JP2021009682A - 自律オブジェクトへの指示 - Google Patents

自律オブジェクトへの指示 Download PDF

Info

Publication number
JP2021009682A
JP2021009682A JP2020060203A JP2020060203A JP2021009682A JP 2021009682 A JP2021009682 A JP 2021009682A JP 2020060203 A JP2020060203 A JP 2020060203A JP 2020060203 A JP2020060203 A JP 2020060203A JP 2021009682 A JP2021009682 A JP 2021009682A
Authority
JP
Japan
Prior art keywords
map
dynamic
physical
vehicle
mobile object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020060203A
Other languages
English (en)
Inventor
バット・アイシャ ナスィール
Naseer Butt Aisha
バット・アイシャ ナスィール
シャトン・トマ
Chaton Thomas
ジャバー・モナ
Jaber Mona
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JP2021009682A publication Critical patent/JP2021009682A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0011Planning or execution of driving tasks involving control alternatives for a single driving scenario, e.g. planning several paths to avoid obstacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0021Planning or execution of driving tasks specially adapted for travel time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0027Planning or execution of driving tasks using trajectory prediction for other traffic participants
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/04Detecting movement of traffic to be counted or controlled using optical or ultrasonic detectors
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/164Centralised systems, e.g. external to vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2754/00Output or target parameters relating to objects
    • B60W2754/10Spatial relation or speed relative to objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3407Route searching; Route guidance specially adapted for specific applications

Abstract

【課題】リアルタイムセンサデータを用いて領域をマッピングし、移動経路を指示するメカニズムを提供する。【解決手段】無線接続機能を有するモバイルオブジェクトは、自律/半自律モードで制御可能であり、第1計算装置においてリアルタイムセンサデータから関心物理領域の4次元マップ(3つの空間次元と時間)に含まれる動的オブジェクトの予測される経路に基づいて、モバイルオブジェクトの将来の移動経路を決定し、それに従うように指示する。【選択図】図1

