JP2021014109A - Manufacturing facility for carbon fiber drawing material applied to main girder of blade for wind power generation - Google Patents

Manufacturing facility for carbon fiber drawing material applied to main girder of blade for wind power generation Download PDF

Info

Publication number
JP2021014109A
JP2021014109A JP2019197852A JP2019197852A JP2021014109A JP 2021014109 A JP2021014109 A JP 2021014109A JP 2019197852 A JP2019197852 A JP 2019197852A JP 2019197852 A JP2019197852 A JP 2019197852A JP 2021014109 A JP2021014109 A JP 2021014109A
Authority
JP
Japan
Prior art keywords
fixedly connected
gear
shaft
space
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019197852A
Other languages
Japanese (ja)
Other versions
JP6752996B1 (en
Inventor
余達輝
Dahui Yu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Yufei Commodities Co Ltd
Original Assignee
Shanghai Yufei Commodities Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Yufei Commodities Co Ltd filed Critical Shanghai Yufei Commodities Co Ltd
Application granted granted Critical
Publication of JP6752996B1 publication Critical patent/JP6752996B1/en
Publication of JP2021014109A publication Critical patent/JP2021014109A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • B29C70/521Pultrusion, i.e. forming and compressing by continuously pulling through a die and impregnating the reinforcement before the die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • B29C70/525Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • B29C70/525Component parts, details or accessories; Auxiliary operations
    • B29C70/527Pulling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • B29L2031/082Blades, e.g. for helicopters
    • B29L2031/085Wind turbine blades

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

To provide a manufacturing facility for a carbon fiber drawing material applied to a main girder of a blade for wind power generation.SOLUTION: A manufacturing facility includes: a main body; a rotating space provided above the main body; a motor fixedly connected to an upper right wall of the rotating space; a hydraulic device fixedly connected to an upper left wall of the rotating space; a raw material space provided at a lower right of the rotating space; a pressure booster plate connected so that it can slide into the raw material space; a primary impregnation groove formed below the raw material space; an outer layer raw material space provided on a right side of the raw material space; a primary tightening device installed below in the rotating space; a secondary impregnation groove formed on a right side of the primary tightening device; a secondary tightening device provided on a right side of the secondary impregnation groove; and a molding die provided on a right side of the secondary tightening device.SELECTED DRAWING: Figure 1

Description

本願発明は風力発電設備分野を取り上げて、具体的には風力発電用ブレードの主桁に適用される炭素繊維引抜材の製造設備である。 The present invention takes up the field of wind power generation equipment, and specifically is a production equipment for carbon fiber drawn material applied to a main girder of a blade for wind power generation.

風力発電に関わる産業の技術の向上に連れ、現在では、風力発電用ブレードの長さもどんどん長くなり、風力発電用ブレードの重量を減らすことが必要になりつつある。炭素繊維複合材は強度が高くて重量も軽いため、風力発電用ブレードに最も適用されている。引抜成形プロセスは、強化基材に樹脂を含浸させ金型に引き込み、型内で所定の断面形状に硬化させ、引抜き装置で連続または間欠的に引抜いて所定の長さに切断し、同断面の成形品が長尺で得られます。しかし既存の製造設備の中、完全的に自動で製造できる機械設備がなく、従って、風力発電用ブレードの主桁に適用される炭素繊維引抜材の製造設備を設計する。 With the improvement of the technology of the industry related to wind power generation, the length of the blade for wind power generation is becoming longer and longer, and it is becoming necessary to reduce the weight of the blade for wind power generation. Carbon fiber composites are most applied to wind blades due to their high strength and light weight. In the pultrusion process, a reinforced base material is impregnated with resin, drawn into a mold, cured into a predetermined cross-sectional shape in the mold, continuously or intermittently drawn with a drawing device, cut to a predetermined length, and of the same cross section. Molded products can be obtained in long lengths. However, among the existing manufacturing equipment, there is no mechanical equipment that can be manufactured completely automatically, and therefore, the manufacturing equipment for carbon fiber drawing material applied to the main girder of the blade for wind power generation is designed.

中国特許出願公開第105531093号明細書Chinese Patent Application Publication No. 105531093

技術問題:既存の引抜き装置は自動化程度が高くなく、改良されるべきである。 Technical problem: Existing drawing equipment is not highly automated and should be improved.

上記の課題を解決するため、本願発明は以下の技術プランを採用する:本願発明の風力発電用ブレードの主桁に適用される炭素繊維引抜材の製造設備は、本体を含み、前記本体の中の上方には回転空間が設けられ、前記回転空間の右上壁にはモーターが固定的に連結され、前記回転空間の左上壁には液圧装置が固定的に連結され、前記回転空間の右下方には原料空間が設けられ、前記原料空間の中には増圧板がスライドできるように連結され、前記原料空間の下方には一級含浸溝が形成され、前記原料空間の右側には外層原料空間が設けられ、前記回転空間の中の下方には一級締め付け装置が設けられ、前記一級締め付け装置の右側には二級含浸溝が形成され、前記二級含浸溝の右側には二級締め付け装置が設けられ、前記二級締め付け装置の右側には成形金型が設けられ、作動する時、原料が前記原料空間の中において前記増圧板の作用により複数の繊維束になって流れ出て、そして前記一級含浸溝によって含浸された後前記一級締め付け装置に着いて繊維棒になり、前記外層原料空間は外層被覆用の繊維束を提供し、前記二級含浸溝を経由し、前記二級締め付け装置を経由した後に繊維棒が外層に被覆されて締め付けられ、最後に前記成形金型によって成形され、冷却後に完全の炭素繊維引抜材が得られ、前記モーターによって繊維束の延びと炭素繊維材の成形をコントロールし、過程全体が一体化であり、製造効率を向上させた。 In order to solve the above problems, the present invention adopts the following technical plan: The carbon fiber drawing material manufacturing equipment applied to the main girder of the wind power generation blade of the present invention includes the main body and is contained in the main body. A rotating space is provided above the rotating space, a motor is fixedly connected to the upper right wall of the rotating space, a hydraulic pressure device is fixedly connected to the upper left wall of the rotating space, and the lower right of the rotating space. A raw material space is provided in the raw material space, and a pressure booster plate is slidably connected in the raw material space, a first-class impregnation groove is formed below the raw material space, and an outer layer raw material space is on the right side of the raw material space. A first-class tightening device is provided below the rotating space, a second-class impregnation groove is formed on the right side of the first-class tightening device, and a second-class tightening device is provided on the right side of the second-class impregnation groove. A molding mold is provided on the right side of the secondary tightening device, and when operated, the raw material flows out as a plurality of fiber bundles in the raw material space by the action of the pressure boosting plate, and is impregnated with the primary impregnation. After being impregnated by the groove, it arrives at the first-class tightening device and becomes a fiber rod, and the outer layer raw material space provides a fiber bundle for coating the outer layer, passes through the second-class impregnated groove, and passes through the second-class tightening device. Later, the fiber rods are coated and tightened on an outer layer, and finally molded by the molding die, and after cooling, a complete carbon fiber drawing material is obtained, and the motor controls the elongation of the fiber bundle and the molding of the carbon fiber material. , The whole process is integrated, improving the manufacturing efficiency.

更の技術プラン、前記液圧装置には液圧ロッドが伝動できるように連結され、前記液圧ロッドが前記増圧板と固定的に連結され、前記原料空間の下方には穴フィルターが設けられ、前記一級含浸溝の中には第一横軸が回転できるように連結され、前記第一横軸には第一含浸輪が固定的に連結され、前記一級含浸溝の右方には一級口が設けられ、前記一級口の中には第二横軸が回転できるように連結され、前記第二横軸には第一案内輪が固定的に連結されている。 A further technical plan is that the hydraulic rod is connected to the hydraulic device so that it can be transmitted, the hydraulic rod is fixedly connected to the pressure boosting plate, and a hole filter is provided below the raw material space. The first horizontal axis is connected so as to be rotatable in the first-class impregnation groove, the first impregnation ring is fixedly connected to the first horizontal axis, and the first-class port is to the right of the first-class impregnation groove. The first-class port is provided so that the second horizontal axis can rotate, and the first guide wheel is fixedly connected to the second horizontal axis.

更の技術プラン、前記外層原料空間の右下には小穴が設けられ、前記回転空間の中の下方には中空間が設けられ、前記中空間の左壁には第三横軸が回転できるように連結され、前記第三横軸には第一歯車が固定的に連結され、前記第一歯車には前記中空管の左壁と回転できるように連結された左歯車軸スリーブが噛合しており、前記左歯車軸スリーブの中には第一短軸と第二短軸とが回転できるように連結され、前記第一短軸には第一押し輪が固定的に連結され、前記第二短軸には第二押し輪が固定的に連結され、前記中空間の中には第四横軸が回転できるように連結され、前記第四横軸には第二案内輪が固定的に連結され、前記第三横軸の右端には第二歯車が固定的に連結されている。 Further technical plan, a small hole is provided in the lower right of the outer layer raw material space, an intermediate space is provided below the rotating space, and a third horizontal axis can rotate on the left wall of the intermediate space. The first gear is fixedly connected to the third horizontal shaft, and the left gear shaft sleeve connected to the first gear so as to rotate with the left wall of the hollow pipe meshes with the first gear. The left gear shaft sleeve is connected so that the first short shaft and the second short shaft can rotate, and the first push wheel is fixedly connected to the first short shaft, and the second short shaft is fixedly connected. A second push wheel is fixedly connected to the short axis, a fourth horizontal axis is connected so as to be rotatable in the middle space, and a second guide wheel is fixedly connected to the fourth horizontal axis. A second gear is fixedly connected to the right end of the third horizontal axis.

更の技術プラン、前記第二歯車が第三歯車と噛合しており、前記第三歯車が第五横軸と固定的に連結され、前記第五横軸が第四歯車と固定的に連結され、前記第四歯車が第五歯車と噛合しており、前記第五歯車が前記中空間の右壁と回転できるように連結された第六横軸と固定的に連結され、前記第六横軸が第六歯車と固定的に連結されている。 Further technical plan, the second gear is meshed with the third gear, the third gear is fixedly connected to the fifth horizontal shaft, and the fifth horizontal shaft is fixedly connected to the fourth gear. , The fourth gear meshes with the fifth gear, and the fifth gear is fixedly connected to the sixth horizontal shaft connected so as to be rotatable with the right wall of the middle space, and the sixth horizontal shaft is fixedly connected. Is fixedly connected to the sixth gear.

更の技術プラン、前記二級含浸溝の中には第七横軸が回転できるように連結され、前記第七横軸には第二含浸輪が固定的に連結され、前記二級含浸溝の中には第八横軸が回転できるように連結され、前記第八横軸には第三案内輪が固定的に連結され、前記二級含浸溝の右方には第九横軸が回転できるように連結され、前記第九横軸には第三案内輪が固定的に連結されている。 Further technical plan, the seventh horizontal axis is connected so as to be rotatable in the second-class impregnation groove, and the second impregnation ring is fixedly connected to the seventh horizontal axis in the second-class impregnation groove. The eighth horizontal axis is connected so as to be rotatable inside, the third guide wheel is fixedly connected to the eighth horizontal axis, and the ninth horizontal axis can rotate to the right of the secondary impregnation groove. A third guide wheel is fixedly connected to the ninth horizontal axis.

