JP2021011917A - Cross roller bearing - Google Patents

Cross roller bearing Download PDF

Info

Publication number
JP2021011917A
JP2021011917A JP2019126144A JP2019126144A JP2021011917A JP 2021011917 A JP2021011917 A JP 2021011917A JP 2019126144 A JP2019126144 A JP 2019126144A JP 2019126144 A JP2019126144 A JP 2019126144A JP 2021011917 A JP2021011917 A JP 2021011917A
Authority
JP
Japan
Prior art keywords
roller
inner ring
ring
cross
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019126144A
Other languages
Japanese (ja)
Inventor
伊藤 秀司
Hideji Ito
秀司 伊藤
徹 井奈波
Toru Inaba
徹 井奈波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2019126144A priority Critical patent/JP2021011917A/en
Publication of JP2021011917A publication Critical patent/JP2021011917A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

To provide a cross roller bearing hardly causing edge load and suppressing skew of a roller.SOLUTION: Edge load hardly occurs by combining a projected curve-shaped cross-sectional shape of an outer peripheral surface of a roller and recessed curve-shaped cross-sectional shapes of inclined raceway surfaces of an outer ring and an inner ring, and the inclined raceway surfaces of the outer ring and the inner ring are asymmetric in an axial direction of the roller. On an axial cross-section of the outer ring, an area of a negative clearance δ1 between the inclined raceway surface and an outer peripheral surface of the roller is increased at a shaft end side of the outer ring with respect to an axial center side of the outer ring, and on an axial cross-section of the inner ring, an area of a negative clearance δ2 between the inclined raceway surface and the outer peripheral surface of the roller is increased at an axial center side of the inner ring with respect to a shaft end side of the inner ring, thus an axial distribution of a speed transmitted to the roller from a rotation-side raceway ring is unified, and skew of the roller can be suppressed.SELECTED DRAWING: Figure 3

Description

本発明は、外輪と内輪の間に周方向に交互に傾斜方向が変わるようにローラを組み込んだクロスローラ軸受に関する。 The present invention relates to a cross roller bearing in which rollers are incorporated so that the inclination direction alternately changes in the circumferential direction between the outer ring and the inner ring.

クロスローラ軸受は、外輪の内周面に形成された互いに直交する一対の傾斜軌道面と、内輪の外周面に形成された互いに直交する一対の傾斜軌道面との間に、複数のローラを軸受周方向に交互に傾斜方向が変わるように配したもので、大きなラジアル荷重やスラスト荷重、モーメント荷重を支えることができる軸受として、産業機械、例えばロボット用の減速機等に広く使用されている。 A cross-roller bearing has a plurality of rollers bearing between a pair of inclined race planes formed on the inner peripheral surface of the outer ring and a pair of inclined race planes formed on the outer peripheral surface of the inner ring. It is arranged so that the inclination direction changes alternately in the circumferential direction, and is widely used in industrial machines such as reduction gears for robots as a bearing capable of supporting a large radial load, thrust load, and moment load.

このようなクロスローラ軸受には、ローラとして生産量が多くコスト的に有利な円筒ころを使用し、これに合わせて、外輪および内輪(以下、合わせて「軌道輪」とも称する。)の各傾斜軌道面をその軸方向断面において直線状に形成したものが多い。 For such a cross roller bearing, a cylindrical roller, which has a large production volume and is advantageous in terms of cost, is used as a roller, and the outer ring and the inner ring (hereinafter, collectively referred to as "track ring") are inclined in accordance with the cylindrical roller. In many cases, the raceway surface is formed linearly in its axial cross section.

上記の円筒ころからなるローラを使用したクロスローラ軸受の一例を図4に示す。このクロスローラ軸受は、外輪51および内輪52がそれぞれ一体形成されたもので、その外輪51の内周面に互いに直交するように形成された一対の傾斜軌道面51aと、内輪52の外周面に互いに直交するように形成された一対の傾斜軌道面52aとの間に、円筒ころからなるローラ53を周方向に交互に傾斜方向が変わるように配している。 FIG. 4 shows an example of a cross roller bearing using the above-mentioned roller made of cylindrical rollers. In this cross roller bearing, the outer ring 51 and the inner ring 52 are integrally formed, and the pair of inclined raceway surfaces 51a formed so as to be orthogonal to the inner peripheral surface of the outer ring 51 and the outer peripheral surface of the inner ring 52. Rollers 53 made of cylindrical rollers are arranged between the pair of inclined orbital surfaces 52a formed so as to be orthogonal to each other so that the inclined directions alternate in the circumferential direction.

