JP2021011901A - Differential gear - Google Patents

Differential gear Download PDF

Info

Publication number
JP2021011901A
JP2021011901A JP2019125496A JP2019125496A JP2021011901A JP 2021011901 A JP2021011901 A JP 2021011901A JP 2019125496 A JP2019125496 A JP 2019125496A JP 2019125496 A JP2019125496 A JP 2019125496A JP 2021011901 A JP2021011901 A JP 2021011901A
Authority
JP
Japan
Prior art keywords
support surface
gear support
differential
axis
differential case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019125496A
Other languages
Japanese (ja)
Inventor
浩二 長尾
Koji Nagao
浩二 長尾
森 裕之
Hiroyuki Mori
裕之 森
友彰 杉村
Tomoaki Sugimura
友彰 杉村
直宏 須原
Naohiro SUHARA
直宏 須原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Musashi Casting Co Ltd
Musashi Seimitsu Industry Co Ltd
Original Assignee
Musashi Casting Co Ltd
Musashi Seimitsu Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Musashi Casting Co Ltd, Musashi Seimitsu Industry Co Ltd filed Critical Musashi Casting Co Ltd
Priority to JP2019125496A priority Critical patent/JP2021011901A/en
Priority to PCT/JP2020/025978 priority patent/WO2021002419A1/en
Publication of JP2021011901A publication Critical patent/JP2021011901A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/22Moulds for peculiarly-shaped castings
    • B22C9/24Moulds for peculiarly-shaped castings for hollow articles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/38Constructional details
    • F16H48/40Constructional details characterised by features of the rotating cases

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Retarders (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

To provide a differential gear including a cast differential case, and a differential gear mechanism stored in the differential case, the inner face of the differential case having a gear supporting face for the differential gear mechanism, for reducing the processing cost by eliminating the need for removing a parting line in post-processing work even when the parting line is left on the inner face of the differential case after cast.SOLUTION: In an inner face 3i of a differential case 3, recessed grooves G1-G3 passing through at least part of gear supporting faces 9s, 9p are molded with sand core N. The recessed grooves G1-G3 are arranged in positions where parting lines PL1-PL3 can be set into the recessed grooves G1-G3 even when the parting lines PL1-PL3 appear on the inner face 3i of the differential case 3 corresponding to die matching face fc of mutual core type half bodies C1, C2.SELECTED DRAWING: Figure 7

Description

本発明は、差動装置、特に鋳造されたデフケースと、デフケース内に収納される差動ギヤ機構とを備え、デフケースの内面が差動ギヤ機構のギヤ支持面を有する差動装置に関する。 The present invention relates to a differential device, particularly a cast differential case, and a differential gear mechanism housed in the differential case, the inner surface of the differential case having a gear support surface of the differential gear mechanism.

上記差動装置において、デフケースの内面を砂中子で成形することは、例えば下記特許文献1に開示されるように既に知られている。 In the above differential device, molding the inner surface of the differential case with sand core is already known, for example, as disclosed in Patent Document 1 below.

特開昭55−33842号公報JP-A-55-33842

ところでデフケースの内面成形用の砂中子は、各々が中子成形面を有する一対の中子型半体相互を型合わせすることで成形されるが、その成形過程で両中子型半体を型合わせする際に、型合わせ面に沿う方向で両中子型半体相互が多少ずれることがある。 By the way, the sand core for forming the inner surface of the differential case is formed by forming a pair of core halves each having a core forming surface, and both core halves are formed in the molding process. When matching the molds, the two core mold halves may be slightly displaced from each other along the mold matching surface.

そして、このずれは、砂中子の表面(従って鋳造後のデフケースの内面)に例えば段状のパーティングラインを生じさせる虞れがあるが、特にデフケース内面のギヤ支持面上にパーティングラインが形成されてしまうと、これを後加工で除去する必要があり、加工コストが嵩む問題がある。 Then, this deviation may cause, for example, a stepped parting line on the surface of the sand core (thus, the inner surface of the diff case after casting), but the parting line is particularly placed on the gear support surface on the inner surface of the diff case. If it is formed, it is necessary to remove it by post-processing, which causes a problem that the processing cost increases.

本発明は、上記に鑑み提案されたもので、上記した問題を簡単な構造で解決可能とした差動装置を提供することを目的とする。 The present invention has been proposed in view of the above, and an object of the present invention is to provide a differential device capable of solving the above problems with a simple structure.

上記目的を達成するために、本発明は、鋳造されたデフケースと、前記デフケース内に収納される差動ギヤ機構とを備え、前記デフケースの内面は、一対の中子型半体相互を型合わせすることで成形した砂中子で成形されると共に、前記差動ギヤ機構のギヤ支持面を有する差動装置において、前記デフケースの内面には、前記ギヤ支持面の少なくとも一部を通る凹溝が前記砂中子で成形されており、前記凹溝は、前記中子型半体相互の型合わせ面に対応して前記デフケースの内面にパーティングラインが生じても該凹溝内に該パーティングラインを収め得る位置に配置されることを第1の特徴とする。 In order to achieve the above object, the present invention includes a cast differential case and a differential gear mechanism housed in the differential case, and the inner surface of the differential case is formed by matching a pair of core halves with each other. In a differential device having a gear support surface of the differential gear mechanism, a concave groove passing through at least a part of the gear support surface is formed on the inner surface of the differential case while being formed from the sand core formed by the above. It is formed of the sand core, and the concave groove is formed in the concave groove even if a parting line is generated on the inner surface of the differential case corresponding to the mating surfaces of the core mold halves. The first feature is that it is arranged at a position where the line can be accommodated.

また本発明は、第1の特徴に加えて、前記差動ギヤ機構は、第1軸線回りに回転可能な一対のサイドギヤと、前記第1軸線と直交する第2軸線回りに回転可能であって前記一対のサイドギヤに噛合する一対のピニオンギヤとを備えると共に、前記ギヤ支持面が、前記サイドギヤ及び前記ピニオンギヤの各背面を支持するサイドギヤ支持面及びピニオンギヤ支持面を一対ずつ有し、前記サイドギヤ支持面が、前記第1軸線と直交する平面であり、前記凹溝は、前記ピニオンギヤ支持面において、前記第1軸線と直交し且つ該ピニオンギヤ支持面を二分する第1の仮想平面上に存する前記パーティングラインを収め得る位置に配置されることを第2の特徴とする。 Further, in addition to the first feature, the differential gear mechanism is rotatable around a pair of side gears that can rotate around the first axis and a second axis that is orthogonal to the first axis. It is provided with a pair of pinion gears that mesh with the pair of side gears, and the gear support surface has a pair of side gear support surfaces and a pair of pinion gear support surfaces that support the side gears and the back surfaces of the pinion gears. , The concave groove is a plane orthogonal to the first axis line, and the concave groove is a parting line existing on a first virtual plane orthogonal to the first axis line and dividing the pinion gear support surface in the pinion gear support surface. The second feature is that it is arranged at a position where it can accommodate.

また本発明は、第1の特徴に加えて、前記差動ギヤ機構は、第1軸線回りに回転可能な一対のサイドギヤと、前記第1軸線と直交する第2軸線回りに回転可能であって前記一対のサイドギヤに噛合する一対のピニオンギヤとを備えると共に、前記ギヤ支持面が、前記サイドギヤ及び前記ピニオンギヤの各背面を支持するサイドギヤ支持面及びピニオンギヤ支持面を一対ずつ有し、前記凹溝は、前記サイドギヤ支持面において、前記一対のピニオンギヤ支持面の相互間に在って該サイドギヤ支持面を二分する第2の仮想平面上に存する前記パーティングラインを収め得る位置に配置されることを第3の特徴とする。 Further, in the present invention, in addition to the first feature, the differential gear mechanism can rotate around a pair of side gears that can rotate around the first axis and around a second axis that is orthogonal to the first axis. It is provided with a pair of pinion gears that mesh with the pair of side gears, and the gear support surface has a pair of side gear support surfaces and a pinion gear support surface that support the side gears and the back surfaces of the pinion gears. A third aspect of the side gear support surface is that it is arranged at a position where the parting line existing on the second virtual plane that is between the pair of pinion gear support surfaces and divides the side gear support surface into two can be accommodated. It is a feature of.

また本発明は、第1の特徴に加えて、前記差動ギヤ機構は、第1軸線回りに回転可能な一対のサイドギヤと、前記第1軸線と直交する第2軸線回りに回転可能であって前記一対のサイドギヤに噛合する一対のピニオンギヤとを備えると共に、前記ギヤ支持面が、前記サイドギヤ及び前記ピニオンギヤの各背面を支持するサイドギヤ支持面及びピニオンギヤ支持面を一対ずつ有し、前記凹溝は、前記サイドギヤ支持面及び前記ピニオンギヤ支持面において、該サイドギヤ支持面及び該ピニオンギヤ支持面を各々二分する第3の仮想平面上に存する前記パーティングラインを収め得る位置に配置されることを第4の特徴とする。 Further, in the present invention, in addition to the first feature, the differential gear mechanism can rotate around a pair of side gears that can rotate around the first axis and around a second axis that is orthogonal to the first axis. It is provided with a pair of pinion gears that mesh with the pair of side gears, and the gear support surface has a pair of side gear support surfaces and a pinion gear support surface that support the side gears and the back surfaces of the pinion gears. A fourth feature is that the side gear support surface and the pinion gear support surface are arranged at positions where the parting line existing on the third virtual plane that divides the side gear support surface and the pinion gear support surface into two can be accommodated. And.

第1の特徴によれば、デフケースにおいて、ギヤ支持面の少なくとも一部を通る凹溝が、デフケースの内面と共に砂中子で成形され、その凹溝は、砂中子を成形する型の型合わせ面に対応してデフケースの内面にパーティングラインが生じても該凹溝内にパーティングラインを収め得る位置に配置される。これにより、鋳造後のデフケースの内面に例えば段状のパーティングラインが残っても、それは、凹溝内に留まってギヤ支持面には食み出さないため、後加工でパーティングラインを除去する必要はなくなり、加工コストを節減できる。しかも凹溝を、ギヤ支持面に潤滑油を導く油溝に兼用できるため、構造の簡素化が図られ、更なるコスト節減に寄与することができる。 According to the first feature, in the differential case, a concave groove passing through at least a part of the gear support surface is formed of sand core together with the inner surface of the differential case, and the concave groove is a mold matching for forming the sand core. Even if a parting line is generated on the inner surface of the differential case corresponding to the surface, the parting line is arranged at a position where the parting line can be accommodated in the concave groove. As a result, even if a stepped parting line remains on the inner surface of the differential case after casting, for example, it stays in the concave groove and does not protrude into the gear support surface, so that the parting line is removed by post-processing. There is no need, and processing costs can be reduced. Moreover, since the concave groove can also be used as an oil groove for guiding the lubricating oil to the gear support surface, the structure can be simplified and further cost reduction can be contributed.

また第2の特徴によれば、デフケース内面のサイドギヤ支持面が、第1軸線と直交する平面であり、凹溝がピニオンギヤ支持面において、第1軸線と直交する第1の仮想平面上に位置するパーティングラインを収め得る位置に在るので、第1軸線に沿う方向が、型成形後の砂中子の型抜き方向となる。これにより、第1軸線と直交する平面であるサイドギヤ支持面は、これに抜き勾配を設定する必要はないため、サイドギヤ支持面を、後加工無しで或いは後加工量を低減しつつ精度よく成形可能となる。しかも凹溝は、これがピニオンギヤ支持面上に存することで、ピニオンギヤ支持面に潤滑油を導く油溝に兼用可能となる。 According to the second feature, the side gear support surface on the inner surface of the differential case is a plane orthogonal to the first axis, and the concave groove is located on the first virtual plane orthogonal to the first axis on the pinion gear support surface. Since it is in a position where the parting line can be accommodated, the direction along the first axis is the die-cutting direction of the sand core after molding. As a result, the side gear support surface, which is a plane orthogonal to the first axis, does not need to have a draft set, so that the side gear support surface can be accurately formed without post-processing or while reducing the amount of post-processing. It becomes. Moreover, since the concave groove exists on the pinion gear support surface, it can also be used as an oil groove for guiding lubricating oil to the pinion gear support surface.

