JP2021008929A - Constant velocity universal joint boot fitting structure - Google Patents

Constant velocity universal joint boot fitting structure Download PDF

Info

Publication number
JP2021008929A
JP2021008929A JP2019123632A JP2019123632A JP2021008929A JP 2021008929 A JP2021008929 A JP 2021008929A JP 2019123632 A JP2019123632 A JP 2019123632A JP 2019123632 A JP2019123632 A JP 2019123632A JP 2021008929 A JP2021008929 A JP 2021008929A
Authority
JP
Japan
Prior art keywords
boot
constant velocity
velocity universal
joint member
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019123632A
Other languages
Japanese (ja)
Inventor
義男 井戸田
Yoshio Itoda
義男 井戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2019123632A priority Critical patent/JP2021008929A/en
Publication of JP2021008929A publication Critical patent/JP2021008929A/en
Pending legal-status Critical Current

Links

Images

Abstract

To prevent deterioration in fixing force of a boot with respect to an outside joint member as much as possible.SOLUTION: A boot fitting structure fits and fixes a large diameter cylinder part 21 of a boot 21 to an outside joint member 2 of a boot fitting part 16 by tightening the large diameter cylinder part 21 with a boot band 15 to deform and contract the diameter thereof. The outside joint member 2 is integrated with an annular swollen part 17 that is disposed adjacent to one side in an axial direction of the boot fitting part 16 and hangs over on a radial outside relative to the boot fitting part 16, and satisfies a relational expression of D1>D2, where D1 represents an outer diameter dimension of the swollen part 17 and D2 represents an inner diameter dimension of the boot band 15 when tightening the large diameter cylinder part 21.SELECTED DRAWING: Figure 2

Description

本発明は、等速自在継手用ブーツの取付構造に関する。 The present invention relates to a mounting structure for boots for constant velocity universal joints.

駆動源としてのエンジンや電動モータなどを車台上に搭載した自動車には、駆動源の出力を駆動車輪に伝達するためにドライブシャフトやプロペラシャフトなどの動力伝達装置が搭載される。このうち、ドライブシャフトは、駆動車輪側(アウトボード側)に配置され、角度変位のみを許容する固定式等速自在継手と、駆動源側(インボード側)に配置され、角度変位および軸方向変位を許容する摺動式等速自在継手と、上記2つの等速自在継手の内側継手部材同士をトルク伝達可能に連結する軸部材(中間シャフト)とを備える。 An automobile equipped with an engine or an electric motor as a drive source on the chassis is equipped with a power transmission device such as a drive shaft or a propeller shaft in order to transmit the output of the drive source to the drive wheels. Of these, the drive shaft is arranged on the drive wheel side (outboard side) and has a fixed constant velocity universal joint that allows only angular displacement, and is arranged on the drive source side (inboard side), and has angular displacement and axial direction. A sliding type constant velocity universal joint that allows displacement and a shaft member (intermediate shaft) that connects the inner joint members of the above two constant velocity universal joints so as to be able to transmit torque are provided.

ドライブシャフトにおいて、中間シャフトと固定式等速自在継手の外側継手部材との間、および中間シャフトと摺動式等速自在継手の外側継手部材との間には筒状のブーツがそれぞれ設けられる。ブーツとしては、外側継手部材と内側継手部材(中間シャフト)の相対変位に追従して弾性変形可能なゴム製あるいは樹脂(熱可塑性エラストマー)製のブーツが採用される。ブーツは、その軸方向一方側および他方側の端部にそれぞれ設けられた筒部(大径筒部および小径筒部)と、両筒部を連結した蛇腹部とを一体に有しており、大径筒部および小径筒部が、それぞれ、外側継手部材のカップ部および中間シャフトに対して密着状態で取付固定される。これにより、継手内部に充填したグリース等の潤滑剤の外部漏洩や継手内部への異物侵入が防止される。 In the drive shaft, tubular boots are provided between the intermediate shaft and the outer joint member of the fixed constant velocity universal joint, and between the intermediate shaft and the outer joint member of the sliding constant velocity universal joint. As the boots, boots made of rubber or resin (thermoplastic elastomer) that can be elastically deformed according to the relative displacement of the outer joint member and the inner joint member (intermediate shaft) are adopted. The boot integrally has a tubular portion (large diameter tubular portion and a small diameter tubular portion) provided at one end and the other end in the axial direction, and a bellows portion connecting both tubular portions. The large-diameter tubular portion and the small-diameter tubular portion are mounted and fixed in close contact with the cup portion and the intermediate shaft of the outer joint member, respectively. This prevents the lubricant such as grease filled in the joint from leaking to the outside and foreign matter from entering the joint.

ブーツは、下記の特許文献1に記載されているような帯板状の締結部材(ブーツバンド)を用いて相手部材(外側継手部材や中間シャフト)に対して取付固定される場合が多い。 The boot is often attached and fixed to a mating member (outer joint member or intermediate shaft) by using a strip-shaped fastening member (boot band) as described in Patent Document 1 below.

特開2011−252594号公報Japanese Unexamined Patent Publication No. 2011-252594

ところで、外側継手部材と内側継手部材が相対変位すると、これに追従するかたちでブーツの蛇腹部が変形することになるが、図5に示すように、ブーツ付きの等速自在継手100が大きな作動角をとり、ブーツ103の蛇腹部103bが大きく圧縮変形した状態で外側継手部材101と内側継手部材(に連結された中間シャフト102)が相対回転すると、図6に示すように、ブーツバンド104が所定の装着位置(同図中に破線で示したブーツバンド104の位置)に対して軸方向に位置ズレし(ブーツバンド104が所定の装着位置から外れ)、ブーツ103が担保すべきシール機能が損なわれる可能性があることが判明した。このような問題が生じる主な理由は、ブーツ103の蛇腹部103bが大きく圧縮変形すると、蛇腹部103bからブーツバンド104に対してブーツバンド104を軸方向一方側(図5,6の紙面左側)に押圧する軸方向荷重Pが負荷されるため、ブーツバンド104が軸方向一方側にスライド移動し、大径筒部103aに付与すべき締め付け力が低下したことによるものと考えられる。 By the way, when the outer joint member and the inner joint member are relatively displaced, the bellows portion of the boot is deformed in a manner that follows this, but as shown in FIG. 5, the constant velocity universal joint 100 with the boot operates greatly. When the outer joint member 101 and the inner joint member (intermediate shaft 102 connected to) rotate relative to each other in a state where the bellows portion 103b of the boot 103 is significantly compressed and deformed at a corner, the boot band 104 is formed as shown in FIG. The position of the boot band 104 is displaced in the axial direction with respect to the predetermined mounting position (the position of the boot band 104 shown by the broken line in the figure) (the boot band 104 is displaced from the predetermined mounting position), and the boot 103 has a sealing function to be guaranteed. It turns out that it can be compromised. The main reason for such a problem is that when the bellows portion 103b of the boot 103 is greatly compressed and deformed, the boot band 104 is axially unidirectional with respect to the boot band 104 from the bellows portion 103b (left side of paper in FIGS. 5 and 6). It is considered that this is because the boot band 104 slides to one side in the axial direction due to the axial load P that presses against the large diameter cylinder portion 103a, and the tightening force to be applied to the large diameter tubular portion 103a is reduced.