前記外輪51の一対の傾斜軌道面51aは、その軸方向断面において、外輪51の内周面の軸方向中央部に形成された逃げ溝51bから軸方向両側へ直線状に延び、そのうちの一方の傾斜軌道面51aがローラ53の外周面と直線的に接触している。同様に、前記内輪52の一対の傾斜軌道面52aは、その軸方向断面において、内輪52の外周面の軸方向中央部に形成された逃げ溝52bから軸方向両側へ直線状に延び、そのうちの一方の傾斜軌道面52aがローラ53の外周面と直線的に接触している。なお、以下の説明では、軌道輪(外輪および内輪)の傾斜軌道面のうち、軸方向断面において、ローラの外周面と接触する方を「負荷側」、ローラの外周面と接触しない方を「非負荷側」と称する。 The pair of inclined orbital surfaces 51a of the outer ring 51 extend linearly to both sides in the axial direction from the relief groove 51b formed in the central portion of the inner peripheral surface of the outer ring 51 in the axial direction in the axial cross section, and one of them. The inclined track surface 51a is in linear contact with the outer peripheral surface of the roller 53. Similarly, the pair of inclined orbital surfaces 52a of the inner ring 52 extend linearly on both sides in the axial direction from the relief groove 52b formed in the central portion in the axial direction of the outer peripheral surface of the inner ring 52 in its axial cross section. One inclined track surface 52a is in linear contact with the outer peripheral surface of the roller 53. In the following description, among the inclined raceway surfaces of the raceway rings (outer ring and inner ring), the one that contacts the outer peripheral surface of the roller in the axial cross section is the "load side", and the one that does not contact the outer peripheral surface of the roller is ". It is called "non-load side".

しかし、このようにローラ53の外周面と軌道輪51、52の負荷側の傾斜軌道面51a、52aとを直線的に接触させているクロスローラ軸受では、ローラ53の外周面と端面との間の境界部分(エッジ)が軌道輪51、52の負荷側の傾斜軌道面51a、52aと接触することにより、局部的な過大面圧(エッジロード)が生じて軌道輪51、52が傷つき、軸受寿命が短縮される問題がある。 However, in the cross roller bearing in which the outer peripheral surface of the roller 53 and the inclined raceway surfaces 51a and 52a on the load side of the raceway rings 51 and 52 are in linear contact with each other, between the outer peripheral surface and the end surface of the roller 53. When the boundary portion (edge) of the raceway ring 51, 52 comes into contact with the inclined raceway surfaces 51a, 52a on the load side, a local excessive surface pressure (edge load) is generated, the raceway wheels 51, 52 are damaged, and the bearing. There is a problem that the life is shortened.

これに対しては、ローラの外周面の軸方向断面形状を凸曲線形状に形成し、軌道輪の各傾斜軌道面の軸方向断面形状を、ローラの外周面の凸曲線形状に対応する凹曲線形状に形成することにより、エッジロードを生じにくくすることが提案されている(例えば、特許文献1参照。)。 In response to this, the axial cross-sectional shape of the outer peripheral surface of the roller is formed into a convex curve shape, and the axial cross-sectional shape of each inclined raceway surface of the raceway ring is a concave curve corresponding to the convex curve shape of the outer peripheral surface of the roller. It has been proposed that edge loading is less likely to occur by forming the shape (see, for example, Patent Document 1).

特開平9−126233号公報Japanese Unexamined Patent Publication No. 9-126233

ところで、クロスローラ軸受には、上述したエッジロードのほかに、ローラのスキューという問題もある。 By the way, the cross roller bearing has a problem of roller skew in addition to the above-mentioned edge load.

すなわち、図4に示した一般的な構成のクロスローラ軸受について説明すると、ローラ53の軸方向寸法は、互いに対向する外輪51の傾斜軌道面51aと内輪52の傾斜軌道面52aの間の距離よりも小さく形成され、ローラ53の端面と外輪51の非負荷側の傾斜軌道面51aとの間および内輪52の非負荷側の傾斜軌道面52aとの間に隙間ができるようになっているが、実際には、軸受運転中にローラ53がスキューして(ローラの回転軸が軸受周方向に傾いて)、ローラ53の端面の外周部が軌道輪51、52の非負荷側の傾斜軌道面51a、52aに接触することがある。 That is, to explain the cross roller bearing having the general configuration shown in FIG. 4, the axial dimension of the roller 53 is based on the distance between the inclined raceway surface 51a of the outer ring 51 and the inclined raceway surface 52a of the inner ring 52 facing each other. Is also formed small so that a gap is formed between the end surface of the roller 53 and the inclined raceway surface 51a on the non-load side of the outer ring 51 and between the inclined raceway surface 52a on the non-load side of the inner ring 52. Actually, the roller 53 is skewed during the bearing operation (the rotation axis of the roller is tilted in the bearing circumferential direction), and the outer peripheral portion of the end surface of the roller 53 is the inclined raceway surface 51a on the non-load side of the raceway rings 51 and 52. , 52a may come into contact.