Description

本発明は、無線接続機能を有する自律モバイルオブジェクトの分野に関し、特に、リアルタイムセンサデータを用いて領域をマッピングし、移動経路を指示するメカニズムに関する。
自律又は自動走行車両及び半自律的車両が発展しつつあり、将来の自動車販売の大きな部分を占めると予測されている。いくつかの推定によれば、全市場は2030年までに1兆5千億ドルに達すると推定されている。自律及び半自律的車両は2021年頃に市場に参入すると予測されている。
市場への主要な障壁は安全性であり、特に、自律又は半自律的車両が衝突を回避する能力が確立されることが必要である。
車両自体が衝突回避の役割を有する計算装置をホストする実施形態には弱点がある。その理由は、多数のセンサからのデータを高速に処理しなければならず、これはハイパワー計算装置が必要となる。さらに、正確性はセンサのブラインドスポットにより損なわれる。
衝突回避がクラウドにまかされる実施形態は、高いロバスト性、広い帯域幅、低いレイテンシ、クラウドと車両とのネットワーク接続が要求されることにより制約される。
現在の技術は、複数のモバイルオブジェクトのグループ(群れ)の振る舞いを予測または追跡することができない。オブジェクト間の点別接触を予測することは技術的に難しい問題である。クラウドにおいて知的意思決定を実行することは、効率的ではなく、衝突回避メカニズムにレイテンシを生じる。
現在の技術の一以上の問題を少なくとも部分的に解決する衝突回避メカニズムを提供することが望ましい。
実施形態は、無線接続機能を有するモバイルオブジェクトの移動経路を指示する方法を含む。該方法は、前記モバイルオブジェクトはオンボードオブジェクト制御装置により自律モードまたは半自律モードで制御可能であり、前記方法は、第1計算装置において、関心時間フレームにわたる関心物理領域の4次元のマップを保持することであって、前記マップは前記物理領域内の静的物理オブジェクトおよび動的物理オブジェクトを表す対応する静的マップオブジェクト及び動的マップオブジェクトを含み、前記動的マップオブジェクトのうちの1つは前記モバイルオブジェクトを表し、前記4次元は3つの空間次元と時間であり、前記時間フレームは現在の先の将来の画定された持続時間である将来期間を含む、保持することと、各動的マップオブジェクトの4次元マップ座標は、前記動的物理オブジェクトの位置を示す前記物理領域からのリアルタイムセンサデータ、及び前記将来期間の前記動的マップオブジェクトの予測された経路に基づき、前記4次元マップを使用して、前記モバイルオブジェクトの移動経路におうじた一以上のファクタ目的関数を解く、前記将来期間における前記モバイルオブジェクトの移動経路を決定することと、前記モバイルオブジェクトに、決定した前記移動経路に従うように指示することと、を含む。
有利にも、実施形態は、オブジェクトの将来の位置を予測する、4次元マップを維持し、オブジェクト間の空間的相互作用を予測し、自律的車両に、目的関数を解く移動経路を取るように指示する。実施形態は、関心物理領域内のオブジェクトの4次元動的マップを計算する。動的オブジェクトの予測経路は、オブジェクトの軌跡を予測し、オブジェクトが特定の時間に特定の位置に到着する可能性をマッピングされる。実施形態により、複数の静的および動的オブジェクト(車両および非車両の両方)の位置とそれらの挙動を予測し、マップで追跡し、4次元マップを形成するシステムが可能となる。実施形態は、リアルタイムセンサデータを用いて4次元マップを連続的に更新する。マップは、目的関数に関して潜在的な移動経路を評価し、目的関数を最もよく満たす移動経路を決定するために使用される。決定された移動経路が指示される。
任意的に、モバイルオブジェクトは車両であり、オンボードオブジェクト制御装置は車両制御装置である。
任意的に、目的関数は前記モバイルオブジェクトを表す前記動的マップオブジェクトと、他の静的または動的マップオブジェクトとの間の空間的相互作用を最小化し、空間的相互作用は所定閾値より短いオブジェクト間の距離である。
目的関数は、汚染(例、騒音汚染、CO2発生、または他の形態の汚染)を低減しながら、物理領域の移動性を最適化することであってもよい。
任意的に、目的関数は、汚染の単位当りの移動性を最適化することであり、または、前記目的関数は車両占有率を最大化し、または前記目的関数は残存バッテリー寿命を考慮して電動車両が所定目的地に到達できるようにする。
動的オブジェクトの予測経路は、第1計算装置によって、またはそれに接続された別の計算装置によって計算することができる。計算装置上で実行される人工知能アルゴリズムは、予測された経路を計算するように動作可能であり、これは、特性が関連するオブジェクトの特性と一致する(またはその閾値距離内にある)オブジェクトによって取られた履歴経路に基づいてもよい。対象車両の場合、次のようになる可能性がある。
任意的に、各動的マップオブジェクトの予測経路は、将来期間中の複数の時間ステップの各々における、予測される空間3次元マップ座標を含む。一以上の動的マップオブジェクトが、車両が各オンボード制御装置により自律モードで又は半自律モードで運転されていることを表す場合、そのモバイルオブジェクトの予測経路は、オンボード制御装置により計算され、マッピングのため、第1計算装置に送信される。
有利にも、このような実施形態は、車両の経路を制御するアルゴリズムまたはソフトウェアを利用して、対象車両の経路を予測するためのデータの一部または全部を提供する。
実施形態は、関心領域内の動的オブジェクトの予測される経路を制約するために、関心物理領域を観察する、車両搭載型および静止型の両方のセンサのネットワークを利用する。具体的に、前記4次元マップを保持することは、動的マップオブジェクトに対応する動的物理オブジェクトの前記物理領域中の位置を示すリアルタイムセンサデータを、複数のセンサから集めることを含み、前記将来期間における複数の時間ステップの各々において、各動的マップオブジェクトに空間3次元マップ座標をマッピングすることは、前記リアルタイムセンサデータ中の対応する動的物理オブジェクトの位置に基づく。
さらに、前記複数のセンサは、前記物理領域中の動的物理オブジェクトに取り付けられたセンサと、静的物理領域に取り付けられ、前記物理領域のデータを読み取るように構成されたセンサとを含んでもよい。
任意的に、前記複数のセンサは、前記物理領域中の動的物理オブジェクトに取り付けられたセンサ、前記物理領域中の静的オブジェクトに取り付けられたセンサ、及び/又は前記物理領域の外の、前記物理領域からデータを読み取る動的物理オブジェクトに取り付けられたセンサを含む。
有利にも、このような実施形態は、オブジェクト間の衝突を具体的に予測し、車両制御装置に、予測された衝突を回避する移動経路をとるように指示する。
任意的に、前記モバイルオブジェクトを表す動的オブジェクトと、前記静的または動的マップオブジェクトのうちの他のオブジェクトとの間の空間的相互作用は、2つのオブジェクトの同時空間的3次元マップ座標が所定の接触閾値距離内にあることである。
任意的に、空間的相互作用の特定は、前記モバイルオブジェクトを表す動的マップオブジェクトの予測経路を、前記モバイルオブジェクトを表す動的マップオブジェクトの現在位置の第1画定閾値距離内の現在位置を有する動的マップオブジェクトの予測経路と、及び前記モバイルオブジェクトを表す動的マップオブジェクトの現在位置の第2の画定閾値距離内の静的マップオブジェクトの位置と比較することにより行われる。
画定された第1しきい値距離は、対象となる車両の現在の速度、対象となる物理領域のリスクプロファイル、対象となる車両に関する履歴情報、対象となる車両のドライバに関する履歴情報のうちの1つ以上に基づくことができる。画定された第2しきい値距離は、対象となる車両に特有の設定可能な設定、対象となる物理領域内のすべての車両に対するグローバルに設定可能な設定のうちの1つ以上に基づいてもよい。
任意的に、前記方法はさらに、前記モバイルオブジェクトに取り付けられた第2計算装置において、前記第1計算装置に定期的に問い合わせることと、前記第1計算装置において、現在位置を有する任意の動的マップオブジェクトの予測経路またはその一部、あるいは前記車両からの距離が将来の関心期間においていつか距離閾値により画定される距離内であることを示す予測経路を含むクエリ応答を、前記第2計算装置に送信することにより、前記クエリに応答すること、及び前記第2計算装置において、前記クエリ応答中の前記動的マップオブジェクトの予測経路及び前記車両の予測経路を使用して、予測経路が同時に、将来の関心期間における前記モバイルオブジェクトの予測経路の画定の接触閾値距離内にある動的マップオブジェクトをマップイベントとして特定することとを含む。
有利にも、そのような実施形態は、対象となる車両に関連するデータのための4次元マップを形成するデータをフィルタリングし、その結果、レイテンシが短縮され、帯域幅が他の車両および/または他のプロセスのために保存される。
任意的に、距離しきい値は、第1計算装置または第2の計算装置によって決定され、距離しきい値は、車両に関する履歴データに基づいている。
任意的に、前記4次元マップを保持することは、一以上の予測された動的マップオブジェクトで前記静的および動的マップオブジェクトを強調することを含み、前記予測された動的マップオブジェクトは、動的マップオブジェクトの一部であり、現在時間と前記将来期間の終わりとの間のマッピング時点に前記マップに現れ、予測される動的マップオブジェクトの外観は、物理領域における動的物理オブジェクトの外観、前記物理領域からのリアルタイムセンサデータ、及び/又は前記物理領域のイベントの通知に基づいて予測される。
有利にも、そのような実施形態は、リアルタイムセンサ以外のデータソースを利用して、追加情報、すなわち、予測され得る空間的相互作用の範囲を拡大し、対象車両の目的関数を解くために使用されるマップの能力を改善する、予測されるオブジェクトの位置および動きによってマップを補強する。
特に、マップイベントの空間的相互作用は、車両オブジェクトが前記位置にいると予測されるマップされる時点において、予測された動的マップオブジェクトの一以上が、は、オンボード制御装置が車両が従うように制御しているルート上の位置における車両オブジェクトの動きを制約することであってもよい。
そのような実施形態は、車両制御装置の能力を向上させるために、例えば、可能な限り早く到着する、または所定の時間制限内に到着する、対象車両の目的関数を最適化するルートを選択するために、4次元マップを利用する。
他の一態様の実施形態は、無線接続機能を有するモバイルオブジェクトに指示するシステムであって、前記モバイルオブジェクトはオンボード制御装置により自律モードまたは半自律モードで制御可能であり、前記装置は、メモリとプロセッサとを有し、前記メモリは、前記プロセッサにより実行されると、前記プロセッサに、次のステップを含むプロセスを実行させる第1計算装置であって:関心時間フレームにわたる関心物理領域の4次元のマップを保持することであって、前記マップは前記物理領域内の静的物理オブジェクトおよび動的物理オブジェクトを表す対応する静的マップオブジェクト及び動的マップオブジェクトを含み、前記動的マップオブジェクトのうちの1つは前記モバイルオブジェクトを表し、前記4次元は3つの空間次元と時間であり、前記時間フレームは現在の先の将来の画定された持続時間である将来期間を含む、保持することと、各動的マップオブジェクトの4次元マップ座標は、前記動的物理オブジェクトの位置を示す前記物理領域からのリアルタイムセンサデータ、及び前記将来期間の前記動的マップオブジェクトの予測された経路に基づき、オンボード制御装置メモリとオンボード制御装置プロセッサとを有するオンボード制御装置であって、前記オンボード制御装置メモリは、前記オンボード制御装置プロセッサにより実行されると、前記オンボード制御装置プロセッサに次のステップを含むプロセスを実行させる処理命令を格納している:前記4次元マップを使用して、前記モバイルオブジェクトの移動経路におうじた一以上のファクタを有する目的関数を解く、前記将来期間における前記モバイルオブジェクトの移動経路を決定することと、前記モバイルオブジェクトに、決定した前記移動経路に従うように指示する。
他の一態様の実施形態は、無線接続機能を有するモバイルオブジェクトの移動経路を指示する装置であって、前記モバイルオブジェクトはオンボード制御装置により自律モードまたは半自律モードで制御可能であり、前記装置は、メモリとプロセッサとを有し、前記メモリは、前記プロセッサにより実行されると、前記プロセッサに、次のステップを含むプロセスを実行させる第1計算装置であって:関心時間フレームにわたる関心物理領域の4次元のマップを保持することであって、前記マップは前記物理領域内の静的物理オブジェクトおよび動的物理オブジェクトを表す対応する静的マップオブジェクト及び動的マップオブジェクトを含み、前記動的マップオブジェクトのうちの1つは前記モバイルオブジェクトを表し、前記4次元は3つの空間次元と時間であり、前記時間フレームは現在の先の将来の画定された持続時間である将来期間を含む、保持することと、各動的マップオブジェクトの4次元マップ座標は、前記動的物理オブジェクトの位置を示す前記物理領域からのリアルタイムセンサデータ、及び前記将来期間の前記動的マップオブジェクトの予測された経路に基づき、前記4次元マップを使用して、前記モバイルオブジェクトの移動経路におうじた一以上のファクタを有する目的関数を解く、前記将来期間における前記モバイルオブジェクトの移動経路を決定することと、前記モバイルオブジェクトに、決定した前記移動経路に従うように指示する。
別の態様の実施形態は、一実施形態の方法を実行するためのコンピュータプログラムを含む。
実施形態は下記を含む。本方法は、車両の移動経路を指示する方法であり、車両は車両制御装置により自律モードまたは半自律モードで運転され、前記方法は、第1計算装置において、関心時間フレームにわたる関心物理領域の4次元のマップを保持することであって、前記マップは前記物理領域内の静的物理オブジェクトおよび動的物理オブジェクトを表す対応する静的マップオブジェクト及び動的マップオブジェクトを含み、前記動的マップオブジェクトのうちの1つは前記車両を表し、前記4次元は3つの空間次元と時間であり、前記時間フレームは現在の先の将来の画定された持続時間である将来期間を含む、保持することと、各動的マップオブジェクトの4次元マップ座標は、前記動的物理オブジェクトの位置を示す前記物理領域からのリアルタイムセンサデータ、及び前記将来期間の前記動的マップオブジェクトの予測された経路に基づき、将来期間中にマップイベントに応答することであって、マップイベントは、車両を表す動的マップオブジェクトと、他の静的または動的マップオブジェクトとの間の空間的相互作用であり、対応は、車両制御装置に空間的相互作用を会費する移動経路を仮定することにより行う。
任意的に、空間的相互作用を回避するように構成された実施形態では、上述のステートメントの概略のように、各動的マップオブジェクトの予測経路は、将来期間中の複数の時間ステップの各々における、予測される空間3次元マップ座標を含む。
有利にも、実施形態は、オブジェクトの将来の位置を予測する、4次元マップを維持し、オブジェクト間の空間的相互作用を予測し、自律的車両に前記空間的相互作用に巻き込まれることを回避するように指示する。実施形態は、関心物理領域内のオブジェクトの4次元動的マップを計算する。動的オブジェクトの予測経路は、オブジェクトの軌跡を予測し、オブジェクトが特定の時間に特定の位置に到着する可能性をマッピングされる。実施形態により、複数の静的および動的オブジェクト(車両および非車両の両方)の位置とそれらの挙動を予測し、マップで追跡し、4次元マップを形成するシステムが可能となる。実施形態は、リアルタイムセンサデータを用いて4次元マップを連続的に更新する。
他の一態様の実施形態は、車両の移動経路を指示するシステムであり、前記車両は車両制御装置により自律モードまたは半自律モードで運転され、前記装置は、メモリとプロセッサとを有し、前記メモリは、前記プロセッサにより実行されると、前記プロセッサに、次のステップを含むプロセスを実行させる第1計算装置であって:関心時間フレームにわたる関心物理領域の4次元のマップを保持することであって、前記マップは前記物理領域内の静的物理オブジェクトおよび動的物理オブジェクトを表す対応する静的マップオブジェクト及び動的マップオブジェクトを含み、前記動的マップオブジェクトのうちの1つは前記車両を表し、前記4次元は3つの空間次元と時間であり、前記時間フレームは現在の先の将来の画定された持続時間である将来期間を含む、保持することと、各動的マップオブジェクトの4次元マップ座標は、前記動的物理オブジェクトの位置を示す前記物理領域からのリアルタイムセンサデータ、及び前記将来期間の前記動的マップオブジェクトの予測された経路に基づき、メモリとプロセッサとを有し、前記メモリは、前記プロセッサにより実行されると、前記プロセッサに、次のステップを含むプロセスを実行させる車両制御装置であって:将来期間中にマップイベントに応答することであって、マップイベントは、車両を表す動的マップオブジェクトと、他の静的または動的マップオブジェクトとの間の空間的相互作用であり、対応は、車両制御装置に空間的相互作用を会費する移動経路を仮定することにより行う。
