JP2021008720A - Caisson, pneumatic caisson method and structure - Google Patents

Caisson, pneumatic caisson method and structure Download PDF

Info

Publication number
JP2021008720A
JP2021008720A JP2019121870A JP2019121870A JP2021008720A JP 2021008720 A JP2021008720 A JP 2021008720A JP 2019121870 A JP2019121870 A JP 2019121870A JP 2019121870 A JP2019121870 A JP 2019121870A JP 2021008720 A JP2021008720 A JP 2021008720A
Authority
JP
Japan
Prior art keywords
caisson
protruding
ground
protrusion
pneumatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019121870A
Other languages
Japanese (ja)
Other versions
JP7309147B2 (en
Inventor
毅 長尾
Tsuyoshi Nagao
毅 長尾
知行 小宅
Tomoyuki Koyake
知行 小宅
雅彦 大石
Masahiko Oishi
雅彦 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe University NUC
Oriental Shiraishi Corp
Original Assignee
Kobe University NUC
Oriental Shiraishi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe University NUC, Oriental Shiraishi Corp filed Critical Kobe University NUC
Priority to JP2019121870A priority Critical patent/JP7309147B2/en
Publication of JP2021008720A publication Critical patent/JP2021008720A/en
Application granted granted Critical
Publication of JP7309147B2 publication Critical patent/JP7309147B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters

Landscapes

  • Foundations (AREA)

Abstract

To provide a caisson allowing a structure to have better earthquake resistance than that of the conventional ones.SOLUTION: A caisson 1 used in a foundation of a structure comprises: a main section 2 forming a cylindrical shape and extending in a vertical direction; and a projected section 3 formed on at least one part of a periphery at a lower end of the main section 2 and projecting further than the main section 2 in a horizontal direction.SELECTED DRAWING: Figure 1

Description

構造物の基礎に用いられるケーソン、このケーソンを地中に構築するニューマチックケーソン工法、及び上記ケーソンを有する構造物に関する。 It relates to a caisson used as a foundation of a structure, a pneumatic caisson method for constructing this caisson in the ground, and a structure having the above caisson.

従来から、地盤を掘削しながら剛性の高い鉄筋コンクリートなどからなる躯体を沈設して地中にケーソンを構築するニューマチックケーソン工法が知られている(例えば、特許文献1)。 Conventionally, a pneumatic caisson method has been known in which a caisson is constructed in the ground by laying a skeleton made of highly rigid reinforced concrete or the like while excavating the ground (for example, Patent Document 1).

このニューマチックケーソン工法を用いて構築したケーソンは、高い剛性を有することから、当該ケーソンを建物などの構造物の基礎として採用することで、構造物の耐震性等を向上させることができるため、近年では、岸壁・護岸(矢板式岸壁や重力式岸壁など)や桟橋といった港湾構造物の剛性を高めることを目的としてケーソンを利用する方法についても種々検討されている。 Since the caisson constructed by using this pneumatic caisson method has high rigidity, the seismic resistance of the structure can be improved by adopting the caisson as the foundation of a structure such as a building. In recent years, various methods of using caissons for the purpose of increasing the rigidity of harbor structures such as quays / guards (sheet pile type quays and gravity type quays) and piers have been studied.

矢板式岸壁は、鋼矢板で壁を作り、この壁と控え杭としての鋼管とをタイロッドで結ぶことで、鋼矢板壁が海側へと崩れるのを防ぐ構造を有したものであり、重力式岸壁は、剛性が高く、かつ重量の大きな壁体を作ることで、壁体が海側へと崩れるのを防ぐ構造を有したものである。また、桟橋は、鋼管杭を多数施工して鉄筋コンクリートの上部構造体を支える構造を有したものである。これらはいずれも船舶の接岸や荷役を可能にするために、海底面と地表面との間に高低差があり、例えば、大型船舶の接岸を可能にする場合、その高低差は非常に大きくなるため、従来の構造では十分な耐震性を確保することが難しくなる。 The sheet pile type quay has a structure that prevents the steel sheet pile wall from collapsing toward the sea by making a wall from steel sheet piles and connecting this wall with a steel pipe as a pile with a tie rod. The quay has a structure that prevents the wall body from collapsing toward the sea side by making a wall body with high rigidity and heavy weight. In addition, the pier has a structure that supports the upper structure of reinforced concrete by constructing a large number of steel pipe piles. All of these have a height difference between the seabed and the ground surface in order to enable berthing and cargo handling of vessels. For example, when enabling berthing of large vessels, the height difference becomes very large. Therefore, it is difficult to secure sufficient seismic resistance with the conventional structure.

そこで、矢板式岸壁、重力式岸壁及び桟橋の剛性を高めて十分な耐震性を確保するために、これら矢板式岸壁や桟橋に用いられる鋼管杭を、より剛性の高いケーソンに置き換えるといった検討がなされ、また、重力式岸壁については、ケーソンを根入れを有するケーソンに置き換えるといった検討がなされている。 Therefore, in order to increase the rigidity of the sheet pile type quay, gravity type quay and pier to ensure sufficient earthquake resistance, studies have been made to replace the steel pipe piles used for these sheet pile type quay and pier with a more rigid caisson. Also, regarding the gravity type quay, studies are being made to replace the caisson with a caisson having a root.

特許第4455543号公報Japanese Patent No. 4455543

ところで、上記のように、矢板式岸壁や桟橋の鋼管杭をケーソンに置き換えたり、重力式岸壁のケーソンを、根入れを有するケーソンに置き換えたりしたとしても、耐震性の向上に限界があるという問題がある。以下、この問題について詳述する。 By the way, as mentioned above, even if the steel pipe piles of the sheet pile type quay and the pier are replaced with caissons, or the caisson of the gravity type quay is replaced with a caisson with rooting, there is a problem that there is a limit to the improvement of seismic resistance. There is. This problem will be described in detail below.

地震が起こると、構造物には地震荷重が作用し、通常、この地震荷重は水平方向の荷重として扱われる。矢板式岸壁や桟橋において、鋼管杭から置き換えたケーソンは、この水平荷重に対して、ケーソン自体の剛性(水平荷重に対して大きく曲がらないこと)と、地盤の水平抵抗(水平荷重作用時に倒れるケーソンを地盤が支えること)という2つの効果で抵抗することが期待されている。重力式岸壁において置き換えた根入れを有するケーソンについても上記と同様の2つの効果で抵抗することが期待されている。 When an earthquake occurs, a seismic load acts on the structure, and this seismic load is usually treated as a horizontal load. In the sheet pile type quay and pier, the caisson replaced from the steel pipe pile has the rigidity of the caisson itself (does not bend significantly with respect to the horizontal load) and the horizontal resistance of the ground (the caisson that collapses when the horizontal load acts). It is expected to resist with the two effects of (the ground supports). It is expected that the caisson with the replaced rooting in the gravity quay will also resist with the same two effects as above.

しかしながら、地震発生時には軟弱地盤の剛性が低下し、地盤がケーソンを支える水平抵抗が地震発生前よりも大きく減少する。このため、地盤の水平抵抗が不足し、ケーソンに作用する水平抵抗は、地中の深い箇所にある剛性の高い地盤(工学的基盤)からの反力のみとなるので、ケーソン自体の剛性をいくら高めても、水平抵抗が不足しており、慣性力や土圧の増加による傾斜などの変形が避けられない。とりわけ、上記のように、港湾に設置される岸壁・護岸や桟橋においては、海底面と地表面との間に高低差があるため、偏土圧の影響によって海側へ強い荷重が作用し、ケーソンが海側に向けて大きく傾斜し易い。 However, when an earthquake occurs, the rigidity of the soft ground decreases, and the horizontal resistance of the ground supporting the caisson is greatly reduced compared to before the earthquake. For this reason, the horizontal resistance of the ground is insufficient, and the horizontal resistance acting on the caisson is only the reaction force from the highly rigid ground (engineering foundation) deep in the ground, so how much is the rigidity of the caisson itself? Even if it is increased, the horizontal resistance is insufficient, and deformation such as inclination due to an increase in inertial force and earth pressure is unavoidable. In particular, as mentioned above, in the quays / revetments and piers installed in harbors, there is a height difference between the seabed and the ground surface, so a strong load acts on the sea side due to the influence of earth pressure. The caisson tends to tilt greatly toward the sea side.

このように、構造物の基礎に剛性の高いケーソンを採用したとしても、地盤の水平抵抗が不足するような場合には、ケーソン自体の剛性が耐震性にほとんど寄与せず、慣性力や土圧の増加による傾斜などの変形が避けられない以上、構造物の基礎として単にケーソンを採用するだけでは、耐震性の向上に限界があり、改善の余地がある。 In this way, even if a highly rigid caisson is used for the foundation of the structure, if the horizontal resistance of the ground is insufficient, the rigidity of the caisson itself hardly contributes to earthquake resistance, and inertial force and soil pressure Since deformation such as inclination due to the increase in the number of caisson is unavoidable, there is a limit to the improvement of earthquake resistance by simply adopting a caisson as the foundation of the structure, and there is room for improvement.

本発明は以上の実情に鑑みなされたものであり、構造物の耐震性を従来よりも向上させることができるケーソン、このケーソンを地中に構築するニューマチックケーソン工法、及びこのニューマチックケーソン工法を用いて構築したケーソンを有する構造物の提供を、その目的とする。 The present invention has been made in view of the above circumstances, and includes a caisson capable of improving the seismic resistance of a structure, a pneumatic caisson method for constructing this caisson in the ground, and a pneumatic caisson method. The purpose is to provide a structure having a caisson constructed using it.