このローラのスキューの発生は、回転側の軌道輪の傾斜軌道面における軸方向の周速差に起因すると考えられる。すなわち、例えば、図5に示すように、内輪52が回転する場合、その傾斜軌道面52aの周速は大径側となる軸端側で小径側となる軸方向中心側よりも大きくなるため、ローラ53が内輪52から伝達される速度に軸方向の差が生じ、ローラ53にその軸方向中心付近まわりのモーメントが作用して、ローラ53がスキューすることになる。同様に、外輪51が回転する場合は、その傾斜軌道面51aの周速が大径側となる軸方向中心側で小径側となる軸端側よりも大きくなるため、ローラ53が外輪51から伝達される速度に軸方向の差が生じ、ローラ53がスキューする。 It is considered that the occurrence of this roller skew is caused by the difference in peripheral speed in the axial direction on the inclined raceway surface of the raceway ring on the rotating side. That is, for example, as shown in FIG. 5, when the inner ring 52 rotates, the peripheral speed of the inclined track surface 52a is larger on the shaft end side on the large diameter side than on the axial center side on the small diameter side. There is an axial difference in the speed transmitted by the roller 53 from the inner ring 52, and a moment around the axial center of the roller 53 acts on the roller 53, causing the roller 53 to skew. Similarly, when the outer ring 51 rotates, the peripheral speed of the inclined raceway surface 51a is larger on the axial center side on the large diameter side than on the shaft end side on the small diameter side, so that the roller 53 transmits from the outer ring 51. There is an axial difference in the speed at which the roller 53 is skewed.

そして、ローラ53のスキューによってその端面が軌道輪51、52の非負荷側の傾斜軌道面51a、52aに接触すると、軸受トルクが大きくなり、円滑な運転ができなくなるおそれがある。 When the end surface of the roller 53 comes into contact with the inclined raceway surfaces 51a and 52a on the non-load side of the raceway wheels 51 and 52 due to the skew of the roller 53, the bearing torque becomes large and smooth operation may not be possible.

このローラのスキューの問題は、上記特許文献1で提案されているようなエッジロード対策を実施しても解決されない。 This roller skew problem cannot be solved by implementing edge load countermeasures as proposed in Patent Document 1.

そこで、本発明は、エッジロードが生じにくく、かつローラのスキューを抑制できるクロスローラ軸受を提供することを課題とする。 Therefore, an object of the present invention is to provide a cross roller bearing in which edge load is unlikely to occur and roller skew can be suppressed.

上記の課題を解決するために、本発明は、内周面に互いに直交する一対の傾斜軌道面を有する外輪と、外周面に互いに直交する一対の傾斜軌道面を有する内輪と、前記外輪の一対の傾斜軌道面と前記内輪の一対の傾斜軌道面との間に、周方向に交互に傾斜方向が変わるように配される複数のローラとを備え、前記ローラの外周面は、その軸方向断面形状が凸曲線形状に形成され、前記外輪の各傾斜軌道面および前記内輪の各傾斜軌道面は、その軸方向断面形状が前記ローラの外周面の凸曲線形状に対応する凹曲線形状に形成されているクロスローラ軸受において、前記ローラは前記外輪と内輪の間に予圧状態で配されており、前記外輪の各傾斜軌道面が、その軸方向断面において、前記ローラの外周面との間の負すきまの面積が外輪の軸方向中心側よりも外輪の軸端側で大きくなるように形成された構成と、前記内輪の各傾斜軌道面が、その軸方向断面において、前記ローラの外周面との間の負すきまの面積が内輪の軸端側よりも内輪の軸方向中心側で大きくなるように形成された構成の少なくとも一方が採用されているものとした。なお、ここでの「軸方向断面形状」は、以下の説明では、単に「断面形状」とも称する。 In order to solve the above problems, the present invention presents an outer ring having a pair of inclined orbital surfaces orthogonal to each other on the inner peripheral surface, an inner ring having a pair of inclined orbital surfaces orthogonal to each other on the outer peripheral surface, and a pair of the outer rings. A plurality of rollers arranged so as to alternately change the inclined direction in the circumferential direction are provided between the inclined track surface of the above and the pair of inclined track surfaces of the inner ring, and the outer peripheral surface of the roller has an axial cross section thereof. The shape is formed into a convex curve shape, and each inclined raceway surface of the outer ring and each inclined raceway surface of the inner ring are formed into a concave curve shape whose axial cross-sectional shape corresponds to the convex curve shape of the outer peripheral surface of the roller. In the cross-roller bearing, the rollers are arranged in a preloaded state between the outer ring and the inner ring, and each inclined orbital surface of the outer ring is negatively connected to the outer peripheral surface of the roller in its axial cross section. The structure is formed so that the clearance area is larger on the axial end side of the outer ring than on the axial center side of the outer ring, and each inclined orbital surface of the inner ring is the outer peripheral surface of the roller in the axial cross section. It is assumed that at least one of the configurations formed so that the area of the negative gap between them is larger on the axial center side of the inner ring than on the axial end side of the inner ring is adopted. The "axial cross-sectional shape" here is also simply referred to as a "cross-sectional shape" in the following description.