なお、ブーツバンド104に軸方向荷重Pが負荷されたとき、ブーツ103の蛇腹部103bには軸方向荷重Pの反力が作用することから、蛇腹部103bが上記反力を受けて弾性変形可能であれば、ブーツバンド104に負荷される軸方向荷重Pは軽減されると考えられる。しかしながら、ゴムや樹脂等の弾性材料からなるブーツ103の剛性は、周辺温度が低下するほど高まる傾向にあるため、ブーツ付等速自在継手100が低温環境下に置かれたときには、十分な荷重軽減効果を見込めず、上記の問題が生じる可能性が高まる。 When the axial load P is applied to the boot band 104, the reaction force of the axial load P acts on the bellows portion 103b of the boot 103, so that the bellows portion 103b can be elastically deformed by receiving the reaction force. If so, it is considered that the axial load P applied to the boot band 104 is reduced. However, the rigidity of the boot 103 made of an elastic material such as rubber or resin tends to increase as the ambient temperature decreases. Therefore, when the constant velocity universal joint 100 with boots is placed in a low temperature environment, the load is sufficiently reduced. No effect can be expected and the above problems are more likely to occur.

以上の実情に鑑み、本発明の主な目的は、ブーツバンドを用いてブーツの大径筒部を等速自在継手の外側継手部材に取付固定してなる等速自在継手用ブーツの取付構造において、ブーツバンドが所定の装着位置に対して軸方向に位置ズレするのを可及的に防止し、もって、所望のシール機能を安定的に維持可能とすることにある。 In view of the above circumstances, a main object of the present invention is in a mounting structure for a boot for a constant velocity universal joint, in which a large diameter tubular portion of the boot is mounted and fixed to an outer joint member of the constant velocity universal joint using a boot band. It is an object of the present invention to prevent the boot band from being displaced in the axial direction with respect to a predetermined mounting position as much as possible, so that a desired sealing function can be stably maintained.

上記の目的を達成するために創案された本発明は、弾性材料で筒状に形成され、軸方向一方側の端部に設けられた大径筒部と、これに連なる蛇腹部とを一体に有する等速自在継手用ブーツのうち、大径筒部をブーツバンドで締め付けて縮径変形させることにより、大径筒部を等速自在継手の外側継手部材に設けられた環状のブーツ装着部に密着状態で取付固定してなる等速自在継手用ブーツの取付構造において、外側継手部材は、ブーツ装着部の軸方向一方側に隣接配置され、ブーツ装着部よりも径方向外側に張り出した環状の膨出部を一体に有しており、膨出部の外径寸法をD1、大径筒部を締め付けたブーツバンドの内径寸法をD2としたとき、D1>D2の関係式を満たすことを特徴とする。 The present invention, which was conceived to achieve the above object, integrally forms a large-diameter tubular portion formed of an elastic material in a tubular shape and provided at one end in the axial direction, and a bellows portion connected to the large-diameter tubular portion. Among the boots for constant velocity universal joints, the large diameter tubular portion is tightened with a boot band to reduce the diameter, so that the large diameter tubular portion is attached to the annular boot mounting portion provided on the outer joint member of the constant velocity universal joint. In the mounting structure of a boot for a constant velocity universal joint that is mounted and fixed in a close contact state, the outer joint member is arranged adjacent to one side in the axial direction of the boot mounting portion, and is an annular shape that projects radially outward from the boot mounting portion. It has an integral bulge, and when the outer diameter of the bulge is D1 and the inner diameter of the boot band tightening the large diameter cylinder is D2, the relational expression D1> D2 is satisfied. And.

上記構成によれば、ブーツの大径筒部を締め付けたブーツバンドがブーツの蛇腹部から負荷される軸方向荷重を受けて軸方向一方側にスライド移動したとしても、ブーツバンドが外側継手部材の膨出部と軸方向で係合するので、ブーツバンドのそれ以上のスライド移動を規制することができる。そのため、膨出部を適当な軸方向位置に設けておけば、等速自在継手の使用温度条件やブーツの剛性等に関わらず、ブーツバンド(ブーツの大径筒部)が所定の装着位置に対して軸方向に位置ズレする(所定の装着位置から外れる)のを防止することができる。これにより、ブーツバンドがブーツの大径筒部に付与すべき縮径方向の締め付け力が低下するのを防止することができるので、所望のシール機能を安定的に発揮することのできるブーツ付等速自在継手を実現することができる。 According to the above configuration, even if the boot band tightening the large-diameter tubular portion of the boot receives an axial load applied from the bellows portion of the boot and slides to one side in the axial direction, the boot band is a member of the outer joint member. Since it engages with the bulge in the axial direction, further sliding movement of the boot band can be restricted. Therefore, if the bulging portion is provided at an appropriate axial position, the boot band (large diameter tubular portion of the boot) can be placed in the predetermined mounting position regardless of the operating temperature conditions of the constant velocity universal joint and the rigidity of the boot. On the other hand, it is possible to prevent the position from being displaced in the axial direction (being out of the predetermined mounting position). As a result, it is possible to prevent the boot band from reducing the tightening force in the diameter-reducing direction that should be applied to the large-diameter tubular portion of the boot, so that the boot can stably exhibit the desired sealing function. A fast universal joint can be realized.