また第3の特徴によれば、凹溝が、デフケース内面のサイドギヤ支持面において、一対のピニオンギヤ支持面の相互間に在ってサイドギヤ支持面を二分する第2の仮想平面上に位置するパーティングラインを収め得る位置に在るので、凹溝(従ってパーティングライン)がピニオンギヤ支持面を横切る虞れはない。これにより、各々のピニオンギヤ支持面を、単一の型(即ち一方又は他方の中子型半体)により精度よく成形可能となる。しかも凹溝は、これがサイドギヤ支持面上に存することで、サイドギヤ支持面に潤滑油を導く油溝に兼用可能となる。 According to the third feature, the concave groove is located on the side gear support surface on the inner surface of the differential case between the pair of pinion gear support surfaces and on the second virtual plane that bisects the side gear support surfaces. Since it is in a position to accommodate the line, there is no risk of the recessed groove (and therefore the parting line) crossing the pinion gear support surface. As a result, each pinion gear support surface can be accurately formed by a single mold (that is, one or the other core mold half body). Moreover, since the concave groove exists on the side gear support surface, it can also be used as an oil groove for guiding lubricating oil to the side gear support surface.

また第4の特徴によれば、凹溝が、サイドギヤ支持面及びピニオンギヤ支持面において、それらのギヤ支持面を各々二分する第3の仮想平面上に存するパーティングラインを収め得る位置に在るので、凹溝(従ってパーティングライン)がサイドギヤ支持面のみならずピニオンギヤ支持面をも横切る配置となって、サイドギヤ支持面及びピニオンギヤ支持面の両方に潤滑油を導く油溝に兼用可能となる。 Further, according to the fourth feature, the concave groove is located on the side gear support surface and the pinion gear support surface at a position where the parting line existing on the third virtual plane that divides the gear support surfaces into two can be accommodated. , The concave groove (hence, the parting line) is arranged to cross not only the side gear support surface but also the pinion gear support surface, and can be used as an oil groove for guiding lubricating oil to both the side gear support surface and the pinion gear support surface.

第1実施形態に係る差動装置を示す全体縦断面図(図2の1−1線断面図)Overall vertical sectional view (1-1 line sectional view of FIG. 2) showing the differential device according to the first embodiment. 図1の2−2線断面図Section 2-2 sectional view of FIG. デフケース単体の斜視図Perspective view of the differential case alone デフケース単体の側面図(図3の4矢視図)Side view of the differential case alone (4 arrow view in Fig. 3) デフケース単体の平面図(図3の5矢視図)であって、第1位置決め治具でデフケース及び加工装置相互が第1軸線方向に位置決めされる一例を示すIt is a plan view of a single differential case (5 arrow view in FIG. 3), and shows an example in which the differential case and the processing device are positioned in the first axis direction by the first positioning jig. デフケース単体の、第1軸受ボス側から見た正面図(図3の6矢視図)Front view of the differential case alone as seen from the first bearing boss side (6 arrow view in FIG. 3) 図6の7−7線断面図Section 7-7 of FIG. 6 図6の8−8線断面図Section 8-8 of FIG. 図4の9−9線断面図であって、第2位置決め治具でデフケース及び加工装置相互が第2,第3軸線方向に位置決めされる一例を示す9-9 is a cross-sectional view taken along the line 9-9 of FIG. 4, showing an example in which the differential case and the processing apparatus are positioned in the second and third axis directions by the second positioning jig. デフケースの鋳造に用いる砂中子の一例を示す斜視図Perspective view showing an example of sand core used for casting a differential case 図10の11矢視図であって、(a)は砂中子と砂中子成形型との関係を示し、また(b)は砂中子とデフケース輪郭(従って鋳造型本体)との関係を示すIn the 11th arrow view of FIG. 10, (a) shows the relationship between the sand core and the sand core molding die, and (b) shows the relationship between the sand core and the contour of the differential case (hence, the casting mold body). Show 第2実施形態を示すものであって、(a)はデフケース単体の斜視図、(b)は図12(a)のb矢視図、(c)は図12(b)のc−c線断面図、(d)は図12(b)のd−d線断面図The second embodiment is shown, in which (a) is a perspective view of a single differential case, (b) is a view taken along the line b of FIG. 12 (a), and (c) is a line cc of FIG. 12 (b). Sectional view, (d) is a sectional view taken along line dd of FIG. 12 (b). 第3実施形態を示すものであって、(a)はデフケース単体の斜視図、(b)は図13(a)のb矢視図、(c)は図13(b)のc−c線断面図、(d)は図13(b)のd−d線断面図A third embodiment is shown, in which (a) is a perspective view of a single differential case, (b) is a view taken along the line b of FIG. 13 (a), and (c) is a line cc of FIG. 13 (b). Sectional view, FIG. 13D is a sectional view taken along line dd of FIG. 13B. 第4実施形態を示すものであって、(a)はデフケース単体の斜視図、(b)は図14(a)のb矢視図、(c)は図14(b)のc−c線断面図、(d)は図14(b)のd−d線断面図The fourth embodiment is shown, in which (a) is a perspective view of a single differential case, (b) is a view taken along the line b of FIG. 14 (a), and (c) is a line cc of FIG. 14 (b). Sectional view, (d) is a sectional view taken along line dd of FIG. 14 (b). 第5実施形態を示すものであって、(a)はデフケース単体の斜視図、(b)は図15(a)のb矢視図、(c)は図15(b)のc−c線断面図、(d)は図15(b)のd−d線断面図The fifth embodiment is shown, in which (a) is a perspective view of a single differential case, (b) is a view taken along the line b of FIG. 15 (a), and (c) is a line cc of FIG. 15 (b). Sectional view, (d) is a sectional view taken along line dd of FIG. 15 (b). 第6実施形態を示すものであって、(a)はデフケース単体の斜視図、(b)は図16(a)のb矢視図、(c)は図16(b)のc−c線断面図、(d)は図16(b)のd−d線断面図The sixth embodiment is shown, in which (a) is a perspective view of a single differential case, (b) is a view taken along the line b of FIG. 16 (a), and (c) is a line cc of FIG. 16 (b). Sectional view, FIG. 16D is a sectional view taken along line dd of FIG. 16B. 第7実施形態を示すものであって、(a)はデフケース単体の斜視図、(b)は図17(a)のb−b線断面図、(c)は砂中子の斜視図(図10対応図)The seventh embodiment is shown, in which (a) is a perspective view of a single differential case, (b) is a sectional view taken along line bb of FIG. 17 (a), and (c) is a perspective view of a sand core (FIG. 10 correspondence diagram) 第8実施形態を示すものであって、(a)はデフケース単体の斜視図、(b)は図18(a)のb−b線断面図(図12(b)対応図)、(c)は砂中子の斜視図(図17(c)対応図)Eighth embodiment is shown, in which FIG. 8A is a perspective view of a single differential case, FIG. 18B is a sectional view taken along line bb of FIG. 18A (corresponding to FIG. 12B), (c). Is a perspective view of the sand core (corresponding to FIG. 17 (c))

本発明の実施形態を添付図面に基づいて以下に説明する。 Embodiments of the present invention will be described below with reference to the accompanying drawings.

先ず、図1〜図11を参照して、第1実施形態について説明する。図1において、車両(例えば自動車)のミッションケースMC内には、図示しない動力源(例えば車載のエンジン)からの動力を一対の出力軸としての左右車軸S1,S2に分配して伝達する差動装置10が収容される。差動装置10は、金属製のデフケース3と、デフケース3に内蔵される差動ギヤ機構20とを備える。 First, the first embodiment will be described with reference to FIGS. 1 to 11. In FIG. 1, a differential in which power from a power source (for example, an in-vehicle engine) (not shown) is distributed and transmitted to left and right axles S1 and S2 as a pair of output shafts in a transmission case MC of a vehicle (for example, an automobile). The device 10 is housed. The differential device 10 includes a metal differential case 3 and a differential gear mechanism 20 built in the differential case 3.

デフケース3は、内部に差動ギヤ機構20を収納した中空のケース本体3cと、ケース本体3cの右側部及び左側部に一体に連設されて第1軸線X1上に並ぶ第1,第2軸受ボス3b1,3b2と、ケース本体3cの外周部に径方向外向きに一体に形成されて、第1軸線X1を中心とした円の周方向に延びるフランジ部3fとを備える。ケース本体3cは、概略球体状に形成されるものであり、それの内面3ciは、デフケース3の中心O回りの球面状に形成される。 The differential case 3 is a hollow case body 3c in which the differential gear mechanism 20 is housed, and first and second bearings that are integrally connected to the right side and left side of the case body 3c and lined up on the first axis X1. The bosses 3b1 and 3b2 and a flange portion 3f that is integrally formed on the outer peripheral portion of the case body 3c in the radial direction outward and extends in the circumferential direction of the circle centered on the first axis X1 are provided. The case body 3c is formed in a substantially spherical shape, and the inner surface 3ci thereof is formed in a spherical shape around the center O of the differential case 3.

そして、第1及び第2軸受ボス3b1,3b2は、それらボス3b1,3b2の外周側において軸受13,14を介してミッションケースMCに第1軸線X1回りに回転自在に支持される。また第1及び第2軸受ボス3b1,3b2には、第1軸線X1の方向に延びる軸受孔h1,h2が中心部を縦通しており、その両軸受孔h1,h2には、左右の車軸S1,S2がそれぞれ回転自在に嵌合、支持される。そして、各軸受孔h1,h2の内周面は、デフケース3の内面3iの一部を構成する。 Then, the first and second bearing bosses 3b1, 3b2 are rotatably supported by the mission case MC around the first axis X1 via the bearings 13 and 14 on the outer peripheral side of the bosses 3b1, 3b2. Further, bearing holes h1 and h2 extending in the direction of the first axis X1 pass through the central portion of the first and second bearing bosses 3b1 and 3b2, and the left and right axles S1 are formed in both bearing holes h1 and h2. , S2 are rotatably fitted and supported, respectively. The inner peripheral surfaces of the bearing holes h1 and h2 form a part of the inner surface 3i of the differential case 3.

尚、図示はしないが、軸受ボス3b1,3b2と車軸S1,S2との嵌合面の一方には、その他方との相対回転に伴いミッションケースMC内の潤滑油をデフケース3内に送り込むねじポンプ作用を発揮し得る螺旋溝を必要に応じて機械加工してもよい。或いは、軸受ボス3b1,3b2の内周面に、第1軸線X1に沿った直線上の油溝を鋳造時に型成形してもよい。 Although not shown, a screw pump that sends lubricating oil in the transmission case MC into the differential case 3 on one of the fitting surfaces of the bearing bosses 3b1 and 3b2 and the axles S1 and S2 as the relative rotation with the other side occurs. If necessary, a spiral groove that can exert its action may be machined. Alternatively, an oil groove on a straight line along the first axis X1 may be formed on the inner peripheral surfaces of the bearing bosses 3b1 and 3b2 at the time of casting.

デフケース3のフランジ部3fは、ケース本体3cの外周面にリング板状に一体に突設されており、これにリングギヤRの内周ハブ部Rbが複数のボルトBで着脱可能に結合される。尚、図示例のフランジ部3fは、ケース本体3cの中心Oから軸方向(即ち第1軸線X1に沿う方向)で第2軸受ボス3b2側にオフセットした位置に配置される。 The flange portion 3f of the differential case 3 is integrally projected from the outer peripheral surface of the case body 3c in a ring plate shape, and the inner peripheral hub portion Rb of the ring gear R is detachably connected to the outer peripheral surface of the case body 3c by a plurality of bolts B. The flange portion 3f in the illustrated example is arranged at a position offset from the center O of the case body 3c toward the second bearing boss 3b2 in the axial direction (that is, the direction along the first axis X1).

リングギヤRは、ヘリカルギヤ(斜歯)状の歯部Ragを外周に有しており、その歯部Ragは、動力源に連なる変速装置の出力部となる駆動ギヤ31と噛合する。そして、駆動ギヤ31からの回転駆動力は、リングギヤR及びフランジ部3fを介してデフケース3のケース本体3cに伝達される。尚、図1において、歯部Ragは、表示を簡略化するために、歯筋に沿う断面表示とした。 The ring gear R has a helical gear (oblique tooth) -shaped tooth portion Rag on the outer periphery, and the tooth portion Rag meshes with a drive gear 31 which is an output unit of a transmission connected to a power source. Then, the rotational driving force from the driving gear 31 is transmitted to the case body 3c of the differential case 3 via the ring gear R and the flange portion 3f. In FIG. 1, the tooth portion Rag is displayed in cross section along the tooth muscle in order to simplify the display.