すなわち、ローラの外周面の凸曲線形状の断面形状と軌道輪の各傾斜軌道面の凹曲線形状の断面形状との組み合わせにより、エッジロードを生じにくくしたクロスローラ軸受において、回転側の軌道輪の負荷側の傾斜軌道面について、その傾斜軌道面の周速の大きい側とローラとの接触面圧が傾斜軌道面の周速の小さい側とローラとの接触面圧よりも小さくなるようにすることにより、ローラが回転側の軌道輪から伝達される速度の軸方向での不均一を緩和して、ローラのスキューを抑制できるようにしたのである。 That is, in a cross roller bearing in which edge load is less likely to occur by combining the convex curved cross-sectional shape of the outer peripheral surface of the roller and the concave curved cross-sectional shape of each inclined raceway surface of the raceway ring, the raceway ring on the rotating side For the inclined track surface on the load side, the contact surface pressure between the roller and the side with a large peripheral speed of the inclined track surface should be smaller than the contact surface pressure between the inclined track surface with a small peripheral speed and the roller. As a result, the non-uniformity of the speed transmitted from the rotating race wheel in the axial direction of the roller can be alleviated, and the skew of the roller can be suppressed.

ここで、前記外輪と前記内輪は、いずれか一方を軸方向に分割されたものとしてもよいし、両方を一体形成されたものとしてもよい。また、前記ローラは、保持器によって周方向に等間隔で配されるようにしてもよいし、隣り合うものと互いに接触する状態、いわゆる総ころ状態で配されるようにしてもよい。 Here, either one of the outer ring and the inner ring may be divided in the axial direction, or both may be integrally formed. Further, the rollers may be arranged by a cage at equal intervals in the circumferential direction, or may be arranged in a state of being in contact with adjacent objects, that is, in a so-called full roller state.

本発明のクロスローラ軸受は、上述したように、ローラの外周面の凸曲線形状の断面形状と軌道輪の各傾斜軌道面の凹曲線形状の断面形状とを組み合わせて、エッジロードを生じにくくするとともに、軌道輪の傾斜軌道面とローラの外周面との間の負すきまの分布を非対称とすることにより、ローラが回転側の軌道輪から伝達される速度の軸方向分布を均一化して、ローラのスキューを抑えるようにしたものであるから、長期間にわたって円滑な運転を行うことができる。 As described above, the cross roller bearing of the present invention combines the convex curved cross-sectional shape of the outer peripheral surface of the roller with the concave curved cross-sectional shape of each inclined raceway surface of the raceway ring to make edge load less likely to occur. At the same time, by making the distribution of the negative clearance between the inclined raceway surface of the raceway ring and the outer peripheral surface of the roller asymmetric, the axial distribution of the speed transmitted from the raceway ring on the rotating side of the roller is made uniform, and the roller Since the skew is suppressed, smooth operation can be performed for a long period of time.

実施形態のクロスローラ軸受の要部の縦断正面図Longitudinal front view of the main part of the cross roller bearing of the embodiment (a)および(b)は、それぞれ図1の外輪および内輪の傾斜軌道面の断面形状の説明図(A) and (b) are explanatory views of the cross-sectional shape of the inclined raceway surface of the outer ring and the inner ring of FIG. 1, respectively. (a)および(b)は、それぞれ図1のローラと外輪および内輪との間の負すきまの軸方向分布の説明図(A) and (b) are explanatory views of the axial distribution of the negative clearance between the roller of FIG. 1 and the outer ring and the inner ring, respectively. 従来のクロスローラ軸受の要部の縦断正面図Longitudinal front view of the main part of the conventional cross roller bearing 図4の外輪を除いて上方から見たローラの挙動の説明図Explanatory drawing of the behavior of the roller seen from above except for the outer ring of FIG.