更の技術プラン、前記第六歯車には右歯車軸スリーブが噛合しており、前記右歯車軸の中には第三短軸と第四短軸とが回転できるように連結され、前記第三短軸と前記第四短軸とにはそれぞれ第三押し輪と第四押し輪とが固定的に連結され、前記第六横軸には第一はすば歯車が固定的に連結され、前記第一はすば歯車には第二はすば歯車が噛合しており、前記第二はすば歯車には右横軸が固定的に連結され、前記右横軸が前記回転空間の右下方に設置された原料出し空間の内壁と回転できるように連結され、前記右横軸には第三はすば歯車が固定的に連結され、前記右横軸には上スプロケットが固定的に連結され、前記上スプロケットにはチェーンが伝動できるように連結され、前記チェーンには下スプロケットが伝動できるように連結され、前記下スプロケットには前記原料出し空間と回転できるように連結された上横軸が固定的に連結され、前記上横軸には上歯車が固定的に連結され、前記上歯車には下歯車が噛合しており、前記下歯車には前記原料出し空間と回転できるように連結された下横軸が固定的に連結され、前記上横軸と前記下横軸とにはそれぞれ上送り輪と下送り輪とが固定的に連結されている。 Further technical plan, the sixth gear is meshed with a right gear shaft sleeve, and the third minor shaft and the fourth minor shaft are connected so as to be rotatable in the right gear shaft. A third push wheel and a fourth push wheel are fixedly connected to the short shaft and the fourth short shaft, respectively, and a first helical gear is fixedly connected to the sixth horizontal shaft. The second helical gear is meshed with the first helical gear, the right horizontal axis is fixedly connected to the second helical gear, and the right horizontal axis is the lower right of the rotating space. The third helical gear is fixedly connected to the right horizontal axis, and the upper sprocket is fixedly connected to the right horizontal axis so as to be rotatably connected to the inner wall of the raw material dispensing space installed in. , The upper sprocket is connected to the chain so that the chain can be transmitted, the lower sprocket is connected to the chain so that the lower sprocket can be transmitted, and the lower sprocket is connected to the upper horizontal axis so as to be rotatable with the raw material ejection space. It is fixedly connected, the upper gear is fixedly connected to the upper horizontal shaft, the lower gear is meshed with the upper gear, and the lower gear is connected so as to be rotatable with the raw material dispensing space. The lower horizontal shaft is fixedly connected, and the upper feed ring and the lower feed ring are fixedly connected to the upper horizontal shaft and the lower horizontal shaft, respectively.

更の技術プラン、前記モーターには出力軸が伝動できるように連結され、前記出力軸には扇形はすば歯車が固定的に連結され、前記扇形はすば歯車には第四はすば歯車が間欠的に噛合しており、前記第四はすば歯車には前記回転空間の右壁と回転できるように連結された右上軸が固定的に連結され、前記右上軸にはカムが固定的に連結され、前記出力軸には前スプロケットが固定的に連結され、前記前スプロケットには上チェーンが伝動できるように連結され、前記上チェーンには後スプロケットが伝動できるように連結され、前記後スプロケットには前記回転空間の下壁と回転できるように連結された縦軸が固定的に連結され、前記縦軸には扇形歯車が固定的に連結されている。 Further technical plan, the output shaft is connected to the motor so that the output shaft can be transmitted, the fan-shaped helical gear is fixedly connected to the output shaft, and the fourth helical gear is connected to the fan-shaped helical gear. Are intermittently meshed with each other, and the upper right shaft, which is connected to the right wall of the rotating space so as to be rotatable, is fixedly connected to the fourth helical gear, and the cam is fixed to the upper right shaft. The front sprocket is fixedly connected to the output shaft, the upper chain is connected to the front sprocket so that the upper chain can be transmitted, and the rear sprocket is connected to the upper chain so that the rear sprocket can be transmitted. A vertical axis connected to the lower wall of the rotating space so as to be rotatable is fixedly connected to the sprocket, and a fan-shaped gear is fixedly connected to the vertical axis.

前記原料出し空間の上壁には連結ロッドが固定的に連結され、前記連結ロッドには接触ロッドが固定的に連結され、前記原料出し空間の上壁には伸縮ロッドがスライドできるように連結され、前記伸縮ロッドには成形金型が固定的に連結され、前記成形金型の下方には送りベルトが設けられ、前記送りベルトには左プーリーと右プーリーとが伝動できるように連結され、前記左プーリーには前記原料出し空間の内壁と回転できるように連結された左小軸が固定的に連結され、前記右プーリーには前記原料出し空間の内壁と回転できるように連結された右小軸が固定的に連結され、前記接触ロッドの下方にはばねが固定的に連結され、前記ばねには前記成形金型が固定的に連結されている。 A connecting rod is fixedly connected to the upper wall of the raw material feeding space, a contact rod is fixedly connected to the connecting rod, and a telescopic rod is slidably connected to the upper wall of the raw material feeding space. A molding mold is fixedly connected to the telescopic rod, a feed belt is provided below the molding mold, and the left pulley and the right pulley are connected to the feed belt so as to be able to transmit. The left small shaft connected to the inner wall of the raw material dispensing space so as to be rotatable is fixedly connected to the left pulley, and the right small shaft connected to the right pulley so as to rotate with the inner wall of the raw material discharging space. Is fixedly connected, a spring is fixedly connected below the contact rod, and the molding mold is fixedly connected to the spring.

本願発明は圧力を増加する方法で炭素繊維原料を繊維束にし、コア層原料が含浸された後、外層原料を被覆し含浸され、有効に材料の強度を向上させ、機械の伝動により炭素繊維束を締め付けて送って延ばし、最後に成形金型を経由し成形し、プロセス全体が連続で行われ、製造効率を向上させた。 In the present invention, the carbon fiber raw material is made into a fiber bundle by a method of increasing the pressure, the core layer raw material is impregnated, and then the outer layer raw material is coated and impregnated to effectively improve the strength of the material, and the carbon fiber bundle is transmitted by mechanical transmission. Was tightened, sent and extended, and finally molded via a molding die, and the entire process was carried out continuously, improving manufacturing efficiency.

下記に図1〜6をあわせて本願発明について詳しく説明し、便利に説明するために、下記の方向を以下のように規定する:図1は本願発明装置の正面図であり、以下に述べる上下左右前後の方向と図1の自身投影関係の上下左右前後の方向とが一致である。 In order to explain the invention of the present application in detail with reference to FIGS. 1 to 6 below and to explain it conveniently, the following directions are defined as follows: FIG. 1 is a front view of the device of the present invention, and the top and bottom described below. The left-right front-back direction and the up-down, left-right front-back direction of the self-projection relationship in FIG.

図1は本願発明の風力発電用ブレードの主桁に適用される炭素繊維引抜材の製造設備の全体構成略図FIG. 1 is a schematic diagram of the overall configuration of a carbon fiber drawing material manufacturing facility applied to the main girder of the blade for wind power generation of the present invention. 図2は図1のAの拡大構成略図FIG. 2 is an enlarged schematic diagram of FIG. 1A. 図3は図1のBの拡大構成略図FIG. 3 is an enlarged schematic diagram of B in FIG. 図4は図1のCの拡大構成略図FIG. 4 is an enlarged schematic diagram of C in FIG. 図5は図1のD―Dの断面構成略図FIG. 5 is a schematic cross-sectional configuration of DD of FIG. 図6は図3のE―Eの断面構成略図FIG. 6 is a schematic cross-sectional configuration of EE of FIG.

本願発明の風力発電用ブレードの主桁に適用される炭素繊維引抜材の製造設備は、主に風力発電用ブレードの主桁の製造に適用される。 The carbon fiber drawing material manufacturing equipment applied to the main girder of the blade for wind power generation of the present invention is mainly applied to the manufacture of the main girder of the blade for wind power generation.

本願発明の風力発電用ブレードの主桁に適用される炭素繊維引抜材の製造設備は、本体10を含み、前記本体10の中の上方には回転空間11が設けられ、前記回転空間11の右上壁にはモーター27が固定的に連結され、前記回転空間11の左上壁には液圧装置12が固定的に連結され、前記回転空間11の右下方には原料空間15が設けられ、前記原料空間15の中には増圧板14がスライドできるように連結され、前記原料空間15の下方には一級含浸溝44が形成され、前記原料空間15の右側には外層原料空間16が設けられ、前記回転空間11の中の下方には一級締め付け装置39が設けられ、前記一級締め付け装置39の右側には二級含浸溝36が形成され、前記二級含浸溝36の右側には二級締め付け装置24が設けられ、前記二級締め付け装置24の右側には成形金型79が設けられ、作動する時、原料が前記原料空間15の中において前記増圧板14の作用により複数の繊維束になって流れ出て、そして前記一級含浸溝44によって含浸された後前記一級締め付け装置39に着いて繊維棒になり、前記外層原料空間16は外層被覆用の繊維束を提供し、前記二級含浸溝36を経由し、前記二級締め付け装置24を経由した後に繊維棒が外層に被覆されて締め付けられ、最後に前記成形金型79によって成形され、冷却後に完全の炭素繊維引抜材が得られ、前記モーター27によって繊維束の延びと炭素繊維材の成形をコントロールし、過程全体が一体化であり、製造効率を向上させた。 The carbon fiber drawing material manufacturing equipment applied to the main girder of the blade for wind power generation of the present invention includes the main body 10, and a rotating space 11 is provided above the main body 10, and the upper right of the rotating space 11. The motor 27 is fixedly connected to the wall, the hydraulic pressure device 12 is fixedly connected to the upper left wall of the rotating space 11, and the raw material space 15 is provided in the lower right of the rotating space 11, and the raw material is provided. The pressure boosting plate 14 is slidably connected in the space 15, a first-class impregnation groove 44 is formed below the raw material space 15, and an outer layer raw material space 16 is provided on the right side of the raw material space 15. A first-class tightening device 39 is provided below the rotating space 11, a second-class impregnation groove 36 is formed on the right side of the first-class tightening device 39, and a second-class tightening device 24 is formed on the right side of the second-class impregnation groove 36. A molding mold 79 is provided on the right side of the secondary tightening device 24, and when the molding die 79 is operated, the raw material flows out into a plurality of fiber bundles in the raw material space 15 by the action of the pressure boosting plate 14. Then, after being impregnated by the first-class impregnation groove 44, it arrives at the first-class tightening device 39 to become a fiber rod, and the outer layer raw material space 16 provides a fiber bundle for coating the outer layer and passes through the second-class impregnation groove 36. Then, after passing through the secondary tightening device 24, the fiber rod is coated with an outer layer and tightened, and finally molded by the molding mold 79, and after cooling, a complete carbon fiber drawing material is obtained, and the motor 27 obtains a complete carbon fiber drawing material. By controlling the elongation of the fiber bundle and the molding of the carbon fiber material, the entire process was integrated, improving the manufacturing efficiency.

前記液圧装置12には液圧ロッド13が伝動できるように連結され、前記液圧ロッド13が前記増圧板14と固定的に連結され、前記原料空間15の下方には穴フィルター46が設けられ、前記一級含浸溝44の中には第一横軸43が回転できるように連結され、前記第一横軸43には第一含浸輪42が固定的に連結され、前記一級含浸溝44の右方には一級口45が設けられ、前記一級口45の中には第二横軸40が回転できるように連結され、前記第二横軸40には第一案内輪41が固定的に連結されている。 The hydraulic rod 13 is connected to the hydraulic device 12 so as to be able to transmit, the hydraulic rod 13 is fixedly connected to the pressure boosting plate 14, and a hole filter 46 is provided below the raw material space 15. The first horizontal shaft 43 is rotatably connected to the first-class impregnation groove 44, and the first impregnation ring 42 is fixedly connected to the first horizontal shaft 43 to the right of the first-class impregnation groove 44. A first-class port 45 is provided on the side, and a second horizontal shaft 40 is connected to the first-class port 45 so as to be rotatable, and a first guide wheel 41 is fixedly connected to the second horizontal shaft 40. ing.