他の一態様の実施形態は、車両の移動経路を指示する装置であり、前記車両は車両制御装置により自律モードまたは半自律モードで運転され、前記装置は、メモリとプロセッサとを有し、前記メモリは、前記プロセッサにより実行されると、前記プロセッサに、次のステップを含むプロセスを実行させる第1計算装置であって:関心時間フレームにわたる関心物理領域の4次元のマップを保持することであって、前記マップは前記物理領域内の静的物理オブジェクトおよび動的物理オブジェクトを表す対応する静的マップオブジェクト及び動的マップオブジェクトを含み、前記動的マップオブジェクトのうちの1つは前記車両を表し、前記4次元は3つの空間次元と時間であり、前記時間フレームは現在の先の将来の画定された持続時間である将来期間を含む、保持することと、各動的マップオブジェクトの4次元マップ座標は、前記動的物理オブジェクトの位置を示す前記物理領域からのリアルタイムセンサデータ、及び前記将来期間の前記動的マップオブジェクトの予測された経路に基づき、将来期間中にマップイベントに応答することであって、マップイベントは、車両を表す動的マップオブジェクトと、他の静的または動的マップオブジェクトとの間の空間的相互作用であり、対応は、車両制御装置に空間的相互作用を会費する移動経路を仮定することにより行う。
ここで、添付した図面の実施形態の特徴を、例として説明する。
一実施形態による方法を示す図である。 一実施形態によるハードウェア構成を示す図である。 一実施形態を示す図である。 一実施形態における車両制御装置を示す図である。 一実施形態によるネットワークアーキテクチャを示す図である。 一実施形態によるデータフローを示す図である。 マップを維持する例示的過程において実行される機能フローを示す図である。 マップオブジェクト間の空間的相互作用を予測する例示的プロセスで実行される機能フローを示す図である。 実施シナリオを示す図である。 第1計算装置により計算及び保持されるデータの一部を示す図である。 時刻t1に車両のオブジェクト接触予測装置により処理されるデータを示す図である。 サブジェクト車両の様々な動的オブジェクトとの共存を予測するときの、オブジェクト接触予測装置の役割を示す図である。 経路最適化タスクにおいて実施される一実施形態を示す図である。 一実施形態による計算装置のハードウェア構成を示す図である。
図1は、一実施形態による方法を示す図である。本方法は2つのステップを含み、ステップS101において、関心物理領域の4次元マップを保持し、ステップS102において、動き経路を指示することによりマップイベントに対応する。本方法は、スマートオブジェクトの動き経路を指示する方法であり、スマートオブジェクトは、オンボード制御装置により自律モードまたは半自律モードで駆動される。本車両は自動運転車両であってもよい。
図2は、一実施形態によるハードウェア構成を示す図である。本実施形態は、第1計算装置10を含み、これは第1計算装置プロセッサ12と、第1計算装置メモリ14と、第1通信装置通信インターフェース16とを有する。残るハードウェアは、実施形態の一部を構成してもよいし、本実施形態に含まれる一以上のハードウェアに通信可能に結合した、本実施形態とは別のハードウェアであってもよい。残るハードウェアは、車両などのスマートオブジェクト2を含む。これは制御装置20により自律モードまたは半自律モードで運転される。オンボード制御装置20は、オンボード制御装置プロセッサ22と、オンボード制御装置メモリ24と、オンボード制御装置通信インターフェース26とを含む。一以上のセンサ28がモバイルオブジェクト2に設置されてもよい。これは、通信インターフェース26と、第1計算装置通信インターフェース16とを介して、第1通信装置10に、関心物理領域200内のオブジェクトの位置を表すリアルタイムセンサデータを提供してもよい。設置されるセンサ28はLIDAR、RADARまたはカメラであってもよい。
物理領域200は静的センサ30により監視されてもよい。これは実施形態の一部であってもよく、実施形態の外部にあって、実施形態の第1計算装置10と通信可能に結合していてもよい。静的センサ30は、関心物理領域200内のオブジェクトの位置を表すリアルタイムセンサデータを、第1計算装置10に提供するように構成されている。 静的センサ30は、例えばLIDAR、RADARまたはカメラであってもよい。静的センサ30は、建物に固定されていてもよく、例えばポール40に設置されていてもよい。ポールは、関心物理領域内の静的物理オブジェクトの例である。留意点として、静的センサ30は、関心物理領域内にある必要はなく、そこからデータを読み取れればよい。関心物理領域200には、自転車に乗っているサイクリストなどの動的物理オブジェクト50がいてもよい。
ステップS101は第1計算装置10により実行される。S101は保持ステップであり、離散的なステップではなく継続的に実行されると理解すべきである。それゆえ、S102はS101と同時に実行される。
S101は、第1計算装置10において、関心時間フレームにわたり関心物理領域200の4次元マップを保持することを含む。このマップは、物理領域200内の対応する静的物理オブジェクト40及び動的物理オブジェクト50を表す静的マップオブジェクト及び動的マップオブジェクトを含んでいてもよい。動的マップオブジェクトの一つはモバイルオブジェクト2を表す。4次元は3つの空間次元と時間である。時間フレームは将来の時間(期間)を含み、現在以降の将来の画定された時間である。各動的マップオブジェクトのマップ位置は、物理領域200からのリアルタイムセンサデータに基づき、対応する動的物理オブジェクトの位置と、将来期間における動的マップオブジェクトの予測経路とを示す。
第1計算装置10は、クラウドサーバ、フォグ(fog)サーバ又はエッジサーバであってもよい。第1計算装置10は、相互接続された複数のサーバであってもよい。これらのサーバはクラウドサーバ、フォグサーバまたはエッジサーバである。第1計算装置10はネットワークのエッジにあるサーバであってもよい。例えば、第1計算装置10は、ネットワーク階層において、SCoT(Smart Connected Thig)とクラウドサーバとの間にあってもよい。第1計算装置10は、リアルタイムセンサの間にあってもよい。これは、車両及び関心物理領域中の静的オブジェクト、及びクラウドサーバなどの集中ネットワークエンティティに配置されてもよい。かかるリアルタイムセンサは4次元マップの基礎をなすリアルタイムセンサデータを提供する。第1計算装置10は、ワンホップ、ツーホップまたはスリーホップデータ通信経路で、リアルタイムセンサ及び/又はオンボード制御装置とデータ通信してもよい。
第1計算装置10は、アップリンク方向で、関心物理領域200に関するリアルタイムセンサデータを受信してもよい。センサは、物理領域200からリアルタイムセンサデータを生成する。マップはそのリアルタイムセンサデータに基づく。センサは、第1通信装置10へのデータ接続を有してもよい。このデータ接続は、例えば第1計算装置通信インターフェース16へのアップリンクデータ接続のみをフィーチャーしてもよい。第1通信装置10は、ダウンリンクデータ接続のみをフィーチャーする。オンボード制御装置20とのデータ接続を有してもよい。第1計算装置10は、センサ及びオンボード制御装置20と、低レイテンシ接続を有する。 第1計算装置は、ネットワーク階層の上位ノードからのデータがなければ、ステップS101を実行してもよく、任意的にステップS102も実施してもよい。
モバイルオブジェクト2は無線接続機能を有する。モバイルオブジェクト2は、オンボードセンサからのセンサデータに基づいて、及び任意的にモバイルオブジェクト2が接続されている計算装置、ネットワークまたはサーバにセンサデータを供給するその他のセンサからのセンサデータに基づいて、モバイルオブジェクトの移動経路に関する決定をするように構成されてもよい。モバイルオブジェクト2は車両であってもよく、特に自動車であってもよい。車両2は、車、トラック、ローリーまたはバンであってもよい。車両2はボートであってもよい。車両2は航空機であってもよい。車両2は、オンボード制御装置により自律モードまたは半自律モードで動作する。この文脈で動作可能とは、移動を制御可能であることを意味し、自律モードにおいて、オンボード制御装置20が車両2の移動の速度及び方向を制御する役割を有し(マニュアルオーバーライドが許されることに留意する)、半自律モードにおいて、オンボード制御装置20は、(正当なエンティティから)指示を受信した時などの特定の状況では、車両2の移動の速度と方向を制御してもよい。
オンボード制御装置20は、車両2の移動(の速度と方向)を制御し、オンボード制御装置通信インターフェース26を介して少なくとも第1計算装置10を含むエンティティと通信するように構成されている。オンボード制御装置20は、正当なエンティティから受信した指示を実施するように構成されている。実施形態においては、第1計算装置10は、オンボード制御装置20に指示することが正当にできるものと仮定する。
第1計算装置10は、物理領域200のマップを保持する。 マップは第1計算装置メモリ14に格納され、マップ更新及びその他の関連する処理は第1計算装置通信プロセッサ12により実行される。マップの一部(map excerpt)はオンボード制御装置メモリ24に格納されてもよい。マップは物理領域200の4次元マップである。物理領域200は、例えば管理者により、第1計算装置10に対して画定された特定の物理領域200であることを示すため、「関心領域」と呼ばれる。関心領域200は、自律的車両が走行する物理領域であってもよい。他の一実施形態では、関心領域200は、車両が通る潜在的な経路の交わりであってもよく、何らかの衝突回避メカニズムを設けることが望ましい。
関心物理領域200には、静的物理オブジェクト40と動的物理オブジェクト50とがいる。静的物理オブジェクト40は、関心領域にいるこれらのオブジェクトであり、それらの位置が、将来のマップの所定期間より長い時間フレームにわたり一定であるものである。静的物理オブジェクト40の位置は、実際には、将来のマップの所定期間よりずっと長い間一定であってもよい。動的物理オブジェクト50はその位置が時間的に変化する物理オブジェクトである。動的物理オブジェクト50は、現在は静的であるが、可動であることが知られているオブジェクト、例えば人や車両を含む。マップは、物理領域200内の静的物理オブジェクト40と動的物理オブジェクト50を表す、対応する静的マップオブジェクトと動的マップオブジェクトを含む。動的物理オブジェクトと動的マップオブジェクトとの用語は区別されており、動的マップオブジェクトは物理領域にあり、動的マップオブジェクトは対応する動的物理オブジェクトを表し、マップ領域にある。同様に静的物理オブジェクトと静的マップオブジェクトも区別されている。留意点として、マップ中のオブジェクトは、リアルタイムセンサデータを提供するセンサにより、動いていることが初めて観測されるまでは、静的マップオブジェクトとして記録および処理されてもよい。動いていることが観測されると、そのオブジェクトはマップにおいて動的マップオブジェクトとしてラベルされ、そのように処理される。
動的マップオブジェクトの一つはモバイルオブジェクト2、すなわち、ステップS102で指示されるモバイルオブジェクト2を表す。モバイルオブジェクト2は車両であってもよく、例えば、制御可能車両、指示可能車両、又は対象車両と呼んでもよい。
マップは4次元マップであり、4次元は空間3次元と時間であり、動きを表すようになっている。このマップは、(将来の時間期間などの)マップされる時間を時間ステップに分割し、各時間ステップにおけるマップされるオブジェクトの位置(position and location)を表すことにより構成され得る。時間ステップは必ずしも等しくなくてもよい。例えば、時間ステップは、現時点と将来の第1時点との間では短く、その後、長くなってもよい。あのように、より多くの処理とメモリ資源とが、間近のリスクに当てられる。各時間ステップはマップ時点と呼ばれてもよく、マップ時点はマップ中に表された時点(instant in time)である。例えば、マップが座標に基づく場合、時間ステップとマップ時点は座標表現された時間により仮定される値である。
各動的マップオブジェクトの4次元マップ座標は、対応する動的物理オブジェクトの位置を示す物理領域200からのリアルタイムセンサデータと、将来期間における動的マップオブジェクトの予測経路とに基づく。各動的マップオブジェクトの予測経路は、将来期間中の複数の時間ステップの各々における、予測される空間3次元マップ座標を含む。各動的マップオブジェクトは、動的マップオブジェクトがマップ中にある各マップ時点における空間3次元座標を有する。マップにより表される時間フレームは、将来期間を含む。将来期間は現在を超える将来の定められた持続時間である。定められた期間は、システム管理者により所定されてもよく、または処理及びメモリの利用可能性に応じて決定されてもよい。マップにより表される時間フレームは、現在時間を表すマップ時点があるようになっている。現在時間における動的マップオブジェクトの位置は、現在時間またはより前の時間のどちらかにとられたリアルタイムセンサリーディングに基づき、現在時間を含む時間フレームにわたる動的マップオブジェクトの予測経路の基礎として用いられる。かかる予測経路は、更新されるリアルタイムセンサリーディングに応じて修正されてもよい。各動的マップオブジェクトのマップ位置は、対応する動的物理オブジェクトの位置を示す物理領域からのリアルタイムセンサデータに基づいてもよく、将来期間の動的マップオブジェクトの予測経路に基づいてもよい。予測経路は、第1計算装置10により計算され、動的マップオブジェクトが自律または半自律的車両を表す場合には、その車両2のオンボード制御装置20により計算され、アップリンクデータ接続を介して第1計算装置10に送信されるように構成されてもよい。一以上の動的マップオブジェクトが、車両が各車両制御装置により自律モードで又は半自律モードで運転されていることを表す場合、その車両の予測経路は、オンボード制御装置により計算され、マッピングのため、第1計算装置に送信される。
衝突回避に関する一実施形態におけるステップS102の一例をここで説明する。ステップS102において、将来期間におけるマップイベント、すなわち予測マップイベントには、マップイベントを回避する移動経路を仮定するようにモバイルオブジェクトに指示することに対応する。本実施形態において、ステップS102は、将来期間中にマップイベントに対応することを含み、マップイベントは、車両を表す動的マップオブジェクトと、他の静的または動的マップオブジェクトとの間の空間的相互作用であり、対応は、車両制御装置に空間的相互作用を会費する移動経路を仮定することにより行う。
ステップS102は、モバイルオブジェクト2に、ある移動経路を取るように、またはある指定された空間的および時間的制約にフィットする移動経路を取るように指示することを含む。前記4次元マップを使用して、前記モバイルオブジェクトの移動経路におうじた一以上のファクタを有する目的関数を解く、前記将来期間における前記モバイルオブジェクトの移動経路を決定することと、前記モバイルオブジェクトに、決定した前記移動経路に従うように指示することと、ステップS102は、第1計算装置10により、オンボード制御装置20により実行されてもよく、ステップS102は、モバイルオブジェクトに取り付けられ、オンボード制御装置20に通信可能に結合された計算装置により実行されてもよく、モバイルオブジェクトに取り付けられ、オンボード制御装置20に通信可能に結合された計算装置は、本開示では、オンボード制御装置20のコンポーネントである。命令は車両を運転するように動作可能なアルゴリズム、アルゴリズム群またはソフトウェアに提供されてもよい。
目的関数は多因子(multi−factorial)であってもよい。目的関数を解くことは、最小化、最大化、又は目標値への接近であってもよい。目的関数を解くことは、指定された一以上の制約または基準を満たしつつ、最小化、最大化、又は目標値への接近であってもよい。目的関数は、例えば、ライドシェアの機会を最大化しつつ、バッテリー充電レベルをゼロにせずに、または10%などの閾値より下にせずに、指定の目的地に到着することであってもよい。目的関数は、関心物理領域中のオブジェクト数に関連して、目的関数を解くことは、(モバイルオブジェクト2を含む)複数のモバイルオブジェクトの移動経路を決定して指示することを含んでもよい。目的関数は、指定された時間的制約内に、指定目的地に到着するために移動する距離、指定目的地に到着するであろう距離、または指定された複数の距離のうちの1つを最小化してもよい、4次元マップは、将来の物理領域にオブジェクトをモデル化ししてもよく、これによりモバイルオブジェクトの様々な移動経路が目的関数の解になり、そのモバイルオブジェクトの移動経路を決定することができる。目的関数は、他のオブジェクトとの空間的相互作用を回避してもよい。ここで、空間的相互作用は、2つのオブジェクト間の距離が短くなり所定限度内に入ることである。
S102を実行するエンティティは、目的関数の解になる移動経路を仮定する指示を車両に発行する。この指示は、目的関数の解を求めるために、オンボード制御装置20が従う移動経路の表示を含んでもよい。あるいは、この指示は、移動経路に対する一以上の制約を示してもよく、例えば、車両の移動経路において、回避されるべき又は含まれるべき3次元(または4次元)座標を示してもよい。指定される制約は目的地または一連の目的地であってもよい。
オンボード制御装置20は、指定の制約に従うことにより、目的関数の解を求める移動経路を形成することにより、または指示しているエンティティにより形成された、その指示に含まれる移動経路を仮定することにより、その指示に応答するように構成されていてもよい。
複数の実施形態では、各動的マップオブジェクトは、現在時間と、将来期間の終わりとの間に、ポイント別の動的到着時間を有してもよい。言い換えると、現在時間と、将来期間の終わりとの間の複数の時点における予測位置の経路である。問題のモバイルオブジェクトは、(例えば、制御アルゴリズムまたは運転アルゴリズムにより)自分自身の予測経路を予測してもよい。例えば、一以上のモバイルオブジェクトは自律的車両であってもよい。各自律的車両はネットワークされたサーバと通信接続されている。サーバはクラウドまたはフォグ(Fog)(すなわち、ネットワークのエッジ近く)にあってもよい。各自律的車両は自機の予測経路を、ネットワークされたサーバに送る。動的マップを用いることにより、ネットワークされたサーバは、任意のマップ時点(すなわち、現在時間と、将来期間の終わりとの間の任意のマップ時間ステップ)におけるすべてのマップオブジェクトの位置を予測する。
