Publication Publication Date Title
JP7265507B2 (en) Acrylic rubber veil with excellent storage stability and workability
WO2021014792A1 (en) Acrylic-rubber bale with excellent storage stability and processability
WO2021015143A1 (en) Acrylic rubber bale having excellent storage stability and workability
WO2021014793A1 (en) Acrylic rubber bale with superior strength characteristics and workability
WO2021014790A1 (en) Acrylic rubber bale having excellent workability and water resistance
WO2021014791A1 (en) Acrylic rubber sheet having good preservation stability and processability
WO2021014794A1 (en) Acrylic rubber with excellent storage stability
WO2021014797A1 (en) Acrylic-rubber bale with excellent storage stability and processability
JP6866951B2 (en) Acrylic rubber veil with excellent storage stability and water resistance
JP6828842B2 (en) Acrylic rubber veil with excellent workability and water resistance
WO2021014796A1 (en) Acrylic rubber bale having excellent storage stability and water resistance
JP6791412B1 (en) Acrylic rubber sheet with excellent water resistance
WO2021014789A1 (en) Acrylic rubber sheet having excellent water resistance
JP7292225B2 (en) Acrylic rubber sheet with excellent workability
JP7284110B2 (en) Acrylic rubber veil with excellent storage stability and water resistance
JP2021017577A (en) Acrylic rubber bale excellent in strength properties and storage stability
JP2021017572A (en) Acrylic rubber bale excellent in storage stability and water resistance
JP2021017571A (en) Acrylic rubber sheets excellent in storage stability
JP7103386B2 (en) Acrylic rubber veil with excellent storage stability and workability
JP2021017570A (en) Acrylic rubber sheet excellent in workability
JP2021017566A (en) Acrylic rubber bale excellent in storage stability
JP2021017576A (en) Acrylic rubber sheets excellent in workability
JP2021017575A (en) Acrylic rubber bale excellent in processability and water resistance
JP2021017555A (en) Acrylic rubber bale excellent in storage stability and processability
JP2021017558A (en) Acrylic rubber sheet excellent in storage stability and processability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200207

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200207

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200616

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200730

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211005

C27C Written answer of applicant after an oral proceeding

Free format text: JAPANESE INTERMEDIATE CODE: C2721

Effective date: 20220308

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220412

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220621

C141 Inquiry by the administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C141

Effective date: 20220621

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220822

C27B Notice of submission of publications, etc. [third party observations]

Free format text: JAPANESE INTERMEDIATE CODE: C2714

Effective date: 20220927

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20221007

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20221012

C092 Termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C092

Effective date: 20221018

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20230117

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20230214

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230221

R150 Certificate of patent or registration of utility model

Ref document number: 7233388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150