JP2021004356A - Refractory composition and refractory material for gas pipe - Google Patents

Refractory composition and refractory material for gas pipe Download PDF

Info

Publication number
JP2021004356A
JP2021004356A JP2020088380A JP2020088380A JP2021004356A JP 2021004356 A JP2021004356 A JP 2021004356A JP 2020088380 A JP2020088380 A JP 2020088380A JP 2020088380 A JP2020088380 A JP 2020088380A JP 2021004356 A JP2021004356 A JP 2021004356A
Authority
JP
Japan
Prior art keywords
refractory
refractory composition
polymer
value
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020088380A
Other languages
Japanese (ja)
Other versions
JP6914400B2 (en
Inventor
高津 知道
Tomomichi Takatsu
知道 高津
真佐之 藤谷
Masayuki Fujitani
真佐之 藤谷
英也 相馬
Hideya Soma
英也 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd filed Critical Denka Co Ltd
Publication of JP2021004356A publication Critical patent/JP2021004356A/en
Application granted granted Critical
Publication of JP6914400B2 publication Critical patent/JP6914400B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Fireproofing Substances (AREA)

Abstract

To provide a refractory composition that can be used for a gas pipe and a refractory material for gas pipes including the same.SOLUTION: The present invention provides a refractory composition containing a polymer, a thermally-expandable compound, and an inorganic filler, the polymer having a solubility parameter of more than 8.0. The present invention also provides a refractory material for gas pipes that is used for a joint of gas pipes, the refractory material formed from the refractory composition.SELECTED DRAWING: None

Description

本発明は、火災発生時の熱により熱膨張性化合物を膨張させることで延焼を抑える耐火性組成物及びガス管用耐火材に関する。 The present invention relates to a refractory composition for suppressing the spread of fire by expanding a heat-expandable compound by heat at the time of a fire, and a refractory material for a gas pipe.

従来、耐火性組成物の防火性能を向上させる技術が種々研究されている。例えば、特許文献1には、耐火性組成物を成形して得た耐火被覆材に対して優れた作業効率を付与し得る耐火性組成物が提案されている。 Conventionally, various techniques for improving the fireproof performance of a refractory composition have been studied. For example, Patent Document 1 proposes a refractory composition capable of imparting excellent work efficiency to a refractory coating material obtained by molding a refractory composition.

特開2008−115359号公報Japanese Unexamined Patent Publication No. 2008-115359

上述した従来の耐火性組成物は、鉄骨や壁に貼り付けて使用する場合には問題なく使用できるが、ガス管を流れるガスに対する耐性が弱いため、それらのガス管の繋ぎ目に使用することが困難であった。このため、ガス管の繋ぎ目に使用することができる耐火性組成物が求められている。 The above-mentioned conventional refractory composition can be used without any problem when it is used by being attached to a steel frame or a wall, but since it has weak resistance to gas flowing through gas pipes, it should be used at the joint of those gas pipes. Was difficult. Therefore, there is a demand for a refractory composition that can be used at the joint of gas pipes.

本発明者が鋭意検討を行ったところ、ガス管を流れる流体の溶解度パラメータと耐火性組成物に含まれるポリマーの溶解度パラメータとの差が、1.0超であると、上記課題を解決可能であることを見出した。具体的には、ポリマーの溶解度パラメータが8.0超であると、上記課題を解決可能であることを見出し、本発明の完成に到った。 As a result of diligent studies by the present inventor, if the difference between the solubility parameter of the fluid flowing through the gas pipe and the solubility parameter of the polymer contained in the fire-resistant composition is more than 1.0, the above problem can be solved. I found that there is. Specifically, it has been found that the above-mentioned problems can be solved when the solubility parameter of the polymer is more than 8.0, and the present invention has been completed.

本発明によれば、ポリマーと、熱膨張性化合物と、無機充填材と、を含む耐火性組成物であって、前記ポリマーの溶解度パラメータが8.0超である、耐火性組成物が提供される。 According to the present invention, there is provided a refractory composition containing a polymer, a heat-expandable compound, and an inorganic filler, wherein the solubility parameter of the polymer is more than 8.0. To.

1.耐火性組成物
本実施形態に係る耐火性組成物は、ポリマーと、熱膨張性化合物と、無機充填材と、を含有する。耐火性成物は、必要に応じて、上記成分以外の添加剤を含んでもよい。添加剤としては、例えば、滑剤、老化防止剤、カーボンブック等の補強材充填剤、可塑剤、加工助剤、加硫剤、加硫促進剤、加硫遅延剤などが挙げられる。
1. 1. Refractory Composition The refractory composition according to the present embodiment contains a polymer, a heat-expandable compound, and an inorganic filler. The refractory product may contain additives other than the above-mentioned components, if necessary. Examples of the additive include a lubricant, an antiaging agent, a reinforcing material filler such as a carbon book, a plasticizer, a processing aid, a vulcanizing agent, a vulcanization accelerator, and a vulcanization delaying agent.