自動運転車両または自律的車両における衝突回避に関する一実施形態におけるステップS102の一例をここで説明する。この例では、モバイルオブジェクトは自律的車両または半自律的車両であり、オンボード制御装置20は車両制御装置である。ステップS102において、将来期間におけるマップイベント、すなわち予測マップイベントには、マップイベントを回避する移動経路を仮定するように車両に指示することに対応する。ある実施形態では、ステップS102は将来期間中にマップイベントに応答することを含み、マップイベントは、車両を表す動的マップオブジェクトと、他の静的または動的マップオブジェクトとの間の空間的相互作用であり、対応は、車両制御装置に空間的相互作用を会費する移動経路を仮定することにより行う。
ステップS102は、第1計算装置10により、車両制御装置により実行されてもよく、ステップS102は、車両に取り付けられ、車両制御装置20に通信可能に結合された計算装置により実行されてもよく、車両に取り付けられ、車両制御装置に通信可能に結合された計算装置は、本開示では、車両制御装置20のコンポーネントである。命令は車両を運転するように動作可能なアルゴリズム、アルゴリズム群またはソフトウェアに提供されてもよい。空間的相互作用は、将来期間のマップ時点において、マップにより表され、それゆえ予測である。空間的相互作用は、必ずしも2つのマップオブジェクト間の接触ではなく、その2つのマップオブジェクト間の距離の、空間的相互作用は閾値内である距離までの減少であってもよい。空間的相互作用閾値は、単一の固定値であってもよく、車両またはその車両の運転者を表す履歴情報に応じて構成可能であってもよい。同様に、空間的相互作用は、空間的相互作用が生じるマップオブジェクトのタイプに応じて、問題の車両を巻き込む空間的相互作用に対して構成可能であってもよい。例えば、マップオブジェクトは、リアルタイムセンサデータに対して動作するオブジェクト認識アルゴリズムによりラベルされてもよく、それにより、例えば、歩行者、自転車運転者、ボート、車、オートバイ、壁、動物などが、マップを形成するデータにおいて互いに区別され、空間的相互作用閾値(すなわち、空間的相互作用が登録される2つのオブジェクト間の距離)の差別化を可能にしてもよい。
空間的相互作用は、車両が取るルートは、そのルート上または周辺に一以上のマップオブジェクトがあることにより、マップに表された遅延するとの表示であってもよい。
S102を実行するエンティティは、空間的相互作用の回避になる移動経路を仮定する指示を、車両制御装置に発行する。この指示は、予測される空間的相互作用を回避するために、車両制御装置20が従う移動経路の表示を含んでもよい。あるいは、この指示は、車両の移動経路の形成において回避されるべき3次元ウェイポイントとして、空間的相互作用の位置を示してもよい。あるいは、この指示は、車両2の移動経路の形成において回避されるべ4次元ウェイポイントとして、空間的相互作用の時間と位置を示してもよい。あるいは、この指示は、前記オブジェクトは車両制御装置20により特定できるように、空間的相互作用が生じると予測されるマップオブジェクトにより表されるオブジェクトの現在位置と、車両2の移動経路を制御しているアルゴリズムに応じて、前記オブジェクトを考慮するように構成された車両2の移動経路とを特定してもよい。あるいは、この指示は、前記オブジェクトは車両制御装置20により特定できるように、空間的相互作用が生じると予測されるマップオブジェクトにより表されるオブジェクトと、車両2の移動経路を制御しているアルゴリズムに応じて、前記オブジェクトを考慮するように構成された車両2の移動経路とを特定してもよい。上記の代替策は互いに排他的ではなく、指示は上記の代替的指示の2つ以上を合わせたものであってもよい。
車両制御装置20は、予測される空間的相互作用を回避する移動経路を、車両の移動経路を制御するアルゴリズムまたはアルゴリズム群により、形成することにより、または空間的相互作用を回避するために、指示しているエンティティにより形成された、その指示に含まれる移動経路を仮定することにより、その指示に応答するように構成されていてもよい。
複数の実施形態では、各自律的車両は、現在時間と、将来期間の終わりとの間の時間に、ポイント別の動的到着時間を有してもよい。言い換えると、現在時間と、将来期間の終わりとの間の複数の時点における予測位置の経路である。自律的車両は、(例えば、制御アルゴリズムまたは運転アルゴリズムにより)自分自身の予測経路を予測してもよい。各自律的車両はネットワークされたサーバと通信接続されている。サーバはクラウドまたはフォグ(Fog)(すなわち、ネットワークのエッジ近く)にあってもよい。各自律的車両は自機の予測経路を、ネットワークされたサーバに送る。動的マップを用いることにより、ネットワークされたサーバは、任意のマップ時点(すなわち、現在時間と、将来期間の終わりとの間の任意のマップ時間ステップ)における問題の車両の閾値距離内のすべてのオブジェクトを見つける。ネットワークされたサーバは、問題の車両に、任意のマップ時点におけるその車両の閾値距離内のすべてのオブジェクトの予測経路を送信する。各自律的車両は、受信した予測経路と、対象車両の予測経路とを用いて、潜在的な衝突を予測し、潜在的な衝突を回避する移動経路を使うように運転アルゴリズムに指示するソフトウェアを実行するハードウェアを有する。これらのプロセスは反復される。
図3は一実施形態を示す。図3の例では、複数のSCoT(Smart Connected Things)4が第1計算装置10に接続されている。第1計算装置10は、クラウドまたはフォグにある一以上のサーバである。SCoTは、コンピューティングネットワークの一部として、第1計算装置10などの計算装置とデータを交換できる接続機能を有するオブジェクトである。SCoTは、プロセッサ、センサ及びソフトウェアなどを含み得る。SCoTの例には、モバイルオブジェクトまたは車両2(オブジェクトに配置されたセンサ28やオンボード制御装置20などの、コンポーネントの集合またはその個々のコンポーネント)、静的センサ30がある。それにもかかわらず、SCoTはドローン、船舶または配達ロボットであってもよいが、これらに限定されない。コンピューティングネットワークは、第1計算装置10を含み、集合知最適化装置62,データトリアージ64および三角測量装置66などの任意的な計算機能モジュールも含む。上記のどの例においても、モバイルオブジェクトを小型化してもよいし、あるいは任意の利用可能なサイズであってもよい。
データトリアージ64および4は、リアルタイムセンサデータを、例えば重複データエントリーを削除することにより、それがマッピングのために第1計算装置10に届く前にフィルタする。三角測量装置66は、集合知最適化装置62と協働して、車両2からのリアルタイムセンサデータ中にブラインドスポットなどのギャップを特定して、静的センサや他の車両のセンサなどのセンサからのデータで、これらのギャップを埋める。ギャップを埋めるデータは、マッピングのために第1計算装置10に、及び/又は車両2()またはそのオンボード制御装置20)に通信されてもよい。集合知最適化装置62は、マップされるオブジェクトの予測される経路などの情報にアクセスし、前記情報をマッピングのために第1計算装置10に供給するように構成されていてもよい。
第1計算装置10は、SCoT4からのリアルタイムセンサ情報と、他の情報源からの知識を使って、将来の動的オブジェクトの予測経路(すなわち、軌跡)を含む、関心物理領域200の、4次元動的かつインターラクティブなマップを生成し、保持する。4次元は空間3次元と時間である。4次元目によりマップは将来の予測性を与えることができる様々な動的(すなわち、移動)オブジェクトの動的インターラクションは動的マップオブジェクトの4次元予測経路にキャプチャされる。指定された時間フレーム内の各モバイルオブジェクトの(空間座標中の)位置を予測することにより、関心物理領域200内のすべての動的オブジェクトのリアルタイム4次元動的マップを計算してもよい。
図4は、一実施形態の一部として含まれるオンボード制御装置20の一例を示す。センサ281ないし284は、本文献の他の箇所で説明するオブジェクト配置センサの例であり、LIDAR281、RADAR282、カメラ283、モバイルオブジェクト2または関心物理領域200内のその他の任意のオブジェクトの位置(location and/or position)を示す情報を提供するその他の任意のセンサのうちの一以上のセンサを含み得る。
オンボード計算装置プロセッサにより処理されると、そのオンボード計算装置プロセッサ22に、オブジェクト接触予測装置221、位置識別装置222、オブジェクト認識機能部223、スウォームインテリジェンス機能部224、移動経路識別装置225、及びコントローラ226などの例示的人工知能機能のうち一以上を実施させる命令を、オンボード計算装置メモリが格納している。オンボード計算装置通信インターフェース26は、知識増強装置261及び知識交換機262の2つの機能モジュールとして動作するように構成されていてもよい。
センサ281ないし284と、関連する処理機能部221ないし226とは、測定されたセンサデータを分析して、(移動経路識別装置225により)動的物理オブジェクトの動き、及び(位置識別装置により)物理オブジェクトの位置、及び(オブジェクト認識機能部225により)オブジェクトの分類を推定し、推定された情報をコントローラ226において利用する。
オブジェクト接触予測装置221は、ある点における同じ地理的位置(空間座標)における複数のオブジェクトの同時存在をモデル化し、予測する。車両2がいる、かつそれゆえ複数のオブジェクトが同時に存在することが予測される時間と位置は、オンボード制御装置20自体により、または台1計算装置10との協働により計算され得る。予測される同時存在(co−existence)は空間的相互作用の一例であり、これにより、空間的相互作用を回避する移動経路を仮定する指示が、コントローラ226にトリガーされる。
オンボード制御装置20は、車両に配置される第2計算装置の一例である。このような車両制御装置20は、第1計算装置に定期的にクエリを出し、そのクエリに応答して、現在位置を有する任意の動的マップオブジェクトの予測経路またはその一部、あるいは前記車両2からの距離が時間閾値により画定される将来の時間の前の任意の時に、距離閾値により画定される距離内であることを示す予測経路を含むクエリ応答を受信する。オンボード制御装置20は、例えば、オブジェクト制御予測装置221において、クエリ応答の動的マップオブジェクトの予測経路及び車両2の予測経路を使用して、予測経路が同時に、車両2の予測経路の画定の接触閾値距離内にある任意の動的マップオブジェクトを、空間的相互作用として特定するように構成される。例えば、クエリ応答は、車両の代わりにデータトリアージ64および/または集合的知識最適化装置62により、生成される。
換言すると、オブジェクト接触予測装置221は、フォグまたはクラウドからのカスタマイズされた情報(すなわち、クエリ応答)を取り、それを用いて将来に他のオブジェクトと同時存在するリスクを計算する。この情報は、そのような同時存在を回避する指示としてコントローラに送られ、衝突が回避されるようにさらに、急な加速、原則、又はハンドリングも回避するように、車両2の操縦を最適化する。
任意的に、オブジェクト接触予測装置221またはデータトリアージ64および集合的知識最適化装置62は、対象車両2及びそのドライバに関する履歴知識を用いて、オブジェクト接触予測装置221が処理(及び接触回避)のために、オブジェクトの存在について通知される空間的関心半径を決定する。換言すると、クエリ及びそのクエリに対する応答は、対象車両2に対して合わせられる。例えば、他のパラメータは同じであると仮定して、速度制限モビリティ装置などの車両の予測要求は、スポーツカーのそれとは大きく異なる。
図5は、一実施形態によるネットワークアーキテクチャを示す図である。図5に示すように、様々な接続されたオブジェクトからのインテリジェンスは、集中的および分散した計算インテリジェンス間で統合され、スウォームウィズダム(swarm wisdom)となる。図示したネットワークは、フォグサーバ10及び任意的にクラウドサーバ100によりマップ68として格納された、ポイント別動的到着時間に基づき、すべてのモバイルオブジェクトのリアルタイム4次元動的マップを計算する。オブジェクト接触予測装置221は、リアルタイムで、ある点における同じ地理的位置(x,y座標)における複数のオブジェクトの同時存在を予測する。実施形態は、複数の静的及び動的オブジェクト(車両と非車両の両方)の予測軌跡を追跡するメカニズムを提供し、それらの振る舞いが予測および追跡される。SCoTのインテリジェンス(intelligence)は、実施形態の機能により強化される。実施形態は、コンテクストメタヒューリスティクス、ドローン/ストリートカメラ、衛星画像、および衝突履歴を含むデータソースを利用して、様々な自律的および半自律的車両の移動性を制御し、最適化してもよい。
ネットワークは、ネットワークアーキテクチャの第1計算装置10の上にあるクラウドサーバ100を含む。クラウドサーバ100は、単一のサーバとして図示されているが、相互接続された複数のクラウドサーバであってもよい。例として、クラウドサーバによって提供され得る機能が示されている。そのような機能は、クラウドサーバのメモリおよびプロセッサハードウェアによって提供され、前記機能は、第1計算装置10の例示的な1つ以上のフォグサーバ10と協働して実現され得る点に留意する。前記機能には、経路予測装置69、三角測量装置66、データトリアージ64、マップ68、および集合的知識最適化装置62が含まれる。なお、クラウドサーバ100によって維持されるマップは、例えば、複数のフォグサーバ10によって維持されるマップの集合であってもよく、個々のフォグサーバ10によって維持されるマップによって表される将来期間よりも長い将来の期間をカバーしてもよい。
2つのフォグサーバ10が示されている。フォグサーバ10は、第1計算装置の例である。フォグサーバとは、ネットワーク階層において、クラウドサーバ100とエッジ装置(SCoTs)との間のサーバを意味するものとする。したがって、エッジ装置とフォグサーバ10との間のレイテンシは、エッジ装置とクラウドサーバ100との間のレイテンシよりも小さい。2つのフォグサーバが図示されているが、ネットワーク内に複数のフォグサーバが存在してもよい。各フォグサーバは、ある関心物理領域200のマップを維持する責任を負うことができ、あるいは、複数のフォグサーバ10が協働して関心物理領域200のマップを維持してもよい。異なるフォグサーバ10によってマップされた関心物理領域200は重複していてもよい。フォグサーバ10は、プロセッサハードウェア12、メモリハードウェア14、および通信インターフェース16を有する。フォグサーバ10の例示的な機能モジュールを一例として図5に示す。フォグサーバ10は、将来の期間を含む期間にわたって、関心物理領域200の4次元マップ68を維持するように構成される。集合的知識最適化装置62は、他のエンティティと交換されたデータを統合するように構成される。三角測量装置66は、ある車両2からのデータのギャップを埋めるために、車両に搭載されたセンサ以外のセンサからのデータをその車両2からのデータに増強するように構成されている。データトリアージ64は、帯域幅の利用を最適化することによって低遅延を容易にするために、車両制御装置20と交換されたデータをフィルタリングするように構成される。経路予測装置69は、動的マップオブジェクトの移動経路を予測するために人工知能を使用する。第1計算装置メモリ14は、関心物理領域内またはその周囲の事象に関する履歴情報、および将来の事象のスケジュールに関連する環境ソースからのデータのような情報のためのデータ記憶装置を含むことができる。このようなデータには天気予報を含んでもよい。
データは、第1計算装置10の外部に格納されてもよいが、それによってアクセス可能である。例えば、ドライバ別データ記憶装置80は、対象車両2のドライバが関与した過去の衝突に関する情報を記憶することができる。例えば、半自律運転モードでは、そのような情報を用いて、オブジェクト接触予測装置221が、マップ68によって(および知識トリアージ64を介して)処理(および接触回避)のためのオブジェクトの存在を通知される関心空間半径を決定してもよい。
オンボード計算装置20が示されている。オンボード計算装置20は、コンピューティングネットワークにおけるSCoTの一例である。他のSCoTは、例えば、センサ、及び任意的に、交通信号のようなインフラストラクチャも含む。オンボード計算装置20は、本明細書の他の箇所で説明される車両計算装置の例である。オンボード計算装置20は、通信インターフェース26、オブジェクト接触予測装置221、コントローラ226、および1つ以上のセンサ28を含むコンポーネントで図示されている。1つまたは複数のセンサは、オンボード計算装置20の一部として、またはそれとは独立して、ネットワークに接続することができることに留意されたい。オンボード計算装置20は、図4に示すような、さらなるハードウェアおよびソフトウェアコンポーネントを含んでもよい。