上記目的を達成するための本発明に係るケーソンの特徴構成は、構造物の基礎に用いられるケーソンであって、
筒状をなして鉛直方向に延びる主部と、
前記主部における下端部外周の少なくとも一部に形成され、前記主部よりも水平方向に突出した突出部と、を有する点にある。
The characteristic configuration of the caisson according to the present invention for achieving the above object is the caisson used as the foundation of the structure.
The main part, which has a tubular shape and extends in the vertical direction,
It is a point having a protruding portion formed on at least a part of the outer periphery of the lower end portion of the main portion and protruding in the horizontal direction from the main portion.

上記特徴構成によれば、ケーソンに対して水平荷重が作用した際に、主部及び突出部の底面に対して地盤から鉛直方向に向けた大きな反力が作用するとともに、突出部が形成されたケーソンの下端部に大きな水平抵抗が作用する。したがって、従来のように突出部がない場合と比較して、ケーソンに対して作用する鉛直方向への反力や水平抵抗が大きくなるため、慣性力や土圧が増加しても傾斜し難くなる。
偏土圧の影響によってケーソンに対して海側へ強い荷重が作用するような場合には、主部の下端部外周における海側に突出部を形成することにより、海側への荷重に抗するように、突出部の底面に鉛直方向に向けた大きな反力が作用するため、慣性力や土圧の増加による傾斜などの変形が従来よりも抑制される。
また、主部の下端部外周の少なくとも一部に突出部を設けて、当該突出部に鉛直方向に向けた反力や水平抵抗が作用するようにしているため、主部全体を太くして地盤の水平抵抗を大きくしようとするような場合と比較して、慣性力を減らすことができるとともに、ケーソン自体の剛性を十分に確保できるような場合には、ケーソンの構築に必要な材料を減らして、コストの削減を図ることも可能となる。
According to the above characteristic configuration, when a horizontal load is applied to the caisson, a large reaction force acts on the bottom surface of the main portion and the protruding portion in the vertical direction from the ground, and the protruding portion is formed. A large horizontal resistance acts on the lower end of the caisson. Therefore, compared to the case where there is no protrusion as in the past, the reaction force and horizontal resistance in the vertical direction acting on the caisson are larger, so it is difficult to incline even if the inertial force and earth pressure increase. ..
When a strong load acts on the sea side against the cason due to the influence of unbalanced earth pressure, the load on the sea side is resisted by forming a protrusion on the sea side at the outer periphery of the lower end of the main part. As described above, since a large reaction force acts on the bottom surface of the protruding portion in the vertical direction, deformation such as inclination due to an increase in inertial force and earth pressure is suppressed as compared with the conventional case.
In addition, since a protruding portion is provided on at least a part of the outer periphery of the lower end portion of the main portion so that a reaction force or horizontal resistance in the vertical direction acts on the protruding portion, the entire main portion is thickened to make the ground thicker. If the inertial force can be reduced and the rigidity of the caisson itself can be sufficiently secured compared to the case where the horizontal resistance of the caisson is increased, the material required for constructing the caisson is reduced. It is also possible to reduce costs.

また、上記目的を達成するための本発明に係るニューマチックケーソン工法の特徴構成は、上記ケーソンを地中に構築するニューマチックケーソン工法であって、
地盤を掘削して前記ケーソンを着底させる着底工程と、
前記着底工程において前記突出部の上方に形成される被埋戻空間を埋め戻す埋戻工程と、を行う点にある。
Further, the characteristic configuration of the pneumatic caisson method according to the present invention for achieving the above object is the pneumatic caisson method for constructing the caisson in the ground.
The landing process of excavating the ground and landing the caisson,
The point is to perform a backfilling step of backfilling the backfilling space formed above the protruding portion in the bottoming step.

上記特徴構成によれば、着底工程を行ってケーソンの下端部を着底させる。このとき、ケーソンの主部の下端部外周には突出部が形成されているため、ケーソンを着底させる際に、主部の横断面よりも大きな領域を掘削する必要がある。したがって、着底工程を行っている最中に地盤には、突出部の上方に土砂等で満たされていない空間(被埋戻空間)が形成されてしまう。そこで、上記特徴構成では、着底工程と同時進行で埋戻工程を行う、或いは着底工程後に埋戻工程を行うことで、着底工程において形成された被埋戻空間を埋め戻す。これにより、主部の下端部外周に突出部が形成されたケーソンを地中に構築することができる。
そして、このニューマチックケーソン工法により構築したケーソンは、上記と同様に、従来のケーソンと比較して、慣性力や土圧が増加しても傾斜し難いものとなり、このケーソンを構造物の基礎などに採用することで、構造物の耐震性を従来よりも向上できる。
According to the above characteristic configuration, the bottoming step is performed to land the lower end of the caisson. At this time, since a protruding portion is formed on the outer periphery of the lower end portion of the main portion of the caisson, it is necessary to excavate a region larger than the cross section of the main portion when landing the caisson. Therefore, a space (backfill space) that is not filled with earth and sand or the like is formed above the protrusion in the ground during the bottoming process. Therefore, in the above-mentioned feature configuration, the backfilling step is performed at the same time as the bottoming step, or the backfilling step is performed after the bottoming step to backfill the backfilled space formed in the bottoming step. As a result, a caisson having a protruding portion formed on the outer periphery of the lower end portion of the main portion can be constructed in the ground.
And, the caisson constructed by this pneumatic caisson method is less likely to tilt even if the inertial force and earth pressure increase as compared with the conventional caisson, and this caisson is used as the foundation of the structure. By adopting it in, the earthquake resistance of the structure can be improved more than before.

また、本発明に係るニューマチックケーソン工法の更なる特徴構成は、前記埋戻工程において、前記被埋戻空間を粒状体によって埋め戻す点にある。 Further, a further characteristic configuration of the pneumatic caisson method according to the present invention is that the backfill space is backfilled with granules in the backfilling step.

上記特徴構成によれば、被埋戻空間を粒状体によって埋め戻すため、地盤中に粒状体の柱を作成することができ、これにより、地震時に発生する過剰間隙水圧を早期に消散させることができるようになり、液状化による悪影響を抑えることができる。 According to the above characteristic configuration, since the backfill space is backfilled with granules, it is possible to create columns of granules in the ground, which can quickly dissipate the excess pore water pressure generated during an earthquake. This makes it possible to suppress the adverse effects of liquefaction.

また、本発明に係るニューマチックケーソン工法の更なる特徴構成は、前記粒状体は砕石である点にある。 Further, a further characteristic structure of the pneumatic caisson method according to the present invention is that the granules are crushed stones.

上記特徴構成によれば、地盤中に砕石柱を作成することができ、地震時に発生する過剰間隙水圧を早期に消散させることができるようになり、液状化による悪影響を抑えることができる。 According to the above characteristic configuration, a crushed stone column can be created in the ground, the excess pore water pressure generated at the time of an earthquake can be dissipated at an early stage, and the adverse effect of liquefaction can be suppressed.

また、上記目的を達成するための本発明に係る構造物の特徴構成は、地盤に着底した上記ケーソンを有する点にある。 Further, the characteristic configuration of the structure according to the present invention for achieving the above object is that it has the above caisson that has landed on the ground.

上記特徴構成によれば、主部の下端部外周の少なくとも一部に突出部が形成されたケーソンが地盤に着底した構造を有しており、このケーソンは、従来のケーソンと比較して慣性力や土圧が増加しても傾斜し難いものである。したがって、上記特徴構成を備えた構造物は、耐震性が従来よりも向上したものとなる。 According to the above characteristic configuration, the caisson having a protruding portion formed on at least a part of the outer periphery of the lower end portion of the main portion has a structure of landing on the ground, and this caisson has an inertia as compared with a conventional caisson. It is difficult to incline even if the force or earth pressure increases. Therefore, the structure having the above-mentioned characteristic configuration has improved seismic resistance as compared with the conventional one.

また、本発明に係る構造物の更なる特徴構成は、前記ケーソンにおける前記突出部の上方に粒状体からなる柱が形成されている点にある。 Further, a further characteristic configuration of the structure according to the present invention is that a pillar made of granular material is formed above the protruding portion in the caisson.

上記特徴構成によれば、地盤中に粒状体からなる柱が形成されていることで、地震時に発生する過剰間隙水圧を早期に消散させることができるようになり、液状化による悪影響を抑えることができる。 According to the above characteristic configuration, the formation of columns made of granules in the ground makes it possible to dissipate the excess pore water pressure generated during an earthquake at an early stage, and suppress the adverse effects of liquefaction. it can.

また、本発明に係る構造物の更なる特徴構成は、前記粒状体が砕石である点にある。 Further, a further characteristic structure of the structure according to the present invention is that the granules are crushed stones.

上記特徴構成によれば、地盤中に砕石柱が形成されていることで、上記と同様に、地震時に発生する過剰間隙水圧を早期に消散させることができるようになり、液状化による悪影響を抑えることができる。 According to the above characteristic composition, since the crushed stone pillars are formed in the ground, the excess pore water pressure generated at the time of an earthquake can be dissipated at an early stage, and the adverse effect of liquefaction can be suppressed. be able to.

また、本発明に係る構造物の更なる特徴構成は、港湾に設置され、
前記ケーソンにおける前記突出部が、少なくとも海側に形成されている点にある。
Further, a further characteristic structure of the structure according to the present invention is installed in a port.
The protrusion in the caisson is at least formed on the sea side.

