JP2022156817A - Fixed-type constant velocity universal joint - Google Patents

Fixed-type constant velocity universal joint Download PDF

Info

Publication number
JP2022156817A
JP2022156817A JP2021060696A JP2021060696A JP2022156817A JP 2022156817 A JP2022156817 A JP 2022156817A JP 2021060696 A JP2021060696 A JP 2021060696A JP 2021060696 A JP2021060696 A JP 2021060696A JP 2022156817 A JP2022156817 A JP 2022156817A
Authority
JP
Japan
Prior art keywords
constant velocity
velocity universal
universal joint
joint
joint member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021060696A
Other languages
Japanese (ja)
Inventor
美香 小原
Mika Obara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2021060696A priority Critical patent/JP2022156817A/en
Publication of JP2022156817A publication Critical patent/JP2022156817A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a fixed-type constant velocity universal joint excellent in handling performance at low cost.SOLUTION: In a fixed-type constant velocity universal joint 1 having a large-diameter cylinder part 21 attached to an outside joint member 2, a small-diameter cylinder part 22 attached to a shaft member 10 which can rotate integrally with an inside joint member 3, and a boot 20 to which a bellows part 23 is integrally die-molded by a flexible material, the boot 20 has a regulation part 26 for regulating relative angular displacements of both the joint members 2, 3 to an operation angle or larger at which falls of balls 4 occur.SELECTED DRAWING: Figure 3

Description

本発明は、固定式等速自在継手に関する。 The present invention relates to a fixed constant velocity universal joint.

周知のように、エンジンや電動モータなどの駆動源を車台上に搭載した自動車には、駆動源の出力(トルク)を車輪に伝達するために、ドライブシャフトやプロペラシャフトなどの動力伝達装置が搭載される。この動力伝達装置は、駆動軸および従動軸の二軸を連結し、かつ連結した二軸が作動角をとっても(相対的に角度変位しても)等速でトルクを伝達可能な等速自在継手を備える。等速自在継手は、連結した二軸の角度変位のみを許容する固定式等速自在継手と、連結した二軸の角度変位および軸方向変位を許容する摺動式等速自在継手とに大別される。 As is well known, a vehicle with a drive source such as an engine or an electric motor mounted on the chassis is equipped with a power transmission device such as a drive shaft or propeller shaft to transmit the output (torque) of the drive source to the wheels. be done. This power transmission device is a constant velocity universal joint that connects two shafts, a drive shaft and a driven shaft, and can transmit torque at a constant speed even if the two connected shafts have an operating angle (even if they are relatively angularly displaced). Prepare. Constant velocity universal joints are broadly classified into fixed type constant velocity universal joints that allow only angular displacement of two connected shafts, and sliding constant velocity universal joints that permit angular displacement and axial displacement of two connected shafts. be done.

固定式等速自在継手の使用時(自動車の運転走行時)に必要とされる作動角の最大値(最大作動角)は、以下に例示するように用途毎に異なっている。
・自動車のフロントドライブシャフト用:45°以上
・自動車のリアドライブシャフト用:30°以下
・自動車のプロペラシャフト用:10°以下
このように、リアドライブシャフト用やプロペラシャフト用の固定式等速自在継手の使用時の最大作動角は、フロントドライブシャフト用の固定式等速自在継手のそれに比べて小さい。そのため、リアドライブシャフト用やプロペラシャフト用の固定式等速自在継手においては、通常、フロントドライブシャフト用の固定式等速自在継手よりも軸方向寸法(トラック溝の溝長さ)が短縮された小型の外側継手部材が使用される。
The maximum value of the working angle (maximum working angle) required when using a fixed constant velocity universal joint (during driving of an automobile) differs depending on the application, as exemplified below.
・For front drive shafts of automobiles: 45° or more ・For rear drive shafts of automobiles: 30° or less ・For propeller shafts of automobiles: 10° or less The maximum operating angle of the joint when in use is smaller than that of fixed constant velocity universal joints for front drive shafts. For this reason, fixed constant velocity universal joints for rear drive shafts and propeller shafts generally have a shorter axial dimension (track groove length) than fixed constant velocity universal joints for front drive shafts. A small outer joint member is used.

ところで、固定式等速自在継手は、外側継手部材および内側継手部材と、両継手部材の角度変位を許容しながら両継手部材の間でトルクを伝達する複数のボールと、ボールを保持したポケット部を有する保持器と、内側継手部材と一体回転可能に内側継手部材に連結された軸部材と、を備える。この固定式等速自在継手は、概ね、以下の手順で組み立てられるのが一般的である。
(1)外側継手部材(のカップ部)の内周に内側継手部材および保持器を組み込む。
(2)外側継手部材と内側継手部材を相対的に角度変位させ、外側継手部材の外側に露出した保持器のポケット部にボールを組み込む。
(3)最後に、内側継手部材に軸部材を連結する。
By the way, a fixed type constant velocity universal joint includes an outer joint member and an inner joint member, a plurality of balls for transmitting torque between the joint members while allowing angular displacement of both joint members, and a pocket portion holding the balls. and a shaft member connected to the inner joint member so as to be rotatable together with the inner joint member. This fixed type constant velocity universal joint is generally assembled according to the following procedure.
(1) The inner joint member and retainer are incorporated in the inner circumference of (the cup portion of) the outer joint member.
(2) The outer joint member and the inner joint member are relatively angularly displaced, and the ball is assembled in the pocket portion of the retainer exposed to the outside of the outer joint member.
(3) Finally, the shaft member is connected to the inner joint member.

上記手順で組み立てられたフロントドライブシャフト用の固定式等速自在継手では、通常、ボールを組み込むときの作動角(逆に言えば、ボールの脱落が生じる作動角)よりも小さい作動角で内側継手部材に連結された軸部材が外側継手部材の開口側端部に干渉するため、搬送時や自動車への組付時等の取り扱い時に、ボールが外側継手部材のトラック溝から外れて脱落することはない。一方、軸方向寸法が短縮された小型の外側継手部材が使用されるリアドライブシャフト用(あるいはプロペラシャフト用)の固定式等速自在継手では、軸部材が外側継手部材の開口側端部と干渉する作動角がボールの脱落が生じる作動角よりも大きくなることから、何らの対策も講じられていなければ、取り扱い時にボールが脱落するおそれがある。 In the fixed constant velocity universal joint for the front drive shaft assembled by the above procedure, the inner joint is normally operated at an operating angle that is smaller than the operating angle at which the balls are incorporated (conversely, the operating angle at which the balls fall off). Since the shaft member connected to the member interferes with the opening side end of the outer joint member, the ball will not come off the track groove of the outer joint member and fall off during handling such as transportation or assembly to an automobile. do not have. On the other hand, in a fixed constant velocity universal joint for a rear drive shaft (or for a propeller shaft) in which a small outer joint member with a shortened axial dimension is used, the shaft member interferes with the opening side end of the outer joint member. Since the operating angle at which the ball falls off is larger than the operating angle at which the ball falls off, there is a risk that the ball will fall off during handling if no countermeasures are taken.