以下、図1乃至図3に基づき本発明の実施形態を説明する。このクロスローラ軸受は、ロボット用の減速機に組み込まれる内輪回転タイプのもので、図1に示すように、内周面に互いに直交する一対の傾斜軌道面1aを有する外輪1と、外周面に互いに直交する一対の傾斜軌道面2aを有する内輪2と、外輪1の一対の傾斜軌道面1aと内輪2の一対の傾斜軌道面2aとの間に、周方向に交互に傾斜方向が変わるように配される複数のローラ3とを備えている。その外輪1および内輪2はそれぞれ一体形成されており、ローラ3は隣り合うものと互いに接触する状態、いわゆる総ころ状態で配されている。 Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 3. This cross roller bearing is of an inner ring rotation type incorporated in a speed reducer for a robot, and as shown in FIG. 1, an outer ring 1 having a pair of inclined raceway surfaces 1a orthogonal to each other on the inner peripheral surface and an outer ring 1 on the outer peripheral surface. The inclination direction is alternately changed in the circumferential direction between the inner ring 2 having a pair of inclined raceway surfaces 2a orthogonal to each other and the pair of inclined raceway surfaces 1a of the outer ring 1 and the pair of inclined raceway surfaces 2a of the inner ring 2. It is provided with a plurality of rollers 3 to be arranged. The outer ring 1 and the inner ring 2 are integrally formed, and the rollers 3 are arranged in a state of being in contact with adjacent objects, that is, in a so-called full roller state.

前記ローラ3の外周面の断面形状は、凸曲線形状に形成されている。そして、前記外輪1の一対の傾斜軌道面1aは、その軸方向断面において、外輪1の内周面の軸方向中央部に形成された逃げ溝1bから軸方向両側へ延び、それぞれローラ3の外周面の凸曲線形状に対応する凹曲線形状に形成されている。同様に、内輪2の一対の傾斜軌道面2aも、その軸方向断面において、内輪2の外周面の軸方向中央部に形成された逃げ溝2bから軸方向両側へ延び、それぞれローラ3の外周面の凸曲線形状に対応する凹曲線形状に形成されている。なお、図1および後述する図2では、軌道輪(外輪1および内輪2)の傾斜軌道面1a、2aおよびローラ3の外周面の形状は誇張して描かれている。 The cross-sectional shape of the outer peripheral surface of the roller 3 is formed into a convex curve shape. The pair of inclined raceway surfaces 1a of the outer ring 1 extend from the relief grooves 1b formed in the central portion of the inner peripheral surface of the outer ring 1 in the axial direction in the axial cross section thereof, and extend to both sides in the axial direction. It is formed in a concave curve shape corresponding to the convex curve shape of the surface. Similarly, the pair of inclined raceway surfaces 2a of the inner ring 2 also extend in both axial directions from the relief groove 2b formed in the axial center portion of the outer peripheral surface of the inner ring 2 in the axial cross section thereof, and are the outer peripheral surfaces of the roller 3, respectively. It is formed in a concave curve shape corresponding to the convex curve shape of. In FIG. 1 and FIG. 2 described later, the shapes of the inclined raceway surfaces 1a and 2a of the raceway rings (outer ring 1 and inner ring 2) and the outer peripheral surfaces of the rollers 3 are exaggerated.

ここで、軌道輪1、2の傾斜軌道面1a、2aの断面形状は、図2(a)、(b)に示すように、それぞれ組立状態でローラ3の外周面の軸方向中央部分と接触する領域がベースとなるR形状で、その両側に曲率半径の異なるR形状を連続させたものとなっている。そのうち、外輪1の傾斜軌道面1aの断面形状は、ベースのR形状の曲率半径R10が最も小さく、外輪1の軸方向中心側のR形状の曲率半径R1aが外輪1の軸端側のR形状の曲率半径R1bよりも小さく形成されている(図2(a))。また、内輪2の傾斜軌道面2aの断面形状は、ベースのR形状の曲率半径R20が最も小さく、内輪2の軸方向中心側のR形状の曲率半径R2aが内輪2の軸端側のR形状の曲率半径R2bよりも大きく形成されている(図2(b))。 Here, as shown in FIGS. 2A and 2B, the cross-sectional shapes of the inclined raceway surfaces 1a and 2a of the raceway rings 1 and 2 come into contact with the axially central portion of the outer peripheral surface of the roller 3 in the assembled state, respectively. The R shape is the base of the region to be formed, and the R shapes having different radii of curvature are continuous on both sides thereof. Among them, the cross-sectional shape of the inclined raceway surface 1a of the outer ring 1, the smallest radius of curvature R 10 of the base of the R shape, the radius of curvature R 1a in the axial center of the R shape of the outer ring 1 in the axial end of the outer ring 1 It is formed to be smaller than the radius of curvature R 1b of the R shape (FIG. 2 (a)). Further, as for the cross-sectional shape of the inclined raceway surface 2a of the inner ring 2, the radius of curvature R 20 of the base R shape is the smallest, and the radius of curvature R 2a of the R shape on the axial center side of the inner ring 2 is on the shaft end side of the inner ring 2. It is formed larger than the radius of curvature R 2b of the R shape (FIG. 2 (b)).

