JP2021009011A - Superconductor cooling device and superconductor cooling method - Google Patents

Superconductor cooling device and superconductor cooling method Download PDF

Info

Publication number
JP2021009011A
JP2021009011A JP2019124397A JP2019124397A JP2021009011A JP 2021009011 A JP2021009011 A JP 2021009011A JP 2019124397 A JP2019124397 A JP 2019124397A JP 2019124397 A JP2019124397 A JP 2019124397A JP 2021009011 A JP2021009011 A JP 2021009011A
Authority
JP
Japan
Prior art keywords
refrigerant
gas
heat exchange
compression
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019124397A
Other languages
Japanese (ja)
Other versions
JP6926153B2 (en
Inventor
昌樹 弘川
Masaki Hirokawa
昌樹 弘川
長坂 徹
Toru Nagasaka
徹 長坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sanso Holdings Corp
Original Assignee
Nippon Sanso Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sanso Holdings Corp filed Critical Nippon Sanso Holdings Corp
Priority to JP2019124397A priority Critical patent/JP6926153B2/en
Publication of JP2021009011A publication Critical patent/JP2021009011A/en
Application granted granted Critical
Publication of JP6926153B2 publication Critical patent/JP6926153B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

To provide a superconductor cooling device that can cool a coolant liquid to a supercooling temperature without wasting a coolant gas and can be reduced in size, and a superconductor cooling method.SOLUTION: A superconductor cooling device has: a refrigerator (50) that cools a first coolant; a super-cooler (51) having a storage part (52) for the first coolant and a heat exchange part (53) for heat exchange between the first coolant cooled by the refrigerator and a second coolant, wherein the storage part (52) for the first coolant is reduced in pressure to below the atmospheric pressure; and a superconductor cooling line (104) in which the heat exchange part (53) of the super-cooler (51) and a superconductor cooling part (54) are disposed and the second coolant circulates. There is also provided a superconductor cooling method using the same.SELECTED DRAWING: Figure 1

Description

本発明は、超電導体の冷却装置及び超電導体の冷却方法に関する。 The present invention relates to a superconductor cooling device and a superconductor cooling method.

高温超電導ケーブル等の超電導電力機器を冷却するための液化冷媒としては、比較的安価で入手し易く、電気絶縁性に優れた液体窒素が一般に使用される。液体窒素を65〜70Kの過冷却温度(サブクール温度)まで冷却する冷凍機としては、GM冷凍機、パルス管冷凍機、スターリング冷凍機、ブレイトン冷凍機等が用いられている。GM冷凍機、パルス管冷凍機は冷凍能力が数10W以下と小さく、数〜数10kWの冷凍能力が必要とされる超電導ケーブル等の超電導電力機器の冷却には適さない。また、スターリング冷凍機も数kWの冷凍能力しかなく、数10kWの冷凍能力が必要とされる場合は、複数台の冷凍機が必要となる。 As a liquefied refrigerant for cooling superconducting power equipment such as a high-temperature superconducting cable, liquid nitrogen, which is relatively inexpensive, easily available, and has excellent electrical insulation, is generally used. As a refrigerator that cools liquid nitrogen to a supercooling temperature (subcooling temperature) of 65 to 70 K, a GM refrigerator, a pulse tube refrigerator, a Sterling refrigerator, a Brayton refrigerator and the like are used. GM refrigerators and pulse tube refrigerators have a small refrigerating capacity of several tens of watts or less, and are not suitable for cooling superconducting power equipment such as superconducting cables that require a refrigerating capacity of several to several tens of kW. Further, the Stirling refrigerator also has a freezing capacity of only several kW, and when a freezing capacity of several tens of kW is required, a plurality of refrigerators are required.

そこで、ネオン冷媒ガスを用いたブレイトン冷凍機と、液体窒素を真空ポンプで減圧して熱交換することで液体窒素を65〜70Kの過冷却温度(サブクール温度)まで冷却する減圧式冷凍機の2種類の冷凍機を組み合わせて運転する方法が知られている(例えば、特許文献1等)。 Therefore, there are two types of refrigerators: a Brayton refrigerator that uses neon refrigerant gas, and a decompression refrigerator that cools liquid nitrogen to a supercooling temperature (subcooling temperature) of 65 to 70 K by decompressing liquid nitrogen with a vacuum pump and exchanging heat. A method of operating a combination of different types of refrigerators is known (for example, Patent Document 1 and the like).

また、減圧式冷凍機において、真空ポンプで排出した大気圧の窒素ガスを圧縮機で2MPa以上まで圧縮して、LNG等の液化冷媒と熱交換させて再液化させて回収する方法が知られている(例えば、特許文献2等)。 Further, in a decompression refrigerator, a method is known in which atmospheric pressure nitrogen gas discharged by a vacuum pump is compressed to 2 MPa or more by a compressor, heat exchanged with a liquefied refrigerant such as LNG, and reliquefied to recover. (For example, Patent Document 2 etc.).

特開2016−170928号公報Japanese Unexamined Patent Publication No. 2016-170928 特開2018−189322号公報JP-A-2018-189322

減圧式冷凍機では蒸発した低温の窒素ガスを真空ポンプで吸引し、大気中に放出するので、低温の熱エネルギーだけでなく、窒素ガスも無駄に消費される。そのため、頻繁にタンクローリーで液体窒素を補給する必要があり、ランニングコストが高くなる欠点がある。
これに対して、特許文献2では、減圧式冷凍機において、真空ポンプで排出した大気圧の窒素ガスを圧縮機で2MPa以上まで圧縮して、LNG等の液化冷媒と熱交換させて再液化させて回収する方法が開示されている。しかし、この方法では、LNG等が容易に入手できる立地条件が必要であった。
In a decompression refrigerator, evaporated low-temperature nitrogen gas is sucked by a vacuum pump and released into the atmosphere, so not only low-temperature thermal energy but also nitrogen gas is wasted. Therefore, it is necessary to frequently replenish liquid nitrogen with a tank lorry, which has a drawback that the running cost is high.
On the other hand, in Patent Document 2, in a vacuum refrigerator, atmospheric pressure nitrogen gas discharged by a vacuum pump is compressed to 2 MPa or more by a compressor, and is reliquefied by exchanging heat with a liquefied refrigerant such as LNG. The method of collecting the gas is disclosed. However, this method requires location conditions where LNG and the like can be easily obtained.

そこで、本発明は、冷媒ガスを浪費せず、冷媒液を過冷却温度まで冷却でき、かつ小型化できる、超電導体の冷却装置及び超電導体の冷却方法を提供することを課題とする。 Therefore, it is an object of the present invention to provide a cooling device for a superconductor and a cooling method for a superconductor, which can cool the refrigerant liquid to a supercooling temperature without wasting the refrigerant gas and can reduce the size.