前記外層原料空間16の右下には小穴17が設けられ、前記回転空間11の中の下方には中空間54が設けられ、前記中空間54の左壁には第三横軸47が回転できるように連結され、前記第三横軸47には第一歯車48が固定的に連結され、前記第一歯車48には前記中空管54の左壁と回転できるように連結された左歯車軸スリーブ49が噛合しており、前記左歯車軸スリーブ49の中には第一短軸50と第二短軸52とが回転できるように連結され、前記第一短軸50には第一押し輪51が固定的に連結され、前記第二短軸52には第二押し輪53が固定的に連結され、前記中空間54の中には第四横軸19が回転できるように連結され、前記第四横軸19には第二案内輪18が固定的に連結され、前記第三横軸47の右端には第二歯車55が固定的に連結されている。 A small hole 17 is provided in the lower right of the outer layer raw material space 16, an intermediate space 54 is provided below the rotating space 11, and a third horizontal axis 47 can rotate on the left wall of the intermediate space 54. The first gear 48 is fixedly connected to the third horizontal shaft 47, and the left gear shaft is connected to the first gear 48 so as to be rotatable with the left wall of the hollow pipe 54. The sleeve 49 is meshed, and the first short shaft 50 and the second short shaft 52 are connected to the left gear shaft sleeve 49 so as to be rotatable, and the first push wheel is connected to the first short shaft 50. 51 is fixedly connected, a second push ring 53 is fixedly connected to the second short shaft 52, and a fourth horizontal shaft 19 is connected to the middle space 54 so as to be rotatable. The second guide wheel 18 is fixedly connected to the fourth horizontal shaft 19, and the second gear 55 is fixedly connected to the right end of the third horizontal shaft 47.

前記第二歯車55が第三歯車56と噛合しており、前記第三歯車56が第五横軸21と固定的に連結され、前記第五横軸21が第四歯車92と固定的に連結され、前記第四歯車92が第五歯車58と噛合しており、前記第五歯車58が前記中空間54の右壁と回転できるように連結された第六横軸90と固定的に連結され、前記第六横軸90が第六歯車59と固定的に連結されている。 The second gear 55 meshes with the third gear 56, the third gear 56 is fixedly connected to the fifth horizontal shaft 21, and the fifth horizontal shaft 21 is fixedly connected to the fourth gear 92. The fourth gear 92 is meshed with the fifth gear 58, and the fifth gear 58 is fixedly connected to the sixth horizontal shaft 90 which is connected so as to be rotatable with the right wall of the middle space 54. , The sixth horizontal shaft 90 is fixedly connected to the sixth gear 59.

前記二級含浸溝36の中には第七横軸23が回転できるように連結され、前記第七横軸23には第二含浸輪22が固定的に連結され、前記二級含浸溝36の中には第八横軸37が回転できるように連結され、前記第八横軸37には第三案内輪38が固定的に連結され、前記二級含浸溝36の右方には第九横軸61が回転できるように連結され、前記第九横軸61には第三案内輪62が固定的に連結されている。 The seventh horizontal shaft 23 is rotatably connected to the secondary impregnation groove 36, and the second impregnation ring 22 is fixedly connected to the seventh horizontal shaft 23 to form the secondary impregnation groove 36. The eighth horizontal shaft 37 is connected so as to be rotatable inside, the third guide wheel 38 is fixedly connected to the eighth horizontal shaft 37, and the ninth horizontal shaft 36 is to the right of the secondary impregnation groove 36. The shaft 61 is connected so as to be rotatable, and the third guide wheel 62 is fixedly connected to the ninth horizontal shaft 61.

前記第六歯車59には右歯車軸スリーブ63が噛合しており、前記右歯車軸63の中には第三短軸と第四短軸66とが回転できるように連結され、前記第三短軸65と前記第四短軸66とにはそれぞれ第三押し輪64と第四押し輪67とが固定的に連結され、前記第六横軸90には第一はすば歯車60が固定的に連結され、前記第一はすば歯車60には第二はすば歯車68が噛合しており、前記第二はすば歯車68には右横軸93が固定的に連結され、前記右横軸93が前記回転空間11の右下方に設置された原料出し空間94の内壁と回転できるように連結され、前記右横軸93には第三はすば歯車84が固定的に連結され、前記右横軸93には上スプロケット85が固定的に連結され、前記上スプロケット85にはチェーン86が伝動できるように連結され、前記チェーン86には下スプロケット87が伝動できるように連結され、前記下スプロケット87には前記原料出し空間94と回転できるように連結された上横軸70が固定的に連結され、前記上横軸70には上歯車88が固定的に連結され、前記上歯車88には下歯車89が噛合しており、前記下歯車89には前記原料出し空間94と回転できるように連結された下横軸71が固定的に連結され、前記上横軸70と前記下横軸71とにはそれぞれ上送り輪69と下送り輪72とが固定的に連結されている。 A right gear shaft sleeve 63 is meshed with the sixth gear 59, and the third minor shaft and the fourth minor shaft 66 are connected in the right gear shaft 63 so as to be rotatable, and the third minor shaft 66 is connected. A third push ring 64 and a fourth push wheel 67 are fixedly connected to the shaft 65 and the fourth minor shaft 66, respectively, and a first helical gear 60 is fixed to the sixth horizontal shaft 90. A second helical gear 68 is meshed with the first helical gear 60, and a right horizontal shaft 93 is fixedly connected to the second helical gear 68 to the right. The horizontal axis 93 is rotatably connected to the inner wall of the raw material dispensing space 94 installed at the lower right of the rotating space 11, and the third helical gear 84 is fixedly connected to the right horizontal axis 93. The upper sprocket 85 is fixedly connected to the right horizontal axis 93, the upper sprocket 85 is connected so that the chain 86 can be transmitted, and the lower sprocket 87 is connected to the chain 86 so that the lower sprocket 87 can be transmitted. An upper horizontal shaft 70 which is rotatably connected to the raw material dispensing space 94 is fixedly connected to the lower sprocket 87, and an upper gear 88 is fixedly connected to the upper horizontal shaft 70. A lower gear 89 is meshed with the lower gear 89, and a lower horizontal shaft 71 connected to the lower gear 89 so as to be rotatable is fixedly connected to the lower gear 89, and the upper horizontal shaft 70 and the lower horizontal shaft 70 are fixedly connected to the lower horizontal shaft 71. The upper feed ring 69 and the lower feed ring 72 are fixedly connected to the shaft 71, respectively.

前記モーター27には出力軸30が伝動できるように連結され、前記出力軸30には扇形はすば歯車26が固定的に連結され、前記扇形はすば歯車26には第四はすば歯車28が間欠的に噛合しており、前記第四はすば歯車28には前記回転空間11の右壁と回転できるように連結された右上軸29が固定的に連結され、前記右上軸29にはカム31が固定的に連結され、前記出力軸30には前スプロケット25が固定的に連結され、前記前スプロケット25には上チェーン81が伝動できるように連結され、前記上チェーン81には後スプロケット82が伝動できるように連結され、前記後スプロケット81には前記回転空間11の下壁と回転できるように連結された縦軸33が固定的に連結され、前記縦軸33には扇形歯車83が固定的に連結されている。 The output shaft 30 is connected to the motor 27 so as to be able to transmit, a fan-shaped helical gear 26 is fixedly connected to the output shaft 30, and a fourth helical gear is connected to the fan-shaped helical gear 26. 28 is intermittently meshed, and the upper right shaft 29, which is connected to the fourth helical gear 28 so as to be rotatable with the right wall of the rotating space 11, is fixedly connected to the upper right shaft 29. Is fixedly connected to the cam 31, the front sprocket 25 is fixedly connected to the output shaft 30, the upper chain 81 is connected to the front sprocket 25 so as to be transmitted, and the rear is connected to the upper chain 81. The sprocket 82 is connected so as to be transmitted, and the vertical axis 33 connected to the rear sprocket 81 so as to be rotatable is fixedly connected to the lower wall of the rotating space 11, and the fan-shaped gear 83 is connected to the vertical axis 33. Are fixedly connected.

前記原料出し空間94の上壁には連結ロッド34が固定的に連結され、前記連結ロッド34には接触ロッド80が固定的に連結され、前記原料出し空間94の上壁には伸縮ロッド32がスライドできるように連結され、前記伸縮ロッド32には成形金型79が固定的に連結され、前記成形金型79の下方には送りベルト75が設けられ、前記送りベルト75には左プーリー74と右プーリー77とが伝動できるように連結され、前記左プーリー74には前記原料出し空間94の内壁と回転できるように連結された左小軸73が固定的に連結され、前記右プーリー77には前記原料出し空間94の内壁と回転できるように連結された右小軸76が固定的に連結され、前記接触ロッド80の下方にはばね78が固定的に連結され、前記ばね78には前記成形金型79が固定的に連結されている。 A connecting rod 34 is fixedly connected to the upper wall of the raw material discharging space 94, a contact rod 80 is fixedly connected to the connecting rod 34, and a telescopic rod 32 is fixedly connected to the upper wall of the raw material discharging space 94. The telescopic rod 32 is connected so as to be slidable, and the molding die 79 is fixedly connected to the telescopic rod 32, a feed belt 75 is provided below the molding die 79, and the feed belt 75 is connected to the left pulley 74. The left pulley 74 is connected to the right pulley 77 so as to be transmitted, and the left small shaft 73 connected to the inner wall of the raw material ejection space 94 so as to be rotatable is fixedly connected to the right pulley 77. The right small shaft 76 rotatably connected to the inner wall of the raw material ejection space 94 is fixedly connected, a spring 78 is fixedly connected below the contact rod 80, and the molding is carried out to the spring 78. The mold 79 is fixedly connected.