差動ギヤ機構20は、ケース本体3cの中心Oで第1軸線X1と直交する第2軸線X2上に配置されてケース本体3cに支持されるピニオン軸21と、このピニオン軸21に回転自在に支持される一対のピニオンギヤ22,22と、各ピニオンギヤ22と噛合し且つ第1軸線X1回りに回転可能な左右のサイドギヤ23,23とを備える。両サイドギヤ23,23は、差動ギヤ機構20の出力ギヤとして機能するものであり、両サイドギヤ23,23の内周面には、左右の車軸S1,S2の内端部がスプライン嵌合される。 The differential gear mechanism 20 is rotatably connected to a pinion shaft 21 arranged on the second axis X2 orthogonal to the first axis X1 at the center O of the case body 3c and supported by the case body 3c, and the pinion shaft 21. A pair of supported pinion gears 22 and 22 and left and right side gears 23 and 23 that mesh with each pinion gear 22 and are rotatable around the first axis X1 are provided. The side gears 23 and 23 function as output gears of the differential gear mechanism 20, and the inner end portions of the left and right axles S1 and S2 are spline-fitted on the inner peripheral surfaces of the side gears 23 and 23. ..

ピニオンギヤ22及びサイドギヤ23の各背面は、デフケース3の内面3i(より具体的にはケース本体3cの内面3ci)に設けたピニオンギヤ支持面9p及びサイドギヤ支持面9sにそれぞれピニオンギヤワッシャWp及びサイドギヤワッシャWsを介して(或いはワッシャを介さずに直接)回転自在に支承される。 The back surfaces of the pinion gear 22 and the side gear 23 are provided with pinion gear washers Wp and side gear washers Ws on the pinion gear support surface 9p and the side gear support surface 9s provided on the inner surface 3i of the differential case 3 (more specifically, the inner surface 3ci of the case body 3c), respectively. It is rotatably supported via (or directly without washers).

ピニオン軸21は、ケース本体3cの外周端部に形成されて第2軸線X2上に延びる一対のピニオン軸支持孔3chに挿通、保持される。またケース本体3cには、ピニオン軸21の一端部を横切るよう貫通する抜け止めピン17が挿着(例えば圧入)され、この抜け止めピン17により、ピニオン軸21のピニオン軸支持孔3chからの離脱が阻止される。 The pinion shaft 21 is inserted and held in a pair of pinion shaft support holes 3ch formed at the outer peripheral end of the case body 3c and extending on the second axis X2. Further, a retaining pin 17 penetrating across one end of the pinion shaft 21 is inserted (for example, press-fitted) into the case body 3c, and the retaining pin 17 separates the pinion shaft 21 from the pinion shaft support hole 3ch. Is blocked.

ケース本体3cの内面3ciの少なくとも一部(例えばピニオン軸支持孔3ch)は、本実施形態ではデフケース8の鋳造後において、加工装置、例えばマシニングセンタの加工具(例えばドリル)により機械加工される。 At least a part of the inner surface 3ci of the case body 3c (for example, the pinion shaft support hole 3ch) is machined by a processing device, for example, a machining tool (for example, a drill) of a machining center after casting the differential case 8 in the present embodiment.

そして、駆動ギヤ31からリングギヤRを経てデフケース3のケース本体3cに伝達された回転駆動力は、差動ギヤ機構20を介して左右の車軸S1,S2に対し差動回転を許容しつつ分配伝達される。尚、差動ギヤ機構20の差動機能は従来周知であるので、説明を省略する。 Then, the rotational driving force transmitted from the drive gear 31 to the case body 3c of the differential case 3 via the ring gear R is distributed and transmitted to the left and right axles S1 and S2 via the differential gear mechanism 20 while allowing differential rotation. Will be done. Since the differential function of the differential gear mechanism 20 is well known in the past, the description thereof will be omitted.

図2〜図4に示すように、デフケース3は、第1軸線X1に沿う方向でフランジ部3fよりも第1軸受ボス3b1側のケース本体3cの側壁に一対の作業窓Hを有する。この一対の作業窓Hは、第1軸線X1と直交する投影面(例えば図2,図6を参照)で見て、第2軸線X2を挟んでその両側方に配置され、換言すれば、第1,第2軸線X1,X2を含む仮想平面F3を挟んでその両側に対称的に配置されるようにケース本体3cの上記側壁に形成される。 As shown in FIGS. 2 to 4, the differential case 3 has a pair of work windows H on the side wall of the case body 3c on the side of the first bearing boss 3b1 with respect to the flange portion 3f in the direction along the first axis X1. The pair of work windows H are arranged on both sides of the second axis X2 when viewed on a projection plane orthogonal to the first axis X1 (see, for example, FIGS. 2 and 6), in other words, the first. 1, It is formed on the side wall of the case body 3c so as to be symmetrically arranged on both sides of the virtual plane F3 including the second axis X1 and X2.

そして、ケース本体3cの、一対の作業窓Hに挟まれた側壁部分30は、第1軸受ボス3b1側にドーム状に湾曲すると共に、前記投影面で見て第2軸線X2に沿って延びる幅広の帯状に形成される。この帯状の側壁部分30は、中間部に第1軸受ボス3b1が連設され、また両端部(即ちケース本体3cの外周端部となる部分)がフランジ部3fの内周部に一体に接続される。 The side wall portion 30 of the case body 3c sandwiched between the pair of work windows H is curved in a dome shape toward the first bearing boss 3b1 and is wide extending along the second axis X2 when viewed from the projection surface. It is formed in the shape of a band. In the strip-shaped side wall portion 30, the first bearing boss 3b1 is continuously provided in the intermediate portion, and both end portions (that is, the portion that becomes the outer peripheral end portion of the case body 3c) are integrally connected to the inner peripheral portion of the flange portion 3f. To.

作業窓Hは、ケース本体3cの内面3ciに対する切削加工やケース本体3c内への差動ギヤ機構20の組付けを許容するための作業窓であり、その目的に即した十分大きい形状に形成される。即ち、本実施形態の作業窓Hは、第1軸線X1に沿う方向でフランジ部3fの根元部分まで延び且つケース本体3cの周方向に幅広く開口するように形成されている。 The work window H is a work window for allowing cutting work on the inner surface 3ci of the case body 3c and assembling the differential gear mechanism 20 into the case body 3c, and is formed in a sufficiently large shape suitable for the purpose. To. That is, the work window H of the present embodiment is formed so as to extend along the first axis X1 to the root portion of the flange portion 3f and to open widely in the circumferential direction of the case body 3c.

ところでデフケース3は、金属材料(例えばアルミ、アルミ合金、鋳鉄等)で鋳造成形されるものであり、その鋳造後にデフケース3の所定部位が機械加工される。その機械加工の対象となる加工部としては、例えばピニオン軸支持孔3ch、軸受孔h1,h2、第1,第2軸受ボス3b1,3b2の外周面、サイドギヤ支持面9s、フランジ部3fのボルト孔等が含まれる。尚、図3〜図9には、単体状態のデフケース3が示されるが、これらは、上記機械加工が終了したデフケース3の各部を示す。 By the way, the differential case 3 is cast and molded from a metal material (for example, aluminum, aluminum alloy, cast iron, etc.), and a predetermined portion of the differential case 3 is machined after the casting. The machined parts to be machined include, for example, pinion shaft support holes 3ch, bearing holes h1, h2, outer peripheral surfaces of the first and second bearing bosses 3b1, 3b2, side gear support surfaces 9s, and bolt holes of the flange part 3f. Etc. are included. It should be noted that FIGS. 3 to 9 show the differential case 3 in a single state, and these show each part of the differential case 3 after the machining is completed.

またデフケース3は、後述するように、鋳造の際に単一の砂中子Nを用いて、デフケース3の内面3i(より具体的にはケース本体3cの内面3ci及び軸受孔h1,h2)と、内面3i以外の被成形面であってケース外に露出した同一型成形外面とが同時に成形される。上記同一型成形外面には、例えば作業窓Hが含まれる。そして、作業窓Hの周囲(例えば作業窓Hの開口縁部Haやその周辺部(例えば作業窓Hに臨むケース本体3c外面の、フランジ部3fの側面と面一な特定平面部分f1))には、上記同一型成形外面の一部であって、次に説明するようにデフケース3の機械加工時の加工基準面として利用可能な面が含まれる。 Further, as will be described later, the differential case 3 uses a single sand core N during casting to form an inner surface 3i of the differential case 3 (more specifically, an inner surface 3ci of the case body 3c and bearing holes h1 and h2). , The same-molded outer surface exposed to the outside of the case, which is the surface to be molded other than the inner surface 3i, is molded at the same time. The same-molded outer surface includes, for example, a work window H. Then, around the work window H (for example, the opening edge Ha of the work window H and its peripheral portion (for example, a specific flat portion f1 on the outer surface of the case body 3c facing the work window H, which is flush with the side surface of the flange portion 3f)). Is a part of the same-molded outer surface, and includes a surface that can be used as a processing reference surface during machining of the differential case 3 as described below.

上記した特定平面部分f1は、第1軸線X1と直交するものであって、デフケース3の機械加工の際にデフケース3及び加工装置(図示せず)相互を第1軸線X1の方向に位置決めするための第1加工基準面となる。例えば、図5に例示したように、加工装置の位置決め治具J1の一対の先部J1aを第1加工基準面f1に押し当てることで、デフケース3及び加工装置相互を第1軸線X1の方向に位置決め可能である。尚、その位置決めに際しては、デフケース3を何らかの固定手段に固定した状態で加工装置をデフケース3側に移動させているが、それとは逆に、加工装置を固定した状態でデフケース3を移動させるようにしてもよい。 The specific plane portion f1 described above is orthogonal to the first axis X1 and is used to position the differential case 3 and the processing device (not shown) in the direction of the first axis X1 when machining the differential case 3. It becomes the first processing reference plane of. For example, as illustrated in FIG. 5, by pressing a pair of tip portions J1a of the positioning jig J1 of the processing apparatus against the first processing reference surface f1, the differential case 3 and the processing apparatus are brought into the direction of the first axis X1. Positioning is possible. At the time of positioning, the processing apparatus is moved to the differential case 3 side with the differential case 3 fixed to some fixing means, but conversely, the differential case 3 is moved with the processing apparatus fixed. You may.

また、各作業窓Hの開口縁部Haには、第2軸線X2の方向の両端部において、一対の第2・第3加工基準面f2が各々切欠き状に凹設される。その第2・第3加工基準面f2の凹状底面は、図9に例示したように、第1軸線X1から、第3軸線X3に沿って外径側に向かうにつれて第2軸線X2側に傾斜した斜面にそれぞれ形成されている。 Further, a pair of second and third processing reference surfaces f2 are recessed in the opening edge portion Ha of each work window H at both ends in the direction of the second axis X2 in a notch shape. As illustrated in FIG. 9, the concave bottom surface of the second and third processing reference surfaces f2 is inclined toward the second axis X2 side from the first axis X1 toward the outer diameter side along the third axis X3. It is formed on each slope.

そして、図9に例示したように、加工装置の一対の位置決め治具J2,J2を、第1,第2軸線X1,X2を含む仮想平面F3を挟んで対向配置し且つその両位置決め治具J2の各一対の先部J2a,J2aを第2・第3加工基準面f2に押し当てるようにして、第3軸線X3の方向でデフケース3を両位置決め治具J2により挟持する。これにより、デフケース3及び加工装置相互を第2,第3軸線X2,X3の方向に一挙に位置決めすることが可能である。而して、本実施形態の第2・第3加工基準面f2は、前記した第1タイプの加工基準面である。 Then, as illustrated in FIG. 9, a pair of positioning jigs J2 and J2 of the processing apparatus are arranged so as to face each other with the virtual plane F3 including the first and second axis lines X1 and X2 in between, and both positioning jigs J2. The differential case 3 is sandwiched by both positioning jigs J2 in the direction of the third axis X3 so that the pair of tip portions J2a and J2a of the above are pressed against the second and third machining reference surfaces f2. As a result, the differential case 3 and the processing apparatus can be positioned at once in the directions of the second and third axes X2 and X3. Thus, the second and third processing reference planes f2 of the present embodiment are the above-mentioned first type processing reference planes.