そこで、例えば、特開平3-113124号公報(特許文献1)では、軸部材に、外側継手部材の底部側に延長した延長部を設け、この延長部と外側継手部材の底部に設けた凹部とを最大作動角で当接(干渉)させるようにした固定式等速自在継手が提案されている。また、特開2001-280359号公報(特許文献2)では、最大作動角で外側継手部材の開口側端面に当接(干渉)可能な環状突起を軸部材に一体的に設けた固定式等速自在継手が提案されている。これらの固定式等速自在継手では、外側継手部材と内側継手部材(に連結された軸部材)の相対的な角度変位量が最大作動角以下に規制されるので、取り扱い時にボールが脱落するのを効果的に防止することができる。 Therefore, for example, in Japanese Patent Application Laid-Open No. 3-113124 (Patent Document 1), the shaft member is provided with an extension portion extending to the bottom side of the outer joint member, and the extension portion and the recess provided in the bottom portion of the outer joint member are combined. A fixed constant velocity universal joint has been proposed in which the contact (interference) is made at the maximum operating angle. In addition, in Japanese Patent Application Laid-Open No. 2001-280359 (Patent Document 2), a fixed constant-velocity joint is provided integrally with a shaft member with an annular protrusion that can abut (interfere) with the opening-side end surface of the outer joint member at the maximum operating angle. Universal joints have been proposed. In these fixed type constant velocity universal joints, the amount of relative angular displacement between the outer joint member and the inner joint member (the shaft member connected to them) is regulated to be less than the maximum operating angle, so the ball does not fall off during handling. can be effectively prevented.

特開平3-113124号公報JP-A-3-113124 特開2001-280359号公報Japanese Patent Application Laid-Open No. 2001-280359

しかしながら、特許文献1の技術手段を採用すると、軸部材が長寸化する分、軸部材の重量が増加するため、外側継手部材の軸方向寸法を短縮することで得られた軽量化の効果が薄れることが懸念される。また、特許文献2のように、外側継手部材の開口側端面と干渉可能な環状突起を有する軸部材を得ようとすると、直径寸法(体積)の大きい棒状素材に切削加工等の機械加工を施す必要があるため、材料コストおよび加工コストが大幅に増加することが懸念される。 However, when the technical means of Patent Document 1 is employed, the weight of the shaft member increases as the length of the shaft member increases. concerned about fading. In addition, as in Patent Document 2, when trying to obtain a shaft member having an annular projection that can interfere with the opening side end surface of the outer joint member, machining such as cutting is performed on a rod-shaped material having a large diameter dimension (volume). There is a concern that material costs and processing costs will increase significantly because of the need.

以上の実情に鑑み、本発明は、取り扱い時におけるボールの脱落を防止することができる固定式等速自在継手を低コストに実現することを目的とする。 SUMMARY OF THE INVENTION In view of the above circumstances, an object of the present invention is to realize a fixed type constant velocity universal joint at low cost that can prevent the ball from falling off during handling.

上記の目的を達成するために創案された本発明は、外側継手部材および内側継手部材と、両継手部材の相対的な角度変位を許容しながら両継手部材の間でトルクを伝達する複数のボールと、ボールを保持した保持器と、内側継手部材と一体回転可能に設けられた軸部材と、外側継手部材の外周面に取り付けられた大径筒部、軸部材の外周面に取り付けられた小径筒部、および大径筒部と小径筒部の間に設けられ、両継手部材が相対的に角度変位するのに伴って弾性的に伸縮および屈曲変形する蛇腹部を有し、大径筒部、小径筒部および蛇腹部が可撓性材料で一体に型成形されたブーツと、を備える固定式等速自在継手において、ブーツに、ボールの脱落が生じる作動角以上に両継手部材が相対的に角度変位するのを規制する規制部が設けられていることを特徴とする。なお、本発明でいう「可撓性材料」とは、例えば、熱可塑性エラストマーを主成分とする樹脂材料、あるいはゴムを主成分とするゴム材料等、弾性的な伸縮および屈曲変形を繰り返し行うことができる材料を言う。 The present invention, which has been devised to achieve the above object, comprises an outer joint member, an inner joint member, and a plurality of balls that transmit torque between the joint members while allowing relative angular displacement of both joint members. a retainer holding balls; a shaft member provided so as to be rotatable integrally with the inner joint member; a large-diameter cylindrical portion attached to the outer peripheral surface of the outer joint member; a cylindrical portion, and a bellows portion provided between the large-diameter cylindrical portion and the small-diameter cylindrical portion that elastically expands, contracts, and bends as the joint members are displaced relative to each other; , and a boot in which the small-diameter cylindrical portion and the bellows portion are integrally molded from a flexible material, the boot is provided with both joint members relative to each other at an operating angle greater than the operating angle at which the ball falls off. and a regulating portion for regulating angular displacement. The term "flexible material" as used in the present invention refers to, for example, a resin material containing a thermoplastic elastomer as a main component, or a rubber material containing rubber as a main component. A material that can

このように、ボールの脱落が生じる作動角以上に両継手部材が相対的に角度変位するのを規制する規制部を、可撓性材料で(筒状に)型成形されるブーツに設けるようにすれば、鋼材等、加工に手間を要する材料で作製されるのが一般的な外側継手部材、内側継手部材および軸部材に形状的な工夫を凝らすことなく、所望の変位規制機能を果たすことのできる規制部を低コストにかつ安定的に得ることが可能となる。これにより、取り扱い時にボールが脱落せず、取り扱い性に優れた固定式等速自在継手を低コストに実現することができる。 In this manner, the boot, which is molded (cylindrically) from a flexible material, is provided with a restricting portion that restricts the relative angular displacement of the two joint members beyond the operating angle at which the ball falls off. If so, it is possible to achieve the desired displacement control function without devising the shape of the outer joint member, the inner joint member, and the shaft member, which are generally made of materials such as steel that require time and effort to process. It is possible to stably obtain a regulating portion capable of achieving low cost. As a result, it is possible to realize a fixed type constant velocity universal joint with excellent handleability at low cost without the ball falling off during handling.

規制部は、例えば、大径筒部と蛇腹部の間に設けられた環状凹部に充填した樹脂材料を硬化させることにより、あるいは、大径筒部と蛇腹部の間に設けられた環状凹部に環状部材を嵌合することにより形成することができる。蛇腹部は、谷部と山部が軸方向に交互に配置された形態を有するので、型成形された蛇腹部の一部を上記の環状凹部として活用することができる。 The restricting portion is formed, for example, by curing a resin material filled in an annular recess provided between the large-diameter tubular portion and the bellows portion, or by setting the annular recess provided between the large-diameter tubular portion and the bellows portion. It can be formed by fitting annular members. Since the bellows portion has a form in which troughs and peaks are alternately arranged in the axial direction, a part of the molded bellows portion can be utilized as the annular recess.