一方、ローラ3の外周面の断面形状は、組込前の状態で一定の曲率半径のR形状とされている。そして、ローラ3は、外輪1と内輪2の間に予圧状態、すなわちローラ3の外周面と軌道輪1、2の負荷側の傾斜軌道面1a、2aとの間の隙間が負すきまとなる状態で組み込まれている。 On the other hand, the cross-sectional shape of the outer peripheral surface of the roller 3 is an R shape having a constant radius of curvature before being assembled. Then, the roller 3 is in a preload state between the outer ring 1 and the inner ring 2, that is, a state in which a gap between the outer peripheral surface of the roller 3 and the inclined raceway surfaces 1a and 2a on the load side of the raceway rings 1 and 2 is inflicted. It is built in.

そして、軌道輪1、2の傾斜軌道面1a、2aおよびローラ3の外周面の断面形状のなす各R形状の曲率半径を上述のように設定したことによって、組込状態でのローラ3と軌道輪1、2との間には、図3(a)、(b)に示すような負すきまδ、δのローラ軸方向分布が生じる。なお、この図3でも、負すきまδ、δは誇張して描かれている。 Then, by setting the radius of curvature of each R shape formed by the cross-sectional shapes of the inclined raceway surfaces 1a and 2a of the raceway rings 1 and 2 and the outer peripheral surface of the roller 3 as described above, the roller 3 and the raceway in the embedded state are set. The roller axial distributions of the negative clearances δ 1 and δ 2 as shown in FIGS. 3 (a) and 3 (b) are formed between the wheels 1 and 2 . Also in FIG. 3, the negative gaps δ 1 and δ 2 are exaggerated.

図3(a)からわかるように、ローラ3の外周面と外輪1の傾斜軌道面1aとの間の負すきまδの面積は、外輪1の軸方向中心側よりも外輪1の軸端側で大きくなっている。また、図3(b)からわかるように、ローラ3の外周面と内輪2の傾斜軌道面2aとの間の負すきまδの面積は、内輪2の軸端側よりも内輪2の軸方向中心側で大きくなっている。 As can be seen from FIG. 3A, the area of the negative clearance δ 1 between the outer peripheral surface of the roller 3 and the inclined raceway surface 1a of the outer ring 1 is closer to the shaft end side of the outer ring 1 than the axial center side of the outer ring 1. Is getting bigger. Further, as can be seen from FIG. 3B, the area of the negative clearance δ 2 between the outer peripheral surface of the roller 3 and the inclined raceway surface 2a of the inner ring 2 is in the axial direction of the inner ring 2 with respect to the axial end side of the inner ring 2. It is larger on the center side.

また、ローラ3の軸方向寸法は、図1に示すように、互いに対向する外輪1の傾斜軌道面1aと内輪2の傾斜軌道面2a間の距離よりも小さく形成され、ローラ3の端面と外輪1の非負荷側の傾斜軌道面1aとの間および内輪2の非負荷側の傾斜軌道面2aとの間に隙間が生じるようになっている。 Further, as shown in FIG. 1, the axial dimension of the roller 3 is formed to be smaller than the distance between the inclined raceway surface 1a of the outer ring 1 and the inclined raceway surface 2a of the inner ring 2 facing each other, and the end surface and the outer ring of the roller 3 are formed. A gap is formed between the inclined raceway surface 1a on the non-load side of 1 and the inclined raceway surface 2a on the non-load side of the inner ring 2.

このクロスローラ軸受は、上記の構成であり、ローラ3の外周面の断面形状が凸曲線形状に形成され、軌道輪1、2の傾斜軌道面1a、2aの断面形状がローラ3の外周面の凸曲線形状に対応する凹曲線形状に形成されているので、ローラの外周面が軌道輪の負荷側の傾斜軌道面と直線的に接触する従来のものに比べて、エッジロードを生じにくい。 This cross roller bearing has the above configuration, the cross-sectional shape of the outer peripheral surface of the roller 3 is formed into a convex curve shape, and the cross-sectional shape of the inclined raceway surfaces 1a and 2a of the raceway rings 1 and 2 is the outer peripheral surface of the roller 3. Since it is formed in a concave curve shape corresponding to the convex curve shape, edge load is less likely to occur as compared with the conventional one in which the outer peripheral surface of the roller is in linear contact with the inclined raceway surface on the load side of the raceway ring.

しかも、そのローラ3と軌道輪1、2との間の負すきまδ、δには、図3(a)、(b)に示したような非対称なローラ軸方向分布があるため、回転側の軌道輪である内輪2の負荷側の傾斜軌道面2aについて、その傾斜軌道面2aの周速の大きい側(軸端側)とローラ3との接触面圧が傾斜軌道面2aの周速の小さい側(軸方向中心側)とローラ3との接触面圧よりも小さくなって、ローラ3が内輪2から伝達される速度の軸方向での不均一が緩和され、ローラ3のスキューが抑えられる。 Moreover, since the negative clearances δ 1 and δ 2 between the roller 3 and the raceway wheels 1 and 2 have an asymmetric roller axial distribution as shown in FIGS. 3 (a) and 3 (b), they rotate. Regarding the inclined orbital surface 2a on the load side of the inner ring 2 which is the side orbital ring, the contact surface pressure between the inclined orbital surface 2a on the side having a large peripheral speed (shaft end side) and the roller 3 is the peripheral speed of the inclined orbital surface 2a. It becomes smaller than the contact surface pressure between the small side (center side in the axial direction) and the roller 3, the non-uniformity of the speed transmitted from the inner ring 2 of the roller 3 in the axial direction is alleviated, and the skew of the roller 3 is suppressed. Be done.