第1加工基準面f1および第2・第3加工基準面f2は、後述するように、デフケース3の鋳造の際に同一の成形型、即ち砂中子Nにより、デフケース3の内面3iと共に成形される。また本実施形態では、第1加工基準面f1、及び第2・第3加工基準面f2、並びにピニオンギヤ支持面9pは、デフケース3の鋳造後も機械加工されない非加工面とされる。 As will be described later, the first processing reference surface f1 and the second and third processing reference surfaces f2 are formed together with the inner surface 3i of the differential case 3 by the same molding die, that is, the sand core N, when the differential case 3 is cast. To. Further, in the present embodiment, the first machining reference surface f1, the second and third machining reference planes f2, and the pinion gear support surface 9p are non-machined surfaces that are not machined even after casting the differential case 3.

ところで図10,図11には、上記した砂中子Nの一例が示される。即ち、砂中子Nは、デフケース3のケース本体3cの内面3ciを成形する概略球状の本体内面成形部Naと、本体内面成形部Naに連設されて一対の軸受面h1,h2を各々成形する一対の軸受面成形部Nbと、本体内面成形部Naに連設されてデフケース3の一対の作業窓H及びその周辺部を成形する一対の窓等成形部Ncと、一対の窓等成形部Ncにそれぞれ連なる一対の支持腕部Ndとを備える。尚、両支持腕部Ndは、砂中子Nが収容設置されるキャビティを有してデフケース3の外面を成形する鋳造型(図示せず)に砂中子Nを固定、支持するのに利用される。 By the way, FIGS. 10 and 11 show an example of the above-mentioned sand core N. That is, the sand core N forms a pair of bearing surfaces h1 and h2, which are connected to the substantially spherical inner surface forming portion Na of the main body and the inner surface forming portion Na of the main body, respectively, to form the inner surface 3ci of the case body 3c of the differential case 3. A pair of bearing surface forming portions Nb, a pair of window forming portions Nc connected to the main body inner surface forming portion Na to form a pair of working windows H of the differential case 3 and their peripheral portions, and a pair of window forming portions Nc. A pair of support arm portions Nd connected to each Nc are provided. Both supporting arm portions Nd are used to fix and support the sand core N in a casting mold (not shown) that has a cavity in which the sand core N is housed and installed and forms the outer surface of the differential case 3. Will be done.

そして、砂中子Nの成形には、例えば図11(a)で簡略的に示すように、砂中子成形面を有する第1,第2中子型半体C1,C2よりなる中子型Cが使用される。即ち、その第1,第2中子型半体C1,C2の相互を、その間に鋳造用砂材を入れ且つ型合わせして固めることで成形される。而して、砂中子Nの外表面には、第1,第2中子型半体C1,C2相互の型合わせ面fcに対応して微小な突起状或いは微小な段差状に形成されたパーティングラインPL1が生じる可能性が有る。 Then, for molding the sand core N, for example, as simply shown in FIG. 11A, a core mold composed of first and second core mold halves C1 and C2 having a sand core molding surface. C is used. That is, the first and second core mold halves C1 and C2 are formed by inserting a sand material for casting between them and molding and solidifying them. Thus, on the outer surface of the sand core N, a minute protrusion or a minute step was formed corresponding to the mutual type matching surface fc of the first and second core type halves C1 and C2. Parting line PL1 may occur.

上記型合わせ面fcは、ケース本体3cの内面3ciが球面状であっても型抜きを支障なく行い得るよう、少なくともケース本体3cの周壁部においてはケース本体3cの中心Oを通る仮想平面上に設定される。 The mold matching surface fc is placed on a virtual plane passing through the center O of the case body 3c at least in the peripheral wall portion of the case body 3c so that the die cutting can be performed without any trouble even if the inner surface 3ci of the case body 3c is spherical. Set.

特に本実施形態の第1,第2中子型半体C1,C2は、ケース本体3cを成形する部位においては、相互の型合わせ面fcが、ケース本体3cの中心Oを通って第1軸線X1と直交する所謂横割り方向の向き(従って第1加工基準面f1と平行となる向き)に設定される。これにより、第1,第2中子型半体C1,C2相互が型合わせ面fcに沿う方向で少しずれて型合わせされた場合でも、型合わせ面fcと平行関係にある第1加工基準面f1により、デフケース3及び加工装置相互を第1軸線X1の方向に支障なく位置決めできるため、位置決め精度の向上が図られる。 In particular, in the first and second core type halves C1 and C2 of the present embodiment, at the portion where the case body 3c is molded, the mutual mold matching surfaces fc pass through the center O of the case body 3c and the first axis line. The orientation is set in the so-called horizontal division direction orthogonal to X1 (hence, the orientation parallel to the first machining reference plane f1). As a result, even when the first and second core type halves C1 and C2 are slightly displaced in the direction along the mold matching surface fc and the molds are aligned, the first machining reference surface is in a parallel relationship with the mold matching surface fc. With f1, the differential case 3 and the processing apparatus can be positioned with each other in the direction of the first axis X1 without any trouble, so that the positioning accuracy can be improved.

また第1加工基準面f1は、砂中子Nの、特に第2中子型半体C2で成形した特定成形面(より具体的には窓等成形部Ncの外面に突設した第1加工基準面成形部Nca1)により成形される。 Further, the first processing reference surface f1 is the first processing projecting from the sand core N, particularly the specific molding surface formed by the second core type half body C2 (more specifically, the outer surface of the molding portion Nc such as a window). It is molded by the reference surface forming portion Nca1).

一方、複数ある第2・第3加工基準面f2は、その何れもが砂中子Nの、特に第1中子型半体C1で成形した特定成形面(より具体的には窓等成形部Ncの外面に突設した各一対の第2・第3加工基準面成形部Nca2)により成形される。尚、このように窓等成形部Ncの外面に第2・第3加工基準面成形部Nca2が突設されても型抜きに支障が出ないよう、本実施形態の型合わせ面fcは、図11(a)に示されるように窓等成形部Ncにおいては第2・第3加工基準面成形部Nca2の側面に接するよう配置される。 On the other hand, the plurality of second and third processing reference surfaces f2 are specific forming surfaces (more specifically, window or the like forming portions) formed by sand core N, particularly the first core type half body C1. It is molded by each pair of second and third processing reference surface forming portions Nca2) projecting from the outer surface of Nc. The die-matching surface fc of the present embodiment is shown in the figure so that even if the second and third processing reference surface molding portions Nca2 are projected onto the outer surface of the molding portion Nc such as a window, the die-cutting is not hindered. As shown in 11 (a), the window or the like molding portion Nc is arranged so as to be in contact with the side surface of the second and third processing reference surface molding portions Nca2.

ところでケース本体3cの内面3ciには、ピニオンギヤ支持面9pの一部を通る凹溝G1が、砂中子Nによりデフケース3の鋳造と同時に成形される。この凹溝G1は、ピニオンギヤ支持面9pにおいて、砂中子Nの型合わせ面fcに対応したパーティングラインPL1を収め得る位置に配置される。そして、このパーティングラインPL1は、ケース本体3cにおいては、その中心Oを通り且つ第1軸線X1と直交してピニオンギヤ支持面9pを二分する第1の仮想平面F1上に存する。 By the way, on the inner surface 3ci of the case body 3c, a concave groove G1 passing through a part of the pinion gear support surface 9p is formed by the sand core N at the same time as casting the differential case 3. The concave groove G1 is arranged on the pinion gear support surface 9p at a position where the parting line PL1 corresponding to the mold matching surface fc of the sand core N can be accommodated. Then, in the case body 3c, the parting line PL1 exists on a first virtual plane F1 that passes through the center O and is orthogonal to the first axis X1 and bisects the pinion gear support surface 9p.

また上記凹溝G1は、砂中子Nの本体内面成形部Naの外面に突設した凹溝成形用突条部Naaにより成形される。この場合、凹溝成形用突条部Naaは、これの頂部に型合わせ面fc(従ってパーティングラインPL1)が通るように形成される。 Further, the concave groove G1 is formed by a concave groove forming ridge portion Naa projecting from the outer surface of the main body inner surface forming portion Na of the sand core N. In this case, the concave groove forming ridge portion Naa is formed so that the mold matching surface fc (hence, the parting line PL1) passes through the top portion thereof.

また砂中子Nの本体内面成形部Na、特にサイドギヤ支持面9sに対応した部位には、ケース本体3cの内面3ci(より具体的にはサイドギヤ支持面9s及びその周辺部)に各複数の油通路o1を形成するための複数の油通路成形突部Nao1が突設される。また、サイドギヤワッシャWsの外周に径方向外向きに突設した回止め凸部(図示せず)と係合する係合部o2を形成するための複数の突部Nao2も突設される。尚、これら油通路o1及び係合部o2は、必要に応じて省略してもよい。 Further, in the portion corresponding to the main body inner surface forming portion Na of the sand core N, particularly the side gear support surface 9s, a plurality of oils are provided on the inner surface 3ci (more specifically, the side gear support surface 9s and its peripheral portion) of the case main body 3c. A plurality of oil passage forming protrusions Nao1 for forming the passage o1 are projected. Further, a plurality of projecting portions Nao2 for forming an engaging portion o2 that engages with a turning stop convex portion (not shown) projecting outward in the radial direction are also provided on the outer periphery of the side gear washer Ws. The oil passage o1 and the engaging portion o2 may be omitted if necessary.

次に第1実施形態の作用を説明する。 Next, the operation of the first embodiment will be described.

デフケース3は、前述の砂中子Nと、この砂中子Nをキャビティ内の所定位置に保持した鋳造型(図示せず)とを用いて鋳造成形され、その鋳造後にデフケース3の所定部位が機械加工される。その機械加工の対象となる加工部としては、例えば、前述のようにピニオン軸支持孔3ch、軸受孔h1,h2、第1,第2軸受ボス3b1,3b2の外周面、サイドギヤ支持面9s等が含まれる。 The differential case 3 is cast and molded using the above-mentioned sand core N and a casting mold (not shown) that holds the sand core N at a predetermined position in the cavity, and after the casting, a predetermined portion of the differential case 3 is formed. It is machined. As the machined portion to be machined, for example, as described above, the pinion shaft support hole 3ch, the bearing holes h1 and h2, the outer peripheral surfaces of the first and second bearing bosses 3b1 and 3b2, the side gear support surface 9s and the like are included. included.

そして、それらの機械加工に際しては予め不図示の加工装置の位置決め治具J1を第1加工基準面f1に押し当てることで、デフケース3及び加工装置相互の第1軸線X1方向の位置決めがなされ、さらに加工装置の一対の位置決め治具J2の先部J2a,J2aを複数の第2・第3加工基準面f2に押し当てることで、デフケース3及び加工装置相互の、第2,第3軸線X2,X3方向の位置決めがなされる。かくして、3方向、即ち第1〜第3軸線X1〜X3の方向の位置決めが終了し、その後に加工装置による機械加工が開始される。 Then, in those machining, by pressing the positioning jig J1 of the machining apparatus (not shown) against the first machining reference surface f1 in advance, the differential case 3 and the machining apparatus are positioned in the first axis X1 direction, and further. By pressing the tip portions J2a and J2a of the pair of positioning jigs J2 of the processing apparatus against the plurality of second and third processing reference surfaces f2, the second and third axis lines X2 and X3 between the differential case 3 and the processing apparatus Directional positioning is done. Thus, the positioning in the three directions, that is, the directions of the first to third axes X1 to X3 is completed, and then the machining by the processing apparatus is started.

ところで本実施形態では、デフケース3の鋳造の際に単一の砂中子N(即ち同一の成形型)により、デフケース3の内面3iと、デフケース3外に露出した同一型成形外面とが同時に成形され、その同一型成形外面には作業窓Hが含まれる。そして、作業窓Hの周囲には、同一型成形外面の一部であって、鋳造後における機械加工の基準面となる加工基準面f1,f2が存する。これにより、それら加工基準面f1,f2に基づき位置決めされた加工装置で機械加工された加工部と、デフケース3の内面3iとの相対位置のずれを無くすか又は僅少にすることが可能となる。そのため、デフケース3の鋳造後に、これの内面3i又は内面3iに通じる部分(例えば、ピニオン軸支持孔3ch、サイドギヤ支持面9s,軸受孔h1,h2等)を機械加工する場合には、その加工量のばらつきを少なくしたり加工量の低減を図ることができる。 By the way, in the present embodiment, the inner surface 3i of the differential case 3 and the outer surface of the same mold exposed to the outside of the differential case 3 are simultaneously molded by a single sand core N (that is, the same molding mold) when casting the differential case 3. A work window H is included in the same-molded outer surface. Around the work window H, there are machining reference planes f1 and f2 that are a part of the same mold molding outer surface and serve as a reference plane for machining after casting. As a result, it is possible to eliminate or minimize the deviation of the relative position between the machined portion machined by the machining apparatus positioned based on the machining reference surfaces f1 and f2 and the inner surface 3i of the differential case 3. Therefore, when the portion communicating with the inner surface 3i or the inner surface 3i (for example, pinion shaft support hole 3ch, side gear support surface 9s, bearing hole h1, h2, etc.) is machined after casting the differential case 3, the amount of processing thereof It is possible to reduce the variation in bearings and the amount of processing.