上記課題は、以下の構成によって解決される。
[1] 第一の冷媒を冷却する冷凍機と、前記第一の冷媒の収容部及び前記冷凍機で冷却された前記第一の冷媒と第二の冷媒との熱交換を行う熱交換部を備え、前記第一の冷媒の収容部が大気圧未満に減圧されている過冷却器と、前記過冷却器の前記熱交換部及び超電導体の冷却部が配置され、前記第二の冷媒が循環する超電導体冷却ラインと、を備える超電導体の冷却装置であって、
前記冷凍機は、前記第一の冷媒のガスを圧縮する圧縮手段と、前記第一の冷媒のガスを断熱膨張させる断熱膨張手段と、前記第一の冷媒のガスを自由膨張させる自由膨張手段と、前記第一の冷媒のガスの間の熱交換を行う熱交換手段と、
前記圧縮手段、前記熱交換手段及び前記断熱膨張手段が配置され、前記第一の冷媒のガスが前記圧縮手段、前記熱交換手段、前記断熱膨張手段、前記熱交換手段、前記圧縮手段の順で循環する第一の供給ラインと、
前記圧縮手段、前記熱交換手段及び前記自由膨張手段が配置され、前記第一の冷媒のガスが前記圧縮手段、前記熱交換手段、前記自由膨張手段の順に流れ、前記第一の冷媒のガスの少なくとも一部を液化して、前記過冷却器の前記第一の冷媒の収容部に供給する第二の供給ラインと、
前記熱交換手段が配置され、前記過冷却器の前記第一の冷媒の収容部から前記第一の冷媒のガスを導出して、前記圧縮手段に前記第一の冷媒のガスを供給する戻りラインと、
を備え、
前記第一の供給ラインと前記第二の供給ラインとは、前記第一の供給ラインの前記圧縮手段の二次側から前記断熱膨張手段の一次側までと、前記第二の供給ラインの前記圧縮手段の二次側から前記自由膨張手段の一次側までのラインの一部を共有しており、前記圧縮手段で圧縮された前記第一の冷媒のガスの一部が前記断熱膨張手段の一次側に供給され、残部が前記自由膨張手段の一次側に供給されるように構成され、
前記第一の供給ラインと前記戻りラインとは、前記第一の供給ラインの前記熱交換手段から前記圧縮手段の一次側までと、前記戻りラインの前記熱交換手段から前記圧縮手段の一次側までのラインの一部を共有しており、前記第一の供給ラインからの前記第一の冷媒のガス及び前記戻りラインからの前記第一の冷媒のガスが前記圧縮手段の一次側に供給されるように構成され、
前記熱交換手段において、前記断熱膨張手段で断熱膨張させた前記第一の冷媒のガスと、前記圧縮手段で圧縮した前記第一の冷媒のガスとの熱交換を行うとともに、前記断熱膨張手段で断熱膨張させた前記第一の冷媒のガスと、前記過冷却器の前記第一の冷媒の収容部から導出した前記第一の冷媒のガスとの熱交換を行うように構成されている、
超電導体の冷却装置。
[2] さらに、
前記圧縮手段の一次側に前記第一の冷媒のガスを供給し、前記過冷却器の前記第一の冷媒の収容部に前記第一の冷媒の液体を供給する冷媒液貯槽と、
前記戻りライン上に前記熱交換手段を迂回して配置された加温手段を有する迂回ラインと、
を備える、[1]に記載の超電導体の冷却装置。
[3] さらに、前記第一の冷媒のガスを大気放出する放出ラインを備える、[1]又は[2]に記載の超電導体の冷却装置。
[4] 前記熱交換手段が、第一の熱交換部と、第二の熱交換部と、第三の熱交換部と、を含み、
前記第一の供給ライン上の、前記圧縮手段の二次側と前記断熱膨張手段の一次側との間に前記第一の熱交換部が配置され、前記断熱膨張手段の二次側と前記圧縮手段の一次側との間に、前記第二の熱交換部及び前記第一の熱交換部がこの順に配置され、
前記第二の供給ライン上の前記圧縮手段の二次側と前記自由膨張手段の一次側との間に、前記第一の熱交換部、前記第二の熱交換部、及び前記第三の熱交換部がこの順に配置され、
前記戻りライン上の前記過冷却器の前記第一の冷媒の収容部と前記圧縮手段の一次側との間に、前記第三の熱交換部、前記第二の熱交換部及び前記第一の熱交換部がこの順に配置される、
[1]〜[3]のいずれか1つに記載の超電導体の冷却装置。
[5] 前記第一の冷媒のガスが窒素ガスであり、前記第一の冷媒の液体が液体窒素である、[1]〜[4]のいずれか1つに記載の超電導体の冷却装置。
[6] 前記圧縮手段による圧縮圧力が0.30〜1MPaである、[1]〜[5]のいずれか1つに記載の超電導体の冷却装置。
[7] [1]〜[6]のいずれか1つに記載の超電導体の冷却装置において、
前記圧縮手段で前記第一の冷媒のガスを圧縮し、
前記圧縮手段で圧縮した前記第一の冷媒のガスを前記熱交換手段に通し、
前記熱交換手段に通した前記第一の冷媒のガスの一部を前記断熱膨張手段に供給して断熱膨張させるとともに、前記熱交換手段に通した前記第一の冷媒のガスの残部を液化させ、液化した前記第一の冷媒の液体を前記自由膨張手段に供給して自由膨張させて第一の冷媒を大気圧未満の過冷却温度のガス及び液体とし、
前記断熱膨張手段で断熱膨張させた前記第一の冷媒のガスを前記熱交換手段に通して、前記圧縮手段で圧縮した前記第一の冷媒のガスと前記断熱膨張手段で断熱膨張させた前記第一の冷媒のガスとの間で熱交換させた後、前記圧縮手段に供給し、
前記自由膨張手段で過冷却温度のガス及び液体とした前記第一の冷媒を前記過冷却器の前記第一の冷媒の収容部に供給し、
前記過冷却器の前記第一の冷媒の収容部から前記第一の冷媒のガスを導出し、前記熱交換手段に通して、前記過冷却器の前記第一の冷媒の収容部から導出した前記第一の冷媒のガスと前記断熱膨張手段で断熱膨張させた前記第一の冷媒のガスとの間で熱交換させた後、前記圧縮手段に供給し、
前記過冷却器の前記熱交換部で前記第一の冷媒の液体と前記第二の冷媒とを熱交換させて前記第二の冷媒を過冷却状態とし、
前記第二の冷媒を前記過冷却器の前記熱交換部と超電導体の冷却部とが配置された超電導体冷却ラインを循環させて、前記超電導体を冷却する、
超電導体の冷却方法。
The above problem is solved by the following configuration.
[1] A refrigerator that cools the first refrigerant, a storage unit for the first refrigerant, and a heat exchange unit that exchanges heat between the first refrigerant cooled by the refrigerator and the second refrigerant. A supercooler in which the accommodating portion of the first refrigerant is depressurized to less than atmospheric pressure, the heat exchange portion of the supercooler, and the cooling portion of the superconductor are arranged, and the second refrigerant circulates. A superconductor cooling device including a superconductor cooling line.
The refrigerator includes a compression means for compressing the gas of the first refrigerant, an adiabatic expansion means for adiabatic expansion of the gas of the first refrigerant, and a free expansion means for freely expanding the gas of the first refrigerant. , A heat exchange means for exchanging heat between the gases of the first refrigerant,
The compression means, the heat exchange means, and the adiabatic expansion means are arranged, and the gas of the first refrigerant is the compression means, the heat exchange means, the adiabatic expansion means, the heat exchange means, and the compression means in this order. The first circulating supply line and
The compression means, the heat exchange means, and the free expansion means are arranged, and the gas of the first refrigerant flows in the order of the compression means, the heat exchange means, and the free expansion means, and the gas of the first refrigerant. A second supply line that liquefies at least a part and supplies it to the first refrigerant accommodating portion of the supercooler.
A return line in which the heat exchange means is arranged, the gas of the first refrigerant is derived from the accommodating portion of the first refrigerant of the supercooler, and the gas of the first refrigerant is supplied to the compression means. When,
With
The first supply line and the second supply line are from the secondary side of the compression means of the first supply line to the primary side of the adiabatic expansion means, and the compression of the second supply line. A part of the line from the secondary side of the means to the primary side of the free expansion means is shared, and a part of the gas of the first refrigerant compressed by the compression means is the primary side of the adiabatic expansion means. And the balance is configured to be fed to the primary side of the free expansion means.
The first supply line and the return line are from the heat exchange means of the first supply line to the primary side of the compression means and from the heat exchange means of the return line to the primary side of the compression means. The gas of the first refrigerant from the first supply line and the gas of the first refrigerant from the return line are supplied to the primary side of the compression means. Is configured as
In the heat exchange means, heat exchange is performed between the gas of the first refrigerant expanded by the adiabatic expansion means and the gas of the first refrigerant compressed by the compression means, and the adiabatic expansion means It is configured to exchange heat between the adiabatic expanded gas of the first refrigerant and the gas of the first refrigerant derived from the accommodating portion of the first refrigerant of the supercooler.
Superconductor cooling device.
[2] Furthermore
A refrigerant liquid storage tank that supplies the gas of the first refrigerant to the primary side of the compression means and supplies the liquid of the first refrigerant to the accommodating portion of the first refrigerant of the supercooler.
A detour line having a heating means arranged on the return line so as to bypass the heat exchange means,
The superconductor cooling device according to [1].
[3] The superconductor cooling device according to [1] or [2], further comprising a discharge line for releasing the gas of the first refrigerant to the atmosphere.
[4] The heat exchange means includes a first heat exchange unit, a second heat exchange unit, and a third heat exchange unit.
The first heat exchange section is arranged between the secondary side of the compression means and the primary side of the adiabatic expansion means on the first supply line, and the secondary side of the adiabatic expansion means and the compression are provided. The second heat exchange section and the first heat exchange section are arranged in this order between the means and the primary side.
Between the secondary side of the compression means and the primary side of the free expansion means on the second supply line, the first heat exchange section, the second heat exchange section, and the third heat. The exchange parts are arranged in this order,
Between the first refrigerant accommodating portion of the supercooler and the primary side of the compression means on the return line, the third heat exchange unit, the second heat exchange unit, and the first one. The heat exchange units are arranged in this order,
The superconductor cooling device according to any one of [1] to [3].
[5] The superconductor cooling device according to any one of [1] to [4], wherein the gas of the first refrigerant is nitrogen gas and the liquid of the first refrigerant is liquid nitrogen.
[6] The superconductor cooling device according to any one of [1] to [5], wherein the compression pressure by the compression means is 0.30 to 1 MPa.
[7] In the superconductor cooling device according to any one of [1] to [6].
The gas of the first refrigerant is compressed by the compression means, and the gas is compressed.
The gas of the first refrigerant compressed by the compression means is passed through the heat exchange means,
A part of the gas of the first refrigerant passed through the heat exchange means is supplied to the adiabatic expansion means for adiabatic expansion, and the rest of the gas of the first refrigerant passed through the heat exchange means is liquefied. The liquefied liquid of the first refrigerant is supplied to the free expansion means and freely expanded to make the first refrigerant a gas and a liquid having an overcooling temperature lower than atmospheric pressure.
The gas of the first refrigerant that has been adiabatically expanded by the adiabatic expansion means is passed through the heat exchange means, and the gas of the first refrigerant compressed by the compression means and the adiabatic expansion of the first refrigerant by the adiabatic expansion means. After exchanging heat with the gas of one refrigerant, it is supplied to the compression means.
The first refrigerant made into a gas and a liquid at a supercooling temperature by the free expansion means is supplied to the accommodating portion of the first refrigerant of the supercooler.
The gas of the first refrigerant is taken out from the first refrigerant accommodating portion of the supercooler, passed through the heat exchange means, and led out from the first refrigerant accommodating portion of the supercooler. After heat exchange between the gas of the first refrigerant and the gas of the first refrigerant expanded by the adiabatic expansion means, the gas is supplied to the compression means.
The heat exchange section of the supercooler exchanges heat between the liquid of the first refrigerant and the second refrigerant to bring the second refrigerant into a supercooled state.
The second refrigerant is circulated in a superconductor cooling line in which the heat exchange portion of the supercooler and the cooling portion of the superconductor are arranged to cool the superconductor.
How to cool superconductors.

本発明によれば、冷凍機の作動ガスとして高価で希少なネオンガスやヘリウムガスを使用せず、また、冷媒ガスを浪費せず、冷媒液を過冷却温度(例えば65〜70K)まで冷却でき、かつ小型化できる、超電導体の冷却装置及び超電導体の冷却方法を提供できる。 According to the present invention, the refrigerant liquid can be cooled to a supercooling temperature (for example, 65 to 70 K) without using expensive and rare neon gas or helium gas as the operating gas of the refrigerator and without wasting the refrigerant gas. Moreover, it is possible to provide a cooling device for a superconductor and a cooling method for the superconductor, which can be miniaturized.

図1は、本発明の一実施形態に係る超電導体の冷却装置の概略構成を示す系統図である。FIG. 1 is a system diagram showing a schematic configuration of a superconductor cooling device according to an embodiment of the present invention.

本明細書において、「〜」を用いて表される数値範囲は「〜」の両側の数値を含むものとする。
本明細書において、「過冷却」の語は、液体の温度がその沸点よりも低い状態をいう。液体が液体窒素である場合、その温度が約77K(沸点)よりも低い状態をいう。また、「過冷却温度」の語は、液体の沸点よりも低い温度をいう。液体が液体窒素である場合、過冷却温度は、約77Kよりも低い温度をいう。
In the present specification, the numerical range represented by using "~" shall include the numerical values on both sides of "~".
As used herein, the term "supercooling" refers to a state in which the temperature of a liquid is lower than its boiling point. When the liquid is liquid nitrogen, it means that the temperature is lower than about 77K (boiling point). The term "supercooled temperature" refers to a temperature lower than the boiling point of the liquid. When the liquid is liquid nitrogen, the supercooling temperature means a temperature lower than about 77K.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、冷媒を循環利用することにより、冷媒の浪費を抑えられ、さらに、圧縮した冷媒を自由膨張させる(等エンタルピー膨張させる)ことにより、過冷却温度まで冷媒を冷却でき、冷凍機を複数台使用しなくても十分な冷却効果を得られることを知得し、本発明を完成させた。 As a result of diligent studies to solve the above problems, the present inventors can suppress waste of the refrigerant by circulating the refrigerant, and further expand the compressed refrigerant freely (equal enthalpy expansion). As a result, it was found that the refrigerant can be cooled to the supercooling temperature and a sufficient cooling effect can be obtained without using a plurality of refrigerators, and the present invention has been completed.