岸壁・護岸や桟橋などの港湾構造物は、上述したように、海底面と地表面との間に高低差があるため、偏土圧の影響によって海側へ強い荷重が作用し、ケーソンが海側に向けて大きく傾斜し易い。
しかしながら、上記特徴構成においては、ケーソンの突出部が少なくとも海側に形成されていることで、海側への荷重に抗するように、突出部の底面に鉛直方向に向けた大きな反力が作用するため、慣性力や土圧の増加によるケーソンの傾斜が抑制される。したがって、上記特徴構成を備えた構造物は、従来のケーソンを有する構造物と比較して耐震性が向上したものとなる。
As mentioned above, harbor structures such as quays, seawalls and piers have a height difference between the sea surface and the ground surface, so a strong load acts on the sea side due to the influence of earth pressure, and the caisson moves to the sea. It is easy to tilt greatly toward the side.
However, in the above-mentioned characteristic configuration, since the caisson protrusion is formed at least on the sea side, a large reaction force in the vertical direction acts on the bottom surface of the protrusion so as to resist the load on the sea side. Therefore, the inclination of the caisson due to the increase in inertial force and earth pressure is suppressed. Therefore, the structure having the above-mentioned characteristic structure has improved seismic resistance as compared with the structure having a conventional caisson.

また、本発明に係る構造物の更なる特徴構成は、少なくとも第1方向に突出した突出部を有する第1ケーソンと、
少なくとも前記第1方向の反対側の第2方向に突出した突出部を有する第2ケーソンとを有する点にある。
Further, the structure further characterized by the present invention includes a first caisson having a protrusion protruding in at least the first direction.
It has at least a second caisson having a protrusion protruding in the second direction opposite to the first direction.

上記特徴構成によれば、第1方向に突出した突出部を有する第1ケーソンは、第1方向への傾斜などの変形が生じ難く、また、第2方向に突出した突出部を有する第2ケーソンは、第2方向への傾斜などの変形が生じ難い。そのため、構造物がこれら第1及び第2ケーソンを有していることで、地震が発生した際に構造物が第1方向と第2方向とに向けて交互に揺れて浮き上がる現象(所謂ロッキング現象)の発生が抑制される。 According to the above characteristic configuration, the first caisson having a protruding portion protruding in the first direction is less likely to be deformed such as tilting in the first direction, and the second caisson having a protruding portion protruding in the second direction. Is unlikely to cause deformation such as inclination in the second direction. Therefore, since the structure has these first and second caissons, a phenomenon in which the structure sways and floats alternately in the first direction and the second direction when an earthquake occurs (so-called locking phenomenon). ) Is suppressed.

一実施形態に係るケーソンの概略構成を示す正面図である。It is a front view which shows the schematic structure of the caisson which concerns on one Embodiment. 一実施形態に係るケーソンの概略構成を示す上面図である。It is a top view which shows the schematic structure of the caisson which concerns on one Embodiment. 別の実施形態に係るケーソンの概略構成を示す上面図である。It is a top view which shows the schematic structure of the caisson which concerns on another embodiment. 別の実施形態に係るケーソンの概略構成を示す上面図である。It is a top view which shows the schematic structure of the caisson which concerns on another embodiment. 一実施形態に係るニューマチックケーソン工法の手順を説明するための図である。It is a figure for demonstrating the procedure of the pneumatic caisson method which concerns on one Embodiment. 一実施形態に係るニューマチックケーソン工法の手順を説明するための図である。It is a figure for demonstrating the procedure of the pneumatic caisson method which concerns on one Embodiment. 一実施形態に係るニューマチックケーソン工法の手順を説明するための図である。It is a figure for demonstrating the procedure of the pneumatic caisson method which concerns on one Embodiment. 従来のケーソンで生じる問題を説明するための図である。It is a figure for demonstrating the problem which arises in a conventional caisson. 一実施形態に係るケーソンの効果を説明するための図である。It is a figure for demonstrating the effect of the caisson which concerns on one Embodiment. 一実施形態に係る構造物の概略構成を示す図である。It is a figure which shows the schematic structure of the structure which concerns on one Embodiment. 別の実施形態に係る構造物の概略構成を示す図である。It is a figure which shows the schematic structure of the structure which concerns on another embodiment. 別の実施形態に係る構造物の概略構成を示す図である。It is a figure which shows the schematic structure of the structure which concerns on another embodiment. 突出量と抵抗モーメントとの関係を示すグラフである。It is a graph which shows the relationship between the protrusion amount and resistance moment. 突出部が形成されていないケーソンに関する変形量と高さとの関係を示すグラフである。It is a graph which shows the relationship between the deformation amount and the height about the caisson in which a protrusion is not formed. 突出部が形成されたケーソンに関する変形量と高さとの関係を示すグラフである。It is a graph which shows the relationship between the amount of deformation and the height about the caisson in which a protrusion is formed. 突出部が形成されていないケーソンに関する曲げモーメントと高さとの関係を示すグラフである。It is a graph which shows the relationship between the bending moment and the height about the caisson which the protrusion is not formed. 突出部が形成されたケーソンに関する曲げモーメントと高さとの関係を示すグラフである。It is a graph which shows the relationship between the bending moment and the height about a caisson in which a protrusion is formed. 突出量と変形量比との関係を示すグラフである。It is a graph which shows the relationship between the protrusion amount and the deformation amount ratio.

以下、図面を参照して本発明の実施形態に係るケーソン、ニューマチックケーソン工法及び構造物について説明する。 Hereinafter, the caisson, pneumatic caisson method, and structure according to the embodiment of the present invention will be described with reference to the drawings.

[ケーソン]
図1及び図2は、一実施形態に係るケーソン1の概略構成を示す図である。図1及び図2に示すように、このケーソン1は、構造物の基礎に用いられるケーソンであって、中空の筒状をなして鉛直方向に延びる主部2と、この主部2における下端部外周の少なくとも一部に形成され、主部2よりも水平方向に突出した突出部3とを有している。
[caisson]
1 and 2 are diagrams showing a schematic configuration of a caisson 1 according to an embodiment. As shown in FIGS. 1 and 2, the caisson 1 is a caisson used as a foundation of a structure, and has a main portion 2 forming a hollow cylinder and extending in the vertical direction, and a lower end portion of the main portion 2. It has a protruding portion 3 formed on at least a part of the outer periphery and protruding in the horizontal direction from the main portion 2.

このケーソン1において、主部2における突出部3が形成された部分は、中実形状になっており、ケーソン1における主部2から突出部3に亘る下端面には、刃口4が形成され、この刃口4と主部2の筒内とは、後述するニューマチックケーソン工法によりケーソン1を構築する際に土砂や資材の運搬、人の出入りを行うための貫通孔5が連通形成されている。尚、刃口4や貫通孔5は、地中にケーソン1を構築した後、適宜コンクリートによって埋められる。 In the caisson 1, the portion of the main portion 2 on which the protruding portion 3 is formed has a solid shape, and the cutting edge 4 is formed on the lower end surface of the caisson 1 from the main portion 2 to the protruding portion 3. A through hole 5 for transporting earth and sand and materials and allowing people to enter and exit is formed in communication between the blade edge 4 and the inside of the main portion 2 when the caisson 1 is constructed by the pneumatic caisson method described later. There is. The blade edge 4 and the through hole 5 are appropriately filled with concrete after the caisson 1 is constructed in the ground.

一実施形態に係るケーソン1については、図1及び図2に示すように、突出部3が主部2における下端部外周の一部から一方向に延びた構成のケーソン(以下、片側突出ケーソンともいう)としたが、突出部3の形状はこれに限られるものではない。本発明に係るケーソンは、例えば、図3に示すように、主部2aの下端部外周から主部2aの全周に亘って水平方向に突出し、主部2aの外形よりも大きな外形を有した構成の突出部3aを有するケーソン1a(以下、円形突出ケーソンともいう)であっても良いし、図4に示すように、主部2bの下端部外周から主部2bの軸心を中心とする対向した2方向に延びた構成の突出部3bを有するケーソン1b(以下、両側突出ケーソンともいう)であっても良い。 Regarding the caisson 1 according to the embodiment, as shown in FIGS. 1 and 2, the caisson having a structure in which the protruding portion 3 extends in one direction from a part of the outer periphery of the lower end portion of the main portion 2 (hereinafter, also referred to as a one-side protruding caisson). However, the shape of the protruding portion 3 is not limited to this. As shown in FIG. 3, for example, the caisson according to the present invention protrudes horizontally from the outer periphery of the lower end portion of the main portion 2a to the entire circumference of the main portion 2a, and has an outer shape larger than the outer shape of the main portion 2a. It may be a caisson 1a having a protruding portion 3a of the configuration (hereinafter, also referred to as a circular protruding caisson), or as shown in FIG. 4, centered on the axial center of the main portion 2b from the outer periphery of the lower end portion of the main portion 2b. It may be a caisson 1b (hereinafter, also referred to as a bilateral protruding caisson) having a protruding portion 3b having a structure extending in two opposite directions.

また、ケーソン1,1a,1bにおける突出部3,3a,3bを上面から視た形状は、特に限定されるものではない。ケーソンの突出部は、図2や図3に示すように、上面視矩形状や上面視円形状であっても良いし、上面視半円形状や上面視楕円形状、上面視半楕円形状、上面視三角形状であっても良い。更に、突出部の下面の面積は、ある程度の大きさであることが好ましいが、特に限定されるものではない。尚、突出部の下面の面積の好ましい範囲としては、主部の下面の面積の2倍程度以下を例示できる。 Further, the shape of the protruding portions 3, 3a, 3b of the caisson 1, 1a, 1b as viewed from above is not particularly limited. As shown in FIGS. 2 and 3, the protruding portion of the caisson may be rectangular in top view or circular in top view, semicircular in top view, elliptical shape in top view, semi-elliptical shape in top view, and top surface. It may have a triangular shape. Further, the area of the lower surface of the protruding portion is preferably a certain size, but is not particularly limited. As a preferable range of the area of the lower surface of the protruding portion, about twice or less the area of the lower surface of the main portion can be exemplified.