(1)ポリマー
本発明のポリマーは、溶解度パラメータが8.0超えである。溶解度パラメータは、SP値(δ)ともいう。本発明において、「溶解度パラメータ」又は「SP値(δ)」とは、Hildebrandの正則溶液の理論に基づき定められる値であって、多成分系での各成分の活量を定めるパラメータである。溶解度パラメータには種々の計算法があるが、本願明細書では特に他に断りがないかぎりは、Hoyの定数を用いてSmall法により算出したものを言う(Hoy,K.L.:J.Paint Tech.,42,76(1970))。
すなわち、溶解度パラメータδ[(cal/ml)1/2]は以下の式1で算出される。
δ=d*(ΣG)/M (式1)
ここでdは密度[g/ml]であり、GはHoyの各官能基の分子引力定数[(cal・ml)1/2/mol]であり、Mは分子量[g/mol]である。
(1) Polymer The polymer of the present invention has a solubility parameter of more than 8.0. The solubility parameter is also referred to as SP value (δ). In the present invention, the "solubility parameter" or "SP value (δ)" is a value determined based on the theory of Hildebrand's regular solution, and is a parameter that determines the activity of each component in a multi-component system. There are various calculation methods for the solubility parameter, but unless otherwise specified in the present specification, the solubility parameter is calculated by the Small method using the Hoy constant (Hoy, KL: J.Paint). Tech., 42, 76 (1970)).
That is, the solubility parameter δ [(cal / ml) 1/2 ] is calculated by the following equation 1.
δ = d * (ΣG) / M (expression 1)
Here, d is the density [g / ml], G is the molecular attractiveness constant [(cal · ml) 1/2 / mol] of each functional group of Hoy, and M is the molecular weight [g / mol].

SP値の範囲が8.0超であるポリマーとしては、例えば、クロロスルホン化ポリエチレン(SP値8.1〜9.8)、クロロプレンゴム(SP値8.1〜9.4)、ニトリルゴム(SP値8.7〜10.5)、ポリメタクリル酸メチル(SP値9.1〜9.5)、多硫化ゴム(SP値9.0〜9.4)、塩化ゴム(SP値9.4)、ポリ酢酸ビニル(SP値9.4〜9.6)、アクリルゴム(SP値9.5)、ポリ塩化ビニル(SP値9.4〜10.8)、ウレタンゴム(SP値10.0)、ポリエチレンテレフタレート(SP値10.7)、エポキシ樹脂(SP値10.9)、フェノール樹脂(SP値11.3)、ポリ塩化ビニリデン(SP値12.2)、ポリビニルアルコール(SP値12.6)、ポリアミド(66−ナイロン)(SP値13.6)、セルロース(SP値15.7)などが挙げられる。これらのポリマーは、単独で用いられてもよく、2種以上が併用されてもよい。 Examples of polymers having an SP value range of more than 8.0 include chlorosulfonated polyethylene (SP value 8.1 to 9.8), chloroprene rubber (SP value 8.1 to 9.4), and nitrile rubber (SP value 8.1 to 9.4). SP value 8.7 to 10.5), polymethyl methacrylate (SP value 9.1 to 9.5), rubber polysulfide (SP value 9.0 to 9.4), rubber chloride (SP value 9.4) ), Polyvinyl acetate (SP value 9.4 to 9.6), acrylic rubber (SP value 9.5), polyvinyl chloride (SP value 9.4 to 10.8), urethane rubber (SP value 10.0) ), Polyethylene terephthalate (SP value 10.7), epoxy resin (SP value 10.9), phenol resin (SP value 11.3), polyvinyl chloride (SP value 12.2), polyvinyl alcohol (SP value 12. 6), polyamide (66-nylon) (SP value 13.6), cellulose (SP value 15.7) and the like. These polymers may be used alone or in combination of two or more.

耐火性組成物がガス管用耐火材として用いられる場合、ポリマーのSP値とガス管を流れるガスのSP値の差が1.0以下であると、耐火性組成物がガス管を流れる流体に溶解するという問題が起こり得る。特に、ポリマーのSP値が8.0以下であると、その問題が起こり易くなる。 When the refractory composition is used as a refractory material for a gas pipe, if the difference between the SP value of the polymer and the SP value of the gas flowing through the gas pipe is 1.0 or less, the fire resistant composition dissolves in the fluid flowing through the gas pipe. The problem of doing can occur. In particular, when the SP value of the polymer is 8.0 or less, the problem is likely to occur.

(2)熱膨張性化合物
熱膨張性化合物としては、加熱時に膨張するものであれば特に限定はないが、例えば、バーミキュライト、カオリン、マイカ、熱膨張性黒鉛等が挙げられる。これらの中でも、膨張開始温度が低いことから熱膨張性黒鉛が好ましい。
(2) Thermally expandable compound The thermally expandable compound is not particularly limited as long as it expands when heated, and examples thereof include vermiculite, kaolin, mica, and thermally expandable graphite. Among these, thermally expandable graphite is preferable because the expansion start temperature is low.