オブジェクト接触予測装置221は、予測された経路に基づいて、対象車両2の空間的関心半径内にある、または将来の関心時間の間にあるマップ時点に前記半径内にある、すべてのマップオブジェクトの予測された経路を含む、フォグサーバ10のうちの1つ以上からのクエリ応答を受信する。全ての実施形態において、クエリおよび応答は、車両が自律モードまたは半自律モードで運転されている間に、多かれ少なかれ(すなわち、時間ステップ毎に1回)連続的に発生し、その結果、オブジェクト接触予測装置221が動作している情報が繰り返し更新されていることに留意されたい。クエリ応答は、対象車両2が接触閾値内にある別のオブジェクトのある距離内をいつ通過するか予測するために、オブジェクト接触予測装置221によって使用され、コントローラ226は、回避する空間座標をコントローラ226に通知すること、回避する時間および空間座標を組み合わせたものをコントローラ226に通知すること、回避する特定の経路を回避することをコントローラ226に通知することによって回避すること、通過する特定の経路を制御装置226に通知すること、または回避する特定のオブジェクトを制御装置226に通知することによって、予測された接触閾値違反を回避するように指示される。
また、ネットワークは、特に、ドローン、CCTV、航空機、交通信号機、GPS付き電話機、スマートゲート、個人識別システムなどを含むエッジ装置(SCoTであってもよい)を含み得る。
スウォームウィズダム(swarm wisdom)は、オンボード制御装置20および他のSCoT(他のオンボード制御装置20を含む)と、第1計算装置10、および任意的にクラウドコンピューティングハードウェアとの協働によって実現される。各SCoTは独立したエージェントであり、グループの一員として活動するときに最適な意思決定を行う傾向がある。この目的のために、複数のオンボード制御装置20のための集合的意思決定は、フォグサーバ10において複数の車両制御装置20および任意的な他のSCoTからのデータを処理することによって可能になる。オブジェクト経路予測装置69は、第1計算装置10によって得られたデータから動作期間にわたってオブジェクトの移動性パターンを抽出することによって、第1計算装置10のハードウェア上に実装される人工知能ソフトウェア機能である。このようにして得られた経路予測は、オンボード制御装置20のためのスウォームウィズダムを生成するために使用される4次元マップを維持するときに使用される。スウォームウィズダムは、接続されたスマートデバイス(すなわち、オンボード制御装置20などのSCoT)に全知(omniscient knowledge)を提供する。フォグサーバ10を持たない関心物理領域200は、第1計算装置10としてクラウドサーバ100を利用することができ、すなわち、フォグサーバを持たないネットワークアーキテクチャを有することができる。このような実施形態では、クラウドサーバに仮想フォグ(またはミスト)が生成され、関連するデータを収集、格納、処理する。
図6は、一実施形態によるデータフローを示す図である。オブジェクト搭載型センサ28及び任意的な静的センサ30を含む様々なソースからの情報は、集合的知識62として最適化され、記憶される。データの幾つかは、データベースからのものであり得るが、その関連部分は、第1計算装置メモリ14によって記憶され、任意的に、気象機関、交通機関のようなデータ記憶装置へのクエリアクセスが続く。集合的知識最適化装置62は、目的に従って機能し、その目的は、複数の実施形態では、4次元マップ68のメンテナンスである。集合的知識最適化装置62は、センサおよび他のSCoTから、マップ68を維持するために必要な情報を得る。前記情報は、マップ68によって利用され(すなわち、マップを維持するように機能する第1計算装置10上で動作するソフトウェアによって)、マップによって表される将来の期間にわたる全てのマップオブジェクトの位置を予測する。任意的に、経路予測装置人工知能モジュール69は、特定のオブジェクトまたはオブジェクトのクラスに関する情報を供給され、そのオブジェクトの経路を予測し、予測されたパスはマッピングされる。マップ68は、データトリアージ64によってフィルタリングされ、マップデータの抜粋が自律モードまたは半自律モードで運転される各車両2に転送される。マップ抜粋(クエリ応答と呼ぶこともある)は、知識増強装置262を介してオンボード計算装置20に送信され、車両自体のセンサからの情報またはコントローラ226からの予測経路情報を追加することができる。車両計算装置20は、増強情報をオブジェクト接触予測装置221に渡し、オブジェクト接触予測装置221は接触(接触閾値内の距離)を予測し、コントローラ226に通知する。オブジェクト接触予測装置221はソフトウェア機能であり、接触予測を、即時将来(1秒未満)、近未来(将来の1秒以上かつ5秒未満)、およびそれ以降(将来の5秒以上)に分割することができることに留意されたい。処理資源および他のハードウェア帯域幅制限は、優先順位付けが必要とされるようにすることができ、オブジェクト接触予測装置は、即時性の順序に分割された接触予測機能を優先順位付けするように構成される。
図7は、マップ68を維持する例示的プロセスにおいて実行される機能フローを示す図である。情報ソースは、例えば、特定のオブジェクトに対する予測される経路のマップを維持するソフトウェアに通知するか、または特定のオブジェクトに対する(すなわち、オブジェクトが位置する場所では、そのタイプのオブジェクトは、信頼度Yで経路Xに従う)経路を予測する際にマップによって使用することができる制約を通知することができる経路予測装置69を含むことができる。さらなる情報源は、関心物理領域200(すなわち、マッピングされた領域)を観察するセンサからの集合的知識62である。マッピング機能68は、マッピングされた時間フレーム内の各モバイルオブジェクトの位置を予測することによって、物理領域内のオブジェクトのリアルタイム4次元動的マップを計算する。S681では、オブジェクトの現在位置を表す集合的知識最適化装置62からの情報がマップ68上にプロットされる。ソフトウェアは、オブジェクトを追跡し、モニタし、それらの履歴経路をマップ上に記録する。その結果、各動的オブジェクトに対して、S682では、軌跡別平均加速度が計算され、これは、オブジェクトが異なる位置に到着する(すなわち、経路予測)時間を予測する際に利用され得る。
位置は、空間座標によって与えられ、これは、三次元であってもよく、または、面への付着が仮定され得る場合は、二次元であってもよいことに留意されたい。しかし、もちろん、たとえ面に付着していても、オブジェクトが占める空間は三次元であるため、座標は三次元であってもよい。実施形態を各時点に各位置を有する各オブジェクトに関して説明しているが、実施形態は、実際には、各時点にオブジェクトによって占有された三次元空間を追跡し、予測することに留意されたい。位置は、実施形態の機能性を議論するための便利な概念的基礎である。
ステップS683において、対象車両の経路は、マップ座標におけるポイント別の到着の動的時間、すなわち、そのマップ座標がどの時間に車両により占有される動的時間として予測される。ステップS684において、車両以外の動的マップオブジェクトについても同様の予測が行われる。ステップS685で、予測された経路がマップ68に追加される。
図8は、マップオブジェクト間の空間的相互作用を予測する例示的プロセスで実行される機能フローを示す図である。オブジェクト接触予測装置221は、図8に示す1つ以上のステップS2211ないしS2218を実行するように構成されてもよい。オブジェクト接触予測装置221は、複数のソースから情報を受信し、したがって、何らかの前処理を実行して、情報を解析し、それがラベル付けされ、および/または処理のための適切な論理的または物理なデータ位置に記憶されるようにしなければならない。オーケストレーションは、スウォームインテリジェンスソフトウェア224のような、車両計算装置20上で動作するソフトウェア機能によって実行される。スウォームインテリジェンスソフトウェア224は、S2211において、知識増強装置226を介して経路予測装置69および/またはマップ68から情報を受信し、前処理する。
S2212ないしS2215は、外部ソースからの情報を組み込むために実行され得る任意的なステップを表す。このような外部ソースは、例えば、車両別の履歴情報82およびドライバ別の履歴情報80であってもよい。いずれか、または両方のソースを活用することができる。S2212では、車両のプロファイルは、車両別履歴情報記憶装置82に記憶された情報から生成される。そのような情報の一例は、対象車両に関連する記録された衝突である。S2213では、ドライバのプロファイルがドライバ別履歴情報記憶装置80に記憶された情報から生成される。そのような情報の一例は、対象ドライバに関連する記録された衝突である。SS214では、2つのプロファイルは相関しており、例えば、このような相関は、現在のドライバに関連しない衝突を車両プロファイルからフィルタリングすることを含んでもよい。スウォームインテリジェンス機能224は、特定の速度レンジおよび/または加速レンジを維持する、他のSCoT、例えば、他のオブジェクトとの間の/からの最小距離および最大距離に関する、対象車両の運動に関するパラメータを、オブジェクト接触予測装置221に通知することができる。スウォームインテリジェンス機能は、車両2が存在する特定の物理領域200、時刻、およびSS2215では、車両およびドライバに関する相関履歴情報を含む要因に基づいて、前記パラメータを適合させることができる。
SS216において、オブジェクト接触予測装置221は、マップに基づいて、すぐの将来S2216(これは次の1秒であってもよい)、近未来(1秒超5秒未満の未来)S2217、およびそれを超える(5秒超の)未来S2218に発生し得る、または発生するリスクがある対象車両を含む空間的相互作用を予測する。
オブジェクト接触予測装置221は、ステップS2216ないしS2218において、マップの将来の期間における車両を表す動的オブジェクトと、他の静的および動的マップオブジェクトとの間の空間的相互作用(またはオブジェクト接触予測装置221によって得られたマップ抜粋)に基づいて、対象車両2と他のオブジェクトとの間の空間的相互作用を予測する。マッピングされた空間的相互作用は、画定された接触閾値距離内にある2つのオブジェクトの同時空間3次元マップ座標である。マップされた空間的相互作用(物理的空間的相互作用の予測である)は、車両を表す動的マップオブジェクトの予測された経路を、車両を表す動的マップオブジェクトの現在位置の画定された第1閾値距離内に現在位置を有する動的マップオブジェクトの予測された経路、車両を表す動的マップオブジェクトの現在位置の画定された第2閾値距離内にある静的マップオブジェクトの位置と比較することによって同定され得る。
図9は、接続されたオブジェクト間の協調によって、交差点での衝突がなく、効率的な移動が可能になる実施シナリオを示している。交差点は、関心物理領域200の例示である。対象車両は、動的オブジェクトの経路を予測する、マップからの情報を受け取る。そのため、対象車両のコントローラ226は、衝突リスクを回避する方法で対象車両を操縦することができ、また、滑らかで中断のない動きを維持することもできる。図9は、マップ68を維持する際に使用するためのセンサデータを提供する、静的カメラ30によって観察され得る関心物理領域200を示す。マップ68は物理領域200を表すので、図9のシーンは、9つの時間座標、t1〜t9におけるマップを表すこともできる。3つの動的オブジェクト、MO2、MO3、MO4があり、これらは計算ネットワークの一部ではないが、マッピングされる。4つの車両、Veh1、Veh3、Veh5、およびVeh6があり、そのうちの1つまたは任意の組み合わせは、実施形態の一部を形成する、または実施形態が動作可能なネットワークの一部を形成する自律的または半自律的な車両であってもよい。
図10は、マップの維持を役割分担する第1計算装置のソフトウェアにより計算及び保持されるデータの一部を示す図である。リアルタイムセンサからの集合的知識62は、車両以外の動的車両及び動的オブジェクトの両方を表すリアルタイムデータを提供する。車両を表す各動的マップオブジェクトは、車両683に到着するポイント別の動的時間を割り当てるために、特定のソフトウェアモジュールによって予測された経路(すなわち、4次元モビリティパターン)が割り当てられる。非車両を表す各動的マップオブジェクトは、車両684に到着するポイント別の動的時間を割り当てるために、特定のソフトウェアモジュールによって予測された経路(すなわち、4次元モビリティパターン)が割り当てられる。任意的に、予測された各経路は、信頼レベルと関連付けられる。図示されるように、各経路は、複数のマップ時点(時間ステップ)の各々についての空間座標を含む。
図11に示すように、データトリアージ64は、対象車両がマップ68の場合、車両制御装置20のオブジェクト接触予測装置221からの動的クエリを自動化する。クエリは、対象車両2の現在位置と、予測された経路が必要とされる画定された将来期間とを含む情報を含んでもよい。任意的に、クエリは、単にデータが探索されることの表示であってもよく、データトリアージ64は、マップ68を利用して、対象車両2に位置を割り当ててもよく、将来期間は予め画定されてもよい。データトリアージ64は、マップの抜粋を選択して、対象車両の現在位置と、画定された将来期間内に対象車両マップオブジェクトの特定半径内にある、またはその特定半径内に入ると予測される動的マップオブジェクトに依存して、対象車両接触予測装置221に提供する。特定半径は、関連するすべての予測された経路(すなわち、関心物理領域200を表すマップ内の動的マップオブジェクトのすべての予測された経路)に関連する信頼レベルから部分的に導出することができる。マップを形成するデータの一部は、クエリに応答して、オブジェクト接触予測装置221に送信される。
図11の例において、対象車両2はVeh6であり、データトリアージ64は、Veh6の車両制御装置20に、Veh1、Veh5、MO2、およびMO4の予測される経路を伝達することを決定している。
Veh6のオンボード制御装置20に送信される情報は、車両制御装置のオブジェクト接触予測装置221によって利用され、当該情報において経路が予測されるオブジェクトと対象車両との共存の将来のリスクを計算する。実施形態は、帯域幅を維持し、レイテンシを減らし、処理遅延及び冗長処理に関連するオーバーヘッドを回避するために、対象車両2の移動性に妨害または影響を加えるリスクのあるオブジェクトのみを含むようにクエリ応答を調整することができる。
図12は、画定された将来期間の間(すなわち、現時点と画定された将来期間)に、関心物理領域200における対象となる車両と、種々の動的オブジェクトとの共存を予測する際の、オブジェクト接触予測装置221の役割を示す。例えば、画定期間の長さは、対象車両の移動性および予測された経路に関連する信頼レベルの観点から、データトリアージ64によって、またはオブジェクト接触予測装置221によって決定され得る。
図11は、Veh6のオブジェクト接触予測装置221がマップ68からVeh1、Veh5、MO2、およびMO4についての予測された経路を得ることを示すが、図11に続いて、時間t5からt7の間の画定された半径内の動的にマップされたオブジェクトの予測された位置および関連する信頼レベルが抽出され、対象となる車両の予測された経路と比較されて、接触閾値内に共存または低減された距離を同定することを示す。
図13は、実施形態が経路最適化タスクにおいて実施されてもよいことを示す例であり、最適経路は、特定の時間に目標位置に到達するために、または移動時間を最小化することによって、車道の輻輳および閉塞を回避する経路である。かかる実施形態において、マップイベントの空間的相互作用は、車両オブジェクトが前記位置にいると予測されるマップされる時点において、予測された動的マップオブジェクトの一以上が、車両制御装置が車両が従うように制御しているルート上の位置における車両オブジェクトの動きを制約することであってもよい。予測された動的マップオブジェクトは、マップを維持しているエンティティによって静的および動的マップオブジェクトに追加される。予測される動的マップオブジェクトは、複数の動的マップオブジェクトの一部であり、現在時間と将来期間の終わりの間のマップされた時点でマップ中に現れ、予測された動的マップオブジェクトの出現は、物理ドメイン内の動的物理オブジェクトの出現、物理ドメインからのリアルタイムセンサ情報、および/または物理ドメインにおけるイベントの通知に関する履歴情報に基づいて予測される。
実施形態は、目的関数を最大化、最小化、または他の方法で解くように実施されてもよい。例えば、目的関数は、時間利用を最大化すること、または対象車両によってカバーされる距離を最小化することであり得る。図13は、実施形態が、対象車両が、目的地(病院)に到着するのに必要な時間を最小化するため、または期限内に確実に目的地に到着するため、または期限内に医療処置を受けられるようにするために使用される例を示す。
実施形態が解こうとしている目的関数は、例えば、可能な限り速く、最大15分の期限内に、中等度のけがを治療するための医療サービスに到達することであってもよい。
t0時点で、乗客の軽傷が、対象車両2の急ブレーキにより引き起こされる。第1計算装置10は、車両制御装置20から目的関数が通知される。第1計算装置10は、情報源に問い合わせして、新たな患者のためのキャパシティを有し、かつ、対象車両2によって15分間の最大制限時間内に到達することができる3つの医療施設1310A−1310Cがあることを判断する。
時刻t0において、第1計算装置は、新しい患者を受け入れ可能であり、対象車両2が目的地に到着するための移動時間を最小化する医療施設を同定しようとして、対象車両2が、医療施設1310Aに10分で、医療施設1310Bに12分で、および医療施設1310Cに14分で到着することができることを予測する。