上記構成において、外側継手部材のうち、膨出部の外径面を鍛造加工によって成形された成形面とし、ブーツ装着部を画成する面を鍛造加工後の機械加工によって仕上げられた面とすることができる。このような構成によれば、鍛造加工によって得られた外側継手部材の基材の一部に機械加工を施すことで膨出部およびブーツ装着部を併せ持つ外側継手部材を得ることができるので、上記の作用効果を奏し得る等速自在継手を低コストに得ることができる。 In the above configuration, among the outer joint members, the outer diameter surface of the bulging portion is a molded surface formed by forging, and the surface defining the boot mounting portion is a surface finished by machining after forging. be able to. According to such a configuration, the outer joint member having both the bulging portion and the boot mounting portion can be obtained by machining a part of the base material of the outer joint member obtained by the forging process. It is possible to obtain a constant velocity universal joint capable of exhibiting the effects of the above at low cost.

外側継手部材に対するブーツの固定力を高めるため、ブーツ装着部には複数の環状突起を軸方向に相互に離間して設けるのが好ましい。係る構成において、ブーツバンドの帯幅をWとし、複数の環状突起のうち最も軸方向他方側に位置する環状突起と膨出部の軸方向他方側の端部(ブーツ装着部の軸方向一方側の端部)との軸方向離間距離をXとしたとき、W>Xの関係式を満たすようにしておけば、軸方向荷重を受けたブーツバンドが外側継手部材の膨出部と軸方向で係合するまで軸方向一方側にスライド移動した場合であっても、複数の環状突起の全てをブーツバンドで覆うことができる。これにより、外側継手部材に対するブーツの固定力低下を抑制あるいは防止することができる。 In order to increase the fixing force of the boot to the outer joint member, it is preferable to provide a plurality of annular protrusions on the boot mounting portion so as to be axially separated from each other. In such a configuration, the band width of the boot band is W, and the annular protrusion located on the other side in the axial direction of the plurality of annular protrusions and the end portion on the other side in the axial direction of the bulge (one side in the axial direction of the boot mounting portion). When the axial separation distance from the end of the outer joint member is X, if the relational expression W> X is satisfied, the boot band under the axial load will be in the bulging part of the outer joint member and in the axial direction. All of the plurality of annular protrusions can be covered with the boot band even when sliding to one side in the axial direction until they are engaged. As a result, it is possible to suppress or prevent a decrease in the fixing force of the boot to the outer joint member.

ブーツを構成する弾性材料としては、ゴム材料、あるいは樹脂材料(熱可塑性エラストマーを主成分とする材料)を採用することができる。すなわち、本発明は、ブーツとして、いわゆるゴムブーツ、あるいは樹脂ブーツの何れを採用した場合にも問題なく適用することができる。但し、樹脂ブーツは、ゴムブーツに比べて軽量で屈曲耐久性等に優れることから、軽量で耐久性に富むブーツ付き等速自在継手を実現する上では、樹脂ブーツを採用するのが好ましい。 As the elastic material constituting the boot, a rubber material or a resin material (a material containing a thermoplastic elastomer as a main component) can be adopted. That is, the present invention can be applied without any problem when either so-called rubber boots or resin boots are used as the boots. However, since resin boots are lighter and more excellent in bending durability than rubber boots, it is preferable to use resin boots in order to realize a lightweight and durable constant velocity universal joint with boots.

本発明は、等速自在継手が、角度変位のみを許容する固定式等速自在継手であるか、あるいは角度変位および軸方向変位の双方を許容する摺動式等速自在継手であるかを問わず適用することができる。 The present invention determines whether the constant velocity universal joint is a fixed constant velocity universal joint that allows only angular displacement, or a sliding constant velocity universal joint that allows both angular displacement and axial displacement. Can be applied without.

以上に示すように、本発明によれば、ブーツバンドを用いてブーツの大径筒部を等速自在継手の外側継手部材に取付固定してなる等速自在継手用ブーツの取付構造において、ブーツバンドが所定の装着位置に対して軸方向に位置ズレするのを可及的に防止することが可能となるので、ブーツが担保すべき所望のシール機能を安定的に維持することができる。これにより、耐久性および信頼性に富むブーツ付等速自在継手、ひいてはドライブシャフト等の動力伝達装置を実現することができる。 As described above, according to the present invention, in the mounting structure of a boot for a constant velocity universal joint, the large diameter tubular portion of the boot is attached and fixed to the outer joint member of the constant velocity universal joint using a boot band. Since it is possible to prevent the band from being displaced in the axial direction with respect to a predetermined mounting position, it is possible to stably maintain the desired sealing function that the boot should ensure. As a result, it is possible to realize a power transmission device such as a constant velocity universal joint with boots and a drive shaft, which are highly durable and reliable.

本発明の実施形態に係るブーツ取付構造を採用したブーツ付等速自在継手の縦断面図である。It is a vertical cross-sectional view of the constant velocity universal joint with a boot which adopted the boot mounting structure which concerns on embodiment of this invention. 図1のA部拡大図である。It is an enlarged view of the part A of FIG. ブーツバンドに軸方向荷重が作用したときの図1のA部拡大図である。It is an enlarged view of the part A of FIG. 1 when an axial load is applied to a boot band. 図1に示す外側継手部材の作製手順を説明するための部分縦断面図である。It is a partial vertical sectional view for demonstrating the manufacturing procedure of the outer joint member shown in FIG. ブーツ付等速自在継手が作動角をとった状態を示す図である。It is a figure which shows the state which took the working angle of the constant velocity universal joint with boots. 図5の部分縦断面図であって、従来構造の問題点を説明するための図である。It is a partial vertical sectional view of FIG. 5, and is a figure for demonstrating the problem of the conventional structure.