上記の環状部材としては、例えば、上記の可撓性材料(ブーツの成形用材料)で継ぎ目(連結部分)のない環状形態に形成されたものや、周方向に沿って配置された複数の円弧状部材を連結することで環状形態に形成されるもの、を採用することができる。このような環状部材であれば、環状凹部に対して容易に嵌合することができる。 As the annular member, for example, the flexible material (the material for molding the boot) is formed in an annular form without seams (connecting portions), or a plurality of circles arranged along the circumferential direction. An annular shape formed by connecting arcuate members can be employed. Such an annular member can be easily fitted into the annular recess.

ブーツの環状凹部に環状部材を嵌合することで規制部を形成する場合、環状部材の断面形状を環状凹部の断面形状に合致させるのが好ましい。このようにすれば、環状凹部と環状部材の断面形状が合致しない場合に比べ、規制部の剛性を高めることができるので、所望の変位規制機能を適切に発揮する上で有利となる。 When the restricting portion is formed by fitting the annular member into the annular recess of the boot, it is preferable that the cross-sectional shape of the annular member matches the cross-sectional shape of the annular recess. In this way, compared to the case where the cross-sectional shapes of the annular recess and the annular member do not match, the rigidity of the restricting portion can be increased, which is advantageous in appropriately exhibiting the desired displacement restricting function.

以上の構成において、規制部には、外側継手部材と軸方向で当接(係合)した当接面を設けることができる。このようにすれば、ブーツの規制部が外側継手部材で軸方向に支持されるので、規制部の姿勢が安定する。そのため、所望の変位規制機能を安定的に発揮する上で有利となる。 In the above configuration, the restricting portion can be provided with an abutting surface that abuts (engages) with the outer joint member in the axial direction. With this configuration, the restricting portion of the boot is axially supported by the outer joint member, so that the posture of the restricting portion is stabilized. Therefore, it is advantageous in stably exhibiting the desired displacement control function.

以上のことから、本発明によれば、取り扱い時にボールが脱落し難く、取り扱い性に優れた固定式等速自在継手を低コストに実現することが可能となる。 As described above, according to the present invention, it is possible to realize a fixed type constant velocity universal joint at low cost, which is excellent in handleability and in which the balls are unlikely to fall off during handling.

本発明の一実施形態に係る固定式等速自在継手の縦断面図である。1 is a longitudinal sectional view of a fixed constant velocity universal joint according to an embodiment of the present invention; FIG. 図1に示す固定式等速自在継手の組立方法を説明するための図である。1. It is a figure for demonstrating the assembly method of the fixed type constant velocity universal joint shown in FIG. 図1に示す固定式等速自在継手が作動角をとった状態を示す断面図である。2 is a cross-sectional view showing a state in which the fixed type constant velocity universal joint shown in FIG. 1 has an operating angle; FIG. 本発明の他の実施形態に係る固定式等速自在継手の縦断面図である。FIG. 5 is a vertical cross-sectional view of a fixed constant velocity universal joint according to another embodiment of the present invention; 本発明の他の実施形態に係る固定式等速自在継手の縦断面図である。FIG. 5 is a vertical cross-sectional view of a fixed constant velocity universal joint according to another embodiment of the present invention; 図5に示す固定式等速自在継手が作動角をとった状態を示す断面図である。6 is a cross-sectional view showing a state in which the fixed type constant velocity universal joint shown in FIG. 5 has an operating angle; FIG. 本発明の他の実施形態に係る固定式等速自在継手の縦断面図である。FIG. 5 is a vertical cross-sectional view of a fixed constant velocity universal joint according to another embodiment of the present invention; (a)図は、図7のP-P線矢視断面図であり、(b)図は、(a)図に示す環状部材とは異なる環状部材を用いた場合における図7のP-P線矢視断面図である。(a) is a cross-sectional view taken along line PP of FIG. 7, and (b) is a view of PP of FIG. 7 when an annular member different from the annular member shown in FIG. 7 (a) is used. It is a line arrow sectional view.

以下、本発明の実施の形態を図面(図1-図8)に基づいて説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings (FIGS. 1 to 8).

図1に、本発明の一実施形態に係る固定式等速自在継手1の縦断面図(部分縦断面図)を示す。この固定式等速自在継手1は、自動車の車台上に搭載されたエンジンや電動モータ等の駆動源の出力(トルク)を後輪に伝達するために、自動車の車幅方向に沿って配置されるドライブシャフト(リアドライブシャフト)の構成要素として用いられるものであり、リアドライブシャフトの車幅方向外側(車輪側)の端部に配置される。リアドライブシャフトは、上記自動車の車幅方向内側の端部に配置される図示外の摺動式等速自在継手と、固定式等速自在継手1と、両等速自在継手をトルク伝達可能に連結した軸部材10とを備える。なお、以下では、固定式等速自在継手1を単に「等速自在継手1」とも言う。 FIG. 1 shows a vertical cross-sectional view (partial vertical cross-sectional view) of a fixed type constant velocity universal joint 1 according to one embodiment of the present invention. The fixed constant velocity universal joint 1 is arranged along the vehicle width direction in order to transmit the output (torque) of a drive source such as an engine or an electric motor mounted on the chassis of the vehicle to the rear wheels. It is used as a constituent element of the drive shaft (rear drive shaft) that is mounted on the rear drive shaft, and is arranged at the outer (wheel side) end of the rear drive shaft in the vehicle width direction. The rear drive shaft has a sliding constant velocity universal joint (not shown) arranged at the inner end in the vehicle width direction of the automobile, a fixed constant velocity universal joint 1, and both constant velocity universal joints so that torque can be transmitted. and a connected shaft member 10 . Note that the fixed type constant velocity universal joint 1 is also simply referred to as the "constant velocity universal joint 1" below.

図1に示す等速自在継手1は、外側継手部材2および内側継手部材3と、両継手部材2,3の相対的な角度変位を許容しながら両継手部材2,3の間でトルクを伝達する複数のボール4と、ボール4を保持した保持器5と、内側継手部材3と一体回転可能に内側継手部材3に連結された上記の軸部材10とを備える。 A constant velocity universal joint 1 shown in FIG. 1 transmits torque between an outer joint member 2 and an inner joint member 3, and between the joint members 2 and 3 while allowing relative angular displacement of the joint members 2 and 3. a retainer 5 holding the balls 4; and the shaft member 10 connected to the inner joint member 3 so as to rotate integrally therewith.