熱膨張性黒鉛とは、天然グラファイト、熱分解グラファイト等のグラファイト粉末を、硫酸や硝酸等の無機酸と、濃硝酸や過マンガン酸塩等の強酸化剤とを用いて表面処理したものであり、かつグラファイト層状構造を維持した結晶化合物である。これらは常圧下で膨張開始温度(200℃程度)以上の温度に曝されると、100倍以上に熱膨張する。なお、天然グラファイト、熱分解グラファイト等のグラファイト粉末は、脱酸処理を施したものや、更に中和処理したもの等であってもよい。 Heat-expandable graphite is a surface-treated graphite powder such as natural graphite or thermally decomposed graphite using an inorganic acid such as sulfuric acid or nitric acid and a strong oxidizing agent such as concentrated nitric acid or permanganate. It is a crystalline compound that maintains a graphite layered structure. When they are exposed to a temperature higher than the expansion start temperature (about 200 ° C.) under normal pressure, they thermally expand 100 times or more. The graphite powder such as natural graphite and pyrolytic graphite may be deoxidized, further neutralized, or the like.

熱膨張性黒鉛の粒度は、20〜400メッシュ(JIS Z 8901による測定)であることが望ましい。熱膨張性黒鉛の粒度が400メッシュよりも大きくなると、熱膨張性黒鉛の膨張度が小さくなってしまい、耐火性組成物が火災時に十分に熱膨張しない場合があるからである。また、熱膨張性黒鉛の粒度が20メッシュよりも小さくなると、分散性が減少してしまい、耐火性組成物の弾性が低下する場合があるからである。なお、本発明では、熱膨張性黒鉛を所望の粒度にする手段については特に限定されない。例えば、粉砕機と分級機とを用いて所望の粒度にすることもできる。 The particle size of the heat-expandable graphite is preferably 20 to 400 mesh (measured by JIS Z 8901). This is because if the particle size of the heat-expandable graphite is larger than 400 mesh, the degree of expansion of the heat-expandable graphite becomes small, and the refractory composition may not be sufficiently thermally expanded in the event of a fire. Further, if the particle size of the heat-expandable graphite is smaller than 20 meshes, the dispersibility is reduced and the elasticity of the refractory composition may be lowered. In the present invention, the means for adjusting the heat-expandable graphite to a desired particle size is not particularly limited. For example, a crusher and a classifier can be used to obtain a desired particle size.

本実施形態の耐火性組成物における熱膨張性化合物の含有量は、ポリマー100質量部に対して10〜500質量部が好ましい。熱膨張性化合物の含有量が10質量部以上であると、熱膨張性が十分に得られ、500質量部以下であると、膨張後の形状保持性が十分に得られる。 The content of the heat-expandable compound in the refractory composition of the present embodiment is preferably 10 to 500 parts by mass with respect to 100 parts by mass of the polymer. When the content of the heat-expandable compound is 10 parts by mass or more, sufficient thermal expandability is obtained, and when it is 500 parts by mass or less, sufficient shape retention after expansion is obtained.

(3)無機充填材
無機充填材は、無機物の粒子である。粒子の形状は、特に限定されず、例えば、球状、楕円球状、立方体状、直方体状、ランダム形状などが挙げられる。該粒子は、中空であっても中実であってもよい。また、該粒子の最長部の長さをLとし、最長部に対して垂直な面での最大の外接円の直径をDとすると、L/Dは、例えば1.0〜10.0であり、1.0〜5.0が好ましい。
(3) Inorganic filler The inorganic filler is particles of an inorganic substance. The shape of the particles is not particularly limited, and examples thereof include a spherical shape, an elliptical spherical shape, a cubic shape, a rectangular parallelepiped shape, and a random shape. The particles may be hollow or solid. Further, assuming that the length of the longest part of the particle is L and the diameter of the maximum circumscribed circle on the plane perpendicular to the longest part is D, the L / D is, for example, 1.0 to 10.0. , 1.0 to 5.0 is preferable.

無機充填材の平均粒子径は、例えば10〜1000μmであり、20〜800μmが好ましく、30〜500μmがさらに好ましく、40〜200μmがさらに好ましい。「平均粒子径」は、レーザー回折・散乱法によって求めた粒度分布における積算値50%での粒径を意味する。 The average particle size of the inorganic filler is, for example, 10 to 1000 μm, preferably 20 to 800 μm, more preferably 30 to 500 μm, still more preferably 40 to 200 μm. The "average particle size" means the particle size at an integrated value of 50% in the particle size distribution obtained by the laser diffraction / scattering method.