以下に図1〜6を合わせて本願発明の風力発電用ブレードの主桁に適用される炭素繊維引抜材の製造設備の使用手順を詳しく説明する。
1、炭素繊維原料が前記原料空間15の中で加熱された後、前記液圧装置12を起動し、前記液圧ロッド13が前記増圧板14を下方へ押し動かし、炭素繊維原料が前記穴フィルター46を経由して複数の繊維束になり、繊維束が前記一級含浸溝44に含浸された後に前記第一含浸輪42を経由し、そして前記第一案内輪41を経由し、前記一級締め付け装置39によって繊維棒に締め付けられ、繊維棒が前記第三案内輪38のところで外層原料と接触し、ともに前記二級含浸溝36によって含浸されて前記第二含浸輪22を経由し、そして前記二級締め付け装置24を経由し締め付けられ、最終的に前記成形金型79を経由し成形される。
2、前記モーター27を起動し、前記出力軸30が駆動されて回転し、前記扇形はすば歯車26が駆動されて回転し、伝動により前記扇形歯車83が駆動されて回転し、前記扇形歯車83が前記第三はすば歯車84と噛合した時、前記右横軸93が駆動されて回転し、伝動により前記左歯車軸スリーブ49が駆動されて回転し、前記右歯車軸スリーブ63が駆動されて回転し、前記上送り輪69と前記下送り輪72とが駆動されて回転し、繊維棒が駆動されて前方へ移動する。
3、繊維棒が前記成形金型79の下方に着いた時、前記扇形はすば歯車26が前記第四はすば歯車28と噛合し、前記カム31が駆動されて回転し前記伸縮ロッド32と接触し、前記伸縮ロッド32が下方へ移動し、前記成形金型79が駆動されて下方へ移動し、前記成形金型79が繊維棒を押して切断し、完全な炭素繊維引抜材を得て、その後前記カム31が前記伸縮ロッド32と接触しなくなり、前記成形金型79がバネ力の作用により上方へ移動し、前記接触ロッド80が前記成形金型79に対して下方へ移動し、前記成形金型79における材料が押し動かされて前記送りベルト76に落ちる。
The procedure for using the carbon fiber drawing material manufacturing equipment applied to the main girder of the blade for wind power generation of the present invention will be described in detail with reference to FIGS.
1. After the carbon fiber raw material is heated in the raw material space 15, the hydraulic pressure device 12 is activated, the hydraulic rod 13 pushes the pressure boosting plate 14 downward, and the carbon fiber raw material is the hole filter. A plurality of fiber bundles are formed via 46, and after the fiber bundles are impregnated in the first-class impregnated groove 44, the first-class tightening device is passed through the first impregnated ring 42 and the first guide ring 41. Tightened to the fiber rod by 39, the fiber rod comes into contact with the outer layer raw material at the third guide ring 38, both impregnated by the secondary impregnation groove 36, via the second impregnated ring 22, and the secondary. It is tightened via the tightening device 24, and is finally molded via the molding mold 79.
2. The motor 27 is started, the output shaft 30 is driven to rotate, the fan-shaped helical gear 26 is driven to rotate, and the fan-shaped gear 83 is driven to rotate by transmission, and the fan-shaped gear When the 83 meshes with the third helical gear 84, the right horizontal shaft 93 is driven to rotate, the left gear shaft sleeve 49 is driven to rotate by transmission, and the right gear shaft sleeve 63 is driven. The upper feed wheel 69 and the lower feed wheel 72 are driven to rotate, and the fiber rod is driven to move forward.
3. When the fiber rod arrives below the molding die 79, the fan-shaped helical gear 26 meshes with the fourth helical gear 28, the cam 31 is driven to rotate, and the telescopic rod 32 The telescopic rod 32 moves downward, the forming die 79 is driven and moves downward, and the forming die 79 pushes and cuts the fiber rod to obtain a complete carbon fiber drawing material. After that, the cam 31 does not come into contact with the telescopic rod 32, the molding die 79 moves upward by the action of a spring force, and the contact rod 80 moves downward with respect to the molding die 79. The material in the molding die 79 is pushed and moved to fall on the feed belt 76.

本願発明の有益効果は:本願発明は圧力を増加する方法で炭素繊維原料を繊維束にし、コア層原料が含浸された後、外層原料を被覆し含浸され、有効に材料の強度を向上させ、機械の伝動により炭素繊維束を締め付けて送って延ばし、最後に成形金型を経由し成形し、プロセス全体が連続で行われ、製造効率を向上させた。 The beneficial effect of the present invention is: The present invention makes the carbon fiber raw material into a fiber bundle by a method of increasing the pressure, impregnates the core layer raw material, and then coats and impregnates the outer layer raw material to effectively improve the strength of the material. The carbon fiber bundle was tightened, sent and stretched by the transmission of the machine, and finally molded via a molding mold, and the entire process was continuously performed, improving the manufacturing efficiency.

以上の方式により、当業者は本願発明の範囲内に作業方式によって各種の変化を加えることができる。 According to the above method, those skilled in the art can make various changes depending on the working method within the scope of the present invention.

本願発明は風力発電設備分野を取り上げて、具体的には風力発電用ブレードの主桁に適用される炭素繊維引抜材の製造設備である。 The present invention takes up the field of wind power generation equipment, and specifically is a production equipment for carbon fiber drawn material applied to a main girder of a blade for wind power generation.

風力発電に関わる産業の技術の向上に連れ、現在では、風力発電用ブレードの長さもどんどん長くなり、風力発電用ブレードの重量を減らすことが必要になりつつある。炭素繊維複合材は強度が高くて重量も軽いため、風力発電用ブレードに最も適用されている。引抜成形プロセスは、強化基材に樹脂を含浸させ金型に引き込み、型内で所定の断面形状に硬化させ、引抜き装置で連続または間欠的に引抜いて所定の長さに切断し、同断面の成形品が長尺で得られます。しかし既存の製造設備の中、完全的に自動で製造できる機械設備がなく、従って、風力発電用ブレードの主桁に適用される炭素繊維引抜材の製造設備を設計する。 With the improvement of the technology of the industry related to wind power generation, the length of the blade for wind power generation is becoming longer and longer, and it is becoming necessary to reduce the weight of the blade for wind power generation. Carbon fiber composites are most applied to wind blades due to their high strength and light weight. In the pultrusion molding process, a reinforced base material is impregnated with a resin, drawn into a mold, cured into a predetermined cross-sectional shape in the mold, continuously or intermittently drawn with a drawing device, cut to a predetermined length, and of the same cross section. Molded products can be obtained in long lengths. However, among the existing manufacturing equipment, there is no mechanical equipment that can be manufactured completely automatically, and therefore, the manufacturing equipment for carbon fiber drawing material applied to the main girder of the blade for wind power generation is designed.

中国特許出願公開第105531093号明細書Chinese Patent Application Publication No. 105531093

技術問題:既存の引抜き装置は自動化程度が高くなく、改良されるべきである。 Technical problem: Existing drawing equipment is not highly automated and should be improved.

上記の課題を解決するため、本願発明は以下の技術プランを採用する:本願発明の風力発電用ブレードの主桁に適用される炭素繊維引抜材の製造設備は、本体を含み、前記本体の中の上方には回転空間が設けられ、前記回転空間の右上壁にはモーターが固定的に連結され、前記回転空間の左上壁には液圧装置が固定的に連結され、前記回転空間の右下方には原料空間が設けられ、前記原料空間の中には増圧板がスライドできるように連結され、前記原料空間の下方には第一含浸溝が形成され、前記原料空間の右側には外層原料空間が設けられ、前記回転空間の中の下方には第一締め付け装置が設けられ、前記第一締め付け装置の右側には第二含浸溝が形成され、前記第二含浸溝の右側には第二締め付け装置が設けられ、前記第二締め付け装置の右側には成形金型が設けられ、作動する時、原料が前記原料空間の中において前記増圧板の作用により複数の繊維束になって流れ出て、そして前記第一含浸溝によって含浸された後前記第一締め付け装置に着いて繊維棒になり、前記外層原料空間は外層被覆用の繊維束を提供し、前記第二含浸溝を経由し、前記第二締め付け装置を経由した後に繊維棒が外層に被覆されて締め付けられ、最後に前記成形金型によって成形され、冷却後に完全の炭素繊維引抜材が得られ、前記モーターによって繊維束の延びと炭素繊維材の成形をコントロールし、過程全体が一体化であり、製造効率を向上させた。 In order to solve the above problems, the present invention adopts the following technical plan: The carbon fiber drawing material manufacturing equipment applied to the main girder of the wind power generation blade of the present invention includes the main body and is contained in the main body. A rotating space is provided above the rotating space, a motor is fixedly connected to the upper right wall of the rotating space, a hydraulic pressure device is fixedly connected to the upper left wall of the rotating space, and the lower right of the rotating space. A raw material space is provided in the raw material space, a pressure booster plate is slidably connected in the raw material space, a first impregnation groove is formed below the raw material space, and an outer layer raw material space is formed on the right side of the raw material space. is provided, wherein the lower in the rotation space is provided first clamping device, the on the right side of the first clamping device is formed a second impregnation groove, wherein the right side of the second impregnation groove second tightening A device is provided, and a molding die is provided on the right side of the second tightening device, and when activated, the raw material flows out in the raw material space as a plurality of fiber bundles by the action of the pressure boosting plate, and After being impregnated by the first impregnation groove, it arrives at the first tightening device and becomes a fiber rod, and the outer layer raw material space provides a fiber bundle for coating the outer layer, passes through the second impregnation groove, and is said to be the second. After passing through the tightening device, the fiber rod is coated with an outer layer and tightened, and finally molded by the molding die, and after cooling, a complete carbon fiber drawing material is obtained, and the motor extends the fiber bundle and the carbon fiber material. The molding was controlled and the whole process was integrated, improving the manufacturing efficiency.

更の技術プラン、前記液圧装置には液圧ロッドが伝動できるように連結され、前記液圧ロッドが前記増圧板と固定的に連結され、前記原料空間の下方には穴フィルターが設けられ、前記第一含浸溝の中には第一横軸が回転できるように連結され、前記第一横軸には第一含浸輪が固定的に連結され、前記第一含浸溝の右方には第一口が設けられ、前記第一口の中には第二横軸が回転できるように連結され、前記第二横軸には第一案内輪が固定的に連結されている。 A further technical plan is that the hydraulic rod is connected to the hydraulic device so that it can be transmitted, the hydraulic rod is fixedly connected to the pressure boosting plate, and a hole filter is provided below the raw material space. wherein the inside of the first impregnation groove is connected for rotation is first horizontal axis, said the first horizontal axis is fixedly connected is first impregnated wheel, and the right side of the first impregnation groove first bite is provided, said in the first mouth is connected for rotation a second horizontal axis, wherein the second horizontal axis first guide wheels are fixedly connected.

更の技術プラン、前記外層原料空間の右下には小穴が設けられ、前記回転空間の中の下方には中空間が設けられ、前記中空間の左壁には第三横軸が回転できるように連結され、前記第三横軸には第一歯車が固定的に連結され、前記第一歯車には前記中空管の左壁と回転できるように連結された左歯車軸スリーブが噛合しており、前記左歯車軸スリーブの中には第一短軸と第二短軸とが回転できるように連結され、前記第一短軸には第一押し輪が固定的に連結され、前記第二短軸には第二押し輪が固定的に連結され、前記中空間の中には第四横軸が回転できるように連結され、前記第四横軸には第二案内輪が固定的に連結され、前記第三横軸の右端には第二歯車が固定的に連結されている。 Further technical plan, a small hole is provided in the lower right of the outer layer raw material space, an intermediate space is provided below the rotating space, and a third horizontal axis can rotate on the left wall of the intermediate space. The first gear is fixedly connected to the third horizontal shaft, and the left gear shaft sleeve connected to the first gear so as to rotate with the left wall of the hollow pipe meshes with the first gear. The left gear shaft sleeve is connected so that the first short shaft and the second short shaft can rotate, and the first push wheel is fixedly connected to the first short shaft, and the second short shaft is fixedly connected. A second push wheel is fixedly connected to the short axis, a fourth horizontal axis is connected so as to be rotatable in the middle space, and a second guide wheel is fixedly connected to the fourth horizontal axis. A second gear is fixedly connected to the right end of the third horizontal axis.

更の技術プラン、前記第二歯車が第三歯車と噛合しており、前記第三歯車が第五横軸と固定的に連結され、前記第五横軸が第四歯車と固定的に連結され、前記第四歯車が第五歯車と噛合しており、前記第五歯車が前記中空間の右壁と回転できるように連結された第六横軸と固定的に連結され、前記第六横軸が第六歯車と固定的に連結されている。 Further technical plan, the second gear is meshed with the third gear, the third gear is fixedly connected to the fifth horizontal shaft, and the fifth horizontal shaft is fixedly connected to the fourth gear. , The fourth gear meshes with the fifth gear, and the fifth gear is fixedly connected to the sixth horizontal shaft connected so as to be rotatable with the right wall of the middle space, and the sixth horizontal shaft is fixedly connected. Is fixedly connected to the sixth gear.