また、ケーソン1,1a,1bの主部2,2a,2bは、円筒状に限られず、筒状であれば、その断面形状は四角形や三角形、その他の形状であっても良い。 Further, the main portions 2, 2a, 2b of the caisson 1, 1a, 1b are not limited to a cylindrical shape, and the cross-sectional shape thereof may be a quadrangle, a triangle, or any other shape as long as it is cylindrical.

ケーソン1,1a,1bによれば、地中に埋まった状態で当該ケーソン1,1a,1bに対して水平荷重が作用した際に、主部2,2a,2b及び突出部3,3a,3bの底面に対して地盤から鉛直方向に向けた反力が作用するとともに、突出部3,3a,3bに水平抵抗が作用する。これにより、突出部3,3a,3bが形成されていないケーソンと比較して、ケーソン1,1a,1bに作用する鉛直方向への反力や水平抵抗が大きくなるため、慣性力や土圧が増加しても傾斜し難い。 According to the caisson 1,1a, 1b, when a horizontal load is applied to the caisson 1,1a, 1b while buried in the ground, the main parts 2, 2a, 2b and the protruding parts 3, 3a, 3b A reaction force acting in the vertical direction from the ground acts on the bottom surface of the surface, and horizontal resistance acts on the protruding portions 3, 3a and 3b. As a result, the reaction force and horizontal resistance in the vertical direction acting on the caissons 1, 1a and 1b are larger than those of the caisson in which the protrusions 3, 3a and 3b are not formed, so that the inertial force and the earth pressure are increased. It is difficult to tilt even if it increases.

尚、突出部3,3a,3bは、突出部3,3a,3bに作用する鉛直方向に向けた反力や水平抵抗を大きくするという観点からすると幅W,Wa,Wb1,Wb2を大きくすることが好ましいが、幅W,Wa,Wb1,Wb2を大きくすることで、ケーソン1,1a,1bの材料量やケーソン1,1a,1bを地中に構築する際の地盤の掘削量が多くなり、コストが増加する。したがって、突出部3,3a,3bの幅W,Wa,Wb1,Wb2は、ケーソン1,1a,1bの傾斜を十分に抑制できる反力や水平抵抗が作用するような大きさとし、必要以上に大きくしないことが好ましい。例えば、片側突出ケーソン1の突出部3の幅W、円形突出ケーソン1aの突出部3aの幅Wa、及び両側突出ケーソン1bの突出部3bの幅Wb1,Wb2は、いずれも5m程度以下であることが好ましい。 The widths W, Wa, Wb1 and Wb2 of the protruding portions 3, 3a and 3b should be increased from the viewpoint of increasing the reaction force and the horizontal resistance acting on the protruding portions 3, 3a and 3b in the vertical direction. However, by increasing the widths W, Wa, Wb1 and Wb2, the amount of material for caissons 1,1a and 1b and the amount of excavation of the ground when constructing caissons 1,1a and 1b in the ground increase. The cost increases. Therefore, the widths W, Wa, Wb1, Wb2 of the protrusions 3, 3a, 3b are set to have a size such that a reaction force or a horizontal resistance that can sufficiently suppress the inclination of the caisson 1, 1a, 1b acts, and are larger than necessary. It is preferable not to do so. For example, the width W of the protruding portion 3 of the one-sided protruding caisson 1, the width Wa of the protruding portion 3a of the circular protruding caisson 1a, and the widths Wb1 and Wb2 of the protruding portion 3b of the two-sided protruding caisson 1b are all about 5 m or less. Is preferable.

[ニューマチックケーソン工法]
次に、一実施形態に係るニューマチックケーソン工法の手順について、図5〜図7を参照しつつ説明する。尚、以下においては、上記ケーソン1をニューマチックケーソン工法によって地中に構築する場合を例にとって説明するが、本発明に係るケーソンには、主部となる複数の環状体を沈下させた後にケーソンの下端部に突出部を形成して構築されるケーソンも含まれる。
[Pneumatic caisson method]
Next, the procedure of the pneumatic caisson method according to the embodiment will be described with reference to FIGS. 5 to 7. In the following, the case where the caisson 1 is constructed in the ground by the pneumatic caisson method will be described as an example. However, in the caisson according to the present invention, the caisson after submerging a plurality of ring bodies as a main part is described. It also includes a caisson constructed by forming a protrusion at the lower end of the.

まずは、着底工程を行う。着底工程では、予め作成した基体11a及び複数の環状体11bを順次沈下させて基体11a及び複数の環状体11bを連結しながら、ケーソン1を着底させる。具体的には、まず、図5に示すように、予め作成した上記ケーソン1の主部2及び突出部3となる基体11aを地面に設置し、基体11aに形成された貫通孔5と連通するマンシャフト12やマテリアルシャフト13等をクローラクレーンCaによって建設する。ついで、刃口4の内側且つ下方の地盤Gを遠隔操作可能なショベルSによって掘削し、基体11aの自重により、当該基体11aを沈下させる。尚、掘削により生じた土砂は、マテリアルシャフト13を通して地表に搬送され、スケータークレーンCbによって適宜外部に運び出される。 First, the bottoming process is performed. In the bottoming step, the caisson 1 is landed while the base 11a and the plurality of annular bodies 11b prepared in advance are sequentially subsided and the base 11a and the plurality of annular bodies 11b are connected. Specifically, first, as shown in FIG. 5, the base 11a to be the main portion 2 and the protruding portion 3 of the caisson 1 prepared in advance is installed on the ground and communicates with the through hole 5 formed in the base 11a. The man shaft 12, the material shaft 13, and the like are constructed by the crawler crane Ca. Then, the ground G inside and below the blade edge 4 is excavated by a remotely controllable excavator S, and the base 11a is subsided by the weight of the base 11a. The earth and sand generated by excavation is transported to the ground surface through the material shaft 13 and appropriately carried out by the skater crane Cb.

その後、主部2となる複数の環状体11bを基体11a上に順次連結しながら、刃口4の内側且つ下方の地盤Gを掘削し、基体11a及び複数の環状体11bを沈下させていき、ケーソン1を所定の位置に着底させる。尚、所定の位置とは、ケーソン1の下端側が工学的基盤に到達しているような位置であることが好ましく、例えば、ケーソン1の下端側の1m程度が工学的基盤内に到達しているような位置である。 After that, while sequentially connecting the plurality of annular bodies 11b serving as the main portion 2 onto the base 11a, the ground G inside and below the cutting edge 4 is excavated, and the base 11a and the plurality of annular bodies 11b are subsided. Place the caisson 1 in place. The predetermined position is preferably a position where the lower end side of the caisson 1 reaches the engineering base. For example, about 1 m of the lower end side of the caisson 1 reaches the engineering base. It is a position like.

しかる後、図6に示すように、外部から刃口4内及び貫通孔5内にコンクリートを注入し(図6中の破線矢印)、これら刃口4及び貫通孔5をコンクリートによって埋めて、着底工程を終了する。 After that, as shown in FIG. 6, concrete is injected into the blade edge 4 and the through hole 5 from the outside (broken line arrow in FIG. 6), and the blade edge 4 and the through hole 5 are filled with concrete and attached. Finish the bottom process.

ここで、図6に示すように、本実施形態に係るニューマチックケーソン工法では、ケーソン1を着底させる際に、主部2の横断面よりも大きな領域を掘削する必要があるため、着底工程後の地盤には、突出部3の上方に土砂で満たされていない被埋戻空間Gaが形成されてしまう。 Here, as shown in FIG. 6, in the pneumatic caisson method according to the present embodiment, when the caisson 1 is landed, it is necessary to excavate a region larger than the cross section of the main portion 2, so that the caisson 1 is landed. In the ground after the process, a backfill space Ga that is not filled with earth and sand is formed above the protrusion 3.

そこで、突出部3を有するケーソン1をニューマチックケーソン工法によって地中に構築する場合には、着底工程を行った後、被埋戻空間Gaを埋め戻す埋戻工程を行う。本実施形態に係るニューマチックケーソン工法では、埋戻工程において、被埋戻空間Gaを砕石Dにより埋め戻し、砕石柱D1を作成する(図7参照)。 Therefore, when the caisson 1 having the protruding portion 3 is constructed in the ground by the pneumatic caisson method, the backfilling step of backfilling the backfilled space Ga is performed after the bottoming step. In the pneumatic caisson method according to the present embodiment, in the backfilling step, the backfilled space Ga is backfilled with crushed stone D to create a crushed stone pillar D1 (see FIG. 7).

このように、本実施形態に係るニューマチックケーソン工法によれば、着底工程及び埋戻工程を行うことで、突出部3が形成されたケーソン1を地中に構築することができ、更に、埋戻工程において、被埋戻空間Gaを砕石Dによって埋め戻すようにしていることで、地盤中に砕石柱D1を作成することができるため、地震時に発生する過剰間隙水圧を早期に消散させることができるようになり、液状化による悪影響も抑えることができる。 As described above, according to the pneumatic caisson method according to the present embodiment, the caisson 1 in which the protruding portion 3 is formed can be constructed in the ground by performing the bottoming step and the backfilling step. In the backfilling process, the backfilled space Ga is backfilled with crushed stone D, so that the crushed stone pillar D1 can be created in the ground, so that the excess pore water pressure generated during an earthquake can be dissipated at an early stage. And the adverse effects of liquefaction can be suppressed.