以下、図面を参照して本発明を適用した実施の形態について詳細に説明する。なお、以下の説明で用いる図面は、本発明の実施の形態の構成を説明するためのものであり、図示される各部の大きさ、厚さ及び寸法等は、実際の超電導体の冷却装置の寸法関係とは異なる場合がある。 Hereinafter, embodiments to which the present invention is applied will be described in detail with reference to the drawings. The drawings used in the following description are for explaining the configuration of the embodiment of the present invention, and the sizes, thicknesses, dimensions, etc. of the illustrated parts are the same as those of the actual superconductor cooling device. It may be different from the dimensional relationship.

図1は、本発明の実施の形態に係る超電導体の冷却装置の概略構成を示す系統図である。
図1に示す本実施形態の超電導体の冷却装置1は、第一の冷媒を冷却する冷凍機50と、前記第一の冷媒の収容部52及び前記冷凍機で冷却された前記第一の冷媒と第二の冷媒との熱交換を行う熱交換部53を備え、前記第一の冷媒の収容部52が大気圧未満に減圧されている過冷却器51と、前記過冷却器51の前記熱交換部53及び超電導体の冷却部54が配置され、前記第二の冷媒が循環する超電導体冷却ライン104と、を備える超電導体の冷却装置である。
FIG. 1 is a system diagram showing a schematic configuration of a superconductor cooling device according to an embodiment of the present invention.
The superconductor cooling device 1 of the present embodiment shown in FIG. 1 includes a refrigerator 50 that cools the first refrigerant, the first refrigerant accommodating portion 52, and the first refrigerant cooled by the refrigerator. A supercooler 51 having a heat exchange unit 53 for exchanging heat with the second refrigerant and the first refrigerant accommodating unit 52 being depressurized to less than atmospheric pressure, and the heat of the supercooler 51. This is a superconductor cooling device in which a switching section 53 and a superconductor cooling section 54 are arranged, and a superconductor cooling line 104 in which the second refrigerant circulates is provided.

前記冷凍機50は、前記第一の冷媒のガスを圧縮する圧縮手段11と、前記第一の冷媒のガスを断熱膨張させる断熱膨張手段13と、前記第一の冷媒の液体を自由膨張させる自由膨張手段14と、前記第一の冷媒のガスの間の熱交換を行う熱交換手段12と、前記圧縮手段11、前記熱交換手段12及び前記断熱膨張手段13が配置され、前記第一の冷媒のガスが前記圧縮手段11、前記熱交換手段12、前記断熱膨張手段13、前記熱交換手段12、前記圧縮手段11の順で循環する第一の供給ライン101と、前記圧縮手段11、前記熱交換手段12及び前記自由膨張手段14が配置され、前記第一の冷媒のガスが前記圧縮手段11、前記熱交換手段12の順に流れ、前記熱交換手段12で前記第一の冷媒のガスを液化し、前記自由膨張手段14で前記第一の冷媒を過冷却状態として、前記過冷却器51の前記第一の冷媒の収容部52に供給する第二の供給ライン102と、前記熱交換手段12が配置され、前記過冷却器51の前記第一の冷媒の収容部52から前記第一の冷媒のガスを導出して、前記圧縮手段11に前記第一の冷媒のガスを供給する戻りライン103と、を備える。 The refrigerating machine 50 has a compression means 11 for compressing the gas of the first refrigerant, an adiabatic expansion means 13 for adiabatic expansion of the gas of the first refrigerant, and a free expansion of the liquid of the first refrigerant. The expansion means 14, the heat exchange means 12 for exchanging heat between the gas of the first refrigerant, the compression means 11, the heat exchange means 12, and the adiabatic expansion means 13 are arranged, and the first refrigerant is arranged. The first supply line 101 in which the gas circulates in the order of the compression means 11, the heat exchange means 12, the adiabatic expansion means 13, the heat exchange means 12, and the compression means 11, and the compression means 11, the heat. The exchange means 12 and the free expansion means 14 are arranged, the gas of the first refrigerant flows in the order of the compression means 11 and the heat exchange means 12, and the heat exchange means 12 liquefies the gas of the first refrigerant. Then, the free expansion means 14 supercools the first refrigerant, and the second supply line 102 that supplies the first refrigerant to the accommodating portion 52 of the supercooler 51 and the heat exchange means 12 Is arranged, and a return line 103 that draws out the gas of the first refrigerant from the accommodating portion 52 of the first refrigerant of the supercooler 51 and supplies the gas of the first refrigerant to the compression means 11. And.

前記第一の供給ライン101と前記第二の供給ライン102とは、前記第一の供給ライン101の前記圧縮手段11の二次側から前記断熱膨張手段13の一次側までと、前記第二の供給ライン102の前記圧縮手段11の二次側から前記自由膨張手段14の一次側までのラインの一部を共有しており、前記圧縮手段11で圧縮された前記第一の冷媒のガスの一部が前記断熱膨張手段13の一次側に供給され、残部が熱交換手段12で液化された後に前記自由膨張手段14の一次側に供給されるように構成されている。 The first supply line 101 and the second supply line 102 are from the secondary side of the compression means 11 of the first supply line 101 to the primary side of the adiabatic expansion means 13, and the second supply line 101. A part of the line from the secondary side of the compression means 11 of the supply line 102 to the primary side of the free expansion means 14 is shared, and one of the gases of the first refrigerant compressed by the compression means 11. The portion is supplied to the primary side of the adiabatic expansion means 13, and the balance is liquefied by the heat exchange means 12 and then supplied to the primary side of the free expansion means 14.

前記第一の供給ライン101と前記戻りライン103とは、前記第一の供給ライン101の前記熱交換手段12から前記圧縮手段11の一次側までと、前記戻りライン103の前記熱交換手段12から前記圧縮手段11の一次側までのラインの一部を共有しており、前記第一の供給ライン101からの前記第一の冷媒のガス及び前記戻りライン103からの前記第一の冷媒のガスが前記圧縮手段11の一次側に供給されるように構成されている。 The first supply line 101 and the return line 103 are from the heat exchange means 12 of the first supply line 101 to the primary side of the compression means 11 and from the heat exchange means 12 of the return line 103. A part of the line to the primary side of the compression means 11 is shared, and the gas of the first refrigerant from the first supply line 101 and the gas of the first refrigerant from the return line 103 are shared. It is configured to be supplied to the primary side of the compression means 11.

前記熱交換手段12において、前記断熱膨張手段13で断熱膨張させた前記第一の冷媒のガスと、前記圧縮手段11で圧縮した前記第一の冷媒のガスとの熱交換を行うとともに、前記断熱膨張手段13で断熱膨張させた前記第一の冷媒のガスと、前記過冷却器51の前記第一の冷媒の収容部52から導出した前記第一の冷媒のガスとの熱交換を行うように構成されている。 In the heat exchange means 12, heat exchange is performed between the gas of the first refrigerant expanded by the adiabatic expansion means 13 and the gas of the first refrigerant compressed by the compression means 11, and the heat insulation is performed. The gas of the first refrigerant expanded adiabatically by the expansion means 13 and the gas of the first refrigerant drawn out from the accommodating portion 52 of the first refrigerant of the supercooler 51 are exchanged with each other. It is configured.

前記圧縮手段11は、第一の冷媒のガスを圧縮して、高圧のガスを生成できればよく、特に限定されないが、例えば、ターボ圧縮機、容積型圧縮機等の圧縮機を使用できる。圧縮手段による圧縮圧力は、特に限定されないが、0.3〜1MPaが好ましく、0.4〜0.6MPaがより好ましい。 The compression means 11 is not particularly limited as long as it can compress the gas of the first refrigerant to generate a high-pressure gas, and for example, a compressor such as a turbo compressor or a positive displacement compressor can be used. The compression pressure by the compression means is not particularly limited, but is preferably 0.3 to 1 MPa, more preferably 0.4 to 0.6 MPa.

前記熱交換手段12は、特に限定されないが、小型化及び高性能化の観点から、アルミプレートフィン熱交換器が好ましい。 The heat exchange means 12 is not particularly limited, but an aluminum plate fin heat exchanger is preferable from the viewpoint of miniaturization and high performance.

前記断熱膨張手段13は、圧縮手段11で圧縮された第一の冷媒のガスを断熱膨張させて、低温化できれば特に限定されないが、小型化及び高性能化の観点から、膨張タービンが好ましい。 The adiabatic expansion means 13 is not particularly limited as long as the gas of the first refrigerant compressed by the compression means 11 can be adiabatically expanded to lower the temperature, but an expansion turbine is preferable from the viewpoint of miniaturization and high performance.

前記自由膨張手段14は、圧縮手段11で圧縮され、熱交換手段12で液化された第一の冷媒を自由膨張させて過冷却状態にできれば特に限定されないが、小型化及び高性能化の観点から、ジュール=トムソン弁等の自由膨張弁が好ましい。
前記自由膨張手段14において、前記第二の供給ライン102を通過する前記第一の冷媒は、エンタルピーが変化することなく膨張するので、温度が前記第一の冷媒の沸点よりも低下する。前記自由膨張手段14では、前記第一の冷媒は、大気圧未満の圧力下でガスと液体とが混合した状態となる。すなわち、第二の供給ライン102から前記過冷却器51の前記第一の冷媒の収容部52に供給される前記第一の冷媒は、通常、ガスと液体とが混合したものである。
The free expansion means 14 is not particularly limited as long as the first refrigerant compressed by the compression means 11 and liquefied by the heat exchange means 12 can be freely expanded to a supercooled state, but from the viewpoint of miniaturization and high performance. , A free expansion valve such as a Joule-Thomson valve is preferable.
In the free expansion means 14, the temperature of the first refrigerant passing through the second supply line 102 expands without changing the enthalpy, so that the temperature is lower than the boiling point of the first refrigerant. In the free expansion means 14, the first refrigerant is in a state where a gas and a liquid are mixed under a pressure of less than atmospheric pressure. That is, the first refrigerant supplied from the second supply line 102 to the first refrigerant accommodating portion 52 of the supercooler 51 is usually a mixture of gas and liquid.