外側継手部材2は、有底椀状のカップ部およびカップ部の底部から軸方向外向きに延びた軸部を一体に有し、カップ部の球状内周面2aには、ボール4の個数に応じた複数のトラック溝2bが周方向等間隔で形成されている。この外側継手部材2は、例えば、炭素鋼や合金鋼などといった炭素含有量0.20~0.45質量%の鋼材で形成されており、少なくともカップ部の内径側表層部や軸部の自由端側の表層部などといった高い機械的強度が必要とされる部位には、熱処理による硬化層(図示せず)が形成されている。 The outer joint member 2 integrally has a bowl-shaped cup portion with a bottom and a shaft portion extending axially outward from the bottom portion of the cup portion. A plurality of corresponding track grooves 2b are formed at equal intervals in the circumferential direction. The outer joint member 2 is made of, for example, a steel material having a carbon content of 0.20 to 0.45% by mass, such as carbon steel or alloy steel. A hardened layer (not shown) formed by heat treatment is formed in a portion where high mechanical strength is required, such as the surface layer of the side.

内側継手部材3は、外側継手部材2と同種の鋼材で環状に形成され、外側継手部材2のカップ部の内周に配置されている。内側継手部材3の球状外周面3aには、ボール4の個数に応じた複数のトラック溝3bが周方向等間隔で形成されている。 The inner joint member 3 is made of the same kind of steel as the outer joint member 2 and is formed in an annular shape, and is arranged on the inner circumference of the cup portion of the outer joint member 2 . A plurality of track grooves 3b corresponding to the number of balls 4 are formed on the spherical outer peripheral surface 3a of the inner joint member 3 at regular intervals in the circumferential direction.

複数のボール4は、それぞれ、対をなすトラック溝2b,3bの間に介在し、外側継手部材2と内側継手部材3の間でトルクを伝達する。ボール4の個数は、6個又は8個とするのが一般的であるが、10個や12個とすることも可能である。 The plurality of balls 4 are interposed between the paired track grooves 2 b and 3 b and transmit torque between the outer joint member 2 and the inner joint member 3 . The number of balls 4 is generally six or eight, but may be ten or twelve.

保持器5は、金属又は樹脂材料で環状に形成され、外側継手部材2の球状内周面2aと内側継手部材3の球状外周面3aの間に配置される。保持器5には、その球状外周面および球状内周面に開口したポケット部5aが周方向等間隔で複数形成されており、各ポケット部5aはボール4を個別に保持している。 The retainer 5 is annularly formed of a metal or resin material and arranged between the spherical inner peripheral surface 2 a of the outer joint member 2 and the spherical outer peripheral surface 3 a of the inner joint member 3 . The retainer 5 has a plurality of pocket portions 5a opening on its spherical outer peripheral surface and spherical inner peripheral surface at equal intervals in the circumferential direction.

内側継手部材3の内周面(軸孔の内壁面)には雌スプライン3cが形成され、この雌スプライン3cには軸部材10の一端外周面に形成された雄スプライン10aが嵌合している。これにより、内側継手部材3と軸部材10が一体回転する。また、軸部材10には環状溝10bが形成され、この環状溝10bに嵌合された止め輪11が軸部材10の抜け方向で内側継手部材3と係合している。これにより、軸部材10が内側継手部材3に対して抜け止めされている。軸部材10には、例えば、外側継手部材2と同様の鋼材で形成された中空軸又は中実軸が用いられ、少なくとも雄スプライン10aが形成された部位には、熱処理による硬化層(図示せず)が形成されている。 A female spline 3c is formed on the inner peripheral surface (inner wall surface of the shaft hole) of the inner joint member 3, and a male spline 10a formed on the outer peripheral surface of one end of the shaft member 10 is fitted to the female spline 3c. . As a result, the inner joint member 3 and the shaft member 10 rotate together. An annular groove 10b is formed in the shaft member 10, and a snap ring 11 fitted in the annular groove 10b is engaged with the inner joint member 3 in the direction in which the shaft member 10 is removed. Thereby, the shaft member 10 is prevented from slipping off from the inner joint member 3 . For the shaft member 10, for example, a hollow shaft or a solid shaft formed of the same steel material as the outer joint member 2 is used, and at least the portion where the male spline 10a is formed is hardened by heat treatment (not shown). ) is formed.

図示は省略しているが、等速自在継手1(外側継手部材2のカップ部)の内部空間にはグリース等の潤滑剤が封入されている。潤滑剤の外部漏洩や継手外部からの異物侵入を防止するため、外側継手部材2と軸部材10の間には筒状のブーツ20が装着されている。 Although not shown, the internal space of the constant velocity universal joint 1 (the cup portion of the outer joint member 2) is filled with a lubricant such as grease. A cylindrical boot 20 is attached between the outer joint member 2 and the shaft member 10 in order to prevent lubricant from leaking to the outside and foreign matter from entering from the outside of the joint.

本実施形態のブーツ20は、熱可塑性エラストマーを主成分とする樹脂材料を用いて筒状に型成形されたいわゆる樹脂ブーツであり、ブーツバンド12を用いて外側継手部材2のカップ部の外周面に固定された大径筒部21と、ブーツバンド13を用いて軸部材10の外周面に固定された小径筒部22と、大径筒部21と小径筒部22の間に介在する蛇腹部23と、を一体に有する。蛇腹部23は、谷部24と山部25を軸方向に交互に配置することで形成されており、内側継手部材3(に連結された軸部材10)が外側継手部材2に対して相対的に角度変位して等速自在継手1に作動角が付与されると、これに追従して弾性的に伸縮および屈曲変形する。 The boot 20 of the present embodiment is a so-called resin boot that is cylindrically molded using a resin material containing a thermoplastic elastomer as a main component. a small diameter tubular portion 22 fixed to the outer peripheral surface of the shaft member 10 using the boot band 13; and a bellows portion interposed between the large diameter tubular portion 21 and the small diameter tubular portion 22. 23 integrally. The bellows portion 23 is formed by alternately arranging the trough portions 24 and the peak portions 25 in the axial direction, and the inner joint member 3 (the shaft member 10 connected thereto) is arranged relative to the outer joint member 2. When the operating angle is given to the constant velocity universal joint 1 by the angular displacement, the constant velocity universal joint 1 elastically expands, contracts and bends.

上記の熱可塑性エラストマーとしては、ポリエステル系、ポリウレタン系、ポリオレフィン系、ポリアミド系、ポリスチレン系、フッ素系などといった公知の熱可塑性エラストマーの中から、耐熱性、耐油性および屈曲耐久性などといった種々の要求特性を満足し得るものが選択使用される。また、所定形状のブーツ20を得ることができれば、ブーツ20の成形方法に制約はなく、インジェクションブロー成形、プレスブロー成形、ダイレクトブロー成形などといった公知の各種ブロー成形の他、射出成形を採用することも可能である。図示例のブーツ20は、ブロー成形と射出成形を組み合わせて成形されたものである。 As the thermoplastic elastomer, various requirements such as heat resistance, oil resistance and bending durability are selected from known thermoplastic elastomers such as polyester, polyurethane, polyolefin, polyamide, polystyrene, and fluorine. A material that satisfies the characteristics is selected and used. Further, as long as the boot 20 having a predetermined shape can be obtained, there is no restriction on the molding method of the boot 20, and injection molding can be adopted in addition to various known blow molding such as injection blow molding, press blow molding, and direct blow molding. is also possible. The illustrated boot 20 is formed by combining blow molding and injection molding.