無機充填材としては、例えば、アルミナ、シリカ、アルミノシリケート、酸化亜鉛、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化鉄、酸化錫、酸化アンチモン、亜リン酸アルミニウム、亜リン酸水素アルミニウム、水酸化アルミニウム、フェライト類等の金属酸化物;水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、ハイドロタルサイト等の含水無機物;塩基性炭酸マグネシウム、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、炭酸ストロンチウム、炭酸バリウム等の金属炭酸塩;硫酸カルシウム、けい酸カルシウム等のカルシウム塩;珪藻土、ドーソナイト、硫酸バリウム、タルク、クレー、マイカ、モンモリロナイト、ベントナイト、活性白土、セピオライト、イモゴライト、セリサイト、ガラスビーズ、シリカ系バルン、窒化アルミニウム、窒化ホウ素、窒化けい素、カーボンブラック、グラファイト、炭素バルン、木炭粉末、各種金属粉、チタン酸カリウム、硫酸マグネシウム、ポリリン酸アンモニウム、チタン酸ジルコン酸鉛、アルミニウムボレート、硫化モリブデン、炭化けい素、ホウ酸亜鉛、各種磁性粉、フライアッシュ、脱水汚泥などが挙げられる。 Examples of the inorganic filler include alumina, silica, aluminosilicate, zinc oxide, titanium oxide, calcium oxide, magnesium oxide, iron oxide, tin oxide, antimony oxide, aluminum phosphite, aluminum hydrogen phosphite, and aluminum hydroxide. , Metal oxides such as ferrites; Hydrous inorganic substances such as calcium hydroxide, magnesium hydroxide, aluminum hydroxide, hydrotalcite; basic magnesium carbonate, calcium carbonate, magnesium carbonate, zinc carbonate, strontium carbonate, barium carbonate, etc. Metallic carbonates; Calcium salts such as calcium sulfate and calcium silicate; diatomaceous soil, dosonite, barium sulfate, talc, clay, mica, montmorillonite, bentonite, active white clay, sepiolite, imogolite, sericite, glass beads, silica-based balun, nitride Aluminum, boron nitride, silicon nitride, carbon black, graphite, carbon balun, charcoal powder, various metal powders, potassium titanate, magnesium sulfate, ammonium polyphosphate, lead zirconate titanate, aluminum borate, molybdenum sulfide, silicon carbide , Zinc borate, various magnetic powders, fly ash, dehydrated sludge and the like.

本実施形態の耐火性組成物における無機充填剤の含有量は、ポリマー100質量部に対して30〜500質量部が好ましい。無機充填剤の含有量が30質量部以上であると、耐火性組成物の難燃性が十分に得られ、500質量部以下であると、膨張後の形状保持性が十分に得られる。 The content of the inorganic filler in the refractory composition of the present embodiment is preferably 30 to 500 parts by mass with respect to 100 parts by mass of the polymer. When the content of the inorganic filler is 30 parts by mass or more, the flame retardancy of the refractory composition is sufficiently obtained, and when it is 500 parts by mass or less, the shape retention after expansion is sufficiently obtained.

形状保持性の観点から、無機充填剤は、亜リン酸アルミニウムを含むことが好ましい。亜リン酸アルミニウムの含有量は、ポリマー100質量部に対して、10〜300質量部が好ましく、20〜200質量部がさらに好ましい。 From the viewpoint of shape retention, the inorganic filler preferably contains aluminum phosphite. The content of aluminum phosphite is preferably 10 to 300 parts by mass, more preferably 20 to 200 parts by mass, based on 100 parts by mass of the polymer.

(4)軟化剤
本実施形態の耐火性組成物は、軟化剤を含むことが好ましい。軟化剤としては、パラフィン系又はナフテン系のプロセスオイル、植物油、流動パラフィン等のパラフィン類、ワックス類、フタル酸、アジピン酸、セバシン酸系又はリン酸系のエステル系可塑剤、ステアリン酸又はそのエステル類、ポリブタジエン、ポリイソプレン、ポリブテン等の液状ゴムが挙げられる。植物油としては、亜麻仁油、エゴマ油、オリーブオイル、グレープシート、コーン油、ごま油、こめ油、大豆油、菜種油、パーム油、ひまわり油、べに花油、綿実油、落花生油等が挙げられる。
(4) Softener The fire-resistant composition of the present embodiment preferably contains a softener. Examples of the softening agent include paraffin-based or naphthenic-based process oils, vegetable oils, paraffins such as liquid paraffin, waxes, phthalic acid, adipic acid, sebacic acid-based or phosphoric acid-based ester-based plasticizers, stearic acid or its esters. Examples include liquid rubbers such as polybutadiene, polyisoprene, and polybutene. Examples of vegetable oils include flaxseed oil, sesame oil, olive oil, grape sheet, corn oil, sesame oil, rice oil, soybean oil, rapeseed oil, palm oil, sunflower oil, beni flower oil, cottonseed oil, and peanut oil.

ガス管を流れるガスへの耐性の観点から、耐火性組成物に含まれる軟化剤は、植物油であることが好ましい。また、ポリマーがクロロプレンゴムである場合には、相溶性の観点から、軟化剤は、菜種油であることが好ましい。 From the viewpoint of resistance to the gas flowing through the gas pipe, the softening agent contained in the refractory composition is preferably vegetable oil. When the polymer is chloroprene rubber, the softener is preferably rapeseed oil from the viewpoint of compatibility.

耐火性組成物における軟化剤の含有量は、ポリマー100質量部に対して5〜80質量部であることが好ましい。軟化剤の含有量が5質量部以上であると、可撓性が十分に得られ、80質量部以下であると、耐流体性が十分に得られる。 The content of the softening agent in the refractory composition is preferably 5 to 80 parts by mass with respect to 100 parts by mass of the polymer. When the content of the softener is 5 parts by mass or more, sufficient flexibility is obtained, and when it is 80 parts by mass or less, sufficient fluid resistance is obtained.

2.ガス管用耐火材
本実施形態のガス管用耐火材は、上述の耐火性組成物を混練し、得られたコンパウンドを所望の形状に予備成形し、加硫処理を行うことで得られる。
2. 2. Refractory material for gas pipes The refractory material for gas pipes of the present embodiment can be obtained by kneading the above-mentioned refractory composition, preforming the obtained compound into a desired shape, and performing a vulcanization treatment.