また、時刻t0において、イベント、すなわち住宅ビルディング1350における火災が物理ドメインで発生する。マップは、通知システムによってそのイベントを通知される。類似事象に関する履歴情報に基づいて、その事象に最も近い医療施設1310Aで輻輳が予測される。イベント通知および履歴情報に基づいて、動的マップは、治療を受けるための15分の待ち行列を予測する。これにより、医療施設1310Aはあまり好ましくないオプションとなる。従って、動的マップは、医療施設1310Aにおける輻輳を予測し、この情報を用いて、対象車両2に対し、他の医療施設のいずれかを目的地として採用するよう指示する。
過去の日々の履歴情報、および/または劇場1320でのイベントの終了予定の通知に基づいて、動的マップは、医療施設1310Bへのルートをたどる場合、対象車両2が同時に存在する場所と一致する場所に、t0から11分後の時点で、劇場1320の外側の道路上の歩行者を予測する。動的マップは、移動時間への4分の遅延を予測し、従って、対象車両2が時間t0から16分後に医療施設1310Bに到着することを予測する。
事象通知およびマップを維持するエンティティに利用可能な履歴情報の結果として、対象車両2は、建物1350における火災および医療施設1310Aにおける関連死傷者との空間的相互作用を回避し、劇場1320を出る歩行者との空間的相互作用を回避するように指示され、目的地として医療施設1310Cを経路を取るように指示される。
図14は、サーバなどの計算装置10を示すブロック図である。この計算デバイスは本発明を具現化し、車両の移動経路を指示する一実施形態による方法を実装するのに使われても良い。計算デバイスはプロセッサ993とメモリ14を有する。計算装置は、他の計算装置と、例えば本発明の実施形態の計算装置20と通信するネットワークインターフェース997も含む。第1計算装置10は、図14に示す形態の計算装置であってもよい。車両制御装置20は、図14に示す形態の計算装置であってもよい。一実施形態によるその他の計算装置は、図14に示す形態の計算装置であってもよい。
例えば、一実施形態は、かかる計算デバイスのネットワークより構成されていてもよい。任意的に、計算デバイスは、キーボードとマウス996などの一以上の入力メカニズムと、一以上のモニタ995などのディスプレイユニットとも含む。コンポーネントはバス992を介して互いに接続可能である。
メモリ994はコンピュータ読み取り可能媒体を含む。この用語は、例えば、コンピュータ実行可能命令を担い、又はその中にデータ構造を格納するように構成された1つの媒体又は複数の媒体(例えば、集中型または分散型データベース及び/又は関連するキャッシュ及びサーバ)を指す。コンピュータ実行可能命令は、例えば、命令とデータであって、汎用コンピュータ、特殊用途コンピュータ、又は特殊用途プロセッサデバイス(例えば、一以上のプロセッサ)によりアクセス可能であり、これらに一以上の機能又は動作を実行させるものを含んでもよい。このように、「コンピュータ読み取り可能記憶媒体」との用語は、そのマシンにより実行される一組の命令を記憶、エンコード、または担うことができ、そのマシンに、本開示の方法のいずれかを実行させる任意の媒体を含む。したがって、「コンピュータ可読記憶媒体」との用語は、固体メモリ、光媒体及び磁気媒体を含むが、これらに限定されない。限定ではなく例として、かかるコンピュータ読み取り可能媒体は、非一時的コンピュータ読み取り可能記憶媒体を含む、ランダムアクセスメモリ(RAM)、リードオンリーメモリ(ROM)、電気的消去可能プログラマブルリードオンリーメモリ(EEPROM)、コンパクトディスクリードオンリーメモリ(CD−ROM)又はその他の光ディスク記憶媒体、磁気ディスク記憶媒体又はその他の磁気記憶デバイス、フラッシュメモリデバイス(例えば、固体メモリデバイス)を含む。
プロセッサ993は、計算装置10を制御し、処理動作を実行し、例えば、本明細書及び特許請求の範囲に記載した、車両の移動経路を指示する様々な機能を実装する、メモリに格納されたコードを実行するように構成されている。メモリ994はプロセッサ993により読み書きされるデータを格納する。本明細書に説明するように、プロセッサは、マイクロプロセッサ、中央処理装置などの一以上の汎用処理デバイスを含んでも良い。プロセッサは、例えば、CISC(complex instruction set computing)マイクロプロセッサ、RISC(reduced instruction set computing)マイクロプロセッサ、VLIW(very long instruction word)マイクロプロセッサ、他の命令セットを実装したプロセッサ、又は複数の命令セットの組み合わせを実装したプロセッサを含む。プロセッサは、例えば、一以上の特殊用途処理デバイス、例えば特定用途集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、デジタル信号プロセッサ(DSP)、ネットワークプロセッサなどを含む。一以上の実施形態では、プロセッサは、本明細書で説明される動作及びステップを実行する命令を実行するように構成されている。
ディスプレイユニット997は、計算デバイスにより格納されたデータを表示してもよく、ユーザと、計算デバイスに格納されたプログラム及びデータとの間のインターラクションを可能にするカーソル、ダイアローグボックス及びスクリーンを表示してもよい。入力メカニズム996は、例えば、ユーザが計算デバイスにデータ及び命令を入力できるようにする。
ネットワークインターフェース(ネットワークI/F)997は、インターネットなどのネットワークに接続されてもよく、そのネットワークを介して他の計算デバイスに接続可能である。ネットワークI/F997は、例えば、ネットワークを介して他の装置との間でのデータ入出力を制御する。マイクロホン、スピーカ、プリンタ、パワーサプライ、ファン、ケース、スキャナー、トラッカーボールなどの他の周辺デバイスが計算デバイスに含まれても良い。
例えば、図3、5および6のデータトリアージは、メモリ994に格納された処理命令(プログラム)を実行し、ネットワークI/F997を介してデータを交換するプロセッサ993(または複数のプロセッサ)であってもよい。特に、プロセッサ993は、処理命令を実行して、ネットワークI/Fを介して、動的マップからのマップデータを受信し、対象車両装置2のデータをフィルタリングする。さらに、プロセッサ993は、処理命令を実行して、ネットワークI/F997を介して、マップの抜粋、特に、予測された経路を、オブジェクト接触予測のために車両制御装置20に送信することができる。
例えば、図3、5および6に示した4次元マップの維持は、メモリ994に格納された処理命令(プログラム)を実行し、ネットワークI/F997を介してデータを交換するプロセッサ993(または複数のプロセッサ)であってもよい。特に、プロセッサ993は、処理命令を実行して、関心物理領域200からの読み取り値を取るリアルタイムセンサデータ、任意的に動的オブジェクトについて予測された経路、ならびに任意的に動的マップオブジェクト間の空間的相互作用を予測することができるイベント通知および履歴情報を、ネットワークI/Fを介して受信する。さらに、プロセッサ993は、処理命令を実行して、ネットワークI/F997を介して、マップの抜粋、特に、予測された経路を、のオブジェクト接触予測装置221によるオブジェクト接触予測のために、データトリアージ64を介して、車両制御装置20に送信することができる。
オブジェクト制御予測装置221は、例えば、図4、5および6に示したように、メモリ994に格納された処理命令(プログラム)を実行し、ネットワークI/F997を介してデータを交換するプロセッサ993(または複数のプロセッサ)であってもよい。特に、プロセッサ993は、処理命令を実行して、任意的に動的オブジェクトについて予測された経路、ならびに任意的に動的マップオブジェクト間の空間的相互作用を予測することができるイベント通知および履歴情報を含む、動的マップ68からのマップデータの抜粋を、ネットワークI/Fを介して受信する。さらに、プロセッサ993は、処理命令を実行して、他のオブジェクトとの予測される空間的相互作用を回避するi移動経路を採用するように車両制御メカニズムに指示してもよい。
本発明を具体化する方法は、図14に示したような計算デバイスで実行されてもよい。かかる計算デバイスは、図14に示したすべてのコンポーネントを有する必要はなく、それらのコンポーネントの一部により構成されてもよい。本発明を実施する方法は、ネットワークを介して一以上のデータ記憶サーバと通信する1つの計算デバイスにより実行されてもよい。計算装置は、動的マップ68を記憶および維持するデータ記憶装置自体であってもよい。
本発明を具現化する方法は、互いに協働する複数の計算デバイスにより実行されてもよい。複数の計算装置のうちの一以上は、動的マップの少なくとも一部を記憶するデータストレージサーバであってもよい。
次の付記を記す。
(付記1) 無線接続機能を有するモバイルオブジェクトの移動経路を指示する方法であって、前記モバイルオブジェクトはオンボード制御装置により自律モードまたは半自律モードで制御可能であり、前記方法は、
第1計算装置において、関心時間フレームにわたる関心物理領域の4次元マップを保持することであって、前記マップは前記物理領域内の静的物理オブジェクトおよび動的物理オブジェクトを表す対応する静的マップオブジェクト及び動的マップオブジェクトを含み、前記動的マップオブジェクトのうちの1つは前記モバイルオブジェクトを表し、前記4次元は3つの空間次元と時間であり、前記時間フレームは現在の先の将来の画定された持続時間である将来期間を含む、保持することと、
各動的マップオブジェクトの4次元マップ座標は、前記動的物理オブジェクトの位置を示す前記物理領域からのリアルタイムセンサデータ、及び前記将来期間の前記動的マップオブジェクトの予測された経路に基づき、
前記4次元マップを使用して、前記モバイルオブジェクトの移動経路におうじた一以上のファクタを有する目的関数を解く、前記将来期間における前記モバイルオブジェクトの移動経路を決定することと、
前記モバイルオブジェクトに、決定した前記移動経路に従うように指示することとを含む、方法。
(付記2) 前記目的関数は前記モバイルオブジェクトを表す前記動的マップオブジェクトと、他の静的または動的マップオブジェクトとの間の空間的相互作用を最小化し、空間的相互作用は所定閾値より短いオブジェクト間の距離である、付記1の方法。
(付記3) 前記目的関数は人口一人あたりの移動性を最適化し、または前記目的関数は車両占有率を最大化し、または前記目的関数は残存バッテリー寿命を考慮して電動車両が所定目的地に到達できるようにする、付記1ないし2いずれか一項に記載の方法。
(付記4) 各動的マップオブジェクトの予測経路は、将来期間中の複数の時間ステップの各々における、予測される空間3次元マップ座標を含み、
一以上の動的マップオブジェクトが、車両が各オンボード制御装置により自律モードで又は半自律モードで運転されていることを表す場合、そのモバイルオブジェクトの予測経路は、オンボード制御装置により計算され、マッピングのため、第1計算装置に送信される、
付記1ないし3いずれか一項に記載の方法。
(付記5) 前記4次元マップを保持することは、動的マップオブジェクトに対応する動的物理オブジェクトの前記物理領域中の位置を示すリアルタイムセンサデータを、複数のセンサから集めることを含み、
前記将来期間における複数の時間ステップの各々において、各動的マップオブジェクトに空間3次元マップ座標をマッピングすることは、前記リアルタイムセンサデータ中の対応する動的物理オブジェクトの位置に基づく、
付記4に記載の方法。
(付記6) 前記複数のセンサは、前記物理領域中の動的物理オブジェクトに取り付けられたセンサと、静的物理領域に取り付けられ、前記物理領域のデータを読み取るように構成されたセンサとを含む、付記5に記載の方法。
(付記7) 前記複数のセンサは、前記物理領域中の動的物理オブジェクトに取り付けられたセンサ、前記物理領域中の静的オブジェクトに取り付けられたセンサ、及び/又は前記物理領域の外の、前記物理領域からデータを読み取る動的物理オブジェクトに取り付けられたセンサを含む、付記5または6に記載の方法。
(付記8) 前記モバイルオブジェクトを表す動的オブジェクトと、前記静的または動的マップオブジェクトのうちの他のオブジェクトとの間の空間的相互作用は、2つのオブジェクトの同時空間的3次元マップ座標が所定の接触閾値距離内にあることである、付記2に記載の方法。
(付記9) 空間的相互作用の特定は、前記モバイルオブジェクトを表す動的マップオブジェクトの予測経路を、前記モバイルオブジェクトを表す動的マップオブジェクトの現在位置の第1画定閾値距離内の現在位置を有する動的マップオブジェクトの予測経路と、及び前記モバイルオブジェクトを表す動的マップオブジェクトの現在位置の第2の画定閾値距離内の静的マップオブジェクトの位置と比較することにより行われる、付記8に記載の方法。
(付記10) 前記モバイルオブジェクトに取り付けられた第2計算装置において、
前記第1計算装置に定期的に問い合わせることと、
前記第1計算装置において、
現在位置を有する任意の動的マップオブジェクトの予測経路またはその一部、あるいは前記モバイルオブジェクトからの距離が将来の関心期間においていつか距離閾値により画定される距離内であることを示す予測経路を含むクエリ応答を、前記第2計算装置に送信することにより、クエリに応答することと、
前記第2計算装置において、
前記クエリ応答中の前記動的マップオブジェクトの予測経路及び前記モバイルオブジェクトの予測経路を使用して、予測経路が同時に、将来の関心期間における前記モバイルオブジェクトの予測経路の画定の接触閾値距離内にある動的マップオブジェクトをマップイベントとして特定することとを含む、
付記1ないし9いずれか一項に記載の方法。
(付記11) 前記4次元マップを保持することは、一以上の予測された動的マップオブジェクトで前記静的および動的マップオブジェクトを強調することを含み、前記予測された動的マップオブジェクトは、動的マップオブジェクトの一部であり、現在時間と前記将来期間の終わりとの間のマッピング時点に前記マップに現れ、予測される動的マップオブジェクトの外観は、物理領域における動的物理オブジェクトの外観、前記物理領域からのリアルタイムセンサデータ、及び/又は前記物理領域のイベントの通知に基づいて予測される、付記1ないし10いずれか一項に記載の方法。
(付記12) 前記マップイベントの空間的相互作用は、前記モバイルオブジェクトが前記位置にいると予測されるマップされる時点において、前記予測された動的マップオブジェクトの一以上が、前記オンボード制御装置が前記モバイルオブジェクトが従うように制御しているルート上の位置におけるモバイルオブジェクトの動きを制約することである、付記10に記載の方法。
(付記13) 無線接続機能を有するモバイルオブジェクトに指示するシステムであって、前記モバイルオブジェクトはオンボード制御装置により自律モードまたは半自律モードで制御可能であり、前記システムは、
メモリとプロセッサとを有し、前記メモリは、前記プロセッサにより実行されると、前記プロセッサに、次のステップを含むプロセスを実行させる第1計算装置であって:
関心時間フレームにわたる関心物理領域の4次元マップを保持することであって、前記マップは前記物理領域内の静的物理オブジェクトおよび動的物理オブジェクトを表す対応する静的マップオブジェクト及び動的マップオブジェクトを含み、前記動的マップオブジェクトのうちの1つは前記モバイルオブジェクトを表し、4次元は3つの空間次元と時間であり、前記時間フレームは現在の先の将来の画定された持続時間である将来期間を含む、保持することと
各動的マップオブジェクトの4次元マップ座標は、前記動的物理オブジェクトの位置を示す前記物理領域からのリアルタイムセンサデータ、及び前記将来期間の前記動的マップオブジェクトの予測された経路に基づき、
オンボード制御装置メモリとオンボード制御装置プロセッサとを有するオンボード制御装置であって、前記オンボード制御装置メモリは、前記オンボード制御装置プロセッサにより実行されると、前記オンボード制御装置プロセッサに次のステップを含むプロセスを実行させる処理命令を格納している:
前記4次元マップを使用して、前記モバイルオブジェクトの移動経路におうじた一以上のファクタを有する目的関数を解く、前記将来期間における前記モバイルオブジェクトの移動経路を決定することと、
前記モバイルオブジェクトに、決定した前記移動経路に従うように指示することと、
を含む、システム。
(付記14) 無線接続機能を有するモバイルオブジェクトの移動経路を指示する装置であって、前記モバイルオブジェクトはオンボード制御装置により自律モードまたは半自律モードで制御可能であり、前記装置は、
メモリとプロセッサとを有し、前記メモリは、前記プロセッサにより実行されると、前記プロセッサに、次のステップを含むプロセスを実行させる第1計算装置であって:
関心時間フレームにわたる関心物理領域の4次元のマップを保持することであって、前記マップは前記物理領域内の静的物理オブジェクトおよび動的物理オブジェクトを表す対応する静的マップオブジェクト及び動的マップオブジェクトを含み、前記動的マップオブジェクトのうちの1つは前記モバイルオブジェクトを表し、前記4次元は3つの空間次元と時間であり、前記時間フレームは現在の先の将来の画定された持続時間である将来期間を含む、保持することと、
各動的マップオブジェクトの4次元マップ座標は、前記動的物理オブジェクトの位置を示す前記物理領域からのリアルタイムセンサデータ、及び前記将来期間の前記動的マップオブジェクトの予測された経路に基づき、
前記4次元マップを使用して、前記モバイルオブジェクトの移動経路におうじた一以上のファクタを有する目的関数を解く、前記将来期間における前記モバイルオブジェクトの移動経路を決定することと、
前記モバイルオブジェクトに、決定した前記移動経路に従うように指示することと、を含む装置。
(付記15) 計算装置により実行されると、前記計算装置に付記1ないし12いずれか一項に記載の方法を実行させるコンピュータプログラム。