また本実施形態では、デフケース3の内面3iの少なくとも一部(例えばピニオンギヤ支持面9p)を非加工面としているが、このような場合でも、非加工面(例えばピニオンギヤ支持面9p)と、加工部(例えばピニオン軸支持孔3ch)との相対位置の精度を高めることができるため、差動装置10の円滑な作動を図る上で有利となる。 Further, in the present embodiment, at least a part of the inner surface 3i of the differential case 3 (for example, the pinion gear support surface 9p) is a non-processed surface, but even in such a case, the non-processed surface (for example, the pinion gear support surface 9p) and the processed portion are used. Since the accuracy of the position relative to (for example, the pinion shaft support hole 3ch) can be improved, it is advantageous for smooth operation of the differential device 10.

また特に本実施形態では、デフケース3の鋳造の際に単一の砂中子N(即ち同一の成形型)で成形される作業窓Hの周囲に、前記同一型成形外面の一部であって、加工装置に対し3方向(第1〜第3軸線X1〜X3の方向)の位置決めを行う各複数の加工基準面f1,f2が配置される。これにより、デフケース3の内面3iと、作業窓Hの周囲(例えば開口縁部Haやその周辺部)とに跨がる領域を成形する単一の砂中子Nを以て、デフケース3の内面3i及び複数の加工基準面f1,f2を精度よく容易に成形可能となる。 Further, in particular, in the present embodiment, a part of the same mold outer surface is formed around a work window H formed by a single sand core N (that is, the same mold) when casting the differential case 3. , A plurality of machining reference surfaces f1 and f2 for positioning in three directions (directions of the first to third axes X1 to X3) are arranged with respect to the machining apparatus. As a result, the inner surface 3i of the differential case 3 and the inner surface 3i of the differential case 3 are formed by a single sand core N forming a region straddling the inner surface 3i of the differential case 3 and the periphery of the work window H (for example, the opening edge Ha and its peripheral portion). A plurality of processing reference surfaces f1 and f2 can be formed accurately and easily.

その上、デフケース3の内面3iにおけるギヤ支持面のうちピニオンギヤ支持面9pを、デフケース3の鋳造後も機械加工されない非加工面としたことで、それだけデフケース3の加工工数が少なくなってコスト節減が達成される。 In addition, the pinion gear support surface 9p of the gear support surface on the inner surface 3i of the differential case 3 is a non-machined surface that is not machined even after casting of the differential case 3, so that the processing man-hours of the differential case 3 are reduced and the cost is reduced. Achieved.

更に本実施形態では、デフケース3及び加工装置相互を第2,第3軸線X2,X3の方向に位置決めする複数の第2・第3加工基準面f2の何れもが砂中子Nの、特に第1中子型半体C1で成形した特定成形面(より具体的には窓等成形部Ncの外面に突設した複数の第2・第3加工基準面成形部Nca2)により成形される。これにより、第1,第2中子型半体C1,C2相互が型合わせ面fcに沿う方向で少しずれて型合わせされた場合でも、複数有る第2・第3加工基準面f2相互の位置関係は、単一の型(即ち第1中子型半体C1)に由来する上記特定成形面(第2・第3加工基準面成形部Nca2)により精度よく定まるため、デフケース3及び加工装置相互を第2,第3軸線X2,X3の方向にも支障なく位置決め可能となり、位置決め精度が更に向上する。 Further, in the present embodiment, all of the plurality of second and third machining reference planes f2 for positioning the differential case 3 and the machining apparatus in the directions of the second and third axes X2 and X3 are sand cores N, particularly the third. 1 It is molded by a specific molding surface formed by the core type half body C1 (more specifically, a plurality of second and third processing reference surface forming portions Nca2 projecting from the outer surface of the forming portion Nc such as a window). As a result, even when the first and second core halves C1 and C2 are slightly displaced in the direction along the molding surface fc and the molds are aligned, the positions of the plurality of second and third processing reference surfaces f2 are mutually present. Since the relationship is accurately determined by the specific molding surface (second and third processing reference surface forming portion Nca2) derived from a single mold (that is, the first core mold half body C1), the differential case 3 and the processing apparatus are mutually determined. Can be positioned in the directions of the second and third axes X2 and X3 without any trouble, and the positioning accuracy is further improved.

ところで本実施形態のデフケース3においては、ピニオンギヤ支持面9pの一部を通る凹溝G1が、デフケース3の内面3iと共に上記した砂中子N(より具体的には本体内面成形部Naの凹溝成形用突条部Naa)で成形され、その凹溝G1は、砂中子成形型Cの型合わせ面fcに対応してデフケース3の内面3iにパーティングラインPL1が生じた場合でも凹溝G1内にパーティングラインPL1を収め得る位置に配置される。 By the way, in the differential case 3 of the present embodiment, the concave groove G1 passing through a part of the pinion gear support surface 9p is the concave groove of the sand core N (more specifically, the inner surface forming portion Na of the main body) together with the inner surface 3i of the differential case 3. The concave groove G1 is formed by the forming ridge portion Naa), and the concave groove G1 is formed even when the parting line PL1 is generated on the inner surface 3i of the differential case 3 corresponding to the mold matching surface fc of the sand core forming mold C. It is arranged at a position where the parting line PL1 can be accommodated inside.

これにより、鋳造後のデフケース3の内面3iに上記パーティングラインPL1が生じても、それは、凹溝G1内に留まってピニオンギヤ支持面9pには食み出さないため、後加工でパーティングラインPL1を除去する必要はなくなり、加工コスト節減が図られる。しかも凹溝G1は、これがピニオンギヤ支持面9p上に存することで、ピニオンギヤ支持面9pに潤滑油を導く油溝に兼用可能となるため、構造の簡素化が図られ、更なるコスト節減が図られる。 As a result, even if the parting line PL1 is generated on the inner surface 3i of the differential case 3 after casting, it stays in the concave groove G1 and does not protrude into the pinion gear support surface 9p, so that the parting line PL1 is post-processed. It is not necessary to remove the above, and the processing cost can be reduced. Moreover, since the concave groove G1 is present on the pinion gear support surface 9p, it can also be used as an oil groove for guiding the lubricating oil to the pinion gear support surface 9p, so that the structure can be simplified and further cost reduction can be achieved. ..

その上、本実施形態では、サイドギヤ支持面9sが、第1軸線X1と直交する平面状であり、凹溝G1がピニオンギヤ支持面9pにおいて、第1軸線X1と直交する第1の仮想平面F1上に存するパーティングラインPL1を収め得る位置に配設されるため、第1軸線X1に沿う方向が、型成形後の砂中子Nの型抜き方向となる。これにより、第1軸線X1と直交する平面であるサイドギヤ支持面9sは、これに抜き勾配を特別に設定する必要はないため、サイドギヤ支持面9sを、後加工無しで或いは後加工量を低減しつつ精度よく成形可能となる。 Further, in the present embodiment, the side gear support surface 9s is a flat surface orthogonal to the first axis X1, and the concave groove G1 is on the first virtual plane F1 orthogonal to the first axis X1 on the pinion gear support surface 9p. Since it is arranged at a position where the parting line PL1 existing in the above can be accommodated, the direction along the first axis X1 is the die-cutting direction of the sand core N after mold forming. As a result, the side gear support surface 9s, which is a plane orthogonal to the first axis X1, does not need to have a special draft setting, so that the side gear support surface 9s can be reduced in the amount of post-processing without post-processing. However, it can be molded with high accuracy.

また図12には、本発明の第2実施形態が示される。第1実施形態のデフケース3では、各作業窓Hの周囲に設けた第2・第3加工基準面f2が、第2軸線X2及び第3軸線X3の各方向の位置決めを同一面で共通に行う前記第1タイプの加工基準面であるものを示したが、第2実施形態では、第2・第3加工基準面f3,f4が、第2軸線X2及び第3軸線X3の各方向の位置決めを異なる面で個別に行う第2タイプの加工基準面である点で相違する。 Further, FIG. 12 shows a second embodiment of the present invention. In the differential case 3 of the first embodiment, the second and third machining reference surfaces f2 provided around each work window H commonly position the second axis X2 and the third axis X3 in each direction on the same surface. Although the first type of machining reference plane is shown, in the second embodiment, the second and third machining reference planes f3 and f4 position the second axis X2 and the third axis X3 in each direction. It differs in that it is a second type machining reference plane that is individually performed on different planes.

即ち、第2実施形態では、作業窓Hに臨むケース本体3c外面の、フランジ部3fの側面と面一な特定平面部分(即ち第1加工基準面)f1の中間部に、横断面V字状の溝42が凹設され、そのV字状の溝42の内面が、第2軸線X2の方向の位置決めを行う加工基準面f3を構成し、また作業窓Hの開口縁部Haの中間部外側面が、第3軸線X3と直交する平面に形成されていて第3軸線X3の方向の位置決めを行う加工基準面f4を構成する。そして、その両加工基準面f3,f4が本発明の第2・第3加工基準面を構成している。 That is, in the second embodiment, the outer surface of the case body 3c facing the work window H has a V-shaped cross section in the middle portion of the specific flat surface portion (that is, the first processing reference surface) f1 that is flush with the side surface of the flange portion 3f. The groove 42 is recessed, and the inner surface of the V-shaped groove 42 constitutes a machining reference surface f3 for positioning in the direction of the second axis X2, and is outside the intermediate portion of the opening edge Ha of the work window H. The side surface is formed on a plane orthogonal to the third axis X3, and constitutes a machining reference surface f4 for positioning in the direction of the third axis X3. Both of the processing reference surfaces f3 and f4 form the second and third processing reference surfaces of the present invention.

尚、その両加工基準面f3,f4に対しては、加工装置の別々の位置決め治具(図示せず)が接離可能に係合して位置決めが行われる。 It should be noted that the two machining reference surfaces f3 and f4 are positioned by engaging with different positioning jigs (not shown) of the machining apparatus so as to be in contact with each other.

この第2実施形態のその他の構成は、第1実施形態と同様であるので、第2実施形態の各構成要素には、第1実施形態の対応する構成要素の参照符号を付すにとどめ、それ以上の説明は省略する。そして、この第2実施形態においても、第1実施形態と基本的に同様の作用効果を達成可能である。 Since the other configurations of the second embodiment are the same as those of the first embodiment, each component of the second embodiment is provided with a reference code of the corresponding component of the first embodiment. The above description will be omitted. Further, also in this second embodiment, it is possible to achieve basically the same action and effect as in the first embodiment.

また図13には、本発明の第3実施形態が示される。この第3実施形態では、デフケース3及び加工装置相互の位置決め、特に第2軸線X2の方向の位置決めを行うための加工基準面f5の構造のみが第2実施形態と相違する。 Further, FIG. 13 shows a third embodiment of the present invention. In this third embodiment, only the structure of the machining reference surface f5 for positioning the differential case 3 and the machining apparatus with each other, particularly the positioning in the direction of the second axis X2, is different from the second embodiment.

即ち、第3実施形態では、作業窓Hの開口縁部Haの中間部外側面が、第3軸線X3と直交する平面に形成されていて第3軸線X3の方向の位置決めを行う加工基準面f4を構成する点は、第2実施形態の加工基準面f4と同様であるが、第2軸線X2の方向の位置決めを行うために特に第3実施形態では、作業窓Hの窓孔内周面の、第2軸線X2の方向で両内端面が、第2軸線X2の方向の位置決めを行う加工基準面f5を構成する。 That is, in the third embodiment, the outer surface of the intermediate portion of the opening edge Ha of the work window H is formed in a plane orthogonal to the third axis X3, and the machining reference surface f4 for positioning in the direction of the third axis X3. The points constituting the above are the same as those of the processing reference surface f4 of the second embodiment, but in order to perform positioning in the direction of the second axis X2, particularly in the third embodiment, the inner peripheral surface of the window hole of the work window H , Both inner end faces in the direction of the second axis X2 constitute a machining reference surface f5 for positioning in the direction of the second axis X2.