したがって、このクロスローラ軸受は、エッジロードによって軌道輪1、2が傷ついたり、ローラ3がスキューにより軌道輪1、2の非負荷側の傾斜軌道面1a、2aに接触して軸受トルクが上昇したりしにくく、長期間にわたって円滑な運転を行うことができる。 Therefore, in this cross roller bearing, the bearing wheels 1 and 2 are damaged by the edge load, or the roller 3 comes into contact with the inclined raceway surfaces 1a and 2a on the non-load side of the raceway wheels 1 and 2 due to skew, and the bearing torque increases. It is hard to slip and can be operated smoothly for a long period of time.

また、ローラ3の端面が軌道輪1、2の非負荷側の傾斜軌道面1a、2aに接触するおそれが少ないので、ローラ3の端面の表面加工を従来の研削加工から旋削加工に変更したり省略したりして、ローラの製作コストの削減を図ることもできる。 Further, since the end face of the roller 3 is less likely to come into contact with the inclined raceway surfaces 1a and 2a on the non-load side of the raceway wheels 1 and 2, the surface processing of the end surface of the roller 3 may be changed from the conventional grinding process to turning processing. It can be omitted to reduce the roller manufacturing cost.

なお、軌道輪1、2の傾斜軌道面1a、2aの凹部深さおよびローラ3の外周面の凸部高さは、図1および図2では誇張して描いているが、実際には数μm程度でも上記の効果を発揮するので、軸受のサイズや予圧量等に応じた条件を設定して容易に加工することができる。 The depth of the recesses of the inclined raceway surfaces 1a and 2a of the raceway rings 1 and 2 and the height of the convex portion of the outer peripheral surface of the roller 3 are exaggerated in FIGS. 1 and 2, but are actually several μm. Since the above effect is exhibited even with a degree, it is possible to easily process by setting conditions according to the size of the bearing, the preload amount, and the like.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。この発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments disclosed this time are exemplary in all respects and not restrictive. The scope of the present invention is shown not by the above description but by the scope of claims, and it is intended that all modifications within the meaning and scope equivalent to the scope of claims are included.

例えば、実施形態では、外輪1の傾斜軌道面1aと内輪2の傾斜軌道面2aのそれぞれの断面形状を、ローラ3のスキューを抑える作用を生じる非対称な形状としたが、外輪の傾斜軌道面と内輪の傾斜軌道面のうち、いずれか一方の断面形状を実施形態のように形成し、もう一方の断面形状はローラの軸方向中心を通ってローラの軸線方向と直交する線に対して対称に形成するようにしてもよい。 For example, in the embodiment, the cross-sectional shapes of the inclined raceway surface 1a of the outer ring 1 and the inclined raceway surface 2a of the inner ring 2 are asymmetrical shapes that suppress the skew of the roller 3, but the inclined raceway surface of the outer ring One of the cross-sectional shapes of the inclined orbital surface of the inner ring is formed as in the embodiment, and the cross-sectional shape of the other is symmetrical with respect to a line that passes through the axial center of the roller and is orthogonal to the axial direction of the roller. It may be formed.

また、本発明のクロスローラ軸受は、実施形態のように外輪および内輪をそれぞれ一体形成し、ローラを総ころ状態で配した内輪回転タイプのものに限らず、外輪と内輪のいずれか一方が軸方向に分割されているものや、ローラが保持器によって周方向に等間隔で配されているもの、外輪回転タイプのものにも、もちろん適用することができる。 Further, the cross roller bearing of the present invention is not limited to the inner ring rotation type in which the outer ring and the inner ring are integrally formed and the rollers are arranged in a fully roller state as in the embodiment, and either the outer ring or the inner ring is the shaft. Of course, it can also be applied to those which are divided in the direction, those in which the rollers are arranged at equal intervals in the circumferential direction by the cage, and those in which the outer ring rotates.

