JP2021003688A - Ultrahigh-pressure wet type atomizer, control method thereof, and ultrahigh-pressure wet type atomization method - Google Patents

Ultrahigh-pressure wet type atomizer, control method thereof, and ultrahigh-pressure wet type atomization method Download PDF

Info

Publication number
JP2021003688A
JP2021003688A JP2019119935A JP2019119935A JP2021003688A JP 2021003688 A JP2021003688 A JP 2021003688A JP 2019119935 A JP2019119935 A JP 2019119935A JP 2019119935 A JP2019119935 A JP 2019119935A JP 2021003688 A JP2021003688 A JP 2021003688A
Authority
JP
Japan
Prior art keywords
fluid
ultra
processed
high pressure
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019119935A
Other languages
Japanese (ja)
Other versions
JP7307904B2 (en
Inventor
敏 吉田
Satoshi Yoshida
敏 吉田
吉田 悟
Satoru Yoshida
悟 吉田
加藤 晴久
Haruhisa Kato
晴久 加藤
文子 中村
Fumiko Nakamura
文子 中村
美貴子 清水
Mikiko Shimizu
美貴子 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Yoshida Industry Co Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Yoshida Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Yoshida Industry Co Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2019119935A priority Critical patent/JP7307904B2/en
Publication of JP2021003688A publication Critical patent/JP2021003688A/en
Application granted granted Critical
Publication of JP7307904B2 publication Critical patent/JP7307904B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Disintegrating Or Milling (AREA)

Abstract

To provide an ultrahigh-pressure wet type atomizer which can be downsized, and is capable of highly atomizing particles contained in a processing object fluid, and to provide a control method of the atomizer and an ultrahigh-pressure wet type atomization method.SOLUTION: An ultrahigh-pressure wet type atomizer 100 includes an ultrahigh-pressure wet type atomization unit for atomizing particles contained in a processing object fluid by jetting the processing object fluid with turbidity of particles from one or two nozzles at ultrahigh pressure. The ultrahigh-pressure wet type atomizer comprises: a container A for accommodating the processing object fluid; a cylinder 40 with a plunger 41 sliding on an inner peripheral wall; and a non-return valve 60 provided between the container A and the cylinder 40. In the atomizer, when the plunger 41 is retreated, the processing object fluid inside the container A is accommodated in the cylinder 40 via the non-return valve 60, and when the plunger 41 is moved forward, the processing object fluid accommodated in the cylinder 40 is jetted at ultrahigh pressure from the nozzles and circulation processing for returning the fluid to the container A is executed at least once.SELECTED DRAWING: Figure 1

Description

本発明は、超高圧湿式微粒子化装置及びその制御方法及び超高圧湿式微粒子化方法に関し、詳しくは、超高圧湿式微粒子化処理を繰り返し循環実行することによって処理対象流体の高度な微粒子化を可能にした超高圧湿式微粒子化装置及びその制御方法及び超高圧湿式微粒子化方法に関する。 The present invention relates to an ultra-high pressure wet micronization apparatus, a control method thereof, and an ultra-high pressure wet micronization method. The present invention relates to an ultra-high pressure wet micronization apparatus, a control method thereof, and an ultra-high pressure wet micronization method.

従来、粒子が混濁された処理対象流体を1又は2のノズルから超高圧で噴出させることにより処理対象流体に含まれる粒子を微粒子化する湿式ジェットミル処理部を備えた装置としては、特許文献1に記載されたものが知られている。 Conventionally, Patent Document 1 is a device provided with a wet jet mill processing unit for atomizing particles contained in a fluid to be treated by ejecting a fluid to be treated in which particles are turbid from nozzles 1 or 2 at an ultrahigh pressure. The ones described in are known.

特許文献1には、溶媒と粉末を混合することによって混合槽11で形成されたスラリー前駆体を給液ポンプ13によって混合槽11から排出し、増圧機14で例えば10MPa以上の圧力に加圧して、衝突ユニット( 湿式ジェットミル処理部)15中に噴出させ、ここで湿式ジェットミル処理を行った後そのスラリー前駆体を循環ポンプ(循環部)17によって混合槽11に導き、混合槽11で、再び少量の粉末を混合して、上記処理を所定回数繰り返すことによって所望の粉末濃度のスラリーを製造し、その後、バルブ18を切り換えて製造したスラリーをスラリー槽19に導くようにしたスラリーの製造装置が記載されている。 In Patent Document 1, the slurry precursor formed in the mixing tank 11 by mixing the solvent and the powder is discharged from the mixing tank 11 by the liquid supply pump 13, and is pressurized to a pressure of, for example, 10 MPa or more by the pressure booster 14. , Is ejected into the collision unit (wet jet mill processing unit) 15, and after performing the wet jet mill processing there, the slurry precursor is guided to the mixing tank 11 by the circulation pump (circulation unit) 17, and in the mixing tank 11, A slurry manufacturing apparatus in which a small amount of powder is mixed again and the above treatment is repeated a predetermined number of times to produce a slurry having a desired powder concentration, and then the valve 18 is switched to guide the produced slurry to the slurry tank 19. Is described.

特開2010−77001号公報Japanese Unexamined Patent Publication No. 2010-777001

しかし、上記特許文献1に記載されたスラリーの製造装置は、給液ポンプ13と循環ポンプ17の2つのポンプを用いることに加えて、給液ポンプ13の後段に増圧器14を設ける必要があるものであり、更に、溶媒と粉末を混合する混合槽11、製造したスラリーを導くスラリー槽19を別位置に設ける必要があるものであり、その結果、装置が大型化し、かつ高価になり、また、給液ポンプ13と増圧機14を用いてスラリー前駆体の噴出処理を行っているため、高度な微粒子化が難しいという問題があった。 However, in the slurry manufacturing apparatus described in Patent Document 1, in addition to using two pumps, the liquid supply pump 13 and the circulation pump 17, it is necessary to provide a pressure booster 14 after the liquid supply pump 13. Further, it is necessary to provide a mixing tank 11 for mixing the solvent and the powder and a slurry tank 19 for guiding the produced slurry at different positions, and as a result, the apparatus becomes large and expensive, and also Since the slurry precursor is ejected using the liquid supply pump 13 and the pressure booster 14, there is a problem that it is difficult to make highly fine particles.