尚、その両加工基準面f4,f5に対しては、加工装置の別々の位置決め治具(図示せず)が接離可能に係合して位置決めが行われる。 It should be noted that the two machining reference surfaces f4 and f5 are positioned by engaging with different positioning jigs (not shown) of the machining apparatus so as to be in contact with each other.

この第3実施形態のその他の構成は、第2実施形態と同様であるので、第2実施形態の各構成要素には、第2実施形態の対応する構成要素の参照符号を付すにとどめ、それ以上の説明は省略する。そして、この第3実施形態においても、第2実施形態と基本的に同様の作用効果を達成可能である。 Since the other configurations of the third embodiment are the same as those of the second embodiment, each component of the second embodiment is provided with a reference code for the corresponding component of the second embodiment. The above description will be omitted. Further, also in this third embodiment, it is possible to achieve basically the same effects as those in the second embodiment.

更に第3実施形態では、デフケース3及び加工装置相互を第2,第3軸線X2,X3の方向に位置決めする複数の第2・第3加工基準面f5,f4の何れもが砂中子Nの、特に第1中子型半体C1で成形した特定成形面により成形されるため、第1,第2中子型半体C1,C2相互が型合わせ面fcに沿う方向で少しずれて型合わせされた場合でも、複数有る第2・第3加工基準面f5,f4相互の位置関係は、単一の型(即ち第1中子型半体C1)に由来する上記特定成形面により精度よく定まる。これにより、デフケース3及び加工装置相互を第2,第3軸線X2,X3の方向に支障なく位置決め可能となる。 Further, in the third embodiment, all of the plurality of second and third machining reference surfaces f5 and f4 for positioning the differential case 3 and the machining apparatus in the directions of the second and third axes X2 and X3 are sand cores N. In particular, since it is molded by the specific molding surface formed by the first core type half body C1, the first and second core type half bodies C1 and C2 are slightly displaced in the direction along the mold matching surface fc. Even if this is done, the positional relationship between the plurality of second and third processing reference surfaces f5 and f4 is accurately determined by the specific forming surface derived from a single mold (that is, the first core mold half body C1). .. As a result, the differential case 3 and the processing apparatus can be positioned with each other in the directions of the second and third axes X2 and X3 without any trouble.

また図14には、本発明の第4実施形態が示される。この第4実施形態では、各作業窓Hの周囲に設けた第2・第3加工基準面f6が前記第1タイプの加工基準面である点で第1実施形態と同様であるが、その第2・第3加工基準面f6の構造が、第1実施形態の第2・第3加工基準面f2とは相違する。 Further, FIG. 14 shows a fourth embodiment of the present invention. The fourth embodiment is similar to the first embodiment in that the second and third machining reference planes f6 provided around each work window H are the first type machining reference planes, but the first embodiment thereof. The structure of the second and third machining reference planes f6 is different from that of the second and third machining reference planes f2 of the first embodiment.

即ち、デフケース3及び加工装置相互の位置決めに関して、第4実施形態では、作業窓Hに臨むケース本体3c外面の、フランジ部3fの側面と面一な特定平面部分(即ち第1加工基準面)f1の中間部に、底部が先細りの角錐状窪み44が凹設され、その角錐状窪み44の内面が、第2軸線X2及び第3軸線X3の各方向の位置決めを行う第2・第3加工基準面f6を構成する。 That is, regarding the positioning between the differential case 3 and the processing device, in the fourth embodiment, the specific flat surface portion (that is, the first processing reference surface) f1 of the outer surface of the case body 3c facing the work window H is flush with the side surface of the flange portion 3f. A pyramid-shaped recess 44 having a tapered bottom is provided in the middle portion of the above, and the inner surface of the pyramid-shaped recess 44 positions the second axis X2 and the third axis X3 in each direction. The surface f6 is formed.

そして、第1加工基準面f1および第2・第3加工基準面f6に対しては、図15(d)に例示したように第2・第3加工基準面f6に嵌入可能な位置決め凸部J1aaを先端面に有した位置決め治具J1′の先部J1aを押し当てることで、第1〜第3軸線X1〜X3の各方向の位置決めが一挙に行われる。 Then, with respect to the first machining reference surface f1 and the second and third machining reference surfaces f6, the positioning convex portion J1aa that can be fitted into the second and third machining reference surfaces f6 as illustrated in FIG. 15 (d). By pressing the tip portion J1a of the positioning jig J1'on the tip surface, positioning of the first to third axes X1 to X3 in each direction is performed at once.

この第4実施形態のその他の構成は、第1実施形態と同様であるので、第4実施形態の各構成要素には、第1実施形態の対応する構成要素の参照符号を付すにとどめ、それ以上の説明は省略する。そして、この第4実施形態においても、第1実施形態と基本的に同様の作用効果を達成可能である。 Since the other configurations of the fourth embodiment are the same as those of the first embodiment, each component of the fourth embodiment is provided with a reference code for the corresponding component of the first embodiment. The above description will be omitted. Further, also in this fourth embodiment, it is possible to achieve basically the same action and effect as in the first embodiment.

更に第4実施形態では、デフケース3及び加工装置相互を第1軸線X1の方向に位置決めする第1加工基準面f1、並びに第2,第3軸線X2,X3の方向に位置決めする複数の第2・第3加工基準面f6の何れもが砂中子Nの、特に第2中子型半体C2で成形した特定成形面により成形されるため、第1,第2中子型半体C1,C2相互が型合わせ面fcに沿う方向に少しずれて型合わせされた場合でも、第1加工基準面f1並びに第2・第3加工基準面f6相互の位置関係は、単一の型(即ち、第2中子型半体C2)に由来する上記特定成形面により精度よく定まるため、デフケース3及び加工装置相互を第1〜第3軸線X1〜X3の方向に支障なく位置決め可能となる。 Further, in the fourth embodiment, the first machining reference surface f1 that positions the differential case 3 and the machining apparatus in the direction of the first axis X1, and a plurality of second processes that position the differential case 3 and the machining apparatus in the directions of the second and third axes X2 and X3. Since all of the third processing reference surfaces f6 are formed by the specific molding surface formed by the sand core N, particularly the second core type half body C2, the first and second core type half bodies C1 and C2 Even when the molds are aligned with each other slightly offset in the direction along the mold alignment surface fc, the positional relationship between the first processing reference surface f1 and the second and third processing reference surfaces f6 is a single mold (that is, the first type). Since it is accurately determined by the specific molding surface derived from the 2 core type half body C2), the differential case 3 and the processing apparatus can be positioned with each other in the directions of the first to third axes X1 to X3 without any trouble.

また図15には、本発明の第5実施形態が示される。この第5実施形態では、各作業窓Hの周囲に設けられて第2軸線X2及び第3軸線X3の各方向の位置決めを行う第2・第3加工基準面f7の構造のみが第4実施形態のそれと相違する。 Further, FIG. 15 shows a fifth embodiment of the present invention. In the fifth embodiment, only the structure of the second and third machining reference surfaces f7 provided around each work window H and positioning the second axis X2 and the third axis X3 in each direction is the fourth embodiment. It is different from that of.

即ち、第4実施形態では、作業窓Hに臨むケース本体3c外面の、フランジ部3fの側面と面一な特定平面部分(即ち第1加工基準面)f1の中間部に角錐状窪み44が凹設されていて、その角錐状窪み44の内面を第2・第3加工基準面f6としたが、第5実施形態では、上記特定平面部分(即ち第1加工基準面)f1の中間部に円錐状窪み45が凹設されて、この円錐状窪み45の内面が第2・第3加工基準面f7を構成する。 That is, in the fourth embodiment, the pyramid-shaped recess 44 is recessed in the intermediate portion of the outer surface of the case body 3c facing the work window H, which is a specific flat surface portion (that is, the first processing reference surface) f1 that is flush with the side surface of the flange portion 3f. The inner surface of the pyramid-shaped recess 44 is set as the second and third processing reference planes f6, but in the fifth embodiment, a cone is formed in the middle portion of the specific plane portion (that is, the first processing reference plane) f1. The shaped recess 45 is recessed, and the inner surface of the conical recess 45 constitutes the second and third processing reference surfaces f7.

この第5実施形態のその他の構成は、第4実施形態と同様であるので、第5実施形態の各構成要素には、第4実施形態の対応する構成要素の参照符号を付すにとどめ、それ以上の説明は省略する。そして、この第5実施形態においても、第4実施形態と基本的に同様の作用効果を達成可能である。 Since the other configurations of the fifth embodiment are the same as those of the fourth embodiment, each component of the fifth embodiment is provided with a reference code for the corresponding component of the fourth embodiment. The above description will be omitted. Further, also in this fifth embodiment, it is possible to achieve basically the same effects as those in the fourth embodiment.

また図16には、本発明の第6実施形態が示される。この第6実施形態では、各作業窓Hの周囲に設けた第2・第3加工基準面f8が前記第1タイプの加工基準面である点で第1実施形態と同様であるが、その第2・第3加工基準面f8の構造が、第1実施形態の第2・第3加工基準面f2とは相違する。 Further, FIG. 16 shows a sixth embodiment of the present invention. The sixth embodiment is similar to the first embodiment in that the second and third machining reference planes f8 provided around each work window H are the first type machining reference planes, but the first embodiment thereof. The structure of the second and third machining reference planes f8 is different from that of the second and third machining reference planes f2 of the first embodiment.

即ち、デフケース3及び加工装置相互の位置決めに関して、第6実施形態では、作業窓Hの開口縁部Haの中間部外側面に横断面V字状の溝46が凹設され、そのV字状の溝46の内面が、第2軸線X2及び第3軸線X3の各方向の位置決めを行う第2・第3加工基準面f8を構成する。 That is, with respect to the positioning between the differential case 3 and the processing apparatus, in the sixth embodiment, a groove 46 having a V-shaped cross section is recessed on the outer surface of the intermediate portion of the opening edge Ha of the work window H, and the V-shaped groove 46 is formed. The inner surface of the groove 46 constitutes the second and third machining reference surfaces f8 that position the second axis X2 and the third axis X3 in each direction.

そして、第2・第3加工基準面f8に対しては、これに嵌入可能な位置決め凸部を先端面に有した一対の位置決め治具(図示せず)の先部を両作業窓Hの外側方側より押し当てることで、第2軸線X2及び第3軸線X3の各方向の位置決めが一挙に行われる。 Then, with respect to the second and third machining reference surfaces f8, the tip portions of a pair of positioning jigs (not shown) having a positioning convex portion that can be fitted into the second and third machining reference surfaces f8 are placed on the outside of both work windows H. By pressing from the side, positioning of the second axis X2 and the third axis X3 in each direction is performed at once.

この第6実施形態のその他の構成は、第1実施形態と同様であるので、第6実施形態の各構成要素には、第1実施形態の対応する構成要素の参照符号を付すにとどめ、それ以上の説明は省略する。そして、この第6実施形態においても、第1実施形態と基本的に同様の作用効果を達成可能である。 Since the other configurations of the sixth embodiment are the same as those of the first embodiment, each component of the sixth embodiment is provided with a reference code for the corresponding component of the first embodiment. The above description will be omitted. Further, also in this sixth embodiment, basically the same action and effect as in the first embodiment can be achieved.

また図17には、本発明の第7実施形態が示される。この第7実施形態では、デフケース3の内面3i等を鋳造成形するための砂中子を成形する砂中子成形型の型合わせ面と、それに関連してデフケース3の内面3iに現れるパーティングラインの位置が第1〜第6実施形態とは異なる。 Further, FIG. 17 shows a seventh embodiment of the present invention. In the seventh embodiment, the molding surface of the sand core molding mold for forming the sand core for casting and molding the inner surface 3i of the differential case 3 and the parting line appearing on the inner surface 3i of the differential case 3 in connection therewith. The position of is different from that of the first to sixth embodiments.

即ち、第1〜第6実施形態で用いる第1,第2中子型半体C1,C2は、相互の型合わせ面fcが第1軸線X1と直交する所謂横割り方向の向きに設定されるのに対し、第7実施形態で用いる不図示の第1,第2中子型半体C1,C2の型合わせ面fc′は、第1軸線X1を含み且つ第2軸線X2と直交する第2の仮想平面F2上(即ち第1の縦割り方向)に設定されている。 That is, the first and second core type halves C1 and C2 used in the first to sixth embodiments are set in the so-called horizontal division direction in which the mutual type matching surface fc is orthogonal to the first axis X1. On the other hand, the type matching surface fc'of the first and second core halves C1 and C2 (not shown) used in the seventh embodiment includes the first axis X1 and is orthogonal to the second axis X2. Is set on the virtual plane F2 (that is, in the first vertical division direction).