Claims (9)

  1. 無線接続機能を有するモバイルオブジェクトの移動経路を指示する方法であって、前記モバイルオブジェクトはオンボード制御装置により自律モードまたは半自律モードで制御可能であり、前記方法は、
    第1計算装置において、関心時間フレームにわたる関心物理領域の4次元マップを保持することであって、前記マップは前記物理領域内の静的物理オブジェクトおよび動的物理オブジェクトを表す対応する静的マップオブジェクト及び動的マップオブジェクトを含み、前記動的マップオブジェクトのうちの1つは前記モバイルオブジェクトを表し、前記4次元は3つの空間次元と時間であり、前記時間フレームは現在の先の将来の画定された持続時間である将来期間を含む、保持することと、
    各動的マップオブジェクトの4次元マップ座標は、前記動的物理オブジェクトの位置を示す前記物理領域からのリアルタイムセンサデータ、及び前記将来期間の前記動的マップオブジェクトの予測された経路に基づき、
    前記4次元マップを使用して、前記モバイルオブジェクトの移動経路におうじた一以上のファクタを有する目的関数を解く、前記将来期間における前記モバイルオブジェクトの移動経路を決定することと、
    前記モバイルオブジェクトに、決定した前記移動経路に従うように指示することとを含む、方法。
  2. 前記目的関数は前記モバイルオブジェクトを表す前記動的マップオブジェクトと、他の静的または動的マップオブジェクトとの間の空間的相互作用を最小化し、空間的相互作用は所定閾値より短いオブジェクト間の距離である、請求項1の方法。
  3. 前記目的関数は人口一人あたりの移動性を最適化し、または前記目的関数は車両占有率を最大化し、または前記目的関数は残存バッテリー寿命を考慮して電動車両が所定目的地に到達できるようにする、請求項1ないし2いずれか一項に記載の方法。
  4. 各動的マップオブジェクトの予測経路は、将来期間中の複数の時間ステップの各々における、予測される空間3次元マップ座標を含み、
    一以上の動的マップオブジェクトが、車両が各オンボード制御装置により自律モードで又は半自律モードで運転されていることを表す場合、そのモバイルオブジェクトの予測経路は、オンボード制御装置により計算され、マッピングのため、第1計算装置に送信される、
    請求項1ないし3いずれか一項に記載の方法。
  5. 前記モバイルオブジェクトに取り付けられた第2計算装置において、
    前記第1計算装置に定期的に問い合わせることと、
    前記第1計算装置において、
    現在位置を有する任意の動的マップオブジェクトの予測経路またはその一部、あるいは前記モバイルオブジェクトからの距離が将来の関心期間においていつか距離閾値により画定される距離内であることを示す予測経路を含むクエリ応答を、前記第2計算装置に送信することにより、クエリに応答することと、
    前記第2計算装置において、
    前記クエリ応答中の前記動的マップオブジェクトの予測経路及び前記モバイルオブジェクトの予測経路を使用して、予測経路が同時に、将来の関心期間における前記モバイルオブジェクトの予測経路の画定の接触閾値距離内にある動的マップオブジェクトをマップイベントとして特定することとを含む、
    請求項1ないし4いずれか一項に記載の方法。
  6. 前記4次元マップを保持することは、一以上の予測された動的マップオブジェクトで前記静的および動的マップオブジェクトを強調することを含み、前記予測された動的マップオブジェクトは、動的マップオブジェクトの一部であり、現在時間と前記将来期間の終わりとの間のマッピング時点に前記マップに現れ、予測される動的マップオブジェクトの外観は、物理領域における動的物理オブジェクトの外観、前記物理領域からのリアルタイムセンサデータ、及び/又は前記物理領域のイベントの通知に基づいて予測される、請求項1ないし5いずれか一項に記載の方法。
  7. 無線接続機能を有するモバイルオブジェクトに指示するシステムであって、前記モバイルオブジェクトはオンボード制御装置により自律モードまたは半自律モードで制御可能であり、前記システムは、
    メモリとプロセッサとを有し、前記メモリは、前記プロセッサにより実行されると、前記プロセッサに、次のステップを含むプロセスを実行させる第1計算装置であって:
    関心時間フレームにわたる関心物理領域の4次元マップを保持することであって、前記マップは前記物理領域内の静的物理オブジェクトおよび動的物理オブジェクトを表す対応する静的マップオブジェクト及び動的マップオブジェクトを含み、前記動的マップオブジェクトのうちの1つは前記モバイルオブジェクトを表し、4次元は3つの空間次元と時間であり、前記時間フレームは現在の先の将来の画定された持続時間である将来期間を含む、保持することと
    各動的マップオブジェクトの4次元マップ座標は、前記動的物理オブジェクトの位置を示す前記物理領域からのリアルタイムセンサデータ、及び前記将来期間の前記動的マップオブジェクトの予測された経路に基づき、
    オンボード制御装置メモリとオンボード制御装置プロセッサとを有するオンボード制御装置であって、前記オンボード制御装置メモリは、前記オンボード制御装置プロセッサにより実行されると、前記オンボード制御装置プロセッサに次のステップを含むプロセスを実行させる処理命令を格納している:
    前記4次元マップを使用して、前記モバイルオブジェクトの移動経路におうじた一以上のファクタを有する目的関数を解く、前記将来期間における前記モバイルオブジェクトの移動経路を決定することと、
    前記モバイルオブジェクトに、決定した前記移動経路に従うように指示することと、
    を含む、システム。
  8. 無線接続機能を有するモバイルオブジェクトの移動経路を指示する装置であって、前記モバイルオブジェクトはオンボード制御装置により自律モードまたは半自律モードで制御可能であり、前記装置は、
    メモリとプロセッサとを有し、前記メモリは、前記プロセッサにより実行されると、前記プロセッサに、次のステップを含むプロセスを実行させる第1計算装置であって:
    関心時間フレームにわたる関心物理領域の4次元のマップを保持することであって、前記マップは前記物理領域内の静的物理オブジェクトおよび動的物理オブジェクトを表す対応する静的マップオブジェクト及び動的マップオブジェクトを含み、前記動的マップオブジェクトのうちの1つは前記モバイルオブジェクトを表し、前記4次元は3つの空間次元と時間であり、前記時間フレームは現在の先の将来の画定された持続時間である将来期間を含む、保持することと、
    各動的マップオブジェクトの4次元マップ座標は、前記動的物理オブジェクトの位置を示す前記物理領域からのリアルタイムセンサデータ、及び前記将来期間の前記動的マップオブジェクトの予測された経路に基づき、
    前記4次元マップを使用して、前記モバイルオブジェクトの移動経路におうじた一以上のファクタを有する目的関数を解く、前記将来期間における前記モバイルオブジェクトの移動経路を決定することと、
    前記モバイルオブジェクトに、決定した前記移動経路に従うように指示することと、を含む装置。
  9. 計算装置により実行されると、前記計算装置に請求項1ないし6いずれか一項に記載の方法を実行させるコンピュータプログラム。
JP2020060203A 2019-07-01 2020-03-30 自律オブジェクトへの指示 Pending JP2021009682A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19183731.9A EP3761137B1 (en) 2019-07-01 2019-07-01 Instructing autonomous objects
EP19183731.9 2019-07-01