耐火性組成物を混練する装置としては、例えば、ミキサー、バンバリーミキサー、ニーダーミキサー、二本ロールなどの混練装置が挙げられる。混練した耐火性組成物を成形する装置としては、例えば、プレス成形、押し出し成形、カレンダー成形などを行う成形装置が挙げられる。一般的には、耐火性組成物をゴム用押出し機で製品形状に押し出し成形し、次いで、加硫槽内に導入し、熱空気、流動床、マイクロ波などの手段によって加熱することにより加硫及び発泡を行うことができる。発泡成形体の形状は、特に限定されず、シート状やテープ状など、用途や設置場所などに応じて適宜選択されうる。 Examples of the device for kneading the refractory composition include a kneading device such as a mixer, a Banbury mixer, a kneader mixer, and a double roll. Examples of the apparatus for molding the kneaded refractory composition include molding apparatus for performing press molding, extrusion molding, calender molding and the like. Generally, the fire-resistant composition is extruded into a product shape by a rubber extruder, then introduced into a vulcanization tank, and vulcanized by heating by means such as hot air, a fluidized bed, or microwave. And foaming can be performed. The shape of the foam molded product is not particularly limited, and can be appropriately selected depending on the application, installation location, etc., such as a sheet shape or a tape shape.

本実施形態のガス管用耐火材は、ガス管の繋ぎ目に使用され、火災時に膨張することでガス管のガス漏れを防ぐ。具体的には、ガス管用耐火材は、ガス管どうしを接続するための連結具(例えば、ジョイントやカップリング)の内側に設置されたり、ガス管どうしの繋ぎ目に沿って帯状に設置されたりする。ガス管を流れる流体としては、例えば、メタン(SP値5.4)、エタン(SP値6.0)、プロパン(SP値6.4)、n−ペンタン(SP値7.0)などがある。なお、ガス管を流れる流体は、1種類であってもよいし、複数種類であってもよい。複数種類の流体が流れる場合、それらの流体は、混合物として同時に流れてもよいし、単体として別々に流れてもよい。 The refractory material for gas pipes of the present embodiment is used at the joint of gas pipes and expands in the event of a fire to prevent gas leakage from the gas pipes. Specifically, the refractory material for gas pipes is installed inside a connecting tool (for example, a joint or a coupling) for connecting gas pipes, or is installed in a band shape along a joint between gas pipes. To do. Examples of the fluid flowing through the gas pipe include methane (SP value 5.4), ethane (SP value 6.0), propane (SP value 6.4), n-pentane (SP value 7.0), and the like. .. The fluid flowing through the gas pipe may be of one type or of a plurality of types. When a plurality of types of fluids flow, the fluids may flow simultaneously as a mixture or separately as a single substance.

以下、本発明を実施例及び比較例により具体的に説明するが、これらの実施例は本発明を限定するものでない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but these Examples do not limit the present invention.

実施例及び比較例において、下記の材料が使用された。
(1)ポリマー
・クロロプレンゴム(デンカ株式会社製「S−40V」)SP値8.3
・アクリロニトリル−ブタジエンゴム(JSR株式会社製「N250S」)SP値9.4
・エチレン−プロピレン−ジエンゴム(三井化学株式会社製「4045H」)SP値7.6
なお、表1では、アクリロニトリル−ブタジエンゴムがNBRと記載され、エチレン−プロピレン−ジエンゴムがEPDMと記載されている。
(2)熱膨張性化合物
・熱膨張性黒鉛(三洋貿易株式会社製「SYZR9550250」)
(3)無機充填剤
・水酸化アルミニウム(住友化学株式会社製「C−301N」)
・亜リン酸アルミニウム(太平化学産業株式会社製「APA−100」
・炭酸カルシウム(秩父石油工業株式会社「タンカルTA−044」)
・水酸化マグネシウム(協和化学工業株式会社「キスマ5A」)
(4)軟化剤
・ナフテン系オイル(出光興産株式会社製「ダイアナプロセスオイルNP−24」)
・菜種油(株式会社J-オイルミルズ「菜種白絞油」)
(5)加硫剤
・エチレンチオウレア(川口化学工業株式会社製「アクセル22S」)
・硫黄(細井化学工業株式会社製「硫黄末」)
The following materials were used in Examples and Comparative Examples.
(1) Polymer-Chloroprene rubber ("S-40V" manufactured by Denka Co., Ltd.) SP value 8.3
-Acrylonitrile-butadiene rubber ("N250S" manufactured by JSR Corporation) SP value 9.4
-Ethylene-propylene-diene rubber ("4045H" manufactured by Mitsui Chemicals, Inc.) SP value 7.6
In Table 1, acrylonitrile-butadiene rubber is described as NBR, and ethylene-propylene-diene rubber is described as EPDM.
(2) Thermally expandable compound ・ Thermally expandable graphite (“SYZR9550250” manufactured by Sanyo Trading Co., Ltd.)
(3) Inorganic filler-Aluminum hydroxide ("C-301N" manufactured by Sumitomo Chemical Co., Ltd.)
-Aluminum phosphite ("APA-100" manufactured by Taihei Kagaku Sangyo Co., Ltd.
・ Calcium carbonate (Chichibu Petroleum Industry Co., Ltd. "Tancal TA-044")
・ Magnesium hydroxide (Kyowa Chemical Industry Co., Ltd. “Kisuma 5A”)
(4) Softener ・ Naphthenic oil ("Diana Process Oil NP-24" manufactured by Idemitsu Kosan Co., Ltd.)
・ Rapeseed oil (J-Oil Mills Co., Ltd. "Rapeseed white squeezed oil")
(5) Vulcanizing agent-Ethylene thiourea ("Axel 22S" manufactured by Kawaguchi Chemical Industry Co., Ltd.)
・ Sulfur (“Sulfur powder” manufactured by Hosoi Chemical Industry Co., Ltd.)