そして、ケース本体3cの内面3ciには、型合わせ面fc′に対応して第2の仮想平面F2上に存するパーティングラインPL2が生じるが、このパーティングラインPL2を溝内面に含む位置に凹溝G2が形成される。この凹溝G2は、砂中子N′によりデフケース3の鋳造と同時に成形される。 Then, on the inner surface 3ci of the case body 3c, a parting line PL2 existing on the second virtual plane F2 corresponding to the mold matching surface fc'is generated, but the parting line PL2 is recessed at a position included in the groove inner surface. A groove G2 is formed. The concave groove G2 is formed by the sand core N'at the same time as the casting of the differential case 3.

より具体的に言えば、凹溝G2は、砂中子N′の本体内面成形部Na′の外面に突設した凹溝成形用突条部Naa′により成形される。この場合、凹溝成形用突条部Naa′は、これの頂部に型合わせ面fc′(従ってパーティングラインPL2)が通るように形成される。 More specifically, the concave groove G2 is formed by the concave groove forming ridge portion Naa'protruding on the outer surface of the main body inner surface forming portion Na'of the sand core N'. In this case, the concave groove forming ridge portion Naa'is formed so that the mold matching surface fc'(therefore, the parting line PL2) passes through the top of the ridge portion Naa'.

而して、第7実施形態の凹溝G2は、特にサイドギヤ支持面9sにおいては、一対のピニオンギヤ支持面9pの相互間に在ってサイドギヤ支持面9sを二分する第2の仮想平面F2上に存するパーティングラインPL2を収め得る位置に在るので、凹溝G2(従ってパーティングラインPL2)がピニオンギヤ支持面9pを通る虞れはない。これにより、各々のピニオンギヤ支持面9pを、単一の型(即ち第1又は第2中子型半体C1,C2にで成形される砂中子N′のピニオンギヤ支持面成形部)により精度よく成形可能となる。しかも凹溝G2は、これがサイドギヤ支持面9s上に存することで、サイドギヤ支持面9sに潤滑油を導く油溝に兼用可能となる。 Thus, the recessed groove G2 of the seventh embodiment is located between the pair of pinion gear support surfaces 9p and on the second virtual plane F2 that bisects the side gear support surfaces 9s, particularly on the side gear support surface 9s. Since it is in a position where the existing parting line PL2 can be accommodated, there is no possibility that the concave groove G2 (hence, the parting line PL2) passes through the pinion gear support surface 9p. As a result, each pinion gear support surface 9p can be accurately formed by a single mold (that is, the pinion gear support surface forming portion of the sand core N'formed by the first or second core type halves C1 and C2). It can be molded. Moreover, since the concave groove G2 exists on the side gear support surface 9s, it can also be used as an oil groove for guiding the lubricating oil to the side gear support surface 9s.

その上、サイドギヤ支持面9sには、車軸S1,S2を嵌挿させる軸受孔h1,h2が開口していて、その開口部に凹溝G2が直接連通しているため、車軸S1,S2及び軸受孔h1,h2相互の嵌合部に流通する潤滑油を、サイドギヤ支持面9s側に効率よく導入可能となる。これにより、サイドギヤ23、延いてはデフケース3内の差動ギヤ機構20各部に対する潤滑性能の向上が図られる。 Further, bearing holes h1 and h2 for inserting the axles S1 and S2 are opened in the side gear support surface 9s, and the concave groove G2 is directly communicated with the openings, so that the axles S1 and S2 and the bearing Lubricating oil flowing through the fitting portions of the holes h1 and h2 can be efficiently introduced to the side gear support surface 9s side. As a result, the lubrication performance of the side gear 23 and, by extension, the differential gear mechanism 20 in the differential case 3 can be improved.

この第7実施形態のその他の構成は、第1実施形態と同様であるので、第7実施形態の各構成要素には、第1実施形態の対応する構成要素の参照符号を付すにとどめ、それ以上の説明は省略する。そして、この第7実施形態においても、第1実施形態と基本的に同様の作用効果を達成可能である。 Since the other configurations of the seventh embodiment are the same as those of the first embodiment, each component of the seventh embodiment is provided with a reference code for the corresponding component of the first embodiment. The above description will be omitted. Further, also in this seventh embodiment, it is possible to achieve basically the same action and effect as in the first embodiment.

また図18には、本発明の第8実施形態が示される。先の第7実施形態で用いる第1,第2中子型半体C1,C2の型合わせ面fc′は、第1軸線X1を含み且つ第2軸線X2と直交する第2の仮想平面F2上(即ち第1の縦割り方向)に設定されるのに対して、第8実施形態は、型合わせ面fc″が、第1,第2軸線X1,X2を含む第3の仮想平面F3上(即ち第2の縦割り方向)に設定される点で、第7実施形態と相違する。 Further, FIG. 18 shows an eighth embodiment of the present invention. The type matching surface fc'of the first and second core half bodies C1 and C2 used in the seventh embodiment is on the second virtual plane F2 including the first axis X1 and orthogonal to the second axis X2. (That is, in the first vertical division direction), in the eighth embodiment, the mold matching surface fc "is on the third virtual plane F3 including the first and second axis X1 and X2 (that is, in the first vertical division direction). That is, it differs from the seventh embodiment in that it is set in the second vertical division direction).

そして、ケース本体3cの内面3ciには、型合わせ面fc″に対応して第3の仮想平面F3上に存するパーティングラインPL3が生じるが、このパーティングラインPL3を溝内面に含む位置に凹溝G3が形成される。この凹溝G3は、砂中子N″によりデフケース3の鋳造と同時に成形される。 Then, on the inner surface 3ci of the case body 3c, a parting line PL3 existing on the third virtual plane F3 corresponding to the mold matching surface fc "is generated, and the parting line PL3 is recessed at a position included in the groove inner surface. A groove G3 is formed. The concave groove G3 is formed by the sand core N "at the same time as the casting of the differential case 3.

より具体的に言えば、凹溝G3は、砂中子N″の本体内面成形部Na″の外面に突設した凹溝成形用突条部Naa″により成形される。この場合、凹溝成形用突条部Naa″は、これの頂部に型合わせ面fc″(従ってパーティングラインPL3)が通るように形成される。 More specifically, the concave groove G3 is formed by the concave groove forming ridge portion Naa ″ projecting from the outer surface of the main body inner surface forming portion Na ″ of the sand core N ″. In this case, the concave groove forming is performed. The ridge Naa ″ is formed so that the molding surface fc ″ (hence the parting line PL3) passes through the top of the ridge portion Naa ″.

而して、第8実施形態の凹溝G3は、特にサイドギヤ支持面9s及びピニオンギヤ支持面9pにおいて、その両ギヤ支持面9s,9pを各々二分する第3の仮想平面F3上に存するパーティングラインPL3を収め得る位置に在るので、凹溝G3(従ってパーティングラインPL3)がサイドギヤ支持面9sのみならずピニオンギヤ支持面9pをも横切る配置となって、サイドギヤ支持面9s及びピニオンギヤ支持面9pの両方に潤滑油を導く油溝に兼用可能となる。 Thus, the recessed groove G3 of the eighth embodiment is a parting line existing on a third virtual plane F3 that bisects both gear support surfaces 9s and 9p, particularly on the side gear support surface 9s and the pinion gear support surface 9p. Since it is in a position where the PL3 can be accommodated, the concave groove G3 (hence, the parting line PL3) is arranged to cross not only the side gear support surface 9s but also the pinion gear support surface 9p, and the side gear support surface 9s and the pinion gear support surface 9p are arranged. It can also be used as an oil groove that guides lubricating oil to both.

その上、サイドギヤ支持面9sには、第7実施形態と同様、軸受孔h1,h2が開口していて、その開口部に凹溝G3が直接連通しているため、車軸S1,S2及び軸受孔h1,h2相互の嵌合部に流通する潤滑油を、サイドギヤ支持面9s側に効率よく導入可能となり、サイドギヤ23、延いてはデフケース3内の差動ギヤ機構20各部に対する潤滑性能の向上が図られる。 Further, as in the seventh embodiment, the side gear support surface 9s has bearing holes h1 and h2 opened, and the concave groove G3 directly communicates with the openings, so that the axles S1 and S2 and the bearing holes are directly communicated with each other. Lubricating oil that flows through the mating parts of h1 and h2 can be efficiently introduced to the side gear support surface 9s side, and the lubrication performance of the side gear 23 and the differential gear mechanism 20 in the differential case 3 is improved. Be done.

この第8実施形態のその他の構成は、第7実施形態と同様であるので、第8実施形態の各構成要素には、第7実施形態の対応する構成要素の参照符号を付すにとどめ、それ以上の説明は省略する。そして、この第8実施形態においても、第7実施形態と基本的に同様の作用効果を達成可能である。 Since the other configurations of the eighth embodiment are the same as those of the seventh embodiment, each component of the eighth embodiment is provided with a reference code for the corresponding component of the seventh embodiment. The above description will be omitted. And, in this 8th embodiment, basically the same action and effect as in the 7th embodiment can be achieved.

尚、上記した第7,第8実施形態の特徴部分(即ちパーティングラインPL2,PL3及び凹溝G2,G3)の構造は、第1〜第6実施形態に適用してもよい。 The structure of the characteristic portions (that is, the parting lines PL2, PL3 and the recessed grooves G2, G3) of the seventh and eighth embodiments described above may be applied to the first to sixth embodiments.

以上、本発明の実施形態について説明したが、本発明は、実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の設計変更が可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the embodiments, and various design changes can be made without departing from the gist thereof.

例えば、上記実施形態では、差動装置10を車両用差動装置、特に左右の駆動車輪間の差動装置として実施したものを示したが、本発明では、差動装置10を前後の駆動車輪間の差動装置として実施してもよく、或いはまた車両以外の種々の機械装置における差動装置として実施してもよい。 For example, in the above embodiment, the differential device 10 is implemented as a vehicle differential device, particularly as a differential device between the left and right drive wheels. However, in the present invention, the differential device 10 is used as the front and rear drive wheels. It may be implemented as a differential between vehicles, or it may be implemented as a differential in various mechanical devices other than vehicles.

また、前記実施形態では、デフケース3のフランジ部3fとリングギヤRとの結合を複数のボルトBで結合するものを例示したが、フランジ部3fとリングギヤRとの結合を溶接(例えばレーザ溶接、電子ビーム溶接等)で行うようにしてもよい。 Further, in the above-described embodiment, the connection between the flange portion 3f of the differential case 3 and the ring gear R is coupled by a plurality of bolts B, but the coupling between the flange portion 3f and the ring gear R is welded (for example, laser welding, electron). It may be performed by beam welding or the like).

また前記実施形態では、リングギヤRの歯部Ragをヘリカルギヤとしたものを示したが、リングギヤは、駆動ギヤ31との噛合により第1軸線X1に沿う方向のスラスト荷重を受ける歯形状の他のギヤ(例えばベベルギヤ、ハイポイドギヤ等)であってもよい。或いはまた、駆動ギヤ31との噛合により上記スラスト荷重を受けない歯形状のギヤ(例えばスパーギヤ)でもよい。 Further, in the above embodiment, the tooth portion Rag of the ring gear R is used as a helical gear, but the ring gear is another gear having a tooth shape that receives a thrust load in the direction along the first axis X1 by meshing with the drive gear 31. (For example, bevel gear, hypoid gear, etc.) may be used. Alternatively, a tooth-shaped gear (for example, a spur gear) that does not receive the thrust load due to meshing with the drive gear 31 may be used.

また前記実施形態では、サイドギヤ支持面9sを第1軸線X1と直交する平面状に形成したものを示したが、サイドギヤ支持面9sを、テーパ面或いは球面状に形成してもよい。また前記実施形態では、ピニオンギヤ支持面9pを球面状に形成したものを示したが、ピニオンギヤ支持面9pをテーパ面、或いは第2軸線X2と直交する平面状に形成してもよい。 Further, in the above embodiment, the side gear support surface 9s is formed in a plane shape orthogonal to the first axis X1, but the side gear support surface 9s may be formed in a tapered surface or a spherical shape. Further, in the above embodiment, the pinion gear support surface 9p is formed in a spherical shape, but the pinion gear support surface 9p may be formed in a tapered surface or a plane shape orthogonal to the second axis X2.