本実施形態の超電導体の冷却装置1では、図1に示すように、前記戻りライン103上に真空ポンプ17を配置してもよい。前記戻りライン103上に前記真空ポンプ17を配置することで、前記冷凍機50と前記過冷却器51の前記第一の冷媒の収容部との間で、前記第一の冷媒を循環させやすくなる。 In the superconductor cooling device 1 of the present embodiment, as shown in FIG. 1, the vacuum pump 17 may be arranged on the return line 103. By arranging the vacuum pump 17 on the return line 103, the first refrigerant can be easily circulated between the refrigerator 50 and the accommodating portion of the first refrigerant of the supercooler 51. ..

本実施形態の超電導体の冷却装置1では、図1に示すように、前記熱交換手段12が、第一の熱交換部12aと、第二の熱交換部12bと、第三の熱交換部12cと、を含むようにしてもよい。 In the superconductor cooling device 1 of the present embodiment, as shown in FIG. 1, the heat exchange means 12 has a first heat exchange unit 12a, a second heat exchange unit 12b, and a third heat exchange unit. 12c and may be included.

この場合において、前記第一の供給ライン101上の、前記圧縮手段11の二次側と前記断熱膨張手段13の一次側との間に前記第一の熱交換部12aが配置され、前記断熱膨張手段13の二次側と前記圧縮手段11の一次側との間に、前記第二の熱交換部12b及び前記第一の熱交換部12aがこの順に配置され、前記第二の供給ライン102上の前記圧縮手段11の二次側と前記自由膨張手段14の一次側との間に、前記第一の熱交換部12a、前記第二の熱交換部12b、及び前記第三の熱交換部12cがこの順に配置され、前記戻りライン103上の前記過冷却器51の前記第一の冷媒の収容部52と前記圧縮手段11の一次側との間に、前記第三の熱交換部12c、前記第二の熱交換部12b及び前記第一の熱交換部12aがこの順に配置されることが好ましい。 In this case, the first heat exchange portion 12a is arranged between the secondary side of the compression means 11 and the primary side of the adiabatic expansion means 13 on the first supply line 101, and the adiabatic expansion is performed. The second heat exchange section 12b and the first heat exchange section 12a are arranged in this order between the secondary side of the means 13 and the primary side of the compression means 11, and are placed on the second supply line 102. Between the secondary side of the compression means 11 and the primary side of the free expansion means 14, the first heat exchange unit 12a, the second heat exchange unit 12b, and the third heat exchange unit 12c. Are arranged in this order, and the third heat exchange section 12c, said, is placed between the first refrigerant accommodating section 52 of the supercooler 51 on the return line 103 and the primary side of the compressing means 11. It is preferable that the second heat exchange section 12b and the first heat exchange section 12a are arranged in this order.

熱交換手段12における熱交換部の数は、1つ、2つ、又は3つに限定されず、4つ以上であってもよい。熱交換効率と小型化とのバランスから、熱交換手段12における熱交換部の数は、3つが好ましい。 The number of heat exchange units in the heat exchange means 12 is not limited to one, two, or three, and may be four or more. From the viewpoint of the balance between heat exchange efficiency and miniaturization, the number of heat exchange portions in the heat exchange means 12 is preferably three.

図1では、断熱膨張手段13で断熱膨張された第一の冷媒のガスは、第二の熱交換部12bに供給されるが、第三の熱交換部12cに供給されてもよい。しかし、冷却効率がより高くなることから、断熱膨張手段13で断熱膨張された第一の冷媒のガスは、第二の熱交換部12bに供給することが好ましい。 In FIG. 1, the gas of the first refrigerant that has been adiabatically expanded by the adiabatic expansion means 13 is supplied to the second heat exchange unit 12b, but may be supplied to the third heat exchange unit 12c. However, since the cooling efficiency becomes higher, it is preferable that the gas of the first refrigerant that has been adiabatically expanded by the adiabatic expansion means 13 is supplied to the second heat exchange section 12b.

本実施形態の超電導体の冷却装置1では、図1に示すように、前記圧縮手段11の一次側に前記第一の冷媒のガスを供給し、前記過冷却器51の前記第一の冷媒の収容部52に前記第一の冷媒の液体を供給する冷媒液貯槽15を備えていてもよい。 In the superconductor cooling device 1 of the present embodiment, as shown in FIG. 1, the gas of the first refrigerant is supplied to the primary side of the compression means 11, and the first refrigerant of the supercooler 51 is supplied. The accommodating portion 52 may be provided with a refrigerant liquid storage tank 15 for supplying the liquid of the first refrigerant.

この場合において、第一の冷媒のガス供給ライン106は、前記冷媒液貯槽15の上端に接続され、前記冷媒液貯槽15で気化した前記第一の冷媒のガスを前記圧縮手段11の一次側に供給することが好ましく、第一の冷媒の液体供給ライン107は、前記冷媒液貯槽15の下端に接続され、前記冷媒液貯槽15に貯留されている前記第一の冷媒の液体を前記過冷却器51の第一の冷媒の収容部52に供給することが好ましい。
前記第一の冷媒のガス供給ライン106には、図1に示すように、開閉バルブ21を設けてもよい。前記開閉バルブ21を前記第一の冷媒のガス供給ライン106上に設けることにより、前記冷媒液貯槽15から前記第一の供給ライン101への前記第一の冷媒のガスの供給を制御できる。
In this case, the gas supply line 106 of the first refrigerant is connected to the upper end of the refrigerant liquid storage tank 15, and the gas of the first refrigerant vaporized in the refrigerant liquid storage tank 15 is sent to the primary side of the compression means 11. It is preferable to supply the first refrigerant liquid supply line 107, which is connected to the lower end of the refrigerant liquid storage tank 15 and supplies the first refrigerant liquid stored in the refrigerant liquid storage tank 15 to the supercooler. It is preferable to supply the first refrigerant of 51 to the accommodating portion 52.
As shown in FIG. 1, an on-off valve 21 may be provided on the gas supply line 106 of the first refrigerant. By providing the on-off valve 21 on the gas supply line 106 of the first refrigerant, it is possible to control the supply of the gas of the first refrigerant from the refrigerant liquid storage tank 15 to the first supply line 101.

前記第一の冷媒の液体供給ライン107には、図1に示すように、開閉バルブ22を設けてもよい。前記開閉バルブ22を前記第一の冷媒の液体供給ライン107上に設けることにより、前記冷媒液貯槽15から前記過冷却器51の前記第一の冷媒の収容部52への前記第一の冷媒の液体の供給を制御できる。 As shown in FIG. 1, an on-off valve 22 may be provided on the liquid supply line 107 of the first refrigerant. By providing the on-off valve 22 on the liquid supply line 107 of the first refrigerant, the first refrigerant can be supplied from the refrigerant liquid storage tank 15 to the storage portion 52 of the first refrigerant of the supercooler 51. The supply of liquid can be controlled.

従来は、1台のネオンガスを作動流体とするブレイトン冷凍機の予備として複数台のヘリウムガスを作動流体とするスターリング冷凍機を配置しており、機器の設置スペース及び配管スペースが必要であった。また、前述した特許文献11に記載されたようにネオンガスを作動流体とするブレイトン冷凍機の予備として液体窒素の減圧式冷凍機を配置した場合、機器の設置スペースの問題だけでなく、過冷却器に液体窒素を常に貯留しておく必要があり、侵入熱によって液体窒素が蒸発するため液体窒素を補給する必要であった。
しかし、本実施形態の超電導体の冷却装置1では、冷媒液貯槽15及び第一の冷媒の液体供給ライン107を備えることにより、圧縮手段11、断熱膨張手段13又は自由膨張手段14等が故障し、第二の供給ライン102から過冷却器51の第一の冷媒の収容部52に過冷却状態の第一の冷媒が供給できなくなった場合であっても、冷媒液貯槽15から第一の冷媒の液体を過冷却器51の第一の冷媒の収容部に供給して、超電導体の冷却部54の冷却を続けられる。そのため、圧縮手段11、断熱膨張手段13又は自由膨張手段14等の故障に備えて予備の冷凍機を複数台配置しておく必要がない。
Conventionally, a plurality of Stirling refrigerators using helium gas as a working fluid are arranged as spares for one Brayton refrigerator using one neon gas as a working fluid, and equipment installation space and piping space are required. Further, as described in Patent Document 11 described above, when a liquid nitrogen decompression refrigerating machine is arranged as a spare for a Brayton refrigerating machine using neon gas as a working fluid, not only a problem of equipment installation space but also a supercooler It was necessary to store liquid nitrogen at all times, and it was necessary to replenish liquid nitrogen because the liquid nitrogen evaporates due to the heat of entry.
However, in the cooling device 1 of the superconductor of the present embodiment, by providing the refrigerant liquid storage tank 15 and the liquid supply line 107 of the first refrigerant, the compression means 11, the adiabatic expansion means 13, the free expansion means 14, and the like fail. Even when the first refrigerant in the overcooled state cannot be supplied from the second supply line 102 to the first refrigerant accommodating portion 52 of the supercooler 51, the first refrigerant is supplied from the refrigerant liquid storage tank 15. Liquid is supplied to the first refrigerant accommodating portion of the supercooler 51 to continue cooling the cooling portion 54 of the superconductor. Therefore, it is not necessary to arrange a plurality of spare refrigerators in case of failure of the compression means 11, the adiabatic expansion means 13, the free expansion means 14, or the like.

本実施形態の超電導体の冷却装置1では、図1に示すように、前記戻りライン103上に前記熱交換手段12を迂回して配置された加温手段16を有する迂回ライン105と、を備えていてもよい。
前記加温手段16は、例えば、空温式、スチーム温水式、温水式等の加温器である。
この場合において、前記迂回ライン105と前記戻りライン103との分岐点に三方バルブ23を設け、前記迂回ライン105と前記戻りライン103との合流点に三方バルブ24を設けることが好ましい。三方バルブ23、24を操作することにより、前記過冷却器51の前記第一の冷媒の収容部52から導出された前記第一の冷媒のガスを、前記戻りライン103を通過させて前記圧縮手段11の一次側に供給するか、前記迂回ライン105を通過させて前記圧縮手段11の一次側に供給するかを選択できる。
As shown in FIG. 1, the superconductor cooling device 1 of the present embodiment includes a bypass line 105 having a heating means 16 arranged on the return line 103 so as to bypass the heat exchange means 12. You may be.
The heating means 16 is, for example, a warmer such as an air heating type, a steam hot water type, or a hot water type.
In this case, it is preferable to provide the three-way valve 23 at the branch point between the detour line 105 and the return line 103, and to provide the three-way valve 24 at the confluence of the detour line 105 and the return line 103. By operating the three-way valves 23 and 24, the gas of the first refrigerant led out from the accommodating portion 52 of the first refrigerant of the supercooler 51 is passed through the return line 103 and the compression means. It is possible to select whether to supply to the primary side of 11 or to pass through the bypass line 105 and supply to the primary side of the compression means 11.