以下、本発明の実施の形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施形態に係るブーツ取付構造を採用した等速自在継手(ブーツ付等速自在継手)の縦断面図であり、より詳細には、同等速自在継手の作動角0°の状態における縦断面図である。同図に示す等速自在継手1は、例えば、図示外の摺動式等速自在継手などとともに自動車のドライブシャフトを構成する固定式等速自在継手であり、ドライブシャフトが自動車に組み込まれた状態では駆動車輪側(アウトボード側)に配置されて角度変位のみを許容する。この固定式等速自在継手1は、外側継手部材2と、内側継手部材3と、複数のボール4と、保持器5とを備えたバーフィールド型(BJ)であり、その最大作動角(外側継手部材2と内側継手部材3の相対的な角度変位量の最大値)は40°超(例えば44°)に設定されている。なお、図1では、紙面左側(外側継手部材2のカップ部6の底側)がアウトボード側であり、紙面右側(カップ部6の開口側)がインボード側である。以下の説明では、アウトボード側を「軸方向一方側」といい、インボード側を「軸方向他方側」という。 FIG. 1 is a vertical cross-sectional view of a constant velocity universal joint (constant velocity universal joint with boots) adopting the boot mounting structure according to the embodiment of the present invention. More specifically, the operating angle of the equivalent velocity universal joint is 0 °. It is a vertical sectional view in the state of. The constant velocity universal joint 1 shown in the figure is, for example, a fixed constant velocity universal joint that constitutes a drive shaft of an automobile together with a sliding constant velocity universal joint (not shown), and the drive shaft is incorporated in the automobile. Is arranged on the drive wheel side (outboard side) and allows only angular displacement. The fixed constant velocity universal joint 1 is a barfield type (BJ) including an outer joint member 2, an inner joint member 3, a plurality of balls 4, and a cage 5, and its maximum operating angle (outside). The maximum value of the relative angular displacement of the joint member 2 and the inner joint member 3) is set to more than 40 ° (for example, 44 °). In FIG. 1, the left side of the paper surface (the bottom side of the cup portion 6 of the outer joint member 2) is the outboard side, and the right side of the paper surface (the opening side of the cup portion 6) is the inboard side. In the following description, the outboard side is referred to as "one side in the axial direction", and the inboard side is referred to as "the other side in the axial direction".

外側継手部材2は、例えば、S40C、SBM40C、S53C等の機械構造用炭素鋼(焼入れ・焼戻し等の熱処理が施された炭素鋼)をはじめとする金属材料(鋼材)で形成されており、軸方向他方側の端部が開口した有底筒状のカップ部6と、カップ部6の底部から軸方向一方側に延びた軸部7とを一体に有する。カップ部6の球状内周面には、軸方向に延びた複数本(例えば6本)の円弧状トラック溝8が形成されている。図示は省略しているが、カップ部6の内部空間には潤滑剤としてのグリースが充填されている。 The outer joint member 2 is made of a metal material (steel material) such as carbon steel for machine structure (carbon steel that has been heat-treated such as quenching and tempering) such as S40C, SBM40C, and S53C. It integrally has a bottomed tubular cup portion 6 having an open end on the other side in the direction and a shaft portion 7 extending from the bottom of the cup portion 6 to one side in the axial direction. A plurality of (for example, six) arcuate track grooves 8 extending in the axial direction are formed on the spherical inner peripheral surface of the cup portion 6. Although not shown, the internal space of the cup portion 6 is filled with grease as a lubricant.

内側継手部材3は、外側継手部材2と同様の金属材料で環状(短円筒状)に形成されており、その球状外周面には、外側継手部材2のトラック溝8と対をなす複数の円弧状トラック溝9が形成されている。内側継手部材3は、その両端面に開口した中心孔3aを有し、この中心孔3aに金属製の軸部材10の軸方向一方側の端部がスプライン嵌合されている。軸部材10の外周面には環状溝11,12が形成されており、各環状溝11,12に嵌合した止め輪13,14により、軸部材10が内側継手部材3に対して抜け止めされている。なお、軸部材10は、中間シャフトとも称され、その軸方向他方側の端部は、スプライン嵌合等により、図示外の摺動式等速自在継手の内側継手部材とトルク伝達可能に連結される。 The inner joint member 3 is made of the same metal material as the outer joint member 2 and is formed in an annular shape (short cylindrical shape), and a plurality of circles paired with the track groove 8 of the outer joint member 2 are formed on the spherical outer peripheral surface thereof. An arcuate track groove 9 is formed. The inner joint member 3 has a central hole 3a opened on both end surfaces thereof, and an end portion of a metal shaft member 10 on one side in the axial direction is spline-fitted into the central hole 3a. An annular grooves 11 and 12 are formed on the outer peripheral surface of the shaft member 10, and the retaining rings 13 and 14 fitted to the annular grooves 11 and 12 prevent the shaft member 10 from coming off from the inner joint member 3. ing. The shaft member 10 is also referred to as an intermediate shaft, and its end on the other side in the axial direction is connected to an inner joint member of a sliding constant velocity universal joint (not shown) so as to be able to transmit torque by spline fitting or the like. To.

ボール4は、対をなす外側継手部材2のトラック溝8と内側継手部材3のトラック溝9の間に介在して両継手部材2,3の間でトルクを伝達する。保持器5は、外側継手部材2の球状内周面と内側継手部材3の球状外周面との間に配置されており、ボール4を保持したポケット部5aを有する。 The balls 4 are interposed between the track grooves 8 of the outer joint member 2 and the track grooves 9 of the inner joint member 3 to transmit torque between the two joint members 2 and 3. The cage 5 is arranged between the spherical inner peripheral surface of the outer joint member 2 and the spherical outer peripheral surface of the inner joint member 3, and has a pocket portion 5a for holding the ball 4.