Publications (1)

Publication Number Publication Date
JP2021009682A true JP2021009682A (ja) 2021-01-28

Family

ID=67145541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020060203A Pending JP2021009682A (ja) 2019-07-01 2020-03-30 自律オブジェクトへの指示

Country Status (2)

Country Link
EP (1) EP3761137B1 (ja)
JP (1) JP2021009682A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149292A1 (ja) * 2022-02-01 2023-08-10 キヤノン株式会社 情報処理システム、制御方法、及び記憶媒体
WO2023149349A1 (ja) * 2022-02-01 2023-08-10 キヤノン株式会社 制御システム、制御方法、及び記憶媒体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4062353B1 (ja) * 2006-11-10 2008-03-19 トヨタ自動車株式会社 障害物進路予測方法、装置、およびプログラム
WO2017079341A2 (en) * 2015-11-04 2017-05-11 Zoox, Inc. Automated extraction of semantic information to enhance incremental mapping modifications for robotic vehicles
WO2018126079A1 (en) * 2016-12-30 2018-07-05 DeepMap Inc. High definition map and route storage management system for autonomous vehicles
US20180307245A1 (en) * 2017-05-31 2018-10-25 Muhammad Zain Khawaja Autonomous Vehicle Corridor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149292A1 (ja) * 2022-02-01 2023-08-10 キヤノン株式会社 情報処理システム、制御方法、及び記憶媒体
WO2023149349A1 (ja) * 2022-02-01 2023-08-10 キヤノン株式会社 制御システム、制御方法、及び記憶媒体

Also Published As

Publication number Publication date
EP3761137B1 (en) 2021-08-04
EP3761137A1 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
US11231286B2 (en) Dynamic routing for self-driving vehicles
JP7058022B2 (ja) インテリジェント道路インフラストラクチャシステム(iris):システム及び方法
US20180281815A1 (en) Predictive teleassistance system for autonomous vehicles
CN113286733A (zh) 用于管理不同自主水平的车辆之间的交互的方法和系统
US11237564B2 (en) Motion planning system of an autonomous vehicle
JP7217389B1 (ja) 共同車両ヘッドライト方向づけ
CN113835420A (zh) 一种用于自动驾驶系统的功能分配系统
US11340884B2 (en) Systems and methods for distributing updates
US11380103B2 (en) Coverage device, moving body, control device, and moving body distributed control program
US11188099B2 (en) Method, system and apparatus for an autonomous routing algorithm with a failsafe provision at a final drop-off location
JP7217390B1 (ja) 共同車両ヘッドライト方向づけ
JP2022041923A (ja) 接続されたデータ分析プラットフォームを用いた車両経路指定
JP2021009682A (ja) 自律オブジェクトへの指示
US20230324188A1 (en) Autonomous vehicle fleet scheduling to maximize efficiency
CN112712718A (zh) 通过v2x的车辆、车队管理和交通信号灯交互体系结构设计
JP2021008258A (ja) スマートオブジェクトの知識の共有
US20230406359A1 (en) Collision imminent detection
US11546503B1 (en) Dynamic image compression for multiple cameras of autonomous vehicles
JP7212708B2 (ja) 交通信号機の制御方法及び装置
US20240144127A1 (en) Method and system for dynamic allocation of vehicles to fleets
JP2024013227A (ja) 車両のナビゲーションのためのシステム、方法及び計算装置
US20200201326A1 (en) Methods and Systems for Configuring and Instructing Autonomous Vehicles
CN117409561A (zh) 运营天气管理
CN114763156A (zh) 使用基于关注度的事件结构的认知情境意识的方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240326