本実施形態の超電導体の冷却装置1では、図1に示すように、前記戻りライン103上に配置した三方バルブ20に接続される放出ライン108を備えていてもよい。
前記放出ライン108は、前記戻りライン103から前記第一の冷媒のガスを大気中に放出するラインである。
As shown in FIG. 1, the superconductor cooling device 1 of the present embodiment may include a discharge line 108 connected to a three-way valve 20 arranged on the return line 103.
The release line 108 is a line that discharges the gas of the first refrigerant into the atmosphere from the return line 103.

迂回ライン105上に配置した加温手段16により、第一の冷媒のガスを昇温させ、放出ライン108を通じて大気中に放出できる。これにより、冷凍機50をより効率的に冷却できる。前記第一の冷媒のガスを大気中に放出させることにより、前記第一の冷媒のガスを回収するためのタンクの設置を省略することができるので、超電導体の冷却装置1をより小型化できる。 The heating means 16 arranged on the detour line 105 can raise the temperature of the gas of the first refrigerant and release it into the atmosphere through the discharge line 108. As a result, the refrigerator 50 can be cooled more efficiently. By releasing the gas of the first refrigerant into the atmosphere, it is possible to omit the installation of a tank for recovering the gas of the first refrigerant, so that the cooling device 1 of the superconductor can be further miniaturized. ..

超電導体の冷却装置1が、冷媒液貯槽15、第一の冷媒のガス供給ライン106及び第一の冷媒の液体供給ライン107と、加温手段16及び迂回ライン105と、放出ライン108と、を備えることにより、超電導体の冷却装置1の運転前の予冷時にも冷凍機50を冷却できる。 The superconductor cooling device 1 includes a refrigerant liquid storage tank 15, a first refrigerant gas supply line 106, a first refrigerant liquid supply line 107, a heating means 16, a bypass line 105, and a discharge line 108. By providing the refrigerator 50, the refrigerator 50 can be cooled even during precooling before the operation of the superconductor cooling device 1.

さらに、超電導体の冷却装置1が冷媒液貯槽15を備えることにより、圧縮手段11、断熱膨張手段13、自由膨張手段14等が故障し、第二の供給ラインの故障時に、第一の冷媒の液体を過冷却器51の第一の冷媒の収容部52に供給し、超電導体の冷却部54を冷却することができる。
すなわち、圧縮機や膨張タービン等の回転機械の故障時に、液体窒素を供給し、冷凍機全体を冷却することができる。これにより、回転機故障時用に予備として、冷凍機を複数台配置する必要がない。また、上記構成は、冷却装置1の運転前の予冷時にも冷凍機50の冷却に使用することができる。
Further, when the cooling device 1 of the superconductor includes the refrigerant liquid storage tank 15, the compression means 11, the adiabatic expansion means 13, the free expansion means 14, etc. fail, and when the second supply line fails, the first refrigerant The liquid can be supplied to the first refrigerant accommodating portion 52 of the supercooler 51 to cool the cooling portion 54 of the superconductor.
That is, when a rotating machine such as a compressor or an expansion turbine fails, liquid nitrogen can be supplied to cool the entire refrigerator. As a result, it is not necessary to arrange a plurality of refrigerators as spares in case of a rotating machine failure. Further, the above configuration can be used for cooling the refrigerator 50 even during precooling before the operation of the cooling device 1.

過冷却器51は、第一の冷媒の収容部52と熱交換部53とを備える。
第一の冷媒の収容部52には、自由膨張手段14によって過冷却温度とされた第一の冷媒が収容される。第一の冷媒の収容部52は、通常、第一の冷媒のガス及び液体で満たされている。
熱交換部53では、第一の冷媒と第二の冷媒の熱交換が行われる。熱交換部53は、後述する超電導体冷却ライン104上に配置されている。
The supercooler 51 includes a first refrigerant accommodating portion 52 and a heat exchange portion 53.
The first refrigerant accommodating portion 52 accommodates the first refrigerant whose supercooling temperature is set by the free expansion means 14. The first refrigerant accommodating portion 52 is usually filled with the gas and liquid of the first refrigerant.
In the heat exchange unit 53, heat exchange between the first refrigerant and the second refrigerant is performed. The heat exchange unit 53 is arranged on the superconductor cooling line 104, which will be described later.

超電導体冷却ライン104上には、図1に示すように、過冷却器51の熱交換部53と、超電導体の冷却部54とが配置されている。
熱交換部53で過冷却状態とされた第二の冷媒を超電導体の冷却部54に供給することにより、超電導体を冷却できる。
超電導体冷却ライン104上には、さらに、リザーバー55及び循環ポンプ56が配置されていてもよい。
リザーバー55は、第二の冷媒を収容するタンクである。超電導体冷却ライン104を循環する第二の冷媒の量を所定量に維持する。循環ポンプ56は、超電導体冷却ライン104において第二の冷媒を循環させるポンプである。
As shown in FIG. 1, a heat exchange unit 53 of the supercooler 51 and a cooling unit 54 of the superconductor are arranged on the superconductor cooling line 104.
The superconductor can be cooled by supplying the second refrigerant supercooled by the heat exchange unit 53 to the cooling unit 54 of the superconductor.
A reservoir 55 and a circulation pump 56 may be further arranged on the superconductor cooling line 104.
The reservoir 55 is a tank that houses the second refrigerant. The amount of the second refrigerant circulating in the superconductor cooling line 104 is maintained at a predetermined amount. The circulation pump 56 is a pump that circulates the second refrigerant in the superconductor cooling line 104.

上述した構成により、本実施形態の超電導体の冷却装置1は、第一の冷媒を冷凍機50及び過冷却器51に循環させて、過冷却温度とし、第一の冷媒と第二の冷媒とを熱交換さ、第二の冷媒を過冷却状態とし、超電導体の冷却部54を冷却する。これにより、冷媒ガスを浪費せず、冷媒液を過冷却温度まで冷却でき、かつ小型化できる。 According to the above-described configuration, the superconductor cooling device 1 of the present embodiment circulates the first refrigerant through the refrigerator 50 and the supercooler 51 to set the supercooling temperature, and the first refrigerant and the second refrigerant are used. Is heat-exchanged, the second refrigerant is in an overcooled state, and the cooling unit 54 of the superconductor is cooled. As a result, the refrigerant liquid can be cooled to the supercooling temperature without wasting the refrigerant gas, and the size can be reduced.

前記第一の冷媒は、特に限定されないが、安価であり、冷凍サイクルにより過冷却しやすく、充分な冷却性能を得られることから、窒素が好ましい。また、窒素ガスは、ヘリウムガスやネオンガスよりも分子量が大きく、比熱比が小さいので、圧縮手段11の圧縮比を高くでき、圧縮動力も少なくて済む。さらに、本発明によれば、圧縮手段11の一次側を大気圧とすることができるので、圧縮手段11として市販のオイルフリー圧縮機を利用することができる。また、軸シール等に安価な窒素ガスが利用できるので、ヘリウムガスやネオンガスを作動流体としたブレイトン冷凍機のような磁気軸受や高速モータを利用した高価なターボ圧縮機は不要となる。特に、窒素ガスは大気を構成する主成分であることから、大気中に放出しても問題(又は害)となることがなく、安全性が高いという利点もある。 The first refrigerant is not particularly limited, but nitrogen is preferable because it is inexpensive, easily supercooled by the refrigeration cycle, and sufficient cooling performance can be obtained. Further, since nitrogen gas has a larger molecular weight and a smaller specific heat ratio than helium gas and neon gas, the compression ratio of the compression means 11 can be increased and the compression power can be reduced. Further, according to the present invention, since the primary side of the compression means 11 can be set to atmospheric pressure, a commercially available oil-free compressor can be used as the compression means 11. Further, since inexpensive nitrogen gas can be used for the shaft seal and the like, an expensive turbo compressor using a magnetic bearing or a high-speed motor such as a Brayton refrigerator using helium gas or neon gas as a working fluid becomes unnecessary. In particular, since nitrogen gas is the main component of the atmosphere, it does not pose a problem (or harm) even if it is released into the atmosphere, and has the advantage of high safety.

第二の冷媒は、特に限定されないが、超電導体の冷却部を冷却するための冷媒として既に広く用いられており、実績があることから、液体窒素が好ましい。 The second refrigerant is not particularly limited, but liquid nitrogen is preferable because it has already been widely used as a refrigerant for cooling the cooling portion of the superconductor and has a proven track record.