またデフケース3の機械加工のための加工基準面f1〜f8は、これが同一の成形型としての砂中子N,N′,N″でデフケース3の内面3iと共にデフケース3外面に露出して成形される同一型成形外面に含まれ且つデフケース3及び加工装置相互を互いに直交する3方向に位置決め可能な面であれば、前記実施形態で示したものに限定されない。 Further, the machining reference surfaces f1 to f8 for machining the differential case 3 are formed by exposing them to the outer surface of the differential case 3 together with the inner surface 3i of the differential case 3 with sand cores N, N', N ″ as the same molding mold. The surface is not limited to the one shown in the above embodiment as long as it is included in the same molded outer surface and can position the differential case 3 and the processing apparatus in three directions orthogonal to each other.

また前記実施形態では、デフケース3の、砂中子N,N′,N″で成形される上記同一型成形外面に作業窓Hが含まれ、その作業窓Hの周囲の特定部分を加工基準面f1〜f8に利用するものを示したが、上記同一型成形外面に含まれる、作業窓H以外の成形部(例えば、デフケースの不図示の潤滑油流通用開口部等)を加工基準面に利用してもよい。 Further, in the above-described embodiment, the work window H is included in the same-molded outer surface of the differential case 3 formed by the sand cores N, N', N ″, and a specific portion around the work window H is formed as a processing reference surface. Although those used for f1 to f8 are shown, a molded portion other than the work window H (for example, an opening for lubricating oil flow not shown in the differential case) included in the same mold outer surface is used as a machining reference surface. You may.

また前記実施形態では、鋳造後のデフケース3に対し機械加工を行うための加工基準面f1〜f8を、全て同一の成形型(砂中子N,N′,N″)によりデフケース内面3iと共に成形するものを示したが、本発明では、少なくとも一部の加工基準面を砂中子とは別の成形型(例えばデフケースの外面成形用の鋳造型)で成形するようにしてもよい。 Further, in the above embodiment, the machining reference surfaces f1 to f8 for machining the diff case 3 after casting are all molded together with the diff case inner surface 3i by the same molding die (sand core N, N', N ″). However, in the present invention, at least a part of the processing reference surface may be formed by a molding die different from the sand core (for example, a casting die for forming the outer surface of the differential case).

C1,C2・・一対の中子型半体としての第1,第2中子型半体
F1〜F3・・第1〜第3の仮想平面
fc,fc′,fc″・・型合わせ面
G1〜G3・・凹溝
h1,h2・・軸受孔
N,N′,N″・・砂中子
PL1〜PL3・・パーティングラインとしての第1〜第3パーティングライン
S1,S2・・出力軸としての左右の車軸
X1, X2・・第1,第2軸線
3・・・・・・デフケース
3i・・・・・デフケースの内面
9s,9p・・ギヤ支持面としてのサイドギヤ支持面,ピニオンギヤ支持面
20・・・・・差動ギヤ機構
22・・・・・ピニオンギヤ
23・・・・・サイドギヤ
C1, C2 ... 1st and 2nd core half bodies as a pair of core half bodies F1 to F3 ... 1st to 3rd virtual planes fc, fc', fc "... ~ G3 ... Recessed grooves h1, h2 ... Bearing holes N, N', N "... Sand core PL1 to PL3 ... First to third parting lines S1, S2 as parting lines ... Output shaft Left and right axles X1, X2 ... 1st and 2nd axis 3 ... Diff case 3i ... Diff case inner surface 9s, 9p ... Side gear support surface as gear support surface, pinion gear support surface 20 ... Differential gear mechanism 22 ... Pinion gear 23 ... Side gear

Claims (4)

鋳造されたデフケース(3)と、前記デフケース(3)内に収納される差動ギヤ機構(20)とを備え、前記デフケース(3)の内面(3i)は、一対の中子型半体(C1,C2)相互を型合わせすることで成形した砂中子(N,N′,N″)で成形されると共に、前記差動ギヤ機構(20)のギヤ支持面(9s,9p)を有する差動装置において、
前記デフケース(3)の内面(3i)には、前記ギヤ支持面(9s,9p)の少なくとも一部を通る凹溝(G1〜G3)が前記砂中子(N,N′,N″)で成形されており、
前記凹溝(G1〜G3)は、前記中子型半体(C1,C2)相互の型合わせ面(fc,fc′,fc″)に対応して前記デフケース(3)の内面(3i)にパーティングライン(PL1〜PL3)が生じても該凹溝(G1〜G3)内に該パーティングライン(PL1〜PL3)を収め得る位置に配置されることを特徴とする差動装置。
A cast differential case (3) and a differential gear mechanism (20) housed in the differential case (3) are provided, and the inner surface (3i) of the differential case (3) is a pair of core half bodies (3i). C1, C2) It is formed of sand cores (N, N', N ″) formed by matching the molds with each other, and has a gear support surface (9s, 9p) of the differential gear mechanism (20). In a differential device
On the inner surface (3i) of the differential case (3), recessed grooves (G1 to G3) passing through at least a part of the gear support surface (9s, 9p) are formed by the sand cores (N, N', N ″). It is molded and
The recessed grooves (G1 to G3) correspond to the mating surfaces (fc, fc', fc ″) of the core half bodies (C1, C2) on the inner surface (3i) of the differential case (3). A differential device characterized in that even if a parting line (PL1 to PL3) is generated, it is arranged at a position where the parting line (PL1 to PL3) can be accommodated in the concave groove (G1 to G3).
前記差動ギヤ機構(20)は、第1軸線(X1)回りに回転可能な一対のサイドギヤ(23)と、前記第1軸線(X1)と直交する第2軸線(X2)回りに回転可能であって前記一対のサイドギヤ(23)に噛合する一対のピニオンギヤ(22)とを備えると共に、前記ギヤ支持面が、前記サイドギヤ(23)及び前記ピニオンギヤ(22)の各背面を支持するサイドギヤ支持面(9s)及びピニオンギヤ支持面(9p)を一対ずつ有し、
前記サイドギヤ支持面(9s)が、前記第1軸線(X1)と直交する平面であり、
前記凹溝(G1)は、前記ピニオンギヤ支持面(9p)において、前記第1軸線(X1)と直交し且つ該ピニオンギヤ支持面(9p)を二分する第1の仮想平面(F1)上に存する前記パーティングライン(PL1)を収め得る位置に配置されることを特徴とする、請求項1に記載の差動装置。
The differential gear mechanism (20) can rotate around a pair of side gears (23) that can rotate around the first axis (X1) and around a second axis (X2) that is orthogonal to the first axis (X1). A side gear support surface (22) is provided with a pair of pinion gears (22) that mesh with the pair of side gears (23), and the gear support surface supports the back surfaces of the side gear (23) and the pinion gear (22). It has a pair of 9s) and a pinion gear support surface (9p).
The side gear support surface (9s) is a plane orthogonal to the first axis (X1).
The recessed groove (G1) exists on a first virtual plane (F1) that is orthogonal to the first axis (X1) and divides the pinion gear support surface (9p) in the pinion gear support surface (9p). The differential device according to claim 1, wherein the differential device is arranged at a position where the parting line (PL1) can be accommodated.
前記差動ギヤ機構(20)は、第1軸線(X1)回りに回転可能な一対のサイドギヤ(23)と、前記第1軸線(X1)と直交する第2軸線(X2)回りに回転可能であって前記一対のサイドギヤ(23)に噛合する一対のピニオンギヤ(22)とを備えると共に、前記ギヤ支持面が、前記サイドギヤ(23)及び前記ピニオンギヤ(22)の各背面を支持するサイドギヤ支持面(9s)及びピニオンギヤ支持面(9p)を一対ずつ有し、
前記凹溝(G2)は、前記サイドギヤ支持面(9s)において、前記一対のピニオンギヤ支持面(9p)の相互間に在って該サイドギヤ支持面(9s)を二分する第2の仮想平面(F2)上に存する前記パーティングライン(PL2)を収め得る位置に配置されることを特徴とする、請求項1に記載の差動装置。
The differential gear mechanism (20) can rotate around a pair of side gears (23) that can rotate around the first axis (X1) and around a second axis (X2) that is orthogonal to the first axis (X1). A side gear support surface (22) is provided with a pair of pinion gears (22) that mesh with the pair of side gears (23), and the gear support surface supports the back surfaces of the side gear (23) and the pinion gear (22). It has a pair of 9s) and a pinion gear support surface (9p).
The concave groove (G2) is located between the pair of pinion gear support surfaces (9p) on the side gear support surface (9s) and divides the side gear support surface (9s) into two halves (F2). The differential device according to claim 1, wherein the differential device is arranged at a position where the parting line (PL2) existing above can be accommodated.
前記差動ギヤ機構(20)は、第1軸線(X1)回りに回転可能な一対のサイドギヤ(23)と、前記第1軸線(X1)と直交する第2軸線(X2)回りに回転可能であって前記一対のサイドギヤ(23)に噛合する一対のピニオンギヤ(22)とを備えると共に、前記ギヤ支持面が、前記サイドギヤ(23)及び前記ピニオンギヤ(22)の各背面を支持するサイドギヤ支持面(9s)及びピニオンギヤ支持面(9p)を一対ずつ有し、
前記凹溝(G3)は、前記サイドギヤ支持面(9s)及び前記ピニオンギヤ支持面(9p)において、該サイドギヤ支持面(9s)及び該ピニオンギヤ支持面(9p)を各々二分する第3の仮想平面(F3)上に存する前記パーティングライン(PL3)を収め得る位置に配置されることを特徴とする、請求項1に記載の差動装置。
The differential gear mechanism (20) can rotate around a pair of side gears (23) that can rotate around the first axis (X1) and around a second axis (X2) that is orthogonal to the first axis (X1). A side gear support surface (22) is provided with a pair of pinion gears (22) that mesh with the pair of side gears (23), and the gear support surface supports the back surfaces of the side gear (23) and the pinion gear (22). It has a pair of 9s) and a pinion gear support surface (9p).
The concave groove (G3) is a third virtual plane (9s) that divides the side gear support surface (9s) and the pinion gear support surface (9p) into two at the side gear support surface (9s) and the pinion gear support surface (9p). F3) The differential device according to claim 1, wherein the differential device is arranged at a position where the parting line (PL3) existing on the F3) can be accommodated.
JP2019125496A 2019-07-04 2019-07-04 Differential gear Pending JP2021011901A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019125496A JP2021011901A (en) 2019-07-04 2019-07-04 Differential gear
PCT/JP2020/025978 WO2021002419A1 (en) 2019-07-04 2020-07-02 Differential device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019125496A JP2021011901A (en) 2019-07-04 2019-07-04 Differential gear

Publications (1)

Publication Number Publication Date
JP2021011901A true JP2021011901A (en) 2021-02-04

Family

ID=74100367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019125496A Pending JP2021011901A (en) 2019-07-04 2019-07-04 Differential gear

Country Status (2)

Country Link
JP (1) JP2021011901A (en)
WO (1) WO2021002419A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10281256A (en) * 1997-04-03 1998-10-23 Yanagawa Seiki Kk Manufacture of aluminum differential case casting and casting mold used therein
JP6876592B2 (en) * 2017-10-30 2021-05-26 武蔵精密工業株式会社 Differential device

Also Published As

Publication number Publication date
WO2021002419A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
JP6876592B2 (en) Differential device
US10036461B2 (en) Differential gear case and method for processing same
JP2018128078A (en) Power transmission device
WO2021002418A1 (en) Differential device
WO2021002419A1 (en) Differential device
US11841069B2 (en) Power transmission device
US11873887B2 (en) Power transmission device
JP2017082919A (en) Differential gear
JPH07208585A (en) Carrier device for planetary gear device
WO2019188672A1 (en) Differential device
JP2021008899A (en) Transmission device
WO2020184707A1 (en) Differential gear
JP2019132389A (en) Differential device
US20090280946A1 (en) Vehicular differential gear apparatus
JP2018123881A (en) Differential device and method of manufacturing differential device
JP2017198238A (en) Differential gear case
JP6350572B2 (en) Differential device and manufacturing method thereof
JP3856093B2 (en) Vehicle transfer device
CN212004150U (en) Differential gear
JP2020143774A (en) Differential device
CN113994125B (en) Transmission device
WO2019176779A1 (en) Differential device
JP2017194156A (en) Differential device
JP2017116092A (en) Differential device
JP6683473B2 (en) Differential