1 外輪
1a 傾斜軌道面
1b 逃げ溝
2 内輪
2a 傾斜軌道面
2b 逃げ溝
3 ローラ
1 Outer ring 1a Inclined track surface 1b Escape groove 2 Inner ring 2a Inclined track surface 2b Escape groove 3 Roller

Claims (3)

内周面に互いに直交する一対の傾斜軌道面を有する外輪と、外周面に互いに直交する一対の傾斜軌道面を有する内輪と、前記外輪の一対の傾斜軌道面と前記内輪の一対の傾斜軌道面との間に、周方向に交互に傾斜方向が変わるように配される複数のローラとを備え、前記ローラの外周面は、その軸方向断面形状が凸曲線形状に形成され、前記外輪の各傾斜軌道面および前記内輪の各傾斜軌道面は、その軸方向断面形状が前記ローラの外周面の凸曲線形状に対応する凹曲線形状に形成されているクロスローラ軸受において、
前記ローラは前記外輪と内輪の間に予圧状態で配されており、前記外輪の各傾斜軌道面が、その軸方向断面において、前記ローラの外周面との間の負すきまの面積が外輪の軸方向中心側よりも外輪の軸端側で大きくなるように形成された構成と、前記内輪の各傾斜軌道面が、その軸方向断面において、前記ローラの外周面との間の負すきまの面積が内輪の軸端側よりも内輪の軸方向中心側で大きくなるように形成された構成の少なくとも一方が採用されていることを特徴とするクロスローラ軸受。
An outer ring having a pair of inclined orbital surfaces orthogonal to each other on the inner peripheral surface, an inner ring having a pair of inclined orbital surfaces orthogonal to each other on the outer peripheral surface, a pair of inclined orbital surfaces of the outer ring, and a pair of inclined orbital surfaces of the inner ring. A plurality of rollers arranged so as to alternately change the inclination direction in the circumferential direction are provided between the two, and the outer peripheral surface of the roller is formed in an axial cross-sectional shape having a convex curved shape, and each of the outer rings. The inclined raceway surface and each inclined raceway surface of the inner ring are formed in a cross roller bearing whose axial cross-sectional shape is formed into a concave curved shape corresponding to the convex curved shape of the outer peripheral surface of the roller.
The roller is arranged between the outer ring and the inner ring in a preloaded state, and the area of the gap between each inclined raceway surface of the outer ring and the outer peripheral surface of the roller in the axial cross section thereof is the axis of the outer ring. The structure formed so as to be larger on the shaft end side of the outer ring than on the direction center side, and the area of the gap between each inclined raceway surface of the inner ring and the outer peripheral surface of the roller in the axial cross section thereof. A cross roller bearing characterized in that at least one of the configurations formed so as to be larger on the axial center side of the inner ring than on the shaft end side of the inner ring is adopted.
前記外輪および前記内輪がそれぞれ一体形成されたものであることを特徴とする請求項1に記載のクロスローラ軸受。 The cross roller bearing according to claim 1, wherein the outer ring and the inner ring are integrally formed. 前記ローラが隣り合うものと互いに接触する状態で配されていることを特徴とする請求項1または2に記載のクロスローラ軸受。 The cross roller bearing according to claim 1 or 2, wherein the rollers are arranged so as to be in contact with adjacent objects.
JP2019126144A 2019-07-05 2019-07-05 Cross roller bearing Pending JP2021011917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019126144A JP2021011917A (en) 2019-07-05 2019-07-05 Cross roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019126144A JP2021011917A (en) 2019-07-05 2019-07-05 Cross roller bearing

Publications (1)

Publication Number Publication Date
JP2021011917A true JP2021011917A (en) 2021-02-04

Family

ID=74226871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019126144A Pending JP2021011917A (en) 2019-07-05 2019-07-05 Cross roller bearing

Country Status (1)

Country Link
JP (1) JP2021011917A (en)

Similar Documents

Publication Publication Date Title
JP3563354B2 (en) Roller chains incorporating roller bearings
US10054164B2 (en) Rolling bearing
WO2013051696A1 (en) Rolling bearing
US10514063B2 (en) Rolling bearing
JP2018021569A (en) Rolling bearing
JP2012202453A (en) Self-aligning roller bearing
JP2014040844A (en) Rolling bearing
JP6572754B2 (en) Rolling bearing
JP2021011917A (en) Cross roller bearing
US9995343B2 (en) Rolling bearing
JP2020159498A (en) Cross roller bearing
WO2021006209A1 (en) Cross roller bearing
JP2020143695A (en) Cross roller bearing
JP2006112555A (en) Roller bearing with aligning ring
JP2004324733A (en) Cross roller bearing
JP6790535B2 (en) Rolling bearing
JP2021148128A (en) Cross roller bearing
JPWO2006112378A1 (en) Cylindrical roller bearing
JP2022150800A (en) Self-aligning roller bearing
WO2021002255A1 (en) Crossed roller bearing
JP2018004062A (en) Rolling bearing
JP2005061431A (en) Ball bearing
JP2008039128A (en) Collared roller bearing
JP4470826B2 (en) Roller bearing
KR20240012206A (en) Ball bearing