以上の構成を有する等速自在継手1に作動角が付与されると、保持器5(のポケット部5a)に保持されたボール4は、両継手部材2,3の軸線がなす角度(作動角)を二等分する平面上に常に案内される。これにより、外側継手部材2と内側継手部材3の間でトルクが等速で伝達される。 When an operating angle is given to the constant velocity universal joint 1 having the above configuration, the ball 4 held in (the pocket portion 5a of) the retainer 5 moves at an angle (operating angle ) is always guided on the plane that bisects Thereby, torque is transmitted between the outer joint member 2 and the inner joint member 3 at a constant speed.

ところで、操舵輪とされる前輪に駆動源のトルクを伝達するフロントドライブシャフト用の固定式等速自在継手は、使用時(運転走行時)に45°以上の作動角をとり得ることが必要とされるのに対し、リアドライブシャフト用である本実施形態の等速自在継手1は、使用時に20°程度の作動角をとることができれば足りる。つまり、フロントドライブシャフト用の固定式等速自在継手の使用時の最大作動角θMAXは45°以上(例えば47°)であるのに対し、本実施形態の等速自在継手1の使用時の最大作動角θMAXは20°程度であることから、外側継手部材2のトラック溝2bのうち、20°を超える作動角をとるために必要となるカップ部の開口側に形成される部分が、本実施形態の等速自在継手1においては不要である。そのため、外側継手部材2には、トラック溝2bの溝長さ、すなわち軸方向寸法がフロントドライブシャフト用の固定式等速自在継手のそれよりも短縮されたものが使用されている。 By the way, the fixed constant velocity universal joint for the front drive shaft that transmits the torque of the drive source to the front wheels, which are the steered wheels, must be able to take an operating angle of 45° or more during use (during driving). In contrast, the constant velocity universal joint 1 of the present embodiment, which is for a rear drive shaft, only needs to have an operating angle of about 20° during use. That is, the maximum operating angle θ MAX when using the fixed constant velocity universal joint for the front drive shaft is 45° or more (for example, 47°), whereas when using the constant velocity universal joint 1 of the present embodiment, Since the maximum operating angle θ MAX is about 20°, the portion of the track groove 2b of the outer joint member 2 that is formed on the opening side of the cup portion, which is required to obtain an operating angle exceeding 20°, It is unnecessary in the constant velocity universal joint 1 of this embodiment. Therefore, the outer joint member 2 is used in which the groove length of the track groove 2b, that is, the axial dimension, is shorter than that of the fixed constant velocity universal joint for the front drive shaft.

一方、等速自在継手1の組立時には、図2に示すように、外側継手部材2と内側継手部材3の軸線がなす角度(作動角)を使用時の最大作動角θMAX(≒20°)よりも大きくすることにより、保持器5のポケット部5aを外側継手部材2のカップ部の外側に露出させ、この露出したポケット部5aにボール4を収容するようにして両継手部材2,3の間(対をなすトラック溝2b,3bの間)にボール4が組み込まれる。図2においては、ボール4を組み込むときの作動角(ボール組込角)θを45°としている。両継手部材2,3の間にボール4を組み込んだ後には、内側継手部材3に対して軸部材10が連結され、さらにブーツ20の大径筒部21および小径筒部22が、それぞれ、ブーツバンド12,13を用いて外側継手部材2および軸部材10の外周面に取り付けられる。 On the other hand, when assembling the constant velocity universal joint 1, as shown in FIG. , the pocket portion 5a of the retainer 5 is exposed to the outside of the cup portion of the outer joint member 2, and the balls 4 are accommodated in the exposed pocket portion 5a. A ball 4 is incorporated between them (between the pair of track grooves 2b and 3b). In FIG. 2, the working angle (ball - mounting angle) θA when the ball 4 is mounted is set to 45°. After the ball 4 is assembled between the joint members 2 and 3, the shaft member 10 is connected to the inner joint member 3, and the large-diameter tubular portion 21 and the small-diameter tubular portion 22 of the boot 20 are respectively connected to the boot. It is attached to the outer peripheral surfaces of the outer joint member 2 and the shaft member 10 using the bands 12 and 13 .

上記の手順で組み立てられた等速自在継手1の取り扱い時(搬送時や車両への組み付け時等)には、外側継手部材2、軸部材10が連結された内側継手部材3、複数のボール4および保持器5が自重等によって自由に変位・移動可能な状態となっている。そのため、何らの対策も講じられていなければ、使用時の最大作動角θMAXが20°以下とされる等速自在継手1であっても、作動角がボール組込角θを超えてしまい、ボール4が外側継手部材2のトラック溝2bから外れて脱落する可能性がある。 When handling the constant velocity universal joint 1 assembled by the above procedure (during transportation, assembly to a vehicle, etc.), the outer joint member 2, the inner joint member 3 to which the shaft member 10 is connected, and the plurality of balls 4 And the retainer 5 is in a state in which it can be freely displaced and moved by its own weight or the like. Therefore, if no measures are taken, even if the constant velocity universal joint 1 has a maximum working angle θ MAX of 20° or less during use, the working angle will exceed the ball built-in angle θ A. , the ball 4 may come off the track groove 2b of the outer joint member 2 and fall off.

そこで、本実施形態の等速自在継手1においては、ブーツ20に工夫を凝らすことにより、特に取り扱い時に発生し得るボール4の脱落問題を防止するようにしている。詳細には、図1および図3に示すように、ボール4の脱落が生じる作動角(=上記の「ボール組込角θ」)以上に外側継手部材2と内側継手部材3が相対的に角度変位するのを規制する規制部26をブーツ20(より詳細には、ブーツ20を構成する大径筒部21と蛇腹部23の間)に設けている。 Therefore, in the constant velocity universal joint 1 of the present embodiment, the boot 20 is devised to prevent the ball 4 from falling off, which may occur particularly during handling. Specifically, as shown in FIGS. 1 and 3, the outer joint member 2 and the inner joint member 3 are positioned relative to each other at an operating angle at which the ball 4 falls off (=the above-described “ball included angle θ A ”) or more. A restricting portion 26 that restricts angular displacement is provided in the boot 20 (more specifically, between the large-diameter cylindrical portion 21 and the bellows portion 23 that constitute the boot 20).