本実施形態の超電導体の冷却装置1を用いた超電導体の冷却方法の概略を、以下に説明する。
(1)圧縮手段11で第一の冷媒のガスを圧縮する。
(2)圧縮手段11で圧縮した第一の冷媒のガスを熱交換手段12に通す。
(3)熱交換手段12に通した第一の冷媒のガスの一部を断熱膨張手段13に供給して断熱膨張させるとともに、熱交換手段12に通した第一の冷媒のガスの残部を液化させ、この液化した第一の冷媒の液体を自由膨張手段14に供給して自由膨張させて第一の冷媒を大気圧未満の過冷却温度のガス及び液体とする。
(4)断熱膨張手段13で断熱膨張させた第一の冷媒のガスを熱交換手段12に通して、圧縮手段11で圧縮した第一の冷媒のガスと断熱膨張手段で断熱膨張させた第一の冷媒のガスとの間で熱交換させた後、圧縮手段11に供給する。
(5)自由膨張手段14で過冷却温度のガス及び液体とした第一の冷媒を過冷却器51の第一の冷媒の収容部52に供給する。
(6)過冷却器51の第一の冷媒の収容部52から第一の冷媒のガスを導出し、熱交換手段12に通して、過冷却器51の第一の冷媒の収容部52から導出した第一の冷媒のガスと断熱膨張手段13で断熱膨張させた第一の冷媒のガスとの間で熱交換させた後、圧縮手段11に供給する。
(7)過冷却器51の熱交換部53で第一の冷媒の液体と第二の冷媒とを熱交換させて第二の冷媒を過冷却状態とする。
(8)第二の冷媒を過冷却器の熱交換部53と超電導体の冷却部54とが配置された超電導体冷却ライン104を循環させて、超電導体を冷却する。
The outline of the superconductor cooling method using the superconductor cooling device 1 of the present embodiment will be described below.
(1) The compression means 11 compresses the gas of the first refrigerant.
(2) The gas of the first refrigerant compressed by the compression means 11 is passed through the heat exchange means 12.
(3) A part of the gas of the first refrigerant passed through the heat exchange means 12 is supplied to the adiabatic expansion means 13 for adiabatic expansion, and the rest of the gas of the first refrigerant passed through the heat exchange means 12 is liquefied. Then, the liquid of the liquefied first refrigerant is supplied to the free expansion means 14 and freely expanded to make the first refrigerant a gas and a liquid having an overcooling temperature lower than the atmospheric pressure.
(4) The gas of the first refrigerant adiabatically expanded by the adiabatic expansion means 13 is passed through the heat exchange means 12, and the gas of the first refrigerant compressed by the compression means 11 and the first adiabatic expansion by the adiabatic expansion means After heat exchange with the gas of the refrigerant of the above, it is supplied to the compression means 11.
(5) The free expansion means 14 supplies the supercooled temperature gas and the first refrigerant made into a liquid to the storage portion 52 of the first refrigerant of the supercooler 51.
(6) The gas of the first refrigerant is taken out from the first refrigerant accommodating portion 52 of the supercooler 51, passed through the heat exchange means 12, and led out from the first refrigerant accommodating portion 52 of the supercooler 51. After heat exchange is performed between the gas of the first refrigerant and the gas of the first refrigerant expanded by the adiabatic expansion means 13, the gas is supplied to the compression means 11.
(7) The heat exchange unit 53 of the supercooler 51 exchanges heat between the liquid of the first refrigerant and the second refrigerant to bring the second refrigerant into a supercooled state.
(8) The second refrigerant is circulated in the superconductor cooling line 104 in which the heat exchange section 53 of the supercooler and the cooling section 54 of the superconductor are arranged to cool the superconductor.

以下では実施例により本発明をより具体的に説明するが、本発明は後述する実施例に限定されるものではなく、本発明の要旨を逸脱しない限り、種々の変形が可能である。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the Examples described later, and various modifications can be made without departing from the gist of the present invention.

本実施例では、図1に示す超電導体の冷却装置1において、圧縮手段11として圧縮機C1、冷却手段18、19として、それぞれ、水冷クーラーCL1、CL2、第一〜第三の熱交換部12a〜12cとして、それぞれ、アルミプレートフィン熱交換器HEX1〜HEX3、断熱膨張手段13として膨張タービンT1、自由膨張手段14として等エンタルピー膨張弁(ジュール=トムソン弁)JT、循環ポンプ56として液体窒素循環ポンプLNP、リザーバー55としてリザーバータンクRT、冷媒液貯槽15として真空断熱の液体窒素貯槽LN、過冷却器51として過冷却器SC、加温手段16として空温式ガス熱交換器AH1、真空ポンプ17として真空ポンプVP1、をそれぞれ用いた。 In this embodiment, in the superconductor cooling device 1 shown in FIG. 1, the compressor C1 is used as the compressing means 11, the cooling means 18 and 19, respectively, the water-cooled coolers CL1 and CL2, and the first to third heat exchange units 12a. ~ 12c are aluminum plate fin heat exchangers HEX1 to HEX3, expansion turbine T1 as adiabatic expansion means 13, equal enthalpy expansion valve (Joule-Thomson valve) JT as free expansion means 14, and liquid nitrogen circulation pump as circulation pump 56, respectively. LNP, reservoir tank RT as reservoir 55, liquid nitrogen storage tank LN with vacuum insulation as refrigerant liquid storage tank 15, supercooler SC as supercooler 51, air temperature gas heat exchanger AH1 as heating means 16, vacuum pump 17 Vacuum pump VP1 was used respectively.

窒素ガスを圧縮機C1で大気圧から0.2〜1.0MPaまで断熱圧縮する。
圧縮機C1で断熱圧縮されて高圧、高温になった窒素ガスは、水冷クーラーCL2で常温(10〜35℃)まで冷却された後、第一の熱交換器HEX1に入り、戻りの低圧、低温の窒素ガスと熱交換して、温度が低下する。
第一の熱交換器HEX1から出た高圧の窒素ガスの一部を膨張タービンT1に導入し、大気圧近くまで断熱膨張させ、温度を降下させる。
膨張タービンT1を出た低圧、低温の窒素ガスを第二の熱交換器HEX2に導入するとともに、第一の熱交換器HEX1から出た高圧の窒素ガスの残部を第二の熱交換器HEX2に導入し、熱交換させ、当該窒素ガスの残部の一部を液化させる。第二の熱交換器HEX2で液化した窒素ガスは、一部がまだガスの状態であり、全部が液化していない。
第二の熱交換器HEX2を出た高圧の窒素ガス及び液体窒素を第三の熱交換器HEX3に導入するとともに、過冷却器SCで蒸発した約67Kの極低温の窒素ガスを第三の熱交換器HEX3に導入し、第二の熱交換器HEX2からの高圧の窒素ガス及び液体窒素と過冷却器SCからの極低温の窒素ガスとで熱交換させることにより、第二の熱交換器HEX2からの窒素ガスの全量を液化させる。
液化した液体窒素はジュール=トムソン弁JTで等エンタルピー膨張することで温度がさらに低下し、大気圧未満の気液混合の過冷却温度の(又は約67Kの極低温の窒素)ガスとなって過冷却器SCに溜まる。
膨張タービンT1は、従来のヘリウムガスやネオンガスを冷媒ガスとするブレイトン冷凍機よりも本冷凍機の膨張タービン入口温度が高く、タービン発生寒冷が増大し、液の蒸発潜熱を利用するため、冷媒ガス流量が少なくて済み、熱交換器等が小型となる。
前述した従来のブレイトンサイクル冷凍機で液体窒素を69Kまで冷却する時の膨張タービン入口温度は約80K程度であった。これに対して本実施例の膨張タービン入口温度は約100〜120Kまで高くできる。膨張タービンの発生寒冷は膨張タービン入口温度に比例するため、25〜50%増加する。
過冷却器SCの内部では、約67Kの大気圧未満の液体窒素と循環ポンプから送出された高圧の液体窒素との熱交換を行い、循環する液体窒素を過冷却状態まで冷却し、過冷却器SCから出てくる高圧の循環液体窒素は約69Kとなる。この循環液体窒素は被冷却体である超電導電力機器HTSを冷却して、温度上昇してリザーバータンクSCに入り、循環ポンプに戻る。
液体窒素貯槽LNは冷凍機の運転開始前に過冷却器SCに液体窒素を供給するとともに、超電導電力機器HTSの予冷にも利用される。
Nitrogen gas is adiabatically compressed from atmospheric pressure to 0.2 to 1.0 MPa with a compressor C1.
The nitrogen gas that has been adiabatically compressed by the compressor C1 and has become high pressure and high temperature is cooled to room temperature (10 to 35 ° C) by the water cooling cooler CL2, then enters the first heat exchanger HEX1 and returns to low pressure and low temperature. The temperature drops due to heat exchange with the nitrogen gas of.
A part of the high-pressure nitrogen gas emitted from the first heat exchanger HEX1 is introduced into the expansion turbine T1 and adiabatically expanded to near the atmospheric pressure to lower the temperature.
The low-pressure, low-temperature nitrogen gas emitted from the expansion turbine T1 is introduced into the second heat exchanger HEX2, and the rest of the high-pressure nitrogen gas emitted from the first heat exchanger HEX1 is introduced into the second heat exchanger HEX2. It is introduced and heat exchanged to liquefy a part of the balance of the nitrogen gas. Part of the nitrogen gas liquefied by the second heat exchanger HEX2 is still in a gas state, and not all of it is liquefied.
The high-pressure nitrogen gas and liquid nitrogen from the second heat exchanger HEX2 are introduced into the third heat exchanger HEX3, and the extremely low-temperature nitrogen gas of about 67 K evaporated in the supercooler SC is used as the third heat. The second heat exchanger HEX2 is introduced into the exchanger HEX3 and exchanges heat between high-pressure nitrogen gas and liquid nitrogen from the second heat exchanger HEX2 and extremely low-temperature nitrogen gas from the supercooler SC. Liquefates the entire amount of nitrogen gas from.
The temperature of the liquefied liquid nitrogen is further lowered by iso-enthalpy expansion with the Joule-Thomson valve JT, and it becomes a gas at the supercooling temperature of the gas-liquid mixture below atmospheric pressure (or extremely low temperature nitrogen of about 67K). It collects in the cooler SC.
The expansion turbine T1 has a higher temperature at the inlet of the expansion turbine of this refrigerator than the conventional Brayton refrigerator using helium gas or neon gas as the refrigerant gas, the turbine generation cold increases, and the latent heat of evaporation of the liquid is used. The flow rate is small, and the heat exchanger and the like are small.
The temperature at the inlet of the expansion turbine when cooling liquid nitrogen to 69 K in the conventional Brayton cycle refrigerator described above was about 80 K. On the other hand, the expansion turbine inlet temperature of this embodiment can be increased to about 100 to 120 K. Since the generated cold of the expansion turbine is proportional to the inlet temperature of the expansion turbine, it increases by 25 to 50%.
Inside the supercooler SC, heat is exchanged between liquid nitrogen below atmospheric pressure of about 67 K and high-pressure liquid nitrogen sent from the circulation pump, and the circulating liquid nitrogen is cooled to the supercooled state, and the supercooler The high-pressure circulating liquid nitrogen emitted from the SC is about 69K. This circulating liquid nitrogen cools the superconducting power device HTS, which is the object to be cooled, rises in temperature, enters the reservoir tank SC, and returns to the circulation pump.
The liquid nitrogen storage tank LN supplies liquid nitrogen to the supercooler SC before the start of operation of the refrigerator, and is also used for precooling the superconducting power device HTS.

冷凍機の効率(COP)は下記式(1)式で表される。
COP=Q/W ・・・(1)式
ここで、Qは冷凍機の冷凍能力であり、Wは圧縮機C1と真空ポンプVP1の消費電力である。
The efficiency (COP) of the refrigerator is expressed by the following equation (1).
COP = Q / W ... (1) Equation Here, Q is the refrigerating capacity of the refrigerator, and W is the power consumption of the compressor C1 and the vacuum pump VP1.