尚、片側突出ケーソン1、円形突出ケーソン1a及び両側突出ケーソン1bを構築する際の地盤の掘削量が同じとなるように、各ケーソン1,1a,1bにおける突出部3,3a,3bの突出量を設定した場合には、砕石柱D1を形成して液状化による悪影響を抑えるために砕石柱D1の表面積を大きくするという観点からすると、ケーソンは円形突出ケーソン1aであることが好ましい。 The amount of protrusion of the protrusions 3, 3a, 3b in each caisson 1, 1a, 1b is the same so that the amount of excavation of the ground when constructing the one-sided protruding caisson 1, the circular protruding caisson 1a, and the two-sided protruding caisson 1b is the same. When is set, the caisson is preferably a circular protruding caisson 1a from the viewpoint of forming the crushed stone column D1 and increasing the surface area of the crushed stone column D1 in order to suppress the adverse effect due to liquefaction.

また、被埋戻空間Gaを埋め戻す際に使用する資材は、砕石に限られるものではなく、液状化対策として必要となる透水係数を確保できる範囲で、粒径10〜100mm程度の粒状体であっても良い。この場合でも、地盤中に粒状体の柱を作成することができるため、上記と同様に、地震時に発生する過剰間隙水圧を早期に消散させることができるようになり、液状化による悪影響を抑えることができる。 Further, the material used for backfilling the backfill space Ga is not limited to crushed stone, but is a granular material having a particle size of about 10 to 100 mm within a range in which the water permeability coefficient required for liquefaction countermeasures can be secured. There may be. Even in this case, since granular columns can be created in the ground, the excess pore water pressure generated during an earthquake can be dissipated at an early stage, and the adverse effects of liquefaction can be suppressed. Can be done.

また、上記ニューマチックケーソン工法においては、着底工程を行った後に埋戻工程を行うようにしたが、着底工程と同時進行で埋戻工程を行うようにしても良い。 Further, in the above-mentioned pneumatic caisson method, the backfilling step is performed after the bottoming step is performed, but the backfilling step may be performed at the same time as the bottoming step.

次に、図8及び図9を参照して、本実施形態に係るニューマチックケーソン工法によって構築したケーソン1が従来のケーソン100と比較して、慣性力や土圧が増加しても傾斜し難く原理について説明する。尚、図8及び図9では、一例として港湾にケーソン1,100を構築した状態を示した。 Next, with reference to FIGS. 8 and 9, the caisson 1 constructed by the pneumatic caisson method according to the present embodiment is less likely to tilt even if the inertial force and earth pressure increase as compared with the conventional caisson 100. The principle will be explained. In addition, in FIG. 8 and FIG. 9, the state where the caisson 1,100 was constructed in the port was shown as an example.

まず、図8に示すように、従来のケーソン100では、地震が発生した際に地盤の軟弱層の剛性が低下し、地盤がケーソン100を支える水平抵抗が地震発生前よりも大きく減少する。このため、地盤の水平抵抗が不足し、ケーソン100に作用する水平抵抗は、工学的基盤からの反力のみとなり、ケーソン100の傾斜の抑制に寄与する力が、この工学的基盤からの反力(図8中の右向きの矢印)とケーソン100の底面に作用する反力(図8中の上向き矢印)となる。このように、ケーソン100に作用する水平抵抗が不足するような場合には、ケーソン100の剛性が高くとも、その剛性が耐震性にほとんど寄与せず、慣性力や土圧の増加による傾斜を抑制する力が弱いため、傾斜などの変形が生じる。 First, as shown in FIG. 8, in the conventional caisson 100, the rigidity of the soft layer of the ground decreases when an earthquake occurs, and the horizontal resistance of the ground supporting the caisson 100 is greatly reduced as compared with that before the earthquake. Therefore, the horizontal resistance of the ground is insufficient, and the horizontal resistance acting on the caisson 100 is only the reaction force from the engineering foundation, and the force contributing to the suppression of the inclination of the caisson 100 is the reaction force from this engineering foundation. (Right-pointing arrow in FIG. 8) and reaction force acting on the bottom surface of the caisson 100 (up-pointing arrow in FIG. 8). In this way, when the horizontal resistance acting on the caisson 100 is insufficient, even if the caisson 100 has high rigidity, the rigidity hardly contributes to seismic resistance and suppresses inclination due to an increase in inertial force and earth pressure. Due to the weak force, deformation such as tilting occurs.

一方、図9に示すように、本実施形態に係るケーソン1を突出部3が海側に向けて突出した状態となるように設置した場合には、地震が発生してケーソン1に対して水平荷重が作用した際に、主部2及び突出部3の底面に対して工学的基盤から鉛直方向に向けた大きな反力(図9中の上向き矢印)が作用するとともに、突出部3が形成されたケーソン1の下端部に大きな水平抵抗(図9中の右向き矢印)が作用する。これにより、従来のケーソン100と比較して、ケーソン1に対して作用する鉛直方向への反力及び水平抵抗が大きくなる、即ち、慣性力や土圧の増加による傾斜を抑制する力が大きくなるため、ケーソン1が傾斜し難くなる。 On the other hand, as shown in FIG. 9, when the caisson 1 according to the present embodiment is installed so that the protruding portion 3 protrudes toward the sea side, an earthquake occurs and the caisson 1 is horizontal to the caisson 1. When a load is applied, a large reaction force (upward arrow in FIG. 9) acting in the vertical direction from the engineering base acts on the bottom surfaces of the main portion 2 and the protruding portion 3, and the protruding portion 3 is formed. A large horizontal resistance (arrow pointing to the right in FIG. 9) acts on the lower end of the caisson 1. As a result, the reaction force in the vertical direction and the horizontal resistance acting on the caisson 1 become larger than those of the conventional caisson 100, that is, the force for suppressing the inclination due to the increase in inertial force and earth pressure becomes larger. Therefore, the caisson 1 is less likely to tilt.

また、地盤中に砕石柱D1が形成されていることで、地震時に発生する過剰間隙水圧が早期に消散され、液状化による悪影響(本実施形態に係るケーソン1を基礎として採用した構造物の耐震性が低くなるなど)も抑えることができる。 Further, since the crushed stone column D1 is formed in the ground, the excess pore water pressure generated at the time of the earthquake is dissipated at an early stage, and the adverse effect due to liquefaction (seismic resistance of the structure adopted based on the caisson 1 according to the present embodiment). It is also possible to suppress (such as lowering the sex).

[構造物]
次に、地盤に着底した上記ケーソンを備える構造物について説明する。尚、以下において、構造物が港湾に設置された桟橋である場合を例にとって説明する。
[Structure]
Next, a structure including the caisson that has landed on the ground will be described. In the following, a case where the structure is a pier installed in a port will be described as an example.

図10に示すように、一実施形態に係る桟橋Tは、地盤に着底した複数のケーソン1とこのケーソン1上に設置された上部工20とからなり、ケーソン1の突出部3の上方には砕石柱D1が形成されている。各ケーソン1は、突出部3が海側に向けて突出した状態となるように岸に沿って所定の間隔(例えば20m)をあけて列状に配置されている。尚、本実施形態においては、ケーソン1からなる列が2列である構成を採用したが、これに限られるものではなく、各種の技術基準を満たす限り、1列であっても良いし、複数列であっても良い。 As shown in FIG. 10, the pier T according to the embodiment is composed of a plurality of caisson 1s that have landed on the ground and a superstructure 20 installed on the caisson 1, and is above the protrusion 3 of the caisson 1. The crushed stone pillar D1 is formed. Each caisson 1 is arranged in a row at a predetermined interval (for example, 20 m) along the shore so that the protruding portion 3 protrudes toward the sea side. In the present embodiment, the configuration in which the row consisting of the caisson 1 is two rows is adopted, but the present invention is not limited to this, and as long as various technical standards are satisfied, one row may be used, or a plurality of rows may be used. It may be a row.

このような構成を備えた桟橋Tにおいては、突出部3が海側に向けて突出した状態となるように配置された複数のケーソン1を備えていることで、海側への荷重に抗するように、突出部3の底面に鉛直方向に向けた大きな反力が作用する。したがって、地震が発生した際に、陸側から海側に向けた荷重が作用しても、この荷重に抗するように、各ケーソン1における突出部3の底面に大きな反力が作用し、慣性力や土圧の増加による各ケーソン1の傾斜が抑制され、更に、地盤中に砕石柱D1が形成されていることで、地震時に発生する過剰間隙水圧が早期に消散され、液状化による悪影響も抑えられる。これにより、本実施形態に係る桟橋Tは、従来のケーソンを基礎として採用した桟橋と比較して耐震性が向上する。 The pier T having such a configuration is provided with a plurality of caissons 1 arranged so that the protruding portion 3 protrudes toward the sea side, thereby resisting the load on the sea side. As described above, a large reaction force in the vertical direction acts on the bottom surface of the protruding portion 3. Therefore, even if a load from the land side to the sea side acts when an earthquake occurs, a large reaction force acts on the bottom surface of the protruding portion 3 in each caisson 1 so as to resist this load, and the inertial force. The inclination of each caisson 1 due to the increase in force and earth pressure is suppressed, and the formation of the crushed stone pillar D1 in the ground causes the excess pore water pressure generated during an earthquake to be dissipated at an early stage, which also has an adverse effect due to liquefaction. It can be suppressed. As a result, the pier T according to the present embodiment has improved seismic resistance as compared with the pier adopted based on the conventional caisson.