図3では、外側継手部材2と内側継手部材3が、使用時の最大作動角θMAX(≒20°)よりも大きく、かつボール組込角θ(=45°)よりも小さい作動角をとったとき、具体的には、両継手部材2,3の間の作動角が35°となった時に、ボール4(詳細には蛇腹部23の伸長変形側に配置されたボール4)が規制部26に干渉すると共に、軸部材10が蛇腹部23(圧縮変形した蛇腹部23)を介して規制部26に干渉することにより、ボール4の脱落が生じる作動角以上に両継手部材2,3が相対的に角度変位するのを規制する場合を例示している。 In FIG. 3, the outer joint member 2 and the inner joint member 3 have an operating angle that is larger than the maximum operating angle θ MAX (≈20°) in use and smaller than the ball built-in angle θ A (=45°). Specifically, when the operating angle between the joint members 2 and 3 reaches 35°, the ball 4 (specifically, the ball 4 arranged on the extension deformation side of the bellows portion 23) is regulated. In addition to interfering with the portion 26, the shaft member 10 interferes with the restricting portion 26 via the bellows portion 23 (compressively deformed bellows portion 23). is exemplified in the case of regulating the relative angular displacement of .

なお、ボール4が規制部26に干渉することにより、あるいは軸部材10が蛇腹部23を介して規制部26に干渉することにより、ボール4の脱落が生じる作動角以上に両継手部材2,3が相対的に角度変位するのが規制される場合もある。すなわち、ブーツ20の規制部26には、図3に例示するようにボール4および軸部材10が同時(略同時)に干渉する場合がある他、ボール4が優先的に干渉する場合や、軸部材10が優先的に干渉する場合がある。何れの場合においても、ボール4の脱落が生じる作動角以上に両継手部材2,3が相対的に角度変位する事態は規制される。後述する他の実施形態においても同様である。 If the ball 4 interferes with the restricting portion 26, or if the shaft member 10 interferes with the restricting portion 26 via the bellows portion 23, the joint members 2, 3 may be moved beyond the operating angle at which the ball 4 falls off. may be restricted from relative angular displacement. That is, as illustrated in FIG. 3, the ball 4 and the shaft member 10 may interfere with the restricting portion 26 of the boot 20 at the same time (substantially simultaneously). The member 10 may preferentially interfere. In either case, the relative angular displacement of the joint members 2 and 3 beyond the operating angle at which the ball 4 falls off is regulated. The same applies to other embodiments described later.

本実施形態の規制部26は、ブーツ20に型成形された環状凹部に樹脂材料を充填して硬化させることによって形成されている。ここでは、型成形された複数の谷部24と山部25を有する蛇腹部23のうち最も大径筒部21に接近した位置にある谷部24(第1谷部24a)に樹脂材料を充填して硬化させることにより規制部26が形成されている。従って、本実施形態の規制部26は、環状凹部としての第1谷部24aと、第1谷部24a内で硬化した樹脂部27とで構成される。この場合、規制部26は、蛇腹部23よりも剛性が高く、両継手部材2,3が角度変位したときの変形量が蛇腹部23よりも格段に少ない部位となる。 The regulating portion 26 of the present embodiment is formed by filling a resin material into an annular recess molded in the boot 20 and curing the resin material. Here, the resin material is filled in the valley portion 24 (first valley portion 24a) located closest to the large-diameter tubular portion 21 among the bellows portion 23 having a plurality of molded valley portions 24 and peak portions 25. The restricting portion 26 is formed by pressing and hardening. Therefore, the restricting portion 26 of the present embodiment is composed of the first valley portion 24a as an annular concave portion and the resin portion 27 hardened in the first valley portion 24a. In this case, the restricting portion 26 has higher rigidity than the bellows portion 23, and the amount of deformation when the joint members 2 and 3 are angularly displaced is much smaller than that of the bellows portion 23.

以上のように、本実施形態の等速自在継手1では、いわゆる樹脂ブーツからなる筒状のブーツ20に、ボール4の脱落が生じる作動角以上に両継手部材2,3が相対的に角度変位するのを規制する規制部26は設けられる。この場合、樹脂製のブーツ20に比べ、加工に遥かに手間を要する鋼製の外側継手部材2、内側継手部材3および軸部材10に形状的な工夫を凝らすことなく、所望の変位規制機能を果たすことのできる規制部26を安定的に得ることができる。そのため、取り扱い時にボール4が外側継手部材2(のトラック溝2a)から脱落せず、取り扱い性に優れた等速自在継手1を低コストに実現することができる。 As described above, in the constant velocity universal joint 1 of the present embodiment, the tubular boot 20 made of a so-called resin boot allows both the joint members 2 and 3 to be relatively angularly displaced beyond the operating angle at which the ball 4 falls off. A regulating portion 26 for regulating the movement is provided. In this case, the desired displacement control function can be achieved without devising the shape of the steel outer joint member 2, the inner joint member 3, and the shaft member 10, which are much more laborious to process than the resin boot 20. It is possible to stably obtain the restricting portion 26 that can fulfill the requirements. Therefore, the balls 4 do not drop out of (the track grooves 2a of) the outer joint member 2 during handling, and the constant velocity universal joint 1 excellent in handleability can be realized at low cost.

規制部26を構成する樹脂部27は、例えば、ブーツ20成形用の樹脂材料(ここでは、熱可塑性エラストマーを主成分とする樹脂材料)を用いて形成することができる他、ブーツ20成形用の樹脂材料とは異なる樹脂材料を用いて形成することもできる。上記の「異なる樹脂材料」としては、例えば、ブーツ20の成形に用いた熱可塑性エラストマーとは異なる種類の熱可塑性エラストマーを主成分としたものや、プラストマー(室温で弾性を持たず、塑性的性質を示すもの)を主成分としたものを使用することができ、特に、ブーツ20成形用の樹脂材料よりも弾性率が高い樹脂材料を使用するのが好ましい。これにより、規制部26の剛性を高めることができるので、所望の角度変位規制機能を適切に発揮することが可能となる。 The resin portion 27 constituting the restricting portion 26 can be formed using, for example, a resin material for molding the boot 20 (here, a resin material containing a thermoplastic elastomer as a main component), or a resin material for molding the boot 20. It can also be formed using a resin material different from the resin material. Examples of the above-mentioned "different resin material" include those mainly composed of a thermoplastic elastomer different from the thermoplastic elastomer used for molding the boot 20, and plastomers (which do not have elasticity at room temperature and have plastic properties). ) can be used as a main component, and it is particularly preferable to use a resin material having a higher elastic modulus than the resin material for molding the boot 20 . As a result, the rigidity of the restricting portion 26 can be increased, so that the desired angular displacement restricting function can be exhibited appropriately.