循環ポンプ出口の液体窒素の温度、すなわち、過冷却器SCの熱交換器入口の温度を78.9K、出口の温度を69K、流量を0.5kg/sとし、冷凍機の冷凍能力を10kWとして、第一の熱交換器HEX1の高圧側入口圧力(熱交換器入口圧力)を表1の例1〜例10のとおり変化させた場合の冷凍機効率(COP)、膨張タービンT1の流量比、入口温度及び出口温度、並びにJT弁の入口温度を表1に示す。 The temperature of the liquid nitrogen at the outlet of the circulation pump, that is, the temperature of the heat exchanger inlet of the supercooler SC is 78.9K, the temperature of the outlet is 69K, the flow rate is 0.5kg / s, and the refrigerating capacity of the refrigerator is 10kW. , Refrigerator efficiency (COP) when the high pressure side inlet pressure (heat exchanger inlet pressure) of the first heat exchanger HEX1 is changed as shown in Examples 1 to 10 of Table 1, the flow rate ratio of the expansion turbine T1. Table 1 shows the inlet temperature, the outlet temperature, and the inlet temperature of the JT valve.

Figure 2021009011
Figure 2021009011

例1〜例12では、熱交換器入口圧力が0.50MPaである例7において、冷凍機効率(COP)が最大となることが判った。同時に、冷凍機効率(COP)が最大となる膨張タービンT1の流量比、入口温度及び出口温度、並びにJT弁の入口温度が判った。
本発明における冷凍機効率(COP)は例7の最大0.0758であるが、これは圧縮機と膨張タービンの効率を80%、真空ポンプの等温効率を40%と仮定したが、これらの値は実用的な数値である。
特開2018−189322号公報において、ネオンを冷媒としたブレイトン冷凍機の冷凍機効率(COP)は、一般的に、0.08程度とされているが、本実施例における冷凍機の冷凍機効率(COP)は最大で0.0758であったから、遜色のない値である。
In Examples 1 to 12, it was found that the refrigerator efficiency (COP) was maximized in Example 7 in which the heat exchanger inlet pressure was 0.50 MPa. At the same time, the flow rate ratio, inlet temperature and outlet temperature of the expansion turbine T1 that maximizes the refrigerator efficiency (COP), and the inlet temperature of the JT valve were found.
The maximum refrigerating efficiency (COP) in the present invention is 0.0758 in Example 7, which assumes that the efficiency of the compressor and expansion turbine is 80% and the isothermal efficiency of the vacuum pump is 40%. Is a practical number.
In Japanese Patent Application Laid-Open No. 2018-189322, the refrigerator efficiency (COP) of a Brayton refrigerator using neon as a refrigerant is generally about 0.08, but the refrigerator efficiency of the refrigerator in this embodiment is generally set to about 0.08. Since (COP) was 0.0758 at the maximum, it is a value comparable to that of (COP).

1 超電導体の冷却装置
11 圧縮手段
12 熱交換手段
12a 第一の熱交換部
12b 第二の熱交換部
12c 第三の熱交換部
13 断熱膨張手段
14 自由膨張手段
15 冷媒液貯槽
16 加温手段
17 真空ポンプ
18 冷却手段
19 冷却手段
20 三方バルブ
21 開閉バルブ
22 開閉バルブ
23 三方バルブ
24 三方バルブ
50 冷凍機
51 過冷却器
52 第一の冷媒の収容部
53 熱交換部
54 超電導体の冷却部
55 リザーバー
56 循環ポンプ
101 第一の供給ライン
102 第二の供給ライン
103 戻りライン
104 超電導体冷却ライン
105 迂回ライン
106 第一の冷媒のガス供給ライン
107 第一の冷媒の液体供給ライン
108 放出ライン
1 Superconductor cooling device 11 Compression means 12 Heat exchange means 12a First heat exchange part 12b Second heat exchange part 12c Third heat exchange part 13 Adiabatic expansion means 14 Free expansion means 15 Refrigerant liquid storage tank 16 Heating means 17 Vacuum pump 18 Cooling means 19 Cooling means 20 Three-way valve 21 Open / close valve 22 Open / close valve 23 Three-way valve 24 Three-way valve 50 Refrigerant 51 Supercooler 52 First refrigerant accommodating part 53 Heat exchange part 54 Superconductor cooling part 55 Reservoir 56 Circulation pump 101 First supply line 102 Second supply line 103 Return line 104 Superconductor cooling line 105 Bypass line 106 First refrigerant gas supply line 107 First refrigerant liquid supply line 108 Discharge line

Claims (7)

第一の冷媒を冷却する冷凍機と、前記第一の冷媒の収容部及び前記冷凍機で冷却された前記第一の冷媒と第二の冷媒との熱交換を行う熱交換部を備え、前記第一の冷媒の収容部が大気圧未満に減圧されている過冷却器と、前記過冷却器の前記熱交換部及び超電導体の冷却部が配置され、前記第二の冷媒が循環する超電導体冷却ラインと、を備える超電導体の冷却装置であって、
前記冷凍機は、前記第一の冷媒のガスを圧縮する圧縮手段と、前記第一の冷媒のガスを断熱膨張させる断熱膨張手段と、前記第一の冷媒のガスを自由膨張させる自由膨張手段と、前記第一の冷媒のガスの間の熱交換を行う熱交換手段と、
前記圧縮手段、前記熱交換手段及び前記断熱膨張手段が配置され、前記第一の冷媒のガスが前記圧縮手段、前記熱交換手段、前記断熱膨張手段、前記熱交換手段、前記圧縮手段の順で循環する第一の供給ラインと、
前記圧縮手段、前記熱交換手段及び前記自由膨張手段が配置され、前記第一の冷媒のガスが前記圧縮手段、前記熱交換手段、前記自由膨張手段の順に流れ、前記第一の冷媒のガスの少なくとも一部を液化して、前記過冷却器の前記第一の冷媒の収容部に供給する第二の供給ラインと、
前記熱交換手段が配置され、前記過冷却器の前記第一の冷媒の収容部から前記第一の冷媒のガスを導出して、前記圧縮手段に前記第一の冷媒のガスを供給する戻りラインと、
を備え、
前記第一の供給ラインと前記第二の供給ラインとは、前記第一の供給ラインの前記圧縮手段の二次側から前記断熱膨張手段の一次側までと、前記第二の供給ラインの前記圧縮手段の二次側から前記自由膨張手段の一次側までのラインの一部を共有しており、前記圧縮手段で圧縮された前記第一の冷媒のガスの一部が前記断熱膨張手段の一次側に供給され、残部が前記自由膨張手段の一次側に供給されるように構成され、
前記第一の供給ラインと前記戻りラインとは、前記第一の供給ラインの前記熱交換手段から前記圧縮手段の一次側までと、前記戻りラインの前記熱交換手段から前記圧縮手段の一次側までのラインの一部を共有しており、前記第一の供給ラインからの前記第一の冷媒のガス及び前記戻りラインからの前記第一の冷媒のガスが前記圧縮手段の一次側に供給されるように構成され、
前記熱交換手段において、前記断熱膨張手段で断熱膨張させた前記第一の冷媒のガスと、前記圧縮手段で圧縮した前記第一の冷媒のガスとの熱交換を行うとともに、前記断熱膨張手段で断熱膨張させた前記第一の冷媒のガスと、前記過冷却器の前記第一の冷媒の収容部から導出した前記第一の冷媒のガスとの熱交換を行うように構成されている、
超電導体の冷却装置。
A refrigerator for cooling the first refrigerant, a storage unit for the first refrigerant, and a heat exchange unit for heat exchange between the first refrigerant cooled by the refrigerator and the second refrigerant are provided. A supercooler in which the accommodating portion of the first refrigerant is depressurized to less than atmospheric pressure, the heat exchange portion of the supercooler, and the cooling portion of the superconductor are arranged, and the superconductor in which the second refrigerant circulates. A superconductor cooling device equipped with a cooling line.
The refrigerator includes a compression means for compressing the gas of the first refrigerant, an adiabatic expansion means for adiabatic expansion of the gas of the first refrigerant, and a free expansion means for freely expanding the gas of the first refrigerant. , A heat exchange means for exchanging heat between the gases of the first refrigerant,
The compression means, the heat exchange means, and the adiabatic expansion means are arranged, and the gas of the first refrigerant is the compression means, the heat exchange means, the adiabatic expansion means, the heat exchange means, and the compression means in this order. The first circulating supply line and
The compression means, the heat exchange means, and the free expansion means are arranged, and the gas of the first refrigerant flows in the order of the compression means, the heat exchange means, and the free expansion means, and the gas of the first refrigerant. A second supply line that liquefies at least a part and supplies it to the first refrigerant accommodating portion of the supercooler.
A return line in which the heat exchange means is arranged, the gas of the first refrigerant is derived from the accommodating portion of the first refrigerant of the supercooler, and the gas of the first refrigerant is supplied to the compression means. When,
With
The first supply line and the second supply line are from the secondary side of the compression means of the first supply line to the primary side of the adiabatic expansion means, and the compression of the second supply line. A part of the line from the secondary side of the means to the primary side of the free expansion means is shared, and a part of the gas of the first refrigerant compressed by the compression means is the primary side of the adiabatic expansion means. And the balance is configured to be fed to the primary side of the free expansion means.
The first supply line and the return line are from the heat exchange means of the first supply line to the primary side of the compression means and from the heat exchange means of the return line to the primary side of the compression means. The gas of the first refrigerant from the first supply line and the gas of the first refrigerant from the return line are supplied to the primary side of the compression means. Is configured as
In the heat exchange means, heat exchange is performed between the gas of the first refrigerant expanded by the adiabatic expansion means and the gas of the first refrigerant compressed by the compression means, and the adiabatic expansion means It is configured to exchange heat between the adiabatic expanded gas of the first refrigerant and the gas of the first refrigerant derived from the accommodating portion of the first refrigerant of the supercooler.
Superconductor cooling device.
さらに、
前記圧縮手段の一次側に前記第一の冷媒のガスを供給し、前記過冷却器の前記第一の冷媒の収容部に前記第一の冷媒の液体を供給する冷媒液貯槽と、
前記戻りライン上に前記熱交換手段を迂回して配置された加温手段を有する迂回ラインと、
を備える、請求項1に記載の超電導体の冷却装置。
further,
A refrigerant liquid storage tank that supplies the gas of the first refrigerant to the primary side of the compression means and supplies the liquid of the first refrigerant to the accommodating portion of the first refrigerant of the supercooler.
A detour line having a heating means arranged on the return line so as to bypass the heat exchange means,
The superconductor cooling device according to claim 1.
さらに、前記第一の冷媒のガスを大気放出する放出ラインを備える、請求項1又は2に記載の超電導体の冷却装置。 The superconductor cooling device according to claim 1 or 2, further comprising a discharge line for releasing the gas of the first refrigerant to the atmosphere. 前記熱交換手段が、第一の熱交換部と、第二の熱交換部と、第三の熱交換部と、を含み、
前記第一の供給ライン上の、前記圧縮手段の二次側と前記断熱膨張手段の一次側との間に前記第一の熱交換部が配置され、前記断熱膨張手段の二次側と前記圧縮手段の一次側との間に、前記第二の熱交換部及び前記第一の熱交換部がこの順に配置され、
前記第二の供給ライン上の前記圧縮手段の二次側と前記自由膨張手段の一次側との間に、前記第一の熱交換部、前記第二の熱交換部、及び前記第三の熱交換部がこの順に配置され、
前記戻りライン上の前記過冷却器の前記第一の冷媒の収容部と前記圧縮手段の一次側との間に、前記第三の熱交換部、前記第二の熱交換部及び前記第一の熱交換部がこの順に配置される、
請求項1〜3のいずれか1項に記載の超電導体の冷却装置。
The heat exchange means includes a first heat exchange unit, a second heat exchange unit, and a third heat exchange unit.
The first heat exchange section is arranged between the secondary side of the compression means and the primary side of the adiabatic expansion means on the first supply line, and the secondary side of the adiabatic expansion means and the compression are provided. The second heat exchange section and the first heat exchange section are arranged in this order between the means and the primary side.
Between the secondary side of the compression means and the primary side of the free expansion means on the second supply line, the first heat exchange section, the second heat exchange section, and the third heat. The exchange parts are arranged in this order,
Between the first refrigerant accommodating portion of the supercooler and the primary side of the compression means on the return line, the third heat exchange unit, the second heat exchange unit, and the first one. The heat exchange units are arranged in this order,
The superconductor cooling device according to any one of claims 1 to 3.
前記第一の冷媒のガスが窒素ガスであり、前記第一の冷媒の液体が液体窒素である、請求項1〜4のいずれか1項に記載の超電導体の冷却装置。 The superconductor cooling device according to any one of claims 1 to 4, wherein the gas of the first refrigerant is nitrogen gas and the liquid of the first refrigerant is liquid nitrogen. 前記圧縮手段による圧縮圧力が0.30〜1MPaである、請求項1〜5のいずれか1項に記載の超電導体の冷却装置。 The superconductor cooling device according to any one of claims 1 to 5, wherein the compression pressure by the compression means is 0.30 to 1 MPa. 請求項1〜6のいずれか1項に記載の超電導体の冷却装置において、
前記圧縮手段で前記第一の冷媒のガスを圧縮し、
前記圧縮手段で圧縮した前記第一の冷媒のガスを前記熱交換手段に通し、
前記熱交換手段に通した前記第一の冷媒のガスの一部を前記断熱膨張手段に供給して断熱膨張させるとともに、前記熱交換手段に通した前記第一の冷媒のガスの残部を液化させ、液化した前記第一の冷媒の液体を前記自由膨張手段に供給して自由膨張させて第一の冷媒を大気圧未満の過冷却温度のガス及び液体とし、
前記断熱膨張手段で断熱膨張させた前記第一の冷媒のガスを前記熱交換手段に通して、前記圧縮手段で圧縮した前記第一の冷媒のガスと前記断熱膨張手段で断熱膨張させた前記第一の冷媒のガスとの間で熱交換させた後、前記圧縮手段に供給し、
前記自由膨張手段で過冷却温度のガス及び液体とした前記第一の冷媒を前記過冷却器の前記第一の冷媒の収容部に供給し、
前記過冷却器の前記第一の冷媒の収容部から前記第一の冷媒のガスを導出し、前記熱交換手段に通して、前記過冷却器の前記第一の冷媒の収容部から導出した前記第一の冷媒のガスと前記断熱膨張手段で断熱膨張させた前記第一の冷媒のガスとの間で熱交換させた後、前記圧縮手段に供給し、
前記過冷却器の前記熱交換部で前記第一の冷媒の液体と前記第二の冷媒とを熱交換させて前記第二の冷媒を過冷却状態とし、
前記第二の冷媒を前記過冷却器の前記熱交換部と超電導体の冷却部とが配置された超電導体冷却ラインを循環させて、前記超電導体を冷却する、
超電導体の冷却方法。
In the superconductor cooling device according to any one of claims 1 to 6.
The gas of the first refrigerant is compressed by the compression means, and the gas is compressed.
The gas of the first refrigerant compressed by the compression means is passed through the heat exchange means,
A part of the gas of the first refrigerant passed through the heat exchange means is supplied to the adiabatic expansion means for adiabatic expansion, and the rest of the gas of the first refrigerant passed through the heat exchange means is liquefied. The liquefied liquid of the first refrigerant is supplied to the free expansion means and freely expanded to make the first refrigerant a gas and a liquid having an overcooling temperature lower than atmospheric pressure.
The gas of the first refrigerant that has been adiabatically expanded by the adiabatic expansion means is passed through the heat exchange means, and the gas of the first refrigerant compressed by the compression means and the adiabatic expansion of the first refrigerant by the adiabatic expansion means. After exchanging heat with the gas of one refrigerant, it is supplied to the compression means.
The first refrigerant made into a gas and a liquid at a supercooling temperature by the free expansion means is supplied to the accommodating portion of the first refrigerant of the supercooler.
The gas of the first refrigerant is taken out from the first refrigerant accommodating portion of the supercooler, passed through the heat exchange means, and led out from the first refrigerant accommodating portion of the supercooler. After heat exchange between the gas of the first refrigerant and the gas of the first refrigerant expanded by the adiabatic expansion means, the gas is supplied to the compression means.
The heat exchange section of the supercooler exchanges heat between the liquid of the first refrigerant and the second refrigerant to bring the second refrigerant into a supercooled state.
The second refrigerant is circulated in a superconductor cooling line in which the heat exchange portion of the supercooler and the cooling portion of the superconductor are arranged to cool the superconductor.
How to cool superconductors.
JP2019124397A 2019-07-03 2019-07-03 Superconductor cooling device and superconductor cooling method Active JP6926153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019124397A JP6926153B2 (en) 2019-07-03 2019-07-03 Superconductor cooling device and superconductor cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019124397A JP6926153B2 (en) 2019-07-03 2019-07-03 Superconductor cooling device and superconductor cooling method