外側継手部材2のカップ部6と軸部材10との間には、カップ部6の内部空間(継手内部)に充填したグリースの外部漏洩および継手内部への異物侵入を防止するために筒状のブーツ20が設けられている。本実施形態のブーツ20は、ポリエステル系、ポリウレタン系、ポリオレフィン系、ポリアミド系、ポリスチレン系、フッ素系等の熱可塑性エラストマーを主成分とする樹脂材料で形成されたいわゆる樹脂ブーツであり、軸方向一方側の端部に設けられ、金属製のブーツバンド15を用いて外側継手部材2のカップ部6に取付固定された大径筒部21と、軸方向他方側の端部に設けられ、ブーツバンドを用いて軸部材10に取付固定された小径筒部(図示せず)と、大径筒部21と小径筒部の間に介在して両筒部を連結した蛇腹部22とを一体に有する。蛇腹部22は、軸方向に交互に配置された山部と谷部を有し、等速自在継手1が作動角をとる(外側継手部材2と内側継手部材3とが相対的に角度変位する)のに伴って弾性的に伸縮および屈曲変形する。 Between the cup portion 6 of the outer joint member 2 and the shaft member 10, a tubular shape is provided to prevent the grease filled in the internal space of the cup portion 6 (inside the joint) from leaking to the outside and foreign matter from entering the joint. Boots 20 are provided. The boot 20 of the present embodiment is a so-called resin boot made of a resin material containing a thermoplastic elastomer such as polyester, polyurethane, polyolefin, polyamide, polystyrene, and fluorine as a main component, and is axially one side. A large-diameter tubular portion 21 provided at the side end and attached and fixed to the cup portion 6 of the outer joint member 2 using a metal boot band 15, and a boot band provided at the other end in the axial direction. A small-diameter tubular portion (not shown) attached and fixed to the shaft member 10 using the above, and a bellows portion 22 that is interposed between the large-diameter tubular portion 21 and the small-diameter tubular portion and connects both tubular portions are integrally provided. .. The bellows portion 22 has peaks and valleys alternately arranged in the axial direction, and the constant velocity universal joint 1 takes an operating angle (the outer joint member 2 and the inner joint member 3 are relatively angularly displaced). ), It elastically expands and contracts and bends and deforms.

以下、図1のA部拡大図である図2を参照しながら、外側継手部材2に対するブーツ20の大径筒部21の取付態様について詳細に説明する。 Hereinafter, the mounting mode of the large-diameter tubular portion 21 of the boot 20 to the outer joint member 2 will be described in detail with reference to FIG. 2, which is an enlarged view of the A portion of FIG.

図2に示すように、ブーツ20の大径筒部21の外径面には環状のバンド装着溝21aが形成されている。ブーツバンド15は、バンド装着溝21a(の溝底面)を締め付けて大径筒部21を縮径変形させることにより、大径筒部21を外側継手部材2のカップ部6の外径面6aに設けられたブーツ装着部16に対して密着状態で取付固定している。バンド装着溝21aの軸方向一方側には、径方向外側に張り出したリブ21bが設けられている。このリブ21bは、大径筒部21の全周に亘って設けられて環状形態をなす場合と、周方向で断続的に設けられて円弧状形態をなす場合とがある。 As shown in FIG. 2, an annular band mounting groove 21a is formed on the outer diameter surface of the large diameter tubular portion 21 of the boot 20. The boot band 15 tightens the band mounting groove 21a (the bottom surface of the groove) to reduce the diameter of the large-diameter tubular portion 21 so that the large-diameter tubular portion 21 is formed on the outer diameter surface 6a of the cup portion 6 of the outer joint member 2. It is mounted and fixed in close contact with the boot mounting portion 16 provided. A rib 21b projecting outward in the radial direction is provided on one side of the band mounting groove 21a in the axial direction. The ribs 21b may be provided over the entire circumference of the large-diameter tubular portion 21 to form an annular shape, or may be provided intermittently in the circumferential direction to form an arc shape.

ブーツ装着部16には、複数(ここでは二つ)の環状突起16a,16bが設けられており、各環状突起16a,16bの頂部は大径筒部21の内径面に食い込んでいる。これにより、外側継手部材2とブーツ20の大径筒部21とが軸方向で係合するので、外側継手部材2に対するブーツ20の固定力が高められる。 The boot mounting portion 16 is provided with a plurality of (two in this case) annular protrusions 16a and 16b, and the tops of the respective annular protrusions 16a and 16b bite into the inner diameter surface of the large diameter tubular portion 21. As a result, the outer joint member 2 and the large-diameter tubular portion 21 of the boot 20 are engaged in the axial direction, so that the fixing force of the boot 20 to the outer joint member 2 is increased.

ブーツ装着部16の軸方向一方側には、これに隣接するかたちでブーツ装着部16よりも径方向外側に張り出した環状(短円筒状)の膨出部17が設けられている。膨出部17の外径面17aは、凹凸のない径一定の円筒面に形成されており、その外径寸法(直径寸法)D1は、ブーツ20の大径筒部21を締め付けたブーツバンド15の内径寸法D2よりも大きく設定されている(D1>D2)。 On one side of the boot mounting portion 16 in the axial direction, an annular (short cylindrical) bulging portion 17 is provided adjacent to the boot mounting portion 16 so as to project radially outward from the boot mounting portion 16. The outer diameter surface 17a of the bulging portion 17 is formed on a cylindrical surface having a constant diameter without unevenness, and the outer diameter dimension (diameter dimension) D1 is a boot band 15 in which the large diameter tubular portion 21 of the boot 20 is tightened. It is set to be larger than the inner diameter dimension D2 of (D1> D2).

以上の構成を有するブーツ付等速自在継手1において、これが作動角をとると(外側継手部材2と内側継手部材3とが相対的に角度変位すると)、これに追従してブーツ20の蛇腹部22が弾性的に伸縮および屈曲変形する。そして、蛇腹部22のうち、特に軸方向一方側の端部付近が大きく圧縮変形した状態で外側継手部材2と内側継手部材3の間でトルク伝達が行われると、図3に示すように、ブーツ20の蛇腹部22からブーツ20の大径筒部21を締め付けたブーツバンド15に対してこれを軸方向一方側に押圧する軸方向荷重Pが負荷され、これを受けたブーツバンド15が所定の装着位置(同図中に破線で示す位置)から軸方向一方側にスライド移動してリブ21bを乗り越える可能性がある。 In the constant velocity universal joint 1 with boots having the above configuration, when this takes an operating angle (when the outer joint member 2 and the inner joint member 3 are relatively angularly displaced), the bellows portion of the boot 20 follows this. 22 elastically expands and contracts and bends and deforms. Then, when torque is transmitted between the outer joint member 2 and the inner joint member 3 in a state where the vicinity of the end portion on one side in the axial direction of the bellows portion 22 is significantly compressed and deformed, as shown in FIG. An axial load P that presses the boot band 15 that tightens the large-diameter tubular portion 21 of the boot 20 from the bellows portion 22 of the boot 20 to one side in the axial direction is applied, and the boot band 15 that receives this is predetermined. There is a possibility of sliding over the rib 21b by sliding from the mounting position (the position shown by the broken line in the figure) to one side in the axial direction.