本実施形態では、規制部26を、ブーツ20の一部である第1谷部24aと、この第1谷部24a内で硬化した樹脂部27とで構成したが、ブーツ20を樹脂材料で射出成形する場合には、規制部26の全体を大径円筒部21および蛇腹部23と一体に型成形することができる。 In this embodiment, the restricting portion 26 is composed of the first valley portion 24a, which is a part of the boot 20, and the resin portion 27 hardened in the first valley portion 24a. In the case of molding, the entire restricting portion 26 can be molded integrally with the large-diameter cylindrical portion 21 and the bellows portion 23 .

ブーツ20に設けるべき規制部26は、以下のような構成とすることも可能である。 The restricting portion 26 to be provided on the boot 20 can also be configured as follows.

例えば、図4に示すように、ブーツ20の規制部26には、外側継手部材2の開口側端面と軸方向で当接(係合)する当接面28を設けても良い。このようにすれば、ブーツ20の規制部26が外側継手部材2によって軸方向に支持されるので、規制部26の姿勢が安定する。これにより、所望の変位規制機能を一層安定的に発揮することが可能となる。なお、係る構成は、後述する他の実施形態に係る固定式等速自在継手1にも適用することができる。 For example, as shown in FIG. 4, the restricting portion 26 of the boot 20 may be provided with an abutment surface 28 that abuts (engages) with the opening-side end surface of the outer joint member 2 in the axial direction. With this configuration, the restricting portion 26 of the boot 20 is axially supported by the outer joint member 2, so that the posture of the restricting portion 26 is stabilized. As a result, it becomes possible to exhibit the desired displacement control function more stably. This configuration can also be applied to a fixed constant velocity universal joint 1 according to another embodiment, which will be described later.

また、規制部26は、図5に示すように、ブーツ20に型成形された環状凹部(ここでも、上記の実施形態と同様に、型成形された蛇腹部23のうち大径筒部21に最も接近した位置にある第1谷部24a)に、ブーツ20(の蛇腹部23)よりも高剛性の環状部材29を嵌合(密着状態で嵌合)することにより形成することもできる。 Also, as shown in FIG. 5, the restricting portion 26 is an annular concave portion molded in the boot 20 (here, as in the above-described embodiment, the large-diameter cylindrical portion 21 of the molded bellows portion 23 is provided). It can also be formed by fitting (fitting in close contact with) an annular member 29 having higher rigidity than (the bellows portion 23 of) the boot 20 to the first trough portion 24a) at the closest position.

このような構成の規制部26を採用した場合でも、図6に示すように、ボール4の脱落が生じる作動角以上に両継手部材2,3が相対的に角度変位するのを規制することができる。 Even when the restricting portion 26 having such a configuration is adopted, as shown in FIG. 6, it is possible to restrict the relative angular displacement of the joint members 2 and 3 beyond the operating angle at which the ball 4 falls off. can.

ブーツ20に型成形された環状凹部(としての第1谷部24a)に環状部材を嵌合することで規制部26を形成する場合には、図7に示すように、環状凹部の断面形状に合致した断面形状を有する環状部材30を採用するのが好ましい。このようにすれば、環状凹部の断面形状とは異なる断面形状を有する環状部材29を採用する場合(図5および図6参照)に比べて規制部26の剛性を高めることができるので、所望の変位規制機能を適切に発揮する上で有利となる。 When the restricting portion 26 is formed by fitting an annular member into the annular recess (as the first valley portion 24a) molded in the boot 20, as shown in FIG. Preferably, an annular member 30 having a matching cross-sectional shape is employed. In this way, compared to the case where the annular member 29 having a cross-sectional shape different from the cross-sectional shape of the annular recess (see FIGS. 5 and 6) is employed, the rigidity of the restricting portion 26 can be increased. This is advantageous in appropriately exhibiting the displacement control function.

なお、上記の環状部材30としては、図8(a)に例示するように、熱可塑性エラストマー、あるいはゴムを主成分とする可撓性材料で継ぎ目(連結部分)のない環状形態に形成されたものを採用しても良いし、図8(b)に例示するように、それぞれが樹脂材料(硬質の樹脂材料)あるいは金属材料で形成され、周方向に沿って配置された複数(図示例では2つ)の円弧状部材31を連結することで環状形態に形成されたものを採用しても良い。図示は省略しているが、図5および図6に示す環状部材29についても同様である。以上のような構成を有する環状部材30(29)であれば、例えば等速自在継手1を自動車に組み付けた後にブーツ20から取り外すことができるので、交換作業を容易に行い得る。 As shown in FIG. 8A, the annular member 30 is made of a thermoplastic elastomer or a flexible material containing rubber as a main component, and is formed into a seamless annular shape. Alternatively, as shown in FIG. 8(b), a plurality (in the illustrated example, 2) arc-shaped members 31 may be connected to form an annular shape. Although illustration is omitted, the same applies to the annular member 29 shown in FIGS. With the annular member 30 (29) having the above configuration, for example, it can be removed from the boot 20 after the constant velocity universal joint 1 has been assembled to the automobile, so that replacement work can be easily performed.

以上、本発明の実施形態に係る固定式等速自在継手1について説明を行ったが、本発明の実施の形態はこれに限定されない。 Although the fixed type constant velocity universal joint 1 according to the embodiment of the present invention has been described above, the embodiment of the present invention is not limited to this.

例えば、以上では、ブーツ20に型成形された蛇腹部23のうち大径筒部21に最も接近した位置にある第1谷部24aを利用して(第1谷部24aを環状凹部として活用することにより)規制部26を形成したが、両継手部材2,3の角度変位に伴って弾性的に伸縮および屈曲変形するといった蛇腹部23に必要とされる機能を満足できる限りにおいて、複数の谷部24を利用して規制部26を形成しても構わない。 For example, in the above description, of the bellows portion 23 formed on the boot 20, the first valley portion 24a that is closest to the large-diameter cylindrical portion 21 is used (the first valley portion 24a is used as an annular concave portion). However, as long as it satisfies the function required for the bellows portion 23, such as elastic expansion, contraction and bending deformation accompanying the angular displacement of the joint members 2, 3, a plurality of troughs are formed. The restriction portion 26 may be formed using the portion 24 .

また、以上では、ブーツ20に、熱可塑性エラストマーを主成分とする樹脂材料で型成形された樹脂ブーツを採用した等速自在継手1に本発明を適用した場合について説明したが、本発明は、ブーツ20に、ゴム材料からなるいわゆるゴムブーツが採用された等速自在継手1にも好ましく適用することができる。但し、樹脂ブーツはゴムブーツに比べて軽量でかつ屈曲耐久性等に優れることから、軽量で信頼性に富む等速自在継手1を実現する上では樹脂ブーツの方が有利である。 In the above description, the case where the present invention is applied to the constant velocity universal joint 1 in which the boot 20 is a resin boot molded from a resin material containing a thermoplastic elastomer as a main component has been described. It can also be preferably applied to the constant velocity universal joint 1 in which a so-called rubber boot made of a rubber material is adopted as the boot 20 . However, the resin boot is more advantageous than the rubber boot in that it is lighter in weight and has better bending durability, etc., in order to realize a lightweight and highly reliable constant velocity universal joint 1 .