Publications (2)

Publication Number Publication Date
JP2021009011A true JP2021009011A (en) 2021-01-28
JP6926153B2 JP6926153B2 (en) 2021-08-25

Family

ID=74199779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019124397A Active JP6926153B2 (en) 2019-07-03 2019-07-03 Superconductor cooling device and superconductor cooling method

Country Status (1)

Country Link
JP (1) JP6926153B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3613387A (en) * 1969-06-09 1971-10-19 Cryogenic Technology Inc Method and apparatus for continuously supplying refrigeration below 4.2 degree k.
JPH02143057A (en) * 1988-11-24 1990-06-01 Hitachi Ltd Cryogenic generator
JPH08121892A (en) * 1994-10-26 1996-05-17 Kobe Steel Ltd Operation controlling method for turbine type expansion unit
JPH08285395A (en) * 1995-04-10 1996-11-01 Kobe Steel Ltd Device for liquefying herium
JP2011504574A (en) * 2007-11-23 2011-02-10 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Cryogenic freezing method and device
JP2016170928A (en) * 2015-03-12 2016-09-23 株式会社前川製作所 Superconductor cooling device
JP2018189322A (en) * 2017-05-09 2018-11-29 エア・ウォーター株式会社 Cooling device for superconducting cable and cooling method of superconducting cable using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3613387A (en) * 1969-06-09 1971-10-19 Cryogenic Technology Inc Method and apparatus for continuously supplying refrigeration below 4.2 degree k.
JPH02143057A (en) * 1988-11-24 1990-06-01 Hitachi Ltd Cryogenic generator
JPH08121892A (en) * 1994-10-26 1996-05-17 Kobe Steel Ltd Operation controlling method for turbine type expansion unit
JPH08285395A (en) * 1995-04-10 1996-11-01 Kobe Steel Ltd Device for liquefying herium
JP2011504574A (en) * 2007-11-23 2011-02-10 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Cryogenic freezing method and device
JP2016170928A (en) * 2015-03-12 2016-09-23 株式会社前川製作所 Superconductor cooling device
JP2018189322A (en) * 2017-05-09 2018-11-29 エア・ウォーター株式会社 Cooling device for superconducting cable and cooling method of superconducting cable using the same

Also Published As

Publication number Publication date
JP6926153B2 (en) 2021-08-25

Similar Documents

Publication Publication Date Title
US10488085B2 (en) Thermoelectric energy storage system and an associated method thereof
JP5579259B2 (en) Cooling system and cooling method
CN100419349C (en) Refrigeration system
JP6769850B2 (en) Boil-off gas liquefaction system
CN102334001A (en) Liquefaction method and system
JP2010271000A (en) Heat storage type refrigerating system
KR100981398B1 (en) Refrigerating system for cold store using evaporation heat of lng liquid gas
KR102148680B1 (en) Improvements in refrigeration
Jin et al. Design of high-efficiency Joule-Thomson cycles for high-temperature superconductor power cable cooling
JP5048059B2 (en) Natural gas liquefaction equipment
DK174257B1 (en) Installations and methods where CO2 is used as a refrigerant and as a working medium for defrosting
JP6926153B2 (en) Superconductor cooling device and superconductor cooling method
KR20210108186A (en) Refrigerator System for both refrigeration and freezing
JP6495053B2 (en) Refrigeration system, refrigeration system operation method, and refrigeration system design method
JP6937608B2 (en) Cooling device for superconducting cable and cooling method of superconducting cable using it
JP2019095079A (en) Cooling system for high temperature superconductive electric power equipment and its operational method
US6484516B1 (en) Method and system for cryogenic refrigeration
JP2006003023A (en) Refrigerating unit
KR20210092106A (en) Environment-friendly, high-efficiency heat pump system with reduced energy and carbon emissions for both industrial steam, hot water and cold water
JP6931089B2 (en) A system with methods and equipment for cooling the load and corresponding equipment and loads
JP3918980B2 (en) Refrigeration equipment
CN113865162B (en) Cold energy circulating system
KR20140059008A (en) A combined refrigerating and air conditioning system
US3318101A (en) Device for producing cold at low temperatures and compression devices suitable for use in said devices
KR20240060972A (en) Refrigeration cycle using free-cooling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200702

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20201106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210804

R150 Certificate of patent or registration of utility model

Ref document number: 6926153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150