但し、ブーツバンド15に軸方向荷重Pが負荷されたとき、ブーツ20の蛇腹部22には軸方向荷重Pの反力が作用することから、蛇腹部22が上記反力を受けて弾性変形すれば、ブーツバンド15に負荷される軸方向荷重Pは軽減されると考えられる。しかしながら、本実施形態のブーツ20は、いわゆる樹脂ブーツとされ、その剛性は、ブーツ20の周辺温度が低下するほど高まる。また、ブーツ20の内部空間に介在するグリースの剛性も周辺温度が低下するほど高まり易い。そのため、特に等速自在継手1が低温環境下に置かれた状態でブーツバンド15に軸方向荷重Pが負荷されたときには、上記の荷重軽減効果を十分に得ることができず、ブーツバンド15に軸方向の位置ズレが生じ易い。 However, when the axial load P is applied to the boot band 15, the reaction force of the axial load P acts on the bellows portion 22 of the boots 20, so that the bellows portion 22 receives the reaction force and elastically deforms. For example, it is considered that the axial load P applied to the boot band 15 is reduced. However, the boot 20 of the present embodiment is a so-called resin boot, and its rigidity increases as the ambient temperature of the boot 20 decreases. Further, the rigidity of the grease interposed in the internal space of the boot 20 tends to increase as the ambient temperature decreases. Therefore, particularly when the axial load P is applied to the boot band 15 while the constant velocity universal joint 1 is placed in a low temperature environment, the above load reducing effect cannot be sufficiently obtained, and the boot band 15 cannot be sufficiently obtained. Axial misalignment is likely to occur.

これに対し、本実施形態のように、外側継手部材2に設けた膨出部17の外径寸法D1と、ブーツ20の大径筒部21を締め付けたブーツバンド15の内径寸法D2との間に、D1>D2の関係式が成立するようにしておけば、軸方向荷重Pを受けたブーツバンド15が軸方向一方側にスライド移動したとしても、ブーツバンド15と外側継手部材2の膨出部17とが軸方向で係合し、ブーツバンド15のそれ以上のスライド移動が規制される。そのため、膨出部17を適当な軸方向位置に設けておけば、等速自在継手1の使用環境や、ブーツ20およびその内部空間に充填したグリースの剛性等に関わらず、ブーツバンド15が所定の装着位置に対して軸方向に位置ズレするのを防止することができる。これにより、ブーツ20の大径筒部21を所定の締め付け力で締め付けることができるので、所望のシール機能を安定的に発揮することのできるブーツ付等速自在継手1を実現することができる。 On the other hand, as in the present embodiment, between the outer diameter dimension D1 of the bulging portion 17 provided on the outer joint member 2 and the inner diameter dimension D2 of the boot band 15 tightening the large diameter tubular portion 21 of the boot 20. If the relational expression of D1> D2 is established, the boot band 15 and the outer joint member 2 bulge even if the boot band 15 that receives the axial load P slides to one side in the axial direction. The portion 17 engages in the axial direction, and further sliding movement of the boot band 15 is restricted. Therefore, if the bulging portion 17 is provided at an appropriate axial position, the boot band 15 is predetermined regardless of the usage environment of the constant velocity universal joint 1 and the rigidity of the boot 20 and the grease filled in the internal space thereof. It is possible to prevent the position from being displaced in the axial direction with respect to the mounting position of the. As a result, the large-diameter tubular portion 21 of the boot 20 can be tightened with a predetermined tightening force, so that a constant-velocity universal joint 1 with boots capable of stably exhibiting a desired sealing function can be realized.

なお、外側継手部材2に対するブーツ20の固定力を高めるべく、外側継手部材2のブーツ装着部16に複数(二条)の環状突起16a,16bを軸方向に離間して設けた本実施形態においては、二条の環状突起16a,16bのうち軸方向他方側に位置する環状突起16bの頂部と膨出部17の軸方向他方側の端部との軸方向離間距離X(図2参照)と、ブーツバンド15の帯幅W(図2参照)との間に、W>Xの関係式が成立するように膨出部17を設けている。 In this embodiment, in order to increase the fixing force of the boot 20 to the outer joint member 2, a plurality of (two) annular protrusions 16a and 16b are provided on the boot mounting portion 16 of the outer joint member 2 so as to be axially separated from each other. , The axial distance X (see FIG. 2) between the top of the annular protrusion 16b located on the other side of the two annular protrusions 16a and 16b and the end of the bulge 17 on the other side in the axial direction, and the boot. A bulging portion 17 is provided between the band 15 and the band width W (see FIG. 2) so that the relational expression of W> X is established.

この場合、図3に示すように、軸方向荷重Pを受けたブーツバンド15が膨出部17と軸方向で係合するまで軸方向一方側にスライド移動した場合であっても、環状突起16a,16bの双方をブーツバンド15で覆うことができるので、外側継手部材2に対するブーツ20の固定力低下を防止することができる。 In this case, as shown in FIG. 3, even when the boot band 15 that has received the axial load P slides to one side in the axial direction until it engages with the bulging portion 17 in the axial direction, the annular protrusion 16a Since both 16b and 16b can be covered with the boot band 15, it is possible to prevent a decrease in the fixing force of the boot 20 to the outer joint member 2.

また、本実施形態の外側継手部材2では、膨出部17の外径面17aを鍛造肌仕上げとし(外径面17aを鍛造加工によって成形した成形面とし)、膨出部17と軸方向に隣接したブーツ装着部16の画成面を鍛造加工後の機械加工(切削加工や旋削加工)で仕上げた面としている。つまり、本実施形態では、カップ部6の外径面6aに設けるべきブーツ装着部16および膨出部17を、図4に模式的に示すように、棒鋼に据え込みや後方押し出し等の鍛造加工を施すことで略完成品形状の基材2’を得た後、この基材2’の一部(最終的にカップ部6に仕上げられるカップ状部6’のうち、鍛造加工によって径一定の円筒面に成形された外径面6a’の一部)を機械加工で肉取りすることにより得るようにしている(機械加工で肉取りする部分は、図4の下側の図のうち破線のクロスハッチングで示す部分)。 Further, in the outer joint member 2 of the present embodiment, the outer diameter surface 17a of the bulging portion 17 is forged (the outer diameter surface 17a is a molded surface formed by forging), and the bulging portion 17 and the outer diameter surface 17a are axially formed. The defined surface of the adjacent boot mounting portion 16 is a surface finished by machining (cutting or turning) after forging. That is, in the present embodiment, the boot mounting portion 16 and the bulging portion 17 to be provided on the outer diameter surface 6a of the cup portion 6 are forged by being mounted on a steel bar or extruded backward, as schematically shown in FIG. After obtaining a base material 2'in a substantially finished product shape, a part of the base material 2'(a cup-shaped part 6'finally finished in the cup part 6 has a constant diameter by forging. A part of the outer diameter surface 6a'formed on the cylindrical surface is obtained by machining (the portion to be forged by machining is shown by the broken line in the lower figure of FIG. 4). The part indicated by cross-hatching).