図11は、別の実施形態に係る桟橋Taの概略構成を示す図である。同図に示すように、桟橋Taは、上記桟橋Tと同様に、複数のケーソン1とこのケーソン1上に設置された上部工20とからなり、ケーソン1の突出部3上方には砕石柱D1が形成されている。一方、この桟橋Taにおいて、各ケーソン1のうちの一部のケーソン1(第1ケーソン)は、突出部3が海側方向(第1方向)に向けて突出した状態となるように岸に沿って所定の間隔(例えば20m)をあけて列状に配置され、他のケーソン1(第2ケーソン)は、突出部3が陸側方向(第2方向)に向けて突出した状態となるように岸に沿って所定の間隔(例えば20m)をあけて列状に配置されている。 FIG. 11 is a diagram showing a schematic configuration of a pier Ta according to another embodiment. As shown in the figure, the pier Ta is composed of a plurality of caissons 1 and a superstructure 20 installed on the caisson 1, and the crushed stone pillar D1 is above the protrusion 3 of the caisson 1. Is formed. On the other hand, at this pier Ta, some caisson 1 (first caisson) of each caisson 1 is along the shore so that the protruding portion 3 protrudes toward the sea side (first direction). The other caisson 1 (second caisson) is arranged in a row at a predetermined interval (for example, 20 m) so that the protruding portion 3 protrudes toward the land side (second direction). They are arranged in a row along the shore at predetermined intervals (for example, 20 m).

このような構成を備えた桟橋Taにおいては、突出部3が海側に向けて突出した状態なるように配置されたケーソン1(第1ケーソン)と、突出部3が陸側に向けて突出した状態となるように配置されたケーソン1(第2ケーソン)とを備えていることで、第1ケーソン1の突出部3の底面に、海側への荷重に抗するように鉛直方向に向けた大きな反力が作用するとともに、第2ケーソン1の突出部3の底面に、陸側への荷重に抗するように鉛直方向に向けた大きな反力が作用する。したがって、桟橋Taでは、上記桟橋Tと同様に、慣性力や土圧の増加による各ケーソン1の傾斜が抑制されるとともに、液状化による悪影響も抑えられ、更に、桟橋Taが海側方向と陸側方向とに向けて交互に揺れて浮き上がる現象の発生も抑制される。 In the pier Ta having such a configuration, the caisson 1 (first caisson) arranged so that the projecting portion 3 protrudes toward the sea side and the projecting portion 3 project toward the land side. By providing the caisson 1 (second caisson) arranged so as to be in a state, the bottom surface of the protruding portion 3 of the first caisson 1 is directed in the vertical direction so as to resist the load on the sea side. A large reaction force acts, and a large reaction force acts in the vertical direction on the bottom surface of the protruding portion 3 of the second caisson 1 so as to resist the load on the land side. Therefore, in the pier Ta, as in the case of the pier T, the inclination of each caseon 1 due to the increase in inertial force and earth pressure is suppressed, the adverse effect due to liquefaction is also suppressed, and the pier Ta is in the sea side direction and on land. The occurrence of the phenomenon of swaying and floating alternately toward the side is also suppressed.

また、本発明に係る構造体は、図12に示すように、岸壁に沿って所定深さに打ち込まれた鋼矢板からなる鋼矢板壁30や、陸側の地盤に埋設された控え杭32、鋼矢板壁30と控え杭32とを連結するタイロッド31などを備えた既存の矢板式岸壁Tbにケーソン1を設けた構成であっても良い。例えば、矢板式岸壁Tbの控え杭32の近傍に、ケーソン1を構築するとともに、砕石柱D1を形成し、ケーソン1の上部と控え杭32の上部とを連結部材33によって連結して一体化した構成を備えていても良い。 Further, as shown in FIG. 12, the structure according to the present invention includes a steel sheet pile wall 30 made of steel sheet piles driven to a predetermined depth along the quay, and a pile 32 buried in the ground on the land side. A caisson 1 may be provided on an existing sheet pile type quay Tb provided with a tie rod 31 or the like for connecting the steel sheet pile wall 30 and the retaining pile 32. For example, a caisson 1 was constructed in the vicinity of the retaining pile 32 of the sheet pile type quay Tb, a crushed stone pillar D1 was formed, and the upper portion of the caisson 1 and the upper portion of the retaining pile 32 were connected and integrated by a connecting member 33. It may have a configuration.

このような構成を備えた矢板式岸壁Tbでは、ケーソン1と控え杭32とが一体化されていることで、ケーソン1を備えていない構成と比較して耐震性が向上している。このように、ケーソン1を構築して既存の矢板式岸壁Tbの控え杭32と一体化するだけで、既存の矢板式岸壁Tbの耐震性を高めることができるため、船舶の大型化に対応するための増深に伴って耐震性を高める必要がある場合や、新しい耐震基準に適合させるために耐震性を高める必要がある場合に、高額な地盤改良を実施することなく、対応することが可能である。 In the sheet pile type quay Tb having such a configuration, the caisson 1 and the retaining pile 32 are integrated, so that the seismic resistance is improved as compared with the configuration without the caisson 1. In this way, simply by constructing the caisson 1 and integrating it with the retaining pile 32 of the existing sheet pile type quay Tb, the seismic resistance of the existing sheet pile type quay Tb can be improved, so that the size of the ship can be increased. When it is necessary to improve seismic resistance due to deepening, or when it is necessary to improve seismic resistance to meet new seismic standards, it is possible to respond without carrying out expensive ground improvement. Is.

尚、上記桟橋T,Ta,や矢板式岸壁Tbにおいては、ケーソンとして片側突出ケーソン1を採用したが、これに限られるものではなく、円形突出ケーソン1aや両側突出ケーソン1bを採用しても良い。また、地盤条件や構造物に要求される耐震性能等に応じて、採用する全てのケーソンを突出部の形状が同じものとしても良いし、突出部の形状が異なるケーソンを組み合わせて採用しても良い。また、全てのケーソンが底部に突出部3,3a,3bを有するものである必要はなく、地盤条件や構造物に要求される耐震性能等に応じて、複数のケーソン1のうちの一部に従来のケーソン(突出部のないケーソン)を採用しても良い。 In the above piers T, Ta, and sheet pile type quay Tb, one-sided protruding caisson 1 is adopted as the caisson, but the present invention is not limited to this, and circular protruding caisson 1a or both-sided protruding caisson 1b may be adopted. .. Further, depending on the ground conditions and the seismic performance required for the structure, all the caissons to be adopted may have the same shape of the protruding portion, or may be used in combination with different caissons having different shapes of the protruding portions. good. Further, not all caissons need to have protrusions 3, 3a, 3b at the bottom, and some of the plurality of caissons 1 may be used depending on the ground conditions, seismic performance required for the structure, and the like. A conventional caisson (caisson without a protrusion) may be adopted.

また、本発明に係る構造物は、矢板式岸壁の控え杭に代えてケーソン1を採用したものや、重力式岸壁の基礎としてケーソン1を採用したもの、既存の桟橋の海側にケーソン1を一体化したもの、上記ケーソンを基礎として、その上に風力発電機等を設置したものであっても良い。 Further, the structure according to the present invention uses a caisson 1 instead of a pile of a sheet pile type quay, a caisson 1 as a foundation of a gravity type quay, and a caisson 1 on the sea side of an existing pier. It may be an integrated one, or one based on the above caisson and a wind generator or the like installed on it.

また、上例では、砕石柱D1が形成されている態様を示したが、これに限られるものではなく、本発明に係る構造物は、砕石柱の代わりに粒状体からなる柱が形成されていても良いし、砕石柱や粒状体からなる柱が形成されていなくても良い。 Further, in the above example, the mode in which the crushed stone pillar D1 is formed is shown, but the present invention is not limited to this, and in the structure according to the present invention, a pillar made of granules is formed instead of the crushed stone pillar. It may be used, or columns made of crushed stone or granules may not be formed.

更に、本発明に係る構造物は、港湾に設置されるものに限られず、傾斜の抑制が必要な場所に設置される構造物やロッキングの抑制が必要な場所に設置される構造物であっても良く、傾斜の抑制が必要な場所に設置される構造物が備えるケーソンは、ケーソンを傾斜させる力が作用する方向とは反対側に向けて突出した突出部が形成されていることが好ましく、ロッキングの抑制が必要な場所に設置される構造物が備えるケーソンは、少なくとも相対する方向に向けて突出した突出部が形成されていることが好ましい。即ち、構造物が備えるケーソンは、当該構造物を設置する場所に応じて、突出部の突出方向を適宜設定することが好ましい。 Further, the structure according to the present invention is not limited to a structure installed in a harbor, but is a structure installed in a place where tilt suppression is required or a structure installed in a place where locking suppression is required. It is also preferable that the caisson provided in the structure installed in a place where tilt suppression is required has a protruding portion protruding in the direction opposite to the direction in which the force for tilting the caisson acts. It is preferable that the caisson provided in the structure installed in a place where locking suppression is required has a protrusion protruding at least in the opposite direction. That is, it is preferable that the caisson provided in the structure appropriately sets the protruding direction of the protruding portion according to the place where the structure is installed.

〔数値解析結果〕
次に、弾性床上の梁理論を用いた数値解析によって、ケーソンの耐震性を評価した結果について図13〜図18を参照して説明する。
[Numerical analysis result]
Next, the results of evaluating the seismic resistance of caisson by numerical analysis using the beam theory on the elastic floor will be described with reference to FIGS. 13 to 18.