表1〜表3に示す配合量(質量部)の成分を、加圧ニーダー(モリヤマ社製/混合容量3リットル/DS3−10MWB−S型)を用いて、混錬温度80℃、回転速度40回転/分の条件下で5分間混練し、耐火性組成物を得た。得られた耐火性組成物を、8インチロールにてシート状に成形し、次いで、プレスを用いて加硫処理を行った。得られた成形体の各種物性を、以下の手順により評価した。 The components of the blending amounts (parts by mass) shown in Tables 1 to 3 are kneaded at a kneading temperature of 80 ° C. and a rotation speed of 40 using a pressurized kneader (Moriyama Co., Ltd./mixing capacity 3 liters / DS3-10MWB-S type). Kneading was carried out for 5 minutes under the condition of rotation / minute to obtain a refractory composition. The obtained refractory composition was formed into a sheet with an 8-inch roll, and then vulcanized using a press. Various physical properties of the obtained molded product were evaluated by the following procedure.

・耐流体性
JIS K 7114:2001に準拠して、n−ペンタン(SP値7.0)に試料(長さ2mm、幅2mm、厚さ2mm)を浸漬し、72時間後の重量変化率を測定した。重量変化率が小さいほど、耐流体性が高いことを示す。
-Fluid resistance According to JIS K 7114: 2001, a sample (length 2 mm, width 2 mm, thickness 2 mm) is immersed in n-pentane (SP value 7.0), and the weight change rate after 72 hours is determined. It was measured. The smaller the rate of change in weight, the higher the fluid resistance.

・難燃性
日本工業規格のJIS K6269に基づき、燃焼性試験器(スガ試験機社製「ON−1」)を用いて酸素指数を測定した。酸素指数が大きいほど、難燃性が高いことを示す。
-Flame retardant The oxygen index was measured using a flammability tester ("ON-1" manufactured by Suga Test Instruments Co., Ltd.) based on JIS K6269 of Japanese Industrial Standards. The larger the oxygen index, the higher the flame retardancy.

・熱膨張性
熱膨張性を示す指標として燃焼下における体積膨張倍率を測定した。具体的には、300℃で30分間燃焼した後の体積を、燃焼前の体積で除することにより、体積膨張倍率を算出した。燃焼前後の体積は、縦、横、高さを実測し算出した。体積膨張倍率が大きいほど、熱膨張性が良好であることを示す。
・ Thermal expansion
The volume expansion coefficient under combustion was measured as an index showing the thermal expandability. Specifically, the volume expansion ratio was calculated by dividing the volume after burning at 300 ° C. for 30 minutes by the volume before burning. The volume before and after combustion was calculated by actually measuring the length, width, and height. The larger the coefficient of thermal expansion, the better the thermal expansion property.

・形状保持性
縦30mm×横30mm×厚み4mmの試験片を作成し、これを110℃、24時間の条件で乾燥させた。乾燥後の試験片を600℃で保持された雰囲気内に0.5時間放置した後、3点曲げ試験冶具(上部押し側先端R1mm及び幅80mm、下部2点支点側R1mm及び幅80mm、支店間距離20mm)を用いて圧縮速度50mm/minの条件で破壊し、そのときの破壊強度(3点曲げ破壊強度)を測定した。破壊強度が大きいほど、形状保持性が高いことを示す。
-Shape retention A test piece having a length of 30 mm, a width of 30 mm, and a thickness of 4 mm was prepared and dried at 110 ° C. for 24 hours. After the dried test piece was left in an atmosphere held at 600 ° C. for 0.5 hours, a 3-point bending test jig (upper push side tip R1 mm and width 80 mm, lower 2 point fulcrum side R1 mm and width 80 mm, between branches Fracture was performed under the condition of a compression speed of 50 mm / min using a distance of 20 mm), and the fracture strength at that time (three-point bending fracture strength) was measured. The greater the breaking strength, the higher the shape retention.

・可撓性
厚さ5mmの耐火材から試験片を1号ダンベルの形状に打ち抜き、試験片の中央を押さえた状態で試験片の両端を徐々に持ち上げ、試験片に亀裂が入った時点での角度(中央と一端を結ぶ直線と、中央と他端を結ぶ直線がなす角度)を測定した。なお、亀裂が入ったときの角度が大きいほど、可撓性が良好であることを示す。
-Flexibility Punch the test piece from a refractory material with a thickness of 5 mm into the shape of a No. 1 dumbbell, gradually lift both ends of the test piece while holding the center of the test piece, and when the test piece cracks. The angle (the angle formed by the straight line connecting the center and one end and the straight line connecting the center and the other end) was measured. It should be noted that the larger the angle at which the crack is formed, the better the flexibility.