更の技術プラン、前記第二含浸溝の中には第七横軸が回転できるように連結され、前記第七横軸には第二含浸輪が固定的に連結され、前記第二含浸溝の中には第八横軸が回転できるように連結され、前記第八横軸には第三案内輪が固定的に連結され、前記第二含浸溝の右方には第九横軸が回転できるように連結され、前記第九横軸には第三案内輪が固定的に連結されている。 Further technical plan, the seventh horizontal axis is connected so as to be rotatable in the second impregnation groove, and the second impregnation ring is fixedly connected to the seventh horizontal axis, and the second impregnation groove is connected. The eighth horizontal axis is connected so as to be rotatable inside, the third guide wheel is fixedly connected to the eighth horizontal axis, and the ninth horizontal axis can rotate to the right of the second impregnation groove. A third guide wheel is fixedly connected to the ninth horizontal axis.

更の技術プラン、前記第六歯車には右歯車軸スリーブが噛合しており、前記右歯車軸の中には第三短軸と第四短軸とが回転できるように連結され、前記第三短軸と前記第四短軸とにはそれぞれ第三押し輪と第四押し輪とが固定的に連結され、前記第六横軸には第一はすば歯車が固定的に連結され、前記第一はすば歯車には第二はすば歯車が噛合しており、前記第二はすば歯車には右横軸が固定的に連結され、前記右横軸が前記回転空間の右下方に設置された原料出し空間の内壁と回転できるように連結され、前記右横軸には第三はすば歯車が固定的に連結され、前記右横軸には上スプロケットが固定的に連結され、前記上スプロケットにはチェーンが伝動できるように連結され、前記チェーンには下スプロケットが伝動できるように連結され、前記下スプロケットには前記原料出し空間と回転できるように連結された上横軸が固定的に連結され、前記上横軸には上歯車が固定的に連結され、前記上歯車には下歯車が噛合しており、前記下歯車には前記原料出し空間と回転できるように連結された下横軸が固定的に連結され、前記上横軸と前記下横軸とにはそれぞれ上送り輪と下送り輪とが固定的に連結されている。 Further technical plan, the sixth gear is meshed with a right gear shaft sleeve, and the third minor shaft and the fourth minor shaft are connected so as to be rotatable in the right gear shaft. A third push wheel and a fourth push wheel are fixedly connected to the short shaft and the fourth short shaft, respectively, and a first helical gear is fixedly connected to the sixth horizontal shaft. The second helical gear is meshed with the first helical gear, the right horizontal axis is fixedly connected to the second helical gear, and the right horizontal axis is the lower right of the rotating space. The third helical gear is fixedly connected to the right horizontal axis, and the upper sprocket is fixedly connected to the right horizontal axis so as to be rotatably connected to the inner wall of the raw material dispensing space installed in. , The upper sprocket is connected to the upper sprocket so that the chain can be transmitted, the lower sprocket is connected to the chain so that the lower sprocket can be transmitted, and the lower sprocket has an upper horizontal axis connected so as to be rotatable with the raw material ejection space. It is fixedly connected, the upper gear is fixedly connected to the upper horizontal shaft, the lower gear is meshed with the upper gear, and the lower gear is connected so as to be rotatable with the raw material dispensing space. The lower horizontal shaft is fixedly connected, and the upper feed ring and the lower feed ring are fixedly connected to the upper horizontal shaft and the lower horizontal shaft, respectively.

更の技術プラン、前記モーターには出力軸が伝動できるように連結され、前記出力軸には扇形はすば歯車が固定的に連結され、前記扇形はすば歯車には第四はすば歯車が間欠的に噛合しており、前記第四はすば歯車には前記回転空間の右壁と回転できるように連結された右上軸が固定的に連結され、前記右上軸にはカムが固定的に連結され、前記出力軸には前スプロケットが固定的に連結され、前記前スプロケットには上チェーンが伝動できるように連結され、前記上チェーンには後スプロケットが伝動できるように連結され、前記後スプロケットには前記回転空間の下壁と回転できるように連結された縦軸が固定的に連結され、前記縦軸には扇形歯車が固定的に連結されている。 Further technical plan, the output shaft is connected to the motor so that the output shaft can be transmitted, the fan-shaped helical gear is fixedly connected to the output shaft, and the fourth helical gear is connected to the fan-shaped helical gear. Are intermittently meshed with each other, and the upper right shaft, which is connected to the right wall of the rotating space so as to be rotatable, is fixedly connected to the fourth helical gear, and the cam is fixed to the upper right shaft. The front sprocket is fixedly connected to the output shaft, the upper chain is connected to the front sprocket so that the upper chain can be transmitted, and the rear sprocket is connected to the upper chain so that the rear sprocket can be transmitted. A vertical axis connected to the lower wall of the rotating space so as to be rotatable is fixedly connected to the sprocket, and a fan-shaped gear is fixedly connected to the vertical axis.

前記原料出し空間の上壁には連結ロッドが固定的に連結され、前記連結ロッドには接触ロッドが固定的に連結され、前記原料出し空間の上壁には伸縮ロッドがスライドできるように連結され、前記伸縮ロッドには成形金型が固定的に連結され、前記成形金型の下方には送りベルトが設けられ、前記送りベルトには左プーリーと右プーリーとが伝動できるように連結され、前記左プーリーには前記原料出し空間の内壁と回転できるように連結された左小軸が固定的に連結され、前記右プーリーには前記原料出し空間の内壁と回転できるように連結された右小軸が固定的に連結され、前記接触ロッドの下方にはばねが固定的に連結され、前記ばねには前記成形金型が固定的に連結されている。 A connecting rod is fixedly connected to the upper wall of the raw material feeding space, a contact rod is fixedly connected to the connecting rod, and a telescopic rod is slidably connected to the upper wall of the raw material feeding space. A molding mold is fixedly connected to the telescopic rod, a feed belt is provided below the molding mold, and the left pulley and the right pulley are connected to the feed belt so as to be able to transmit. The left small shaft connected to the inner wall of the raw material dispensing space so as to be rotatable is fixedly connected to the left pulley, and the right small shaft connected to the right pulley so as to rotate with the inner wall of the raw material discharging space. Is fixedly connected, a spring is fixedly connected below the contact rod, and the molding mold is fixedly connected to the spring.

本願発明は圧力を増加する方法で炭素繊維原料を繊維束にし、コア層原料が含浸された後、外層原料を被覆し含浸され、有効に材料の強度を向上させ、機械の伝動により炭素繊維束を締め付けて送って延ばし、最後に成形金型を経由し成形し、プロセス全体が連続で行われ、製造効率を向上させた。 In the present invention, the carbon fiber raw material is made into a fiber bundle by a method of increasing the pressure, the core layer raw material is impregnated, and then the outer layer raw material is coated and impregnated to effectively improve the strength of the material, and the carbon fiber bundle is transmitted by mechanical transmission. Was tightened, sent and extended, and finally molded via a molding die, and the entire process was carried out continuously, improving manufacturing efficiency.

下記に図1〜6をあわせて本願発明について詳しく説明し、便利に説明するために、下記の方向を以下のように規定する:図1は本願発明装置の正面図であり、以下に述べる上下左右前後の方向と図1の自身投影関係の上下左右前後の方向とが一致である。 In order to explain the invention of the present application in detail with reference to FIGS. 1 to 6 below and to explain it conveniently, the following directions are defined as follows: FIG. 1 is a front view of the device of the present invention, and the top and bottom described below. The left-right front-back direction and the up-down, left-right front-back direction of the self-projection relationship in FIG.

図1は本願発明の風力発電用ブレードの主桁に適用される炭素繊維引抜材の製造設備の全体構成略図FIG. 1 is a schematic diagram of the overall configuration of a carbon fiber drawing material manufacturing facility applied to the main girder of the blade for wind power generation of the present invention. 図2は図1のAの拡大構成略図FIG. 2 is an enlarged schematic diagram of FIG. 1A. 図3は図1のBの拡大構成略図FIG. 3 is an enlarged schematic diagram of B in FIG. 図4は図1のCの拡大構成略図FIG. 4 is an enlarged schematic diagram of C in FIG. 図5は図1のD―Dの断面構成略図FIG. 5 is a schematic cross-sectional configuration of DD of FIG. 図6は図3のE―Eの断面構成略図FIG. 6 is a schematic cross-sectional configuration of EE of FIG.

本願発明の風力発電用ブレードの主桁に適用される炭素繊維引抜材の製造設備は、主に風力発電用ブレードの主桁の製造に適用される。 The carbon fiber drawing material manufacturing equipment applied to the main girder of the blade for wind power generation of the present invention is mainly applied to the manufacture of the main girder of the blade for wind power generation.

本願発明の風力発電用ブレードの主桁に適用される炭素繊維引抜材の製造設備は、本体10を含み、前記本体10の中の上方には回転空間11が設けられ、前記回転空間11の右上壁にはモーター27が固定的に連結され、前記回転空間11の左上壁には液圧装置12が固定的に連結され、前記回転空間11の右下方には原料空間15が設けられ、前記原料空間15の中には増圧板14がスライドできるように連結され、前記原料空間15の下方には第一含浸溝44が形成され、前記原料空間15の右側には外層原料空間16が設けられ、前記回転空間11の中の下方には第一締め付け装置39が設けられ、前記第一締め付け装置39の右側には第二含浸溝36が形成され、前記第二含浸溝36の右側には第二締め付け装置24が設けられ、前記第二締め付け装置24の右側には成形金型79が設けられ、作動する時、原料が前記原料空間15の中において前記増圧板14の作用により複数の繊維束になって流れ出て、そして前記第一含浸溝44によって含浸された後前記第一締め付け装置39に着いて繊維棒になり、前記外層原料空間16は外層被覆用の繊維束を提供し、前記第二含浸溝36を経由し、前記第二締め付け装置24を経由した後に繊維棒が外層に被覆されて締め付けられ、最後に前記成形金型79によって成形され、冷却後に完全の炭素繊維引抜材が得られ、前記モーター27によって繊維束の延びと炭素繊維材の成形をコントロールし、過程全体が一体化であり、製造効率を向上させた。 The carbon fiber drawing material manufacturing equipment applied to the main girder of the blade for wind power generation of the present invention includes the main body 10, and a rotating space 11 is provided above the main body 10, and the upper right of the rotating space 11. The motor 27 is fixedly connected to the wall, the hydraulic pressure device 12 is fixedly connected to the upper left wall of the rotating space 11, and the raw material space 15 is provided in the lower right of the rotating space 11, and the raw material is provided. A pressure boosting plate 14 is slidably connected in the space 15, a first impregnation groove 44 is formed below the raw material space 15, and an outer layer raw material space 16 is provided on the right side of the raw material space 15. A first tightening device 39 is provided below the rotating space 11, a second impregnation groove 36 is formed on the right side of the first tightening device 39, and a second impregnation groove 36 is formed on the right side of the second impregnation groove 36 . A tightening device 24 is provided, and a molding mold 79 is provided on the right side of the second tightening device 24, and when operating, the raw material is formed into a plurality of fiber bundles by the action of the pressure boosting plate 14 in the raw material space 15. After being impregnated by the first impregnation groove 44, it arrives at the first tightening device 39 to become a fiber rod, and the outer layer raw material space 16 provides a fiber bundle for coating the outer layer, and the second After passing through the impregnation groove 36 and the second tightening device 24, the fiber rod is coated with an outer layer and tightened, and finally molded by the molding mold 79, and after cooling, a complete carbon fiber drawing material is obtained. The motor 27 controls the elongation of the fiber bundle and the molding of the carbon fiber material, and the entire process is integrated to improve the manufacturing efficiency.