尚、数値解析においては、ケーソンのみをモデル化し、地盤の効果はばね反力として反映されるものとした。ケーソンの根入れ長は20m、断面は円形で直径6.5m、断面2次モーメントは67mとした。荷重条件は、桟橋ケーソン1基あたり、法線直角方向(海から陸に向かう方向)の分担幅が14m、法線方向の分担幅が20mの構造条件で、レベル2地震時相当の水平震度が0.41程度の条件とし、具体的には以下の通りとした。自重は54281kN、海底面での水平荷重は22500kN、海底面での作用モーメントは365800kNmとした。水平地盤反力係数は、剛性低下を考慮した想定値でケーソンの上端から下端まで一定値の5380kN/mとし、鉛直地盤反力係数は71225kN/mとした。また、ケーソンの突出部上の土の重量を壁体重量として見込み、突出部の重量は無視した。更に、数値解析では、ケーソンの下端部に地盤からの反力によって生じる抵抗モーメントを考慮し、モーメントを無視してケーソンの傾斜角を算出した上で、傾斜角に応じたモーメントを与えて再度計算し、最終的に地盤面での変形が収束するまで繰り返し計算を行った。尚、抵抗モーメントは、道路橋示方書の設定に準拠して、ケーソン中心を回転中心とするものとした。計算には、弾性床上の梁の理論を適用した。当該理論は、ケーソンを梁とみなして水平荷重やモーメントなどの外力と地盤反力を受ける梁の応答を計算する理論であり、古典的かつ現在も幅広く用いられている理論である。但し、荷重条件などが複雑な場合には理論解が得られないため、本解析では計算に差分法を適用した。ケーソンの長さは、0.5m間隔で分割し、差分法の計算のため、ケーソンの上端及び下端に2つずつの仮想節点を付与した。 In the numerical analysis, only the caisson was modeled, and the effect of the ground was reflected as the spring reaction force. The caisson had a rooting length of 20 m, a circular cross section with a diameter of 6.5 m, and a moment of inertia of area of 67 m 4 . The load conditions are a structural condition in which the share width in the direction perpendicular to the normal line (direction from the sea to the land) is 14 m and the share width in the normal direction is 20 m per pier cason, and the horizontal seismic intensity equivalent to a level 2 earthquake is high. The conditions were set to about 0.41, and the specific conditions were as follows. Its own weight was 54281 kN, the horizontal load on the seafloor was 22500 kN, and the acting moment on the seafloor was 365800 kNm. The horizontal ground reaction force coefficient was set to 5380 kN / m 3, which is a constant value from the upper end to the lower end of the caisson, and the vertical ground reaction force coefficient was set to 71225 kN / m 3, which is an assumed value in consideration of the decrease in rigidity. In addition, the weight of the soil on the protrusion of the caisson was estimated as the wall weight, and the weight of the protrusion was ignored. Furthermore, in the numerical analysis, the resistance moment generated by the reaction force from the ground is taken into consideration at the lower end of the caisson, the inclination angle of the caisson is calculated ignoring the moment, and then the moment corresponding to the inclination angle is given and calculated again. Then, the calculation was repeated until the deformation on the ground surface finally converged. The resistance moment is set with the caisson center as the center of rotation in accordance with the setting of the road bridge specification. The theory of beams on elastic floors was applied to the calculations. This theory is a theory that considers a caisson as a beam and calculates the response of a beam that receives external forces such as horizontal loads and moments and ground reaction forces, and is a classical and widely used theory. However, since a theoretical solution cannot be obtained when the load conditions are complicated, the difference method was applied to the calculation in this analysis. The length of the caisson was divided at intervals of 0.5 m, and two virtual nodes were added to the upper end and the lower end of the caisson for the calculation of the difference method.

また、数値解析は、突出部の突出量が所定量である片側突出ケーソン、円形突出ケーソン及び両側突出ケーソンについて行った。尚、図13及び図18における突出量は、円形突出ケーソンにおける突出部の突出量であり、これら図13及び図18では、片側突出ケーソン及び両側突出ケーソンについて、円形突出ケーソンの掘削土量と同じ掘削土量となる条件で突出量を設定した場合の抵抗モーメントを対応する円形突出ケーソンの突出量の値に対してプロットした。例えば、円形突出ケーソンの突出量が1mである場合の掘削土量と同じ掘削土量となる条件で設定した突出量(片側突出ケーソンについては2.93m、両側突出ケーソンについては1.12m)である場合の抵抗モーメントを、突出量が1mである場合の値としてプロットした。 In addition, numerical analysis was performed on a one-sided protruding caisson, a circular protruding caisson, and a two-sided protruding caisson in which the amount of protrusion of the protruding portion was a predetermined amount. The amount of protrusion in FIGS. 13 and 18 is the amount of protrusion of the protruding portion in the circular protruding caisson, and in FIGS. 13 and 18, the amount of excavated soil for the one-sided protruding caisson and the two-sided protruding caisson is the same as that of the circular protruding caisson. The resistance moment when the protrusion amount was set under the condition of excavated soil amount was plotted against the value of the protrusion amount of the corresponding circular protruding caisson. For example, with the amount of protrusion set under the condition that the amount of excavated soil is the same as the amount of excavated soil when the amount of protrusion of the circular protruding caisson is 1 m (2.93 m for one-sided protruding caisson and 1.12 m for both-sided protruding caisson). The resistance moment in a certain case was plotted as a value when the protrusion amount was 1 m.

図13は、各ケーソンの突出量と抵抗モーメントとの関係を示すグラフであり、同図から分かるように、各ケーソンはいずれも突出量が増加するにつれて抵抗モーメントが大きくなっており、掘削土量が同じとなる条件で設定された突出量である場合、片側突出ケーソンが最も抵抗モーメントが大きくなっており、変形を抑止する効果が高い。 FIG. 13 is a graph showing the relationship between the protrusion amount and the resistance moment of each caisson, and as can be seen from the figure, the resistance moment of each caisson increases as the protrusion amount increases, and the excavated soil amount. When the amount of protrusion is set under the same condition, the one-sided protruding caisson has the largest resistance moment and is highly effective in suppressing deformation.

図14及び図15は、水平方向への変形量と高さ位置との関係を示すグラフであり、図16及び図17は、曲げモーメントと高さ位置との関係を示すグラフである。尚、図14及び図16は、突出部がないケーソンに関するグラフであり、図15及び図17は突出量が2.93mである片側突出ケーソンに関するグラフである。図14及び図15に示すように、片側突出ケーソンの方が各高さ位置での変形量が小さくなっており、また、図16及び図17に示すように、各高さ位置での曲げモーメントは片側突出ケーソンの方が大きくなっている。このことから、突出部が形成されていることで、変形を抑止する効果が高くなることが確認できた。尚、突出部を形成することにより、ケーソンに作用する曲げモーメントが全体的に大きくなっているが、ケーソンの配筋量を多くすることで十分対応が可能である。 14 and 15 are graphs showing the relationship between the amount of deformation in the horizontal direction and the height position, and FIGS. 16 and 17 are graphs showing the relationship between the bending moment and the height position. 14 and 16 are graphs relating to a caisson having no protrusion, and FIGS. 15 and 17 are graphs relating to a one-sided protruding caisson having a protrusion amount of 2.93 m. As shown in FIGS. 14 and 15, the amount of deformation of the one-sided protruding caisson at each height position is smaller, and as shown in FIGS. 16 and 17, the bending moment at each height position is smaller. Is larger on one side protruding caisson. From this, it was confirmed that the formation of the protruding portion enhances the effect of suppressing deformation. By forming the protruding portion, the bending moment acting on the caisson is increased as a whole, but it can be sufficiently dealt with by increasing the amount of reinforcement of the caisson.

図18は、各ケーソンの突出量と変形量比との関係を示すグラフであり、同図における変形量比とは、突出部を形成していない場合の変形量に対する比である。同図から分かるように、突出量が増加するにつれて、いずれのケーソンも変形量比が小さくなっており、突出量を増加させることによってより変形を抑制することができるようになる。また、円形突出ケーソンについては、突出量が1mである場合に変形量の低減率がおよそ10%であるのに対し、同じ掘削土量となる条件(突出量が1.12m)である両側突出ケーソンについては変形量の低減率がおよそ12%であり、同じく突出量が1mである円形突出ケーソンの掘削土量と同じ掘削土量となる条件(突出量が2.93m)である片側突出ケーソンについては変形量の低減率がおよそ30%である。各ケーソンの突出量が、掘削土量が同じとなる条件で設定された突出量である場合には、片側突出ケーソンがより変形を抑制できることが分かった。 FIG. 18 is a graph showing the relationship between the protrusion amount of each caisson and the deformation amount ratio, and the deformation amount ratio in the figure is a ratio to the deformation amount when the protrusion is not formed. As can be seen from the figure, as the amount of protrusion increases, the deformation amount ratio of each caisson becomes smaller, and the deformation can be further suppressed by increasing the amount of protrusion. Further, for the circular protruding caisson, the reduction rate of the deformation amount is about 10% when the protrusion amount is 1 m, whereas the bilateral protrusion under the condition that the excavated soil amount is the same (the protrusion amount is 1.12 m). For the caisson, the reduction rate of the deformation amount is about 12%, and the excavated soil amount is the same as the excavated soil amount of the circular protruding caisson having the protruding amount of 1 m (the protruding amount is 2.93 m). The reduction rate of the amount of deformation is about 30%. It was found that when the amount of protrusion of each caisson was set under the condition that the amount of excavated soil was the same, the one-sided protruding caisson could further suppress the deformation.

上記実施形態(別実施形態を含む)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。 The configurations disclosed in the above embodiments (including other embodiments) can be applied in combination with the configurations disclosed in other embodiments as long as there is no contradiction, and are disclosed in the present specification. The embodiment described is an example, and the embodiment of the present invention is not limited to this, and can be appropriately modified without departing from the object of the present invention.

本発明は、構造物の耐震性を従来よりも向上させることができるケーソン、このケーソンを地中に構築するニューマチックケーソン工法、及び上記ケーソンを有する構造物に利用できる。 The present invention can be used for a caisson capable of improving the seismic resistance of a structure, a pneumatic caisson method for constructing the caisson in the ground, and a structure having the above caisson.