ガス管を流れる流体のSP値はポリマーのSP値より低いので、ポリマーのSP値が高いほどポリマーが流体に溶け難くなる。特に、ポリマーのSP値が8.0超であると、ポリマーの溶出が抑制され、ガス管のガス漏れが抑制される。 Since the SP value of the fluid flowing through the gas pipe is lower than the SP value of the polymer, the higher the SP value of the polymer, the more difficult it is for the polymer to dissolve in the fluid. In particular, when the SP value of the polymer exceeds 8.0, elution of the polymer is suppressed and gas leakage in the gas pipe is suppressed.

実施例1〜3,25,26の結果から、熱膨張性化合物の配合量が多くなると、熱膨張性が向上し、形状保持性が低下する傾向にあることが分かる。特に、熱膨張性化合物が10質量部以上であると、十分な熱膨張性が得られ、熱膨張性化合物が500質量部以下であると、十分な形状保持性が得られる。 From the results of Examples 1 to 3, 25, and 26, it can be seen that when the blending amount of the heat-expandable compound is large, the heat-expandability tends to be improved and the shape retention tends to be lowered. In particular, when the amount of the heat-expandable compound is 10 parts by mass or more, sufficient thermal expansion property is obtained, and when the amount of the heat-expandable compound is 500 parts by mass or less, sufficient shape retention is obtained.

実施例3、27〜30の結果から、無機系充填材の配合量が多くなると、難燃性が向上し、形状保持性が低下する傾向にあることが分かる。特に、無機系充填材の配合量が30質量部以上であると、十分な難燃性が得られ、無機系充填材の配合量が500質量部以下であると、十分な形状保持性が得られる。 From the results of Examples 3 and 27 to 30, it can be seen that as the blending amount of the inorganic filler increases, the flame retardancy tends to improve and the shape retention tends to decrease. In particular, when the blending amount of the inorganic filler is 30 parts by mass or more, sufficient flame retardancy is obtained, and when the blending amount of the inorganic filler is 500 parts by mass or less, sufficient shape retention is obtained. Be done.

実施例3、14、17〜20の結果から、無機充填材が亜リン酸アルミニウムを含有すると、形状保持性に優れることが分かる。また、亜リン酸アルミニウムの配合量が20質量部以上であると、十分な難燃性が得られる。亜リン酸アルミニウムの配合量が200質量部以下であると、十分な熱膨張性が得られる。 From the results of Examples 3, 14, 17 to 20, it can be seen that when the inorganic filler contains aluminum phosphite, the shape retention is excellent. Further, when the blending amount of aluminum phosphite is 20 parts by mass or more, sufficient flame retardancy can be obtained. When the blending amount of aluminum phosphite is 200 parts by mass or less, sufficient thermal expansion can be obtained.

実施例3、14〜16の結果から、無機充填材が水酸化アルミニウム又は亜リン酸アルミニウムを含有する場合には、無機充填材が水酸化マグネシウム又は炭酸カルシウムを含有する場合に比べて、難燃性に優れることが分かる。 From the results of Examples 3, 14 to 16, when the inorganic filler contains aluminum hydroxide or aluminum phosphite, the flame retardancy is higher than when the inorganic filler contains magnesium hydroxide or calcium carbonate. It turns out that it is excellent in sex.

実施例3〜13の結果から、耐火性組成物が軟化剤を含有すると、可撓性に優れることが分かる。特に、軟化剤の配合量が5質量部以上であると、十分な可撓性が得られる。軟化剤の配合量が80質量部以下であると、十分な難燃性が得られる。 From the results of Examples 3 to 13, it can be seen that when the refractory composition contains a softener, it is excellent in flexibility. In particular, when the blending amount of the softener is 5 parts by mass or more, sufficient flexibility can be obtained. When the blending amount of the softener is 80 parts by mass or less, sufficient flame retardancy can be obtained.

実施例3,31〜33の結果から、ポリマーとしてクロロプレンゴムを用いた場合の方が、ニトリルゴムを用いた場合よりも難燃性及び形状保持性に優れることが分かる。なお、クロロプレンゴムを用いた場合とニトリルゴムを用いた場合との間では、熱膨張性に大きな差異は見られなかった。 From the results of Examples 3, 31 to 33, it can be seen that the case where chloroprene rubber is used as the polymer is superior in flame retardancy and shape retention as the case where nitrile rubber is used. There was no significant difference in thermal expansion between the case where chloroprene rubber was used and the case where nitrile rubber was used.