本発明は以上で説明した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々の形態で実施し得る。本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。 The present invention is by no means limited to the embodiments described above, and can be embodied in various forms without departing from the scope of the present invention. The scope of the present invention is indicated by the claims, and includes equivalent meanings and all changes within the scope of the claims.

1 固定式等速自在継手
2 外側継手部材
2b トラック溝
3 内側継手部材
4 ボール
5 保持器
10 軸部材
20 ブーツ
21 大径筒部
22 小径筒部
23 蛇腹部
24 谷部
24a 第1谷部(環状凹部)
26 規制部
27 樹脂部
28 当接面
29,30 環状部材
1 fixed constant velocity universal joint 2 outer joint member 2b track groove 3 inner joint member 4 ball 5 retainer 10 shaft member 20 boot 21 large diameter tubular portion 22 small diameter tubular portion 23 bellows portion 24 valley portion 24a first valley portion (annular concave)
26 regulating portion 27 resin portion 28 contact surface 29, 30 annular member

Claims (6)

外側継手部材および内側継手部材と、
両継手部材の相対的な角度変位を許容しながら両継手部材の間でトルクを伝達する複数のボールと、
前記ボールを保持した保持器と、
前記内側継手部材と一体回転に設けられた軸部材と、
前記外側継手部材の外周面に取り付けられた大径筒部、前記軸部材の外周面に取り付けられた小径筒部、および前記大径筒部と前記小径筒部の間に設けられ、両継手部材が相対的に角度変位するのに伴って弾性的に伸縮および屈曲変形する蛇腹部を有し、前記大径筒部、前記小径筒部および前記蛇腹部が可撓性材料で一体に型成形されたブーツと、
を備えた固定式等速自在継手において、
前記ブーツに、前記ボールの脱落が生じる作動角以上に両継手部材が相対的に角度変位するのを規制する規制部が設けられていることを特徴とする固定式等速自在継手。
an outer joint member and an inner joint member;
a plurality of balls that transmit torque between the joint members while allowing relative angular displacement of the joint members;
a retainer holding the balls;
a shaft member provided to rotate integrally with the inner joint member;
A large-diameter tubular portion attached to the outer peripheral surface of the outer joint member, a small-diameter tubular portion attached to the outer peripheral surface of the shaft member, and a small-diameter tubular portion provided between the large-diameter tubular portion and the small-diameter tubular portion, both joint members has a bellows portion that elastically expands, contracts, bends, and deforms with relative angular displacement, and the large-diameter tubular portion, the small-diameter tubular portion, and the bellows portion are molded integrally with a flexible material. boots and
In a fixed constant velocity universal joint with
A fixed constant velocity universal joint, wherein the boot is provided with a regulating portion for regulating relative angular displacement of both joint members beyond an operating angle at which the ball falls off.
前記規制部は、前記大径筒部と前記蛇腹部の間に設けられた環状凹部に充填した樹脂材料を硬化させることで形成されている請求項1に記載の固定式等速自在継手。 2. The fixed constant velocity universal joint according to claim 1, wherein the restricting portion is formed by curing a resin material filled in an annular recess provided between the large-diameter cylindrical portion and the bellows portion. 前記規制部は、前記大径筒部と前記蛇腹部の間に設けられた環状凹部に環状部材を嵌合することで形成されている請求項1に記載の固定式等速自在継手。 2. The fixed constant velocity universal joint according to claim 1, wherein the restricting portion is formed by fitting an annular member into an annular recess provided between the large-diameter tubular portion and the bellows portion. 前記環状部材は、取り外し可能な状態で前記環状凹部に嵌合されている請求項3に記載の固定式等速自在継手。 4. The fixed constant velocity universal joint according to claim 3, wherein said annular member is detachably fitted into said annular recess. 前記環状部材の断面形状と前記環状凹部の断面形状が合致している請求項3又は4に記載の固定式等速自在継手。 5. The fixed type constant velocity universal joint according to claim 3, wherein the cross-sectional shape of the annular member and the cross-sectional shape of the annular concave portion match each other. 前記規制部が、前記外側継手部材と軸方向で当接した当接面を有する請求項1~5の何れか一項に記載の固定式等速自在継手。 The fixed type constant velocity universal joint according to any one of claims 1 to 5, wherein the restricting portion has an abutting surface axially abutting against the outer joint member.
JP2021060696A 2021-03-31 2021-03-31 Fixed-type constant velocity universal joint Pending JP2022156817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021060696A JP2022156817A (en) 2021-03-31 2021-03-31 Fixed-type constant velocity universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021060696A JP2022156817A (en) 2021-03-31 2021-03-31 Fixed-type constant velocity universal joint

Publications (1)

Publication Number Publication Date
JP2022156817A true JP2022156817A (en) 2022-10-14

Family

ID=83559877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021060696A Pending JP2022156817A (en) 2021-03-31 2021-03-31 Fixed-type constant velocity universal joint

Country Status (1)

Country Link
JP (1) JP2022156817A (en)

Similar Documents

Publication Publication Date Title
US8029375B2 (en) Slidable constant velocity universal joint
US4068499A (en) Telescoping universal joints
JP2000266072A (en) Constant velocity universal joint
WO2005057035A1 (en) Plunging constant velocity joint for a propshaft tuned for energy absorption
JP2007100797A (en) Slide type constant velocity universal joint
JP5623010B2 (en) Constant velocity universal joint
JP2022156817A (en) Fixed-type constant velocity universal joint
JP2008082393A (en) Driving shaft for automobile
JP6675982B2 (en) Constant velocity universal joint
CN109072985B (en) Cross groove constant velocity joint for propeller shaft
JP6996839B2 (en) Sliding constant velocity universal joint
WO2013027765A1 (en) Constant velocity universal joint
JP4832837B2 (en) Constant velocity universal boots
JP4579112B2 (en) Sliding type constant velocity universal joint and manufacturing method thereof
JP2012189190A (en) Sliding-type constant-velocity universal joint
JP2010127311A (en) Fixed type constant velocity universal joint and wheel bearing device using the same
US7347783B2 (en) Driveshaft and method of manufacturing such a driveshaft
JP2021008929A (en) Constant velocity universal joint boot fitting structure
JP6899663B2 (en) Sliding constant velocity universal joint and its manufacturing method
JP2010025207A (en) Constant velocity universal joint
JP2006266330A (en) Slide type constant velocity ball joint
JP2021143729A (en) Elastic boot for seal and seal assembly comprising the same
JP2008275175A (en) Fixed type constant velocity universal joint
JP2009121667A (en) Sliding type constant velocity universal joint
CN111661136A (en) Steering intermediate shaft of vehicle and vehicle