1,1a,1b ケーソン
2,2a,2b 主部
3,3a,3b 突出部
D 砕石
T,Ta 桟橋
Tb 矢板式岸壁
1,1a, 1b Caisson 2,2a, 2b Main part 3,3a, 3b Protruding part D Crushed stone T, Ta Pier Tb Sheet pile type quay

Claims (9)

構造物の基礎に用いられるケーソンであって、
筒状をなして鉛直方向に延びる主部と、
前記主部における下端部外周の少なくとも一部に形成され、前記主部よりも水平方向に突出した突出部と、を有するケーソン。
A caisson used as the foundation of a structure
The main part, which has a tubular shape and extends in the vertical direction,
A caisson having a protruding portion formed on at least a part of the outer periphery of the lower end portion of the main portion and protruding in the horizontal direction from the main portion.
請求項1に記載のケーソンを地中に構築するニューマチックケーソン工法であって、
地盤を掘削して前記ケーソンを着底させる着底工程と、
前記着底工程において前記突出部の上方に形成される被埋戻空間を埋め戻す埋戻工程と、を行うニューマチックケーソン工法。
A pneumatic caisson method for constructing the caisson according to claim 1 underground.
The landing process of excavating the ground and landing the caisson,
A pneumatic caisson method in which a backfilling step of backfilling the backfilling space formed above the protrusion in the bottoming step is performed.
前記埋戻工程において、前記被埋戻空間を粒状体によって埋め戻す請求項2に記載のニューマチックケーソン工法。 The pneumatic caisson method according to claim 2, wherein in the backfilling step, the backfilling space is backfilled with granules. 前記粒状体は、砕石である請求項3に記載のニューマチックケーソン工法。 The pneumatic caisson method according to claim 3, wherein the granular material is crushed stone. 地盤に着底した請求項1記載のケーソンを有する構造物。 The structure having a caisson according to claim 1, which has landed on the ground. 前記ケーソンにおける前記突出部の上方に粒状体からなる柱が形成されている請求項5に記載の構造物。 The structure according to claim 5, wherein a pillar made of a granular material is formed above the protrusion in the caisson. 前記粒状体が砕石である請求項6に記載の構造物。 The structure according to claim 6, wherein the granular body is crushed stone. 港湾に設置され、
前記ケーソンにおける前記突出部が、少なくとも海側に形成されている請求項5〜7のいずれか一項に記載の構造物。
Installed in the harbor
The structure according to any one of claims 5 to 7, wherein the protruding portion in the caisson is formed at least on the sea side.
少なくとも第1方向に突出した突出部を有する第1ケーソンと、
少なくとも前記第1方向の反対側の第2方向に突出した突出部を有する第2ケーソンとを有する請求項5〜7のいずれか一項に記載の構造物。
A first caisson having at least a protrusion protruding in the first direction,
The structure according to any one of claims 5 to 7, which has at least a second caisson having a protrusion protruding in the second direction opposite to the first direction.
JP2019121870A 2019-06-28 2019-06-28 Caisson, pneumatic caisson construction method and structure Active JP7309147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019121870A JP7309147B2 (en) 2019-06-28 2019-06-28 Caisson, pneumatic caisson construction method and structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019121870A JP7309147B2 (en) 2019-06-28 2019-06-28 Caisson, pneumatic caisson construction method and structure

Publications (2)

Publication Number Publication Date
JP2021008720A true JP2021008720A (en) 2021-01-28
JP7309147B2 JP7309147B2 (en) 2023-07-18

Family

ID=74199772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019121870A Active JP7309147B2 (en) 2019-06-28 2019-06-28 Caisson, pneumatic caisson construction method and structure

Country Status (1)

Country Link
JP (1) JP7309147B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7226725B1 (en) 2022-01-26 2023-02-21 国立大学法人神戸大学 Diagonal support pile type sheet pile quay

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54155632A (en) * 1978-05-30 1979-12-07 Mitsubishi Heavy Ind Ltd Wave damping bank device
JPS55142837A (en) * 1979-04-20 1980-11-07 Metsukusu:Kk Gravity-type caisson
JPH01187207A (en) * 1988-01-19 1989-07-26 Kazumasa Takahashi Caisson for breakwater and revetment
JPH02101213A (en) * 1988-10-04 1990-04-13 Toa Harbor Works Co Ltd Soft grounding type breakwater
JPH0427014A (en) * 1990-05-23 1992-01-30 Taisei Corp Construction of underground structure
JPH07113219A (en) * 1993-10-15 1995-05-02 Shimizu Corp Multistage tsunami breakwater
JPH0799023B2 (en) * 1987-01-07 1995-10-25 公隆 近藤 Closed variant caisson and closed variant caisson method
JPH08158378A (en) * 1994-12-06 1996-06-18 Taisei Corp Sinking method of caisson
JP2000054322A (en) * 1998-08-11 2000-02-22 Mitsubishi Heavy Ind Ltd Earthquake-resistant fixed offshore type caisson pier bridge
JP2000226829A (en) * 1999-02-09 2000-08-15 Kubota Corp Wave dissipation training dyke
JP2002121754A (en) * 2000-10-13 2002-04-26 Ohbayashi Corp Method for constructing underwater foundation
JP2003027453A (en) * 2001-07-17 2003-01-29 Ohbayashi Corp Artificial ground structure
JP2003313844A (en) * 2002-04-19 2003-11-06 Ishikawajima Harima Heavy Ind Co Ltd Breakwater caisson and setting method of breakwater caisson
JP2018150761A (en) * 2017-03-14 2018-09-27 清水建設株式会社 Restriction structure for co-sinking, and method for settling caisson

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54155632A (en) * 1978-05-30 1979-12-07 Mitsubishi Heavy Ind Ltd Wave damping bank device
JPS55142837A (en) * 1979-04-20 1980-11-07 Metsukusu:Kk Gravity-type caisson
JPH0799023B2 (en) * 1987-01-07 1995-10-25 公隆 近藤 Closed variant caisson and closed variant caisson method
JPH01187207A (en) * 1988-01-19 1989-07-26 Kazumasa Takahashi Caisson for breakwater and revetment
JPH02101213A (en) * 1988-10-04 1990-04-13 Toa Harbor Works Co Ltd Soft grounding type breakwater
JPH0427014A (en) * 1990-05-23 1992-01-30 Taisei Corp Construction of underground structure
JPH07113219A (en) * 1993-10-15 1995-05-02 Shimizu Corp Multistage tsunami breakwater
JPH08158378A (en) * 1994-12-06 1996-06-18 Taisei Corp Sinking method of caisson
JP2000054322A (en) * 1998-08-11 2000-02-22 Mitsubishi Heavy Ind Ltd Earthquake-resistant fixed offshore type caisson pier bridge
JP2000226829A (en) * 1999-02-09 2000-08-15 Kubota Corp Wave dissipation training dyke
JP2002121754A (en) * 2000-10-13 2002-04-26 Ohbayashi Corp Method for constructing underwater foundation
JP2003027453A (en) * 2001-07-17 2003-01-29 Ohbayashi Corp Artificial ground structure
JP2003313844A (en) * 2002-04-19 2003-11-06 Ishikawajima Harima Heavy Ind Co Ltd Breakwater caisson and setting method of breakwater caisson
JP2018150761A (en) * 2017-03-14 2018-09-27 清水建設株式会社 Restriction structure for co-sinking, and method for settling caisson

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7226725B1 (en) 2022-01-26 2023-02-21 国立大学法人神戸大学 Diagonal support pile type sheet pile quay
JP7229498B1 (en) 2022-01-26 2023-02-28 国立大学法人神戸大学 Diagonal support pile type sheet pile quay
JP2023109155A (en) * 2022-01-26 2023-08-07 国立大学法人神戸大学 Diagonal support pile type sheet pile quay
JP2023108872A (en) * 2022-01-26 2023-08-07 国立大学法人神戸大学 Diagonal support pile type sheet pile quay

Also Published As

Publication number Publication date
JP7309147B2 (en) 2023-07-18

Similar Documents

Publication Publication Date Title
CN109797749A (en) A kind of underwater foundation pit construction device and construction method
Ruggeri et al. Renovation of quay walls to meet more demanding requirements: Italian experiences
JP2011179247A (en) Large water depth quay wall structure
JP4569525B2 (en) Steel wall for composite structure
CN105862659B (en) High-frequency debris flow shore protection and diversion method
JP7309147B2 (en) Caisson, pneumatic caisson construction method and structure
JP7149919B2 (en) Improvement structure and improvement method of existing wharf
JP2008019561A (en) Construction method of countermeasure against liquefaction under breakwater caused by creation of underground wall
JP2017082441A (en) Dam structure
CN106149624A (en) A kind of gravity type quay being applicable to roadbed of alluvial silt and construction method thereof
CN104563165B (en) The building pile foundation antidetonation of coastal area soft soil foundation resists askew construction method and structure
JP7389893B2 (en) Offshore structures and construction methods
JP2010180684A (en) Pier of three-dimensional rigid frame structure and construction method
CN104099894B (en) A kind of without anchor deep-cement sheet-pile wharf
JP5889102B2 (en) Tide structure
JP3999628B2 (en) Construction method of caisson dyke
JP2017082440A (en) Dam construction method
JP7489350B2 (en) Improvement structure and method of existing wharf
KR20210047481A (en) Core wall structure of composite cassion for offshore runway
KR102607803B1 (en) Assembling type wave dissipation block and vertically stacked coastal structure using the same
JP7495904B2 (en) Improvement structure and method of existing wharf
JP7469608B2 (en) Support structure, gravity breakwater and construction method of gravity breakwater
CN103122624B (en) Protective hooking body
Severi et al. Performance based design of the permanent tied-back quay walls of the Aqaba New Port—phase 2
Dismuke Retaining structures and excavations

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230627

R150 Certificate of patent or registration of utility model

Ref document number: 7309147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150