Claims (6)

ポリマーと、熱膨張性化合物と、無機充填材と、を含む耐火性組成物であって、
前記ポリマーの溶解度パラメータが8.0超である、耐火性組成物。
A refractory composition comprising a polymer, a thermally expandable compound, and an inorganic filler.
A refractory composition having a solubility parameter of the polymer of more than 8.0.
請求項1に記載の耐火性組成物であって、
前記ポリマー100質量部に対して、前記熱膨張性化合物を10〜500質量部、前記無機充填材を30〜500質量部含む、耐火性組成物。
The refractory composition according to claim 1.
A refractory composition containing 10 to 500 parts by mass of the heat-expandable compound and 30 to 500 parts by mass of the inorganic filler with respect to 100 parts by mass of the polymer.
請求項1又は2に記載の耐火性組成物であって、
前記ポリマーは、クロロプレンゴム又はアクリロニトリル−ブタジエンゴム(NBR)である、耐火性組成物。
The refractory composition according to claim 1 or 2.
A refractory composition in which the polymer is chloroprene rubber or acrylonitrile-butadiene rubber (NBR).
請求項1乃至3のうち何れか1項に記載の耐火性組成物であって、
加硫剤をさらに含む、耐火性組成物。
The refractory composition according to any one of claims 1 to 3.
A refractory composition further comprising a vulcanizing agent.
ガス管の繋ぎ目に使用されるガス管用耐火材であって、
請求項1乃至4のうち何れか1項に記載の耐火性組成物で形成される、ガス管用耐火材。
A refractory material for gas pipes used at the joints of gas pipes.
A refractory material for a gas pipe, which is formed of the refractory composition according to any one of claims 1 to 4.
請求項5に記載のガス管用耐火材であって、
前記ガス管を流れる流体の溶解度パラメータと前記ポリマーの溶解度パラメータとの差が、1.0超である、ガス管用耐火材。
The refractory material for gas pipes according to claim 5.
A refractory material for a gas pipe in which the difference between the solubility parameter of the fluid flowing through the gas pipe and the solubility parameter of the polymer is more than 1.0.
JP2020088380A 2019-06-26 2020-05-20 Refractory material for gas pipes Active JP6914400B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019118703 2019-06-26
JP2019118703 2019-06-26

Publications (2)

Publication Number Publication Date
JP2021004356A true JP2021004356A (en) 2021-01-14
JP6914400B2 JP6914400B2 (en) 2021-08-04

Family

ID=74097042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020088380A Active JP6914400B2 (en) 2019-06-26 2020-05-20 Refractory material for gas pipes

Country Status (1)

Country Link
JP (1) JP6914400B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63132993A (en) * 1986-11-25 1988-06-04 Hitachi Cable Ltd Fire-proof composition
JPH108058A (en) * 1996-06-20 1998-01-13 Hitachi Cable Ltd Refractory sealing material for preventing fire spreading
JP2002105328A (en) * 2000-09-29 2002-04-10 Sekisui Chem Co Ltd Fire-resistant soundproof vibration-damping resin composition
JP2018090754A (en) * 2016-01-27 2018-06-14 積水化学工業株式会社 Fire-resistant resin composition
JP2020152809A (en) * 2019-03-20 2020-09-24 イイダ産業株式会社 Fire-resistant molding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63132993A (en) * 1986-11-25 1988-06-04 Hitachi Cable Ltd Fire-proof composition
JPH108058A (en) * 1996-06-20 1998-01-13 Hitachi Cable Ltd Refractory sealing material for preventing fire spreading
JP2002105328A (en) * 2000-09-29 2002-04-10 Sekisui Chem Co Ltd Fire-resistant soundproof vibration-damping resin composition
JP2018090754A (en) * 2016-01-27 2018-06-14 積水化学工業株式会社 Fire-resistant resin composition
JP2020152809A (en) * 2019-03-20 2020-09-24 イイダ産業株式会社 Fire-resistant molding

Also Published As

Publication number Publication date
JP6914400B2 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
JP4041149B2 (en) Thermally expandable putty composition
JP4450760B2 (en) Joint materials and gaskets
US10385647B2 (en) Swellable rubber compositions
JP6204118B2 (en) Thermally expandable joint material for outer wall
JP4068135B1 (en) Rubber mixture for heat-expandable joint material, heat-expandable joint material and fireproof two-layer pipe joint
JP2018021212A (en) Fire-resistant resin composition
JP2008115359A (en) Fireproof rubber composition, fireproof covering material comprising the same, and fireproof covering method using the covering material
WO2020195799A1 (en) Elastomer composition and molded body
JP4490860B2 (en) Joint materials and gaskets
JP6914400B2 (en) Refractory material for gas pipes
JP3964918B2 (en) Refractory double-layer pipe fittings
JP5248807B2 (en) Rubber molding production method and sealing member obtained by the method
JP5842950B2 (en) A heat-expandable refractory resin composition and a method for producing the formed body.
JP2006225473A (en) Rubber composition for tire and pneumatic tire using the same
JP2010078111A (en) Fluororesin sheet for gasket, method of manufacturing the same, and sheet gasket
EP3424999A1 (en) Refractory elastomer composition and molded article thereof
JP4052519B2 (en) Refractory double-layer pipe fittings
JP6374756B2 (en) Thermally expandable joint material for outer wall
JP6914405B1 (en) Refractory material
JP2004217811A (en) HYDROGENATED NITRILE RUBBER-BASED SEAL MOLDING MATERIAL FOR R152a AND R134a
JP6117320B2 (en) Non-curing thermal expansion putty composition
JP6941214B2 (en) Refractory material
CN104194730A (en) Fluorine-free refrigerant and preparation method thereof
JP7018108B1 (en) Refractory material
JP6960028B2 (en) Refractory material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201021

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201021

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210713

R150 Certificate of patent or registration of utility model

Ref document number: 6914400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250