一方、詳細な図示は省略するが、膨出部17を有さず、ブーツ装着部のみを有する従来の外側継手部材101(図6参照)は、通常、図4の紙面上側に示す基材2’を得た後、膨出部17に相当する部分をも機械加工で肉取りすることにより得られることから、本実施形態の外側継手部材2を得る場合よりも機械加工量を増やす必要があってコスト高となる。逆に言えば、外径面17aを鍛造肌仕上げとした環状の膨出部17を有する本実施形態の外側継手部材2は、従来の外側継手部材101よりも機械加工量が少なくて済むことから、低コストに得ることができる。 On the other hand, although detailed illustration is omitted, the conventional outer joint member 101 (see FIG. 6) which does not have the bulging portion 17 and has only the boot mounting portion is usually the base material 2 shown on the upper side of the paper surface of FIG. Since it is obtained by thinning the portion corresponding to the bulging portion 17 by machining after obtaining ‘’, it is necessary to increase the machining amount as compared with the case of obtaining the outer joint member 2 of the present embodiment. And the cost is high. Conversely, the outer joint member 2 of the present embodiment having the annular bulging portion 17 having the outer diameter surface 17a finished with a forged skin requires a smaller amount of machining than the conventional outer joint member 101. , Can be obtained at low cost.

また、膨出部17の外径面17aを鍛造肌仕上げとしておけば、膨出部17の表層部は鍛造加工に伴う加工硬化により高硬度化した層となる。そのため、金属製のブーツバンド15が膨出部17と軸方向で係合したときに膨出部17が変形等する可能性が低減するので、膨出部17が有するブーツバンド15の移動規制部としての機能が向上する。 Further, if the outer diameter surface 17a of the bulging portion 17 is forged skin finish, the surface layer portion of the bulging portion 17 becomes a layer having a high hardness due to work hardening accompanying the forging process. Therefore, when the metal boot band 15 engages with the bulging portion 17 in the axial direction, the possibility that the bulging portion 17 is deformed or the like is reduced. Therefore, the movement restricting portion of the boot band 15 included in the bulging portion 17 The function as is improved.

以上、本発明の実施形態に係る等速自在継手用ブーツの取付構造(を採用したブーツ付等速自在継手1)について説明を行ったが、本発明の実施の形態はこれに限定されない。 Although the mounting structure of the boots for the constant velocity universal joint (the constant velocity universal joint 1 with boots 1) according to the embodiment of the present invention has been described above, the embodiment of the present invention is not limited to this.

例えば、ブーツ20として、いわゆる樹脂ブーツに替えてゴム材料からなるいわゆるゴムブーツを採用する場合にも、本発明は好ましく適用することができる。但し、樹脂ブーツは、ゴムブーツに比べて軽量でかつ屈曲耐久性等に優れることから、軽量で耐久性や信頼性に富むブーツ付等速自在継手1を実現する上で有利となる。 For example, the present invention can be preferably applied when a so-called rubber boot made of a rubber material is used instead of the so-called resin boot as the boot 20. However, since the resin boot is lighter than the rubber boot and has excellent bending durability and the like, it is advantageous in realizing the constant velocity universal joint 1 with boots which is lightweight and has excellent durability and reliability.

また、外側継手部材2のカップ部6の外径面6aに設けたブーツ装着部16には、三条以上の環状突起を軸方向に相互に離間して設けても良い。 Further, the boot mounting portion 16 provided on the outer diameter surface 6a of the cup portion 6 of the outer joint member 2 may be provided with three or more annular protrusions separated from each other in the axial direction.

また、以上では、本発明に係るブーツの取付構造を、バーフィールド型の固定式等速自在継手(BJ)に適用したが、本発明に係るブーツの取付構造は、アンダーカットフリー型(UJ)等、公知のその他の固定式等速自在継手に適用することも可能である。また、本発明に係るブーツの取付構造は、角度変位のみを許容する固定式等速自在継手のみならず、角度変位および軸方向変位を許容する摺動式等速自在継手に適用することもできる。摺動式等速自在継手としては、ダブルオフセット型(DOJ)、トリポード型(TJ)、クロスグルーブ型(LJ)などがある。 Further, in the above, the boot mounting structure according to the present invention is applied to the barfield type fixed constant velocity universal joint (BJ), but the boot mounting structure according to the present invention is the undercut free type (UJ). It is also possible to apply to other known fixed constant velocity universal joints. Further, the boot mounting structure according to the present invention can be applied not only to a fixed constant velocity universal joint that allows only angular displacement, but also to a sliding constant velocity universal joint that allows angular displacement and axial displacement. .. Examples of the sliding type constant velocity universal joint include a double offset type (DOJ), a tripod type (TJ), and a cross groove type (LJ).

本発明は以上で説明した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々の形態で実施し得ることは勿論のことである。本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。 The present invention is not limited to the embodiments described above, and it goes without saying that the present invention can be further implemented in various embodiments without departing from the gist of the present invention. The scope of the present invention is indicated by the scope of claims, and further includes the equal meaning described in the scope of claims, and all modifications within the scope.