前記液圧装置12には液圧ロッド13が伝動できるように連結され、前記液圧ロッド13が前記増圧板14と固定的に連結され、前記原料空間15の下方には穴フィルター46が設けられ、前記第一含浸溝44の中には第一横軸43が回転できるように連結され、前記第一横軸43には第一含浸輪42が固定的に連結され、前記第一含浸溝44の右方には第一口45が設けられ、前記第一口45の中には第二横軸40が回転できるように連結され、前記第二横軸40には第一案内輪41が固定的に連結されている。 The hydraulic rod 13 is connected to the hydraulic device 12 so as to be able to transmit, the hydraulic rod 13 is fixedly connected to the pressure boosting plate 14, and a hole filter 46 is provided below the raw material space 15. , said in the first impregnation groove 44 is connected for rotation is first horizontal axis 43, the the first horizontal axis 43 is first impregnated wheel 42 is fixedly connected, said first impregnation groove 44 A first port 45 is provided on the right side of the above, a second horizontal shaft 40 is connected to the first port 45 so as to be rotatable, and a first guide wheel 41 is fixed to the second horizontal shaft 40. Are connected.

前記外層原料空間16の右下には小穴17が設けられ、前記回転空間11の中の下方には中空間54が設けられ、前記中空間54の左壁には第三横軸47が回転できるように連結され、前記第三横軸47には第一歯車48が固定的に連結され、前記第一歯車48には前記中空管54の左壁と回転できるように連結された左歯車軸スリーブ49が噛合しており、前記左歯車軸スリーブ49の中には第一短軸50と第二短軸52とが回転できるように連結され、前記第一短軸50には第一押し輪51が固定的に連結され、前記第二短軸52には第二押し輪53が固定的に連結され、前記中空間54の中には第四横軸19が回転できるように連結され、前記第四横軸19には第二案内輪18が固定的に連結され、前記第三横軸47の右端には第二歯車55が固定的に連結されている。 A small hole 17 is provided in the lower right of the outer layer raw material space 16, an intermediate space 54 is provided below the rotating space 11, and a third horizontal axis 47 can rotate on the left wall of the intermediate space 54. The first gear 48 is fixedly connected to the third horizontal shaft 47, and the left gear shaft is connected to the first gear 48 so as to be rotatable with the left wall of the hollow pipe 54. The sleeve 49 is meshed, and the first short shaft 50 and the second short shaft 52 are connected to the left gear shaft sleeve 49 so as to be rotatable, and the first push wheel is connected to the first short shaft 50. 51 is fixedly connected, a second push ring 53 is fixedly connected to the second short shaft 52, and a fourth horizontal shaft 19 is connected to the middle space 54 so as to be rotatable. The second guide wheel 18 is fixedly connected to the fourth horizontal shaft 19, and the second gear 55 is fixedly connected to the right end of the third horizontal shaft 47.

前記第二歯車55が第三歯車56と噛合しており、前記第三歯車56が第五横軸21と固定的に連結され、前記第五横軸21が第四歯車92と固定的に連結され、前記第四歯車92が第五歯車58と噛合しており、前記第五歯車58が前記中空間54の右壁と回転できるように連結された第六横軸90と固定的に連結され、前記第六横軸90が第六歯車59と固定的に連結されている。 The second gear 55 meshes with the third gear 56, the third gear 56 is fixedly connected to the fifth horizontal shaft 21, and the fifth horizontal shaft 21 is fixedly connected to the fourth gear 92. The fourth gear 92 is meshed with the fifth gear 58, and the fifth gear 58 is fixedly connected to the sixth horizontal shaft 90 which is connected so as to be rotatable with the right wall of the middle space 54. , The sixth horizontal shaft 90 is fixedly connected to the sixth gear 59.

前記第二含浸溝36の中には第七横軸23が回転できるように連結され、前記第七横軸23には第二含浸輪22が固定的に連結され、前記第二含浸溝36の中には第八横軸37が回転できるように連結され、前記第八横軸37には第三案内輪38が固定的に連結され、前記第二含浸溝36の右方には第九横軸61が回転できるように連結され、前記第九横軸61には第三案内輪62が固定的に連結されている。 Said into the second impregnation groove 36 is connected so that it can rotate seventh horizontal axis 23, the the seventh horizontal axis 23 the second impregnation wheels 22 coupled fixedly, said second impregnation groove 36 The eighth horizontal shaft 37 is connected so as to be rotatable inside, the third guide wheel 38 is fixedly connected to the eighth horizontal shaft 37, and the ninth lateral shaft 37 is to the right of the second impregnation groove 36. The shaft 61 is connected so as to be rotatable, and the third guide wheel 62 is fixedly connected to the ninth horizontal shaft 61.

前記第六歯車59には右歯車軸スリーブ63が噛合しており、前記右歯車軸63の中には第三短軸と第四短軸66とが回転できるように連結され、前記第三短軸65と前記第四短軸66とにはそれぞれ第三押し輪64と第四押し輪67とが固定的に連結され、前記第六横軸90には第一はすば歯車60が固定的に連結され、前記第一はすば歯車60には第二はすば歯車68が噛合しており、前記第二はすば歯車68には右横軸93が固定的に連結され、前記右横軸93が前記回転空間11の右下方に設置された原料出し空間94の内壁と回転できるように連結され、前記右横軸93には第三はすば歯車84が固定的に連結され、前記右横軸93には上スプロケット85が固定的に連結され、前記上スプロケット85にはチェーン86が伝動できるように連結され、前記チェーン86には下スプロケット87が伝動できるように連結され、前記下スプロケット87には前記原料出し空間94と回転できるように連結された上横軸70が固定的に連結され、前記上横軸70には上歯車88が固定的に連結され、前記上歯車88には下歯車89が噛合しており、前記下歯車89には前記原料出し空間94と回転できるように連結された下横軸71が固定的に連結され、前記上横軸70と前記下横軸71とにはそれぞれ上送り輪69と下送り輪72とが固定的に連結されている。 A right gear shaft sleeve 63 is meshed with the sixth gear 59, and the third minor shaft and the fourth minor shaft 66 are connected in the right gear shaft 63 so as to be rotatable, and the third minor shaft 66 is connected. A third push ring 64 and a fourth push wheel 67 are fixedly connected to the shaft 65 and the fourth minor shaft 66, respectively, and a first helical gear 60 is fixed to the sixth horizontal shaft 90. A second helical gear 68 is meshed with the first helical gear 60, and a right horizontal shaft 93 is fixedly connected to the second helical gear 68 to the right. The horizontal axis 93 is rotatably connected to the inner wall of the raw material dispensing space 94 installed at the lower right of the rotating space 11, and the third helical gear 84 is fixedly connected to the right horizontal axis 93. The upper sprocket 85 is fixedly connected to the right horizontal axis 93, the upper sprocket 85 is connected so that the chain 86 can be transmitted, and the lower sprocket 87 is connected to the chain 86 so that the lower sprocket 87 can be transmitted. An upper horizontal shaft 70 which is rotatably connected to the raw material dispensing space 94 is fixedly connected to the lower sprocket 87, and an upper gear 88 is fixedly connected to the upper horizontal shaft 70. A lower gear 89 is meshed with the lower gear 89, and a lower horizontal shaft 71 connected to the lower gear 89 so as to be rotatable is fixedly connected to the lower gear 89, and the upper horizontal shaft 70 and the lower horizontal shaft 70 are fixedly connected to the lower horizontal shaft 71. The upper feed ring 69 and the lower feed ring 72 are fixedly connected to the shaft 71, respectively.

前記モーター27には出力軸30が伝動できるように連結され、前記出力軸30には扇形はすば歯車26が固定的に連結され、前記扇形はすば歯車26には第四はすば歯車28が間欠的に噛合しており、前記第四はすば歯車28には前記回転空間11の右壁と回転できるように連結された右上軸29が固定的に連結され、前記右上軸29にはカム31が固定的に連結され、前記出力軸30には前スプロケット25が固定的に連結され、前記前スプロケット25には上チェーン81が伝動できるように連結され、前記上チェーン81には後スプロケット82が伝動できるように連結され、前記後スプロケット81には前記回転空間11の下壁と回転できるように連結された縦軸33が固定的に連結され、前記縦軸33には扇形歯車83が固定的に連結されている。 The output shaft 30 is connected to the motor 27 so as to be able to transmit, a fan-shaped helical gear 26 is fixedly connected to the output shaft 30, and a fourth helical gear is connected to the fan-shaped helical gear 26. 28 is intermittently meshed, and the upper right shaft 29, which is connected to the fourth helical gear 28 so as to be rotatable with the right wall of the rotating space 11, is fixedly connected to the upper right shaft 29. Is fixedly connected to the cam 31, the front sprocket 25 is fixedly connected to the output shaft 30, the upper chain 81 is connected to the front sprocket 25 so as to be transmitted, and the rear is connected to the upper chain 81. The sprocket 82 is connected so as to be transmitted, and the vertical axis 33 connected to the rear sprocket 81 so as to be rotatable is fixedly connected to the lower wall of the rotating space 11, and the fan-shaped gear 83 is connected to the vertical axis 33. Are fixedly connected.

前記原料出し空間94の上壁には連結ロッド34が固定的に連結され、前記連結ロッド34には接触ロッド80が固定的に連結され、前記原料出し空間94の上壁には伸縮ロッド32がスライドできるように連結され、前記伸縮ロッド32には成形金型79が固定的に連結され、前記成形金型79の下方には送りベルト75が設けられ、前記送りベルト75には左プーリー74と右プーリー77とが伝動できるように連結され、前記左プーリー74には前記原料出し空間94の内壁と回転できるように連結された左小軸73が固定的に連結され、前記右プーリー77には前記原料出し空間94の内壁と回転できるように連結された右小軸76が固定的に連結され、前記接触ロッド80の下方にはばね78が固定的に連結され、前記ばね78には前記成形金型79が固定的に連結されている。 A connecting rod 34 is fixedly connected to the upper wall of the raw material discharging space 94, a contact rod 80 is fixedly connected to the connecting rod 34, and a telescopic rod 32 is fixedly connected to the upper wall of the raw material discharging space 94. The telescopic rod 32 is connected so as to be slidable, and the molding die 79 is fixedly connected to the telescopic rod 32, a feed belt 75 is provided below the molding die 79, and the feed belt 75 is connected to the left pulley 74. The left pulley 74 is connected to the right pulley 77 so as to be transmitted, and the left small shaft 73 connected to the inner wall of the raw material ejection space 94 so as to be rotatable is fixedly connected to the right pulley 77. The right small shaft 76 rotatably connected to the inner wall of the raw material ejection space 94 is fixedly connected, a spring 78 is fixedly connected below the contact rod 80, and the molding is carried out to the spring 78. The mold 79 is fixedly connected.