1 等速自在継手(ブーツ付等速自在継手)
2 外側継手部材
3 内側継手部材
4 ボール
5 保持器
10 軸部材(中間シャフト)
15 ブーツバンド
16 ブーツ装着部
16a,16b 環状突起
17 膨出部
17a 外径面
20 ブーツ
21 大径筒部
21a バンド装着溝
22 蛇腹部
D1 (膨出部の)外径寸法
D2 (ブーツバンドの)内径寸法
W 帯幅
X 軸方向離間距離
1 Constant velocity universal joint (constant velocity universal joint with boots)
2 Outer joint member 3 Inner joint member 4 Ball 5 Cage 10 Shaft member (intermediate shaft)
15 Boot band 16 Boot mounting part 16a, 16b Ring protrusion 17 Protruding part 17a Outer diameter surface 20 Boot 21 Large diameter tubular part 21a Band mounting groove 22 Bellows part D1 (of bulging part) Outer diameter dimension D2 (of boot band) Inner diameter dimension W Band width X Axial separation distance

Claims (4)

弾性材料で筒状に形成され、軸方向一方側の端部に設けられた大径筒部と、これに連なる蛇腹部とを一体に有する等速自在継手用ブーツのうち、前記大径筒部をブーツバンドで締め付けて縮径変形させることにより、前記大径筒部を等速自在継手の外側継手部材に設けられた環状のブーツ装着部に対して取付固定してなる等速自在継手用ブーツの取付構造において、
前記外側継手部材は、前記ブーツ装着部の軸方向一方側に隣接配置され、前記ブーツ装着部よりも径方向外側に張り出した環状の膨出部を一体に有しており、
前記膨出部の外径寸法をD1、前記大径筒部を締め付けた前記ブーツバンドの内径寸法をD2としたとき、D1>D2の関係式を満たすことを特徴とする等速自在継手用ブーツの取付構造。
Of the boots for constant velocity universal joints, which are formed of an elastic material and have a large-diameter tubular portion provided at one end in the axial direction and a bellows portion connected to the large-diameter tubular portion, the large-diameter tubular portion Is attached and fixed to the annular boot mounting portion provided on the outer joint member of the constant velocity universal joint by tightening with a boot band to reduce the diameter of the large diameter tubular portion. In the mounting structure of
The outer joint member is arranged adjacent to one side in the axial direction of the boot mounting portion, and integrally has an annular bulging portion that projects radially outward from the boot mounting portion.
When the outer diameter of the bulging portion is D1 and the inner diameter of the boot band to which the large diameter cylinder is tightened is D2, the boot for a constant velocity universal joint is characterized by satisfying the relational expression of D1> D2. Mounting structure.
前記膨出部の外径面が鍛造加工によって成形された成形面であり、前記ブーツ装着部を画成する面が前記鍛造加工後の機械加工によって仕上げられた面である請求項1に記載の等速自在継手用ブーツの取付構造。 The first aspect of claim 1, wherein the outer diameter surface of the bulging portion is a molded surface formed by forging, and the surface defining the boot mounting portion is a surface finished by machining after the forging. Mounting structure for boots for constant velocity universal joints. 前記ブーツ装着部は、軸方向に相互に離間して設けられた複数の環状突起を有し、
前記ブーツバンドの帯幅をWとし、前記複数の環状突起のうち最も軸方向他方側に位置する環状突起と前記膨出部の軸方向他方側の端部との軸方向離間距離をXとしたとき、W>Xの関係式を満たす請求項1又は2に記載の等速自在継手用ブーツの取付構造。
The boot mounting portion has a plurality of annular protrusions provided apart from each other in the axial direction.
The band width of the boot band is W, and the axial separation distance between the annular protrusion located on the other side in the axial direction of the plurality of annular protrusions and the end on the other side in the axial direction of the bulge is X. When, the mounting structure of the boot for a constant velocity universal joint according to claim 1 or 2, which satisfies the relational expression of W> X.
前記弾性材料が樹脂材料である請求項1〜3の何れか一項に記載の等速自在継手用ブーツの取付構造。 The mounting structure for boots for a constant velocity universal joint according to any one of claims 1 to 3, wherein the elastic material is a resin material.
JP2019123632A 2019-07-02 2019-07-02 Constant velocity universal joint boot fitting structure Pending JP2021008929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019123632A JP2021008929A (en) 2019-07-02 2019-07-02 Constant velocity universal joint boot fitting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019123632A JP2021008929A (en) 2019-07-02 2019-07-02 Constant velocity universal joint boot fitting structure

Publications (1)

Publication Number Publication Date
JP2021008929A true JP2021008929A (en) 2021-01-28

Family

ID=74198572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019123632A Pending JP2021008929A (en) 2019-07-02 2019-07-02 Constant velocity universal joint boot fitting structure

Country Status (1)

Country Link
JP (1) JP2021008929A (en)

Similar Documents

Publication Publication Date Title
JP6320695B2 (en) Wheel bearing device and assembly method thereof
WO2017073267A1 (en) Fixed constant velocity universal joint
US10422388B2 (en) Propeller shaft
JP2009085380A (en) Constant velocity universal joint
JP5623010B2 (en) Constant velocity universal joint
JP2021008929A (en) Constant velocity universal joint boot fitting structure
WO2013058059A1 (en) Constant velocity universal joint
WO2006085418A1 (en) Constant velocity universal joint and boot for the same
JP2012189190A (en) Sliding-type constant-velocity universal joint
JP2010127311A (en) Fixed type constant velocity universal joint and wheel bearing device using the same
WO2019142705A1 (en) Constant velocity universal joint boot
JP4652098B2 (en) Drive shaft
JP6279237B2 (en) Wheel bearing device
JP6899663B2 (en) Sliding constant velocity universal joint and its manufacturing method
JP2022156817A (en) Fixed-type constant velocity universal joint
JP2010025207A (en) Constant velocity universal joint
JP2017203538A (en) Slide-type constant velocity universal joint
JP2006258122A (en) Slide type constant velocity universal joint
JP6253933B2 (en) Constant velocity universal joint
JP2024031436A (en) Boots for constant velocity universal joints and constant velocity universal joints equipped with the same
JP2017061990A (en) Boot for constant velocity universal joint and constant velocity universal joint having the same
JP6901241B2 (en) Constant velocity universal joint
WO2018020991A1 (en) Constant-velocity universal joint
WO2017195552A1 (en) Sliding-type constant velocity universal joint and method for manufacturing same
JP2021143729A (en) Elastic boot for seal and seal assembly comprising the same