以下に図1〜6を合わせて本願発明の風力発電用ブレードの主桁に適用される炭素繊維引抜材の製造設備の使用手順を詳しく説明する。
1、炭素繊維原料が前記原料空間15の中で加熱された後、前記液圧装置12を起動し、前記液圧ロッド13が前記増圧板14を下方へ押し動かし、炭素繊維原料が前記穴フィルター46を経由して複数の繊維束になり、繊維束が前記第一含浸溝44に含浸された後に前記第一含浸輪42を経由し、そして前記第一案内輪41を経由し、前記第一締め付け装置39によって繊維棒に締め付けられ、繊維棒が前記第三案内輪38のところで外層原料と接触し、ともに前記第二含浸溝36によって含浸されて前記第二含浸輪22を経由し、そして前記第二締め付け装置24を経由し締め付けられ、最終的に前記成形金型79を経由し成形される。
2、前記モーター27を起動し、前記出力軸30が駆動されて回転し、前記扇形はすば歯車26が駆動されて回転し、伝動により前記扇形歯車83が駆動されて回転し、前記扇形歯車83が前記第三はすば歯車84と噛合した時、前記右横軸93が駆動されて回転し、伝動により前記左歯車軸スリーブ49が駆動されて回転し、前記右歯車軸スリーブ63が駆動されて回転し、前記上送り輪69と前記下送り輪72とが駆動されて回転し、繊維棒が駆動されて前方へ移動する。
3、繊維棒が前記成形金型79の下方に着いた時、前記扇形はすば歯車26が前記第四はすば歯車28と噛合し、前記カム31が駆動されて回転し前記伸縮ロッド32と接触し、前記伸縮ロッド32が下方へ移動し、前記成形金型79が駆動されて下方へ移動し、前記成形金型79が繊維棒を押して切断し、完全な炭素繊維引抜材を得て、その後前記カム31が前記伸縮ロッド32と接触しなくなり、前記成形金型79がバネ力の作用により上方へ移動し、前記接触ロッド80が前記成形金型79に対して下方へ移動し、前記成形金型79における材料が押し動かされて前記送りベルト76に落ちる。
The procedure for using the carbon fiber drawing material manufacturing equipment applied to the main girder of the blade for wind power generation of the present invention will be described in detail with reference to FIGS.
1. After the carbon fiber raw material is heated in the raw material space 15, the hydraulic pressure device 12 is activated, the hydraulic rod 13 pushes the pressure boosting plate 14 downward, and the carbon fiber raw material is the hole filter. A plurality of fiber bundles are formed via 46, and after the fiber bundles are impregnated in the first impregnation groove 44, the fiber bundles pass through the first impregnated ring 42 and then through the first guide ring 41, and the first It is fastened to the fiber rod by the tightening device 39, and the fiber rod comes into contact with the outer layer raw material at the third guide ring 38, and both are impregnated by the second impregnation groove 36, pass through the second impregnation ring 22, and said. It is tightened via the second tightening device 24, and is finally molded via the molding mold 79.
2. The motor 27 is started, the output shaft 30 is driven to rotate, the fan-shaped helical gear 26 is driven to rotate, and the fan-shaped gear 83 is driven to rotate by transmission, and the fan-shaped gear When the 83 meshes with the third helical gear 84, the right horizontal shaft 93 is driven to rotate, the left gear shaft sleeve 49 is driven to rotate by transmission, and the right gear shaft sleeve 63 is driven. The upper feed wheel 69 and the lower feed wheel 72 are driven to rotate, and the fiber rod is driven to move forward.
3. When the fiber rod arrives below the molding die 79, the fan-shaped helical gear 26 meshes with the fourth helical gear 28, the cam 31 is driven to rotate, and the telescopic rod 32 The telescopic rod 32 moves downward, the forming die 79 is driven and moves downward, and the forming die 79 pushes and cuts the fiber rod to obtain a complete carbon fiber drawing material. After that, the cam 31 does not come into contact with the telescopic rod 32, the molding die 79 moves upward by the action of a spring force, and the contact rod 80 moves downward with respect to the molding die 79. The material in the molding die 79 is pushed and moved to fall on the feed belt 76.

本願発明の有益効果は:本願発明は圧力を増加する方法で炭素繊維原料を繊維束にし、コア層原料が含浸された後、外層原料を被覆し含浸され、有効に材料の強度を向上させ、機械の伝動により炭素繊維束を締め付けて送って延ばし、最後に成形金型を経由し成形し、プロセス全体が連続で行われ、製造効率を向上させた。 The beneficial effect of the present invention is: The present invention makes the carbon fiber raw material into a fiber bundle by a method of increasing the pressure, impregnates the core layer raw material, and then coats and impregnates the outer layer raw material to effectively improve the strength of the material. The carbon fiber bundle was tightened, sent and stretched by the transmission of the machine, and finally molded via a molding mold, and the entire process was continuously performed, improving the manufacturing efficiency.

以上の方式により、当業者は本願発明の範囲内に作業方式によって各種の変化を加えることができる。 According to the above method, those skilled in the art can make various changes depending on the working method within the scope of the present invention.

Claims (8)

本体を含み、
前記本体の中の上方には回転空間が設けられ、前記回転空間の右上壁にはモーターが固定的に連結され、前記回転空間の左上壁には液圧装置が固定的に連結され、前記回転空間の右下方には原料空間が設けられ、前記原料空間の中には増圧板がスライドできるように連結され、前記原料空間の下方には一級含浸溝が形成され、前記原料空間の右側には外層原料空間が設けられ、前記回転空間の中の下方には一級締め付け装置が設けられ、前記一級締め付け装置の右側には二級含浸溝が形成され、前記二級含浸溝の右側には二級締め付け装置が設けられ、前記二級締め付け装置の右側には成形金型が設けられ、
作動する時、原料が前記原料空間の中において前記増圧板の作用により複数の繊維束になって流れ出て、そして前記一級含浸溝によって含浸された後前記一級締め付け装置に着いて繊維棒になり、前記外層原料空間は外層被覆用の繊維束を提供し、前記二級含浸溝を経由し、前記二級締め付け装置を経由した後に繊維棒が外層に被覆されて締め付けられ、最後に前記成形金型によって成形され、冷却後に完全の炭素繊維引抜材が得られ、
前記モーターによって繊維束の延びと炭素繊維材の成形をコントロールし、過程全体が一体化であり、製造効率を向上させたことを特徴とする風力発電用ブレードの主桁に適用される炭素繊維引抜材の製造設備。
Including the main body
A rotating space is provided above the main body, a motor is fixedly connected to the upper right wall of the rotating space, and a hydraulic pressure device is fixedly connected to the upper left wall of the rotating space. A raw material space is provided in the lower right of the space, a pressure boosting plate is connected so as to slide in the raw material space, a first-class impregnation groove is formed in the lower right of the raw material space, and a first-class impregnation groove is formed in the lower right of the raw material space. An outer layer raw material space is provided, a first-class tightening device is provided below the rotating space, a second-class impregnation groove is formed on the right side of the first-class tightening device, and a second-class impregnation groove is formed on the right side of the second-class impregnation groove. A tightening device is provided, and a molding mold is provided on the right side of the second-class tightening device.
When operating, the raw material flows out into a plurality of fiber bundles by the action of the pressure booster in the raw material space, and after being impregnated by the first-class impregnation groove, arrives at the first-class tightening device and becomes a fiber rod. The outer layer raw material space provides a fiber bundle for coating the outer layer, and after passing through the secondary impregnation groove and the secondary tightening device, the fiber rod is coated and tightened on the outer layer, and finally the molding die. Molded by, and after cooling, a complete carbon fiber drawing material is obtained,
The carbon fiber extraction applied to the main girder of the blade for wind power generation, which is characterized in that the extension of the fiber bundle and the molding of the carbon fiber material are controlled by the motor, the entire process is integrated, and the manufacturing efficiency is improved. Material manufacturing equipment.
前記液圧装置には液圧ロッドが伝動できるように連結され、前記液圧ロッドが前記増圧板と固定的に連結され、前記原料空間の下方には穴フィルターが設けられ、前記一級含浸溝の中には第一横軸が回転できるように連結され、前記第一横軸には第一含浸輪が固定的に連結され、前記一級含浸溝の右方には一級口が設けられ、前記一級口の中には第二横軸が回転できるように連結され、前記第二横軸には第一案内輪が固定的に連結されていることを特徴とする請求項1に記載の風力発電用ブレードの主桁に適用される炭素繊維引抜材の製造設備。 The hydraulic rod is connected to the hydraulic device so that it can be transmitted, the hydraulic rod is fixedly connected to the pressure boosting plate, a hole filter is provided below the raw material space, and the first-class impregnation groove is provided. The first horizontal axis is connected so as to be rotatable, the first impregnated ring is fixedly connected to the first horizontal axis, and a first-class port is provided on the right side of the first-class impregnated groove. The wind power generation according to claim 1, wherein the second horizontal axis is rotatably connected to the inside of the mouth, and the first guide wheel is fixedly connected to the second horizontal axis. Manufacturing equipment for carbon fiber drawing materials applied to the main girder of blades. 前記外層原料空間の右下には小穴が設けられ、前記回転空間の中の下方には中空間が設けられ、前記中空間の左壁には第三横軸が回転できるように連結され、前記第三横軸には第一歯車が固定的に連結され、前記第一歯車には前記中空管の左壁と回転できるように連結された左歯車軸スリーブが噛合しており、前記左歯車軸スリーブの中には第一短軸と第二短軸とが回転できるように連結され、前記第一短軸には第一押し輪が固定的に連結され、前記第二短軸には第二押し輪が固定的に連結され、前記中空間の中には第四横軸が回転できるように連結され、前記第四横軸には第二案内輪が固定的に連結され、前記第三横軸の右端には第二歯車が固定的に連結されていることを特徴とする請求項1に記載の風力発電用ブレードの主桁に適用される炭素繊維引抜材の製造設備。 A small hole is provided in the lower right of the outer layer raw material space, an intermediate space is provided below the rotating space, and a third horizontal axis is connected to the left wall of the intermediate space so as to be rotatable. The first gear is fixedly connected to the third horizontal shaft, and the left gear shaft sleeve connected to the left wall of the hollow pipe so as to be rotatable is meshed with the first gear. The first minor shaft and the second minor shaft are rotatably connected to the shaft sleeve, the first push ring is fixedly connected to the first minor shaft, and the second minor shaft is connected to the second minor shaft. The two push wheels are fixedly connected, and the fourth horizontal axis is fixedly connected to the fourth horizontal axis so that the fourth horizontal axis can rotate, and the second guide wheel is fixedly connected to the fourth horizontal axis. The equipment for manufacturing a carbon fiber drawing material applied to the main girder of a blade for wind power generation according to claim 1, wherein a second gear is fixedly connected to the right end of the horizontal axis. 前記第二歯車が第三歯車と噛合しており、前記第三歯車が第五横軸と固定的に連結され、前記第五横軸が第四歯車と固定的に連結され、前記第四歯車が第五歯車と噛合しており、前記第五歯車が前記中空間の右壁と回転できるように連結された第六横軸と固定的に連結され、前記第六横軸が第六歯車と固定的に連結されていることを特徴とする請求項1に記載の風力発電用ブレードの主桁に適用される炭素繊維引抜材の製造設備。 The second gear meshes with the third gear, the third gear is fixedly connected to the fifth horizontal shaft, the fifth horizontal shaft is fixedly connected to the fourth gear, and the fourth gear is fixedly connected. Is meshed with the fifth gear, the fifth gear is fixedly connected to the sixth horizontal shaft connected so as to be rotatable with the right wall of the middle space, and the sixth horizontal shaft is fixedly connected to the sixth gear. A facility for manufacturing a carbon fiber drawing material applied to a main girder of a blade for wind power generation according to claim 1, wherein the carbon fiber drawing material is fixedly connected. 前記二級含浸溝の中には第七横軸が回転できるように連結され、前記第七横軸には第二含浸輪が固定的に連結され、前記二級含浸溝の中には第八横軸が回転できるように連結され、前記第八横軸には第三案内輪が固定的に連結され、前記二級含浸溝の右方には第九横軸が回転できるように連結され、前記第九横軸には第三案内輪が固定的に連結されていることを特徴とする請求項1に記載の風力発電用ブレードの主桁に適用される炭素繊維引抜材の製造設備。 The seventh horizontal axis is connected so as to be rotatable in the secondary impregnation groove, the second impregnation ring is fixedly connected to the seventh horizontal axis, and the eighth impregnation groove is inside the secondary impregnation groove. The horizontal axis is rotatably connected, the third guide wheel is fixedly connected to the eighth horizontal axis, and the ninth horizontal axis is rotatably connected to the right of the secondary impregnation groove. The equipment for manufacturing a carbon fiber drawing material applied to a main girder of a blade for wind power generation according to claim 1, wherein a third guide wheel is fixedly connected to the ninth horizontal axis. 前記第六歯車には右歯車軸スリーブが噛合しており、前記右歯車軸の中には第三短軸と第四短軸とが回転できるように連結され、前記第三短軸と前記第四短軸とにはそれぞれ第三押し輪と第四押し輪とが固定的に連結され、前記第六横軸には第一はすば歯車が固定的に連結され、前記第一はすば歯車には第二はすば歯車が噛合しており、前記第二はすば歯車には右横軸が固定的に連結され、前記右横軸が前記回転空間の右下方に設置された原料出し空間の内壁と回転できるように連結され、前記右横軸には第三はすば歯車が固定的に連結され、前記右横軸には上スプロケットが固定的に連結され、前記上スプロケットにはチェーンが伝動できるように連結され、前記チェーンには下スプロケットが伝動できるように連結され、前記下スプロケットには前記原料出し空間と回転できるように連結された上横軸が固定的に連結され、前記上横軸には上歯車が固定的に連結され、前記上歯車には下歯車が噛合しており、前記下歯車には前記原料出し空間と回転できるように連結された下横軸が固定的に連結され、前記上横軸と前記下横軸とにはそれぞれ上送り輪と下送り輪とが固定的に連結されていることを特徴とする請求項1に記載の風力発電用ブレードの主桁に適用される炭素繊維引抜材の製造設備。 A right gear shaft sleeve meshes with the sixth gear, and the third minor shaft and the fourth minor shaft are connected so as to be rotatable in the right gear shaft, and the third minor shaft and the fourth minor shaft are connected so as to be rotatable. The third push wheel and the fourth push wheel are fixedly connected to the four short shafts, respectively, the first helical gear is fixedly connected to the sixth horizontal axis, and the first helical gear is fixedly connected. A second helical gear is meshed with the gear, a right horizontal axis is fixedly connected to the second helical gear, and the right horizontal axis is installed in the lower right of the rotating space. It is rotatably connected to the inner wall of the ejection space, the third helical gear is fixedly connected to the right horizontal axis, and the upper sprocket is fixedly connected to the right horizontal axis, and is fixedly connected to the upper sprocket. Is connected so that the chain can be transmitted, the lower sprocket is connected to the chain so that the lower sprocket can be transmitted, and the upper horizontal axis connected to the lower sprocket so as to be rotatable is fixedly connected to the lower sprocket. An upper gear is fixedly connected to the upper horizontal shaft, a lower gear is meshed with the upper gear, and a lower horizontal shaft connected to the lower gear so as to be able to rotate with the raw material dispensing space. The blade for wind power generation according to claim 1, wherein the upper horizontal shaft and the lower horizontal shaft are fixedly connected, and the upper feed wheel and the lower feed wheel are fixedly connected to the upper horizontal shaft and the lower horizontal shaft, respectively. Manufacturing equipment for carbon fiber drawing materials applied to the main girders of. 前記モーターには出力軸が伝動できるように連結され、前記出力軸には扇形はすば歯車が固定的に連結され、前記扇形はすば歯車には第四はすば歯車が間欠的に噛合しており、前記第四はすば歯車には前記回転空間の右壁と回転できるように連結された右上軸が固定的に連結され、前記右上軸にはカムが固定的に連結され、前記出力軸には前スプロケットが固定的に連結され、前記前スプロケットには上チェーンが伝動できるように連結され、前記上チェーンには後スプロケットが伝動できるように連結され、前記後スプロケットには前記回転空間の下壁と回転できるように連結された縦軸が固定的に連結され、前記縦軸には扇形歯車が固定的に連結されていることを特徴とする請求項1に記載の風力発電用ブレードの主桁に適用される炭素繊維引抜材の製造設備。 The output shaft is connected to the motor so that the output shaft can be transmitted, the fan-shaped helical gear is fixedly connected to the output shaft, and the fourth helical gear is intermittently meshed with the fan-shaped helical gear. The fourth helical gear is fixedly connected to the upper right shaft connected to the right wall of the rotating space so as to be rotatable, and the cam is fixedly connected to the upper right shaft. The front sprocket is fixedly connected to the output shaft, the front sprocket is connected so that the upper chain can be transmitted, the upper chain is connected so that the rear sprocket can be transmitted, and the rear sprocket is connected to the rotation. The wind power generation according to claim 1, wherein a vertical axis connected to the lower wall of the space so as to be rotatable is fixedly connected, and a fan-shaped gear is fixedly connected to the vertical axis. Manufacturing equipment for carbon fiber drawing materials applied to the main girder of blades. 前記原料出し空間の上壁には連結ロッドが固定的に連結され、前記連結ロッドには接触ロッドが固定的に連結され、前記原料出し空間の上壁には伸縮ロッドがスライドできるように連結され、前記伸縮ロッドには成形金型が固定的に連結され、前記成形金型の下方には送りベルトが設けられ、前記送りベルトには左プーリーと右プーリーとが伝動できるように連結され、前記左プーリーには前記原料出し空間の内壁と回転できるように連結された左小軸が固定的に連結され、前記右プーリーには前記原料出し空間の内壁と回転できるように連結された右小軸が固定的に連結され、前記接触ロッドの下方にはばねが固定的に連結され、前記ばねには前記成形金型が固定的に連結されていることを特徴とする請求項1に記載の風力発電用ブレードの主桁に適用される炭素繊維引抜材の製造設備。 A connecting rod is fixedly connected to the upper wall of the raw material dispensing space, a contact rod is fixedly connected to the connecting rod, and a telescopic rod is slidably connected to the upper wall of the raw material dispensing space. A molding mold is fixedly connected to the telescopic rod, a feed belt is provided below the molding mold, and the left pulley and the right pulley are connected to the feed belt so as to be able to transmit. A left small shaft connected to the inner wall of the raw material dispensing space so as to rotate is fixedly connected to the left pulley, and a right small shaft connected to the right pulley so as to rotate with the inner wall of the raw material dispensing space. The wind force according to claim 1, wherein a spring is fixedly connected to the lower portion of the contact rod, and the molding mold is fixedly connected to the spring. Manufacturing equipment for carbon fiber drawing materials applied to the main girder of power generation blades.
JP2019197852A 2019-07-15 2019-10-30 Manufacturing equipment for carbon fiber drawing material applied to the main girder of blades for wind power generation Active JP6752996B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910637746.6 2019-07-15
CN201910637746.6A CN110281551B (en) 2019-07-15 2019-07-15 Production facility suitable for wind-powered electricity generation is carbon fiber pultrusion panel for blade girder

Publications (2)

Publication Number Publication Date
JP6752996B1 JP6752996B1 (en) 2020-09-09
JP2021014109A true JP2021014109A (en) 2021-02-12

Family

ID=68022953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019197852A Active JP6752996B1 (en) 2019-07-15 2019-10-30 Manufacturing equipment for carbon fiber drawing material applied to the main girder of blades for wind power generation

Country Status (2)

Country Link
JP (1) JP6752996B1 (en)
CN (1) CN110281551B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111216381A (en) * 2020-01-19 2020-06-02 南京聚发新材料有限公司 Fiber reinforced double-layer resin composite material, and extrusion molding device and process thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016503094A (en) * 2012-12-20 2016-02-01 ティコナ・エルエルシー System and method for molding fiber reinforced polymers
CN108995251A (en) * 2018-07-30 2018-12-14 上伟(江苏)碳纤复合材料有限公司 It is a kind of suitable for the wind electricity blade girder production technology of carbon fiber pultrusion plate
CN109605781B (en) * 2018-11-08 2021-02-05 上伟(江苏)碳纤复合材料有限公司 Forming process and forming equipment for carbon fiber pultruded plate with surface covered with demolding cloth
CN109676971A (en) * 2019-02-15 2019-04-26 浙江新纳复合材料有限公司 A kind of production technology and its production line of profiled filament muscle material

Also Published As

Publication number Publication date
JP6752996B1 (en) 2020-09-09
CN110281551B (en) 2020-04-03
CN110281551A (en) 2019-09-27

Similar Documents

Publication Publication Date Title
CN101284422B (en) Glass fibre reinforced vertical protruded tubular product device and method
CN108749042B (en) Pultrusion production method and equipment for fiber reinforced composite material bent section
CA2745630A1 (en) Method to manufacture a component of a composite structure
CN101134369A (en) Technique of preparing FRP fibre-reinforced composite material bar
JP6752996B1 (en) Manufacturing equipment for carbon fiber drawing material applied to the main girder of blades for wind power generation
CN111720631A (en) High-ring-stiffness stretch-wound FRP pipe and preparation method thereof
CN109676971A (en) A kind of production technology and its production line of profiled filament muscle material
CN204296037U (en) Large glass cylinder of steel body and mould, manufacturing equipment
CN115972622A (en) Preparation method and forming control system of composite material spiral component
CN209566517U (en) A kind of production line of fiber bar material
CN203543137U (en) Continuous weaved pipeline forming device
JP5342171B2 (en) Fiber reinforced plastic stepped pipe and method of manufacturing the same
CN109747185A (en) A kind of step braid pultrusion pipeline production technology and its equipment
CN215750737U (en) Demoulding device is used in production of modified polypropylene carat pipe
CN105034338A (en) Surface layer co-extrusion winding pipe production equipment
CN114347506B (en) Production equipment and processing technology for processing composite pipeline
CN210880982U (en) Impregnation die for continuous fiber reinforced thermoplastic composite material
CN215750877U (en) Compression molding device for continuous fiber reinforced composite material
US20140190624A1 (en) Mechanism for automatically cutting and placement of resin impregnated fibers
CN207681362U (en) A kind of closed guard gate's tension rib molding bending machine
CN220681690U (en) Glass fiber reinforced plastic pultrusion machine
CN205130376U (en) Glass fiber -reinforced plastic tank fibre winding mould
CN218615528U (en) Production line of composite material annular finished piece
CN212555129U (en) Continuously woven, wound, pultruded and high-strength composite glass steel tube
CN202685307U (en) Winding device of glass reinforced plastic sand inclusion pipeline

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200310

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200310

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200605

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200703

R150 Certificate of patent or registration of utility model

Ref document number: 6752996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150