本発明はこのような問題を解決するためになされたものであり、その目的とするところは、小型化可能であり、かつ処理対象流体に含まれる粒子を高度に微粒子化することができる超高圧湿式微粒子化装置及びその制御方法及び超高圧湿式微粒子化方法を提供することにある。 The present invention has been made to solve such a problem, and an object of the present invention is an ultra-high pressure capable of miniaturization and highly fine particle particles contained in a fluid to be processed. It is an object of the present invention to provide a wet fine particle device, a control method thereof, and an ultrahigh pressure wet fine particle method.

上記の目的を達成するため、請求項1に記載の発明は、粒子が混濁された処理対象流体を1又は2のノズルから超高圧で噴出させることにより前記処理対象流体に含まれる粒子を微粒子化する超高圧湿式微粒子化部を有する超高圧湿式微粒子化装置であって、前記処理対象流体を収容する処理対象流体収容容器と、内周壁を摺動するプランジャを備えたシリンダと、前記処理対象流体収容容器と前記シリンダとの間に設けられた逆止弁と、を備え、前記プランジャを後退させることにより前記処理対象流体収容容器内の前記処理対象流体を前記逆止弁を介して前記シリンダ内に収容し、前記プランジャを前進させることにより前記シリンダ内に収容された前記処理対象流体を前記超高圧湿式微粒子化部の前記ノズルから超高圧で噴出させて前記処理対象流体収容容器内に戻す循環処理を少なくとも一回実行することを特徴とする。 In order to achieve the above object, the invention according to claim 1 atomizes the particles contained in the fluid to be treated into fine particles by ejecting the fluid to be treated in which the particles are turbid from the nozzles 1 or 2 at an ultrahigh pressure. An ultra-high pressure wet micronization apparatus having an ultra-high pressure wet micronization unit, which comprises a processing target fluid accommodating container for accommodating the processing target fluid, a cylinder provided with a plunger sliding on an inner peripheral wall, and the processing target fluid. A check valve provided between the storage container and the cylinder is provided, and the fluid to be processed in the fluid storage container to be processed is brought into the cylinder via the check valve by retracting the plunger. By advancing the plunger, the fluid to be processed, which is contained in the cylinder, is ejected from the nozzle of the ultra-high pressure wet micronization unit at an ultra-high pressure and returned to the fluid storage container to be processed. It is characterized in that the process is executed at least once.

請求項2に記載の発明は、請求項1に記載の発明において、前記プランジャの後退及び前進は該プランジャに接続された螺子軸に係合するナット部をサーボモータにより回動することにより制御されることを特徴とする。 According to a second aspect of the present invention, in the invention according to the first aspect, the retracting and advancing of the plunger is controlled by rotating a nut portion engaged with a screw shaft connected to the plunger by a servomotor. It is characterized by that.

請求項3に記載の発明は、請求項1に記載の発明において、前記処理対象流体収容容器に併設された併設容器と、前記併設容器を前記循環処理流路内にある前記処理対象流体収容容器と置換するように前記併設容器の配設位置を移動制御する移動制御手段と、を更に具備し、前記循環処理の終了後若しくは前記循環処理の間に前記移動制御手段により前記併設容器を前記処理対象流体収容容器の配設位置に移動させ、前記循環処理により処理された処理対象流体の一部をサンプリングすることを特徴とする。 The invention according to claim 3 is the invention according to claim 1, wherein an annex container attached to the processing target fluid accommodating container and the processing object fluid accommodating container in which the annex container is placed in the circulation processing flow path. Further provided with a movement control means for moving and controlling the arrangement position of the annexed container so as to replace the above-mentioned processing of the annexed container by the movement control means after the completion of the circulation processing or during the circulation processing. It is characterized in that it is moved to the arrangement position of the target fluid storage container and a part of the processing target fluid processed by the circulation processing is sampled.

請求項4に記載の発明は、請求項3に記載の発明において、前記移動制御手段は、一軸電動アクチュエータから構成されることを特徴とする。 The invention according to claim 4 is characterized in that, in the invention according to claim 3, the movement control means is composed of a uniaxial electric actuator.

請求項5に記載の発明は、請求項1又は3に記載の発明において、前記処理対象流体収容容器の底部に設けられ、前記処理対象流体の前記循環処理に先立って前記処理対象流体に含まれる粒子の超音波分散処理を実行する超音波発振装置、を更に具備することを特徴とする。 The invention according to claim 5 is provided at the bottom of the processing target fluid storage container in the invention according to claim 1 or 3, and is included in the processing target fluid prior to the circulation treatment of the processing target fluid. It is characterized by further comprising an ultrasonic oscillating device for performing ultrasonic dispersion processing of particles.

請求項6に記載の発明は、粒子が混濁された処理対象流体を収容する処理対象流体収容容器と、前記処理対象流体を1又は2のノズルから超高圧で噴出させる超高圧湿式微粒子化部と、内周壁を摺動するプランジャを備えたシリンダと、前記処理対象流体収容容器と前記シリンダとの間に設けられた逆止弁とを有する高圧湿式微粒子化装置の制御方法であって、前記プランジャを後退させることにより前記処理対象流体収容容器内の前記処理対象流体を前記逆止弁を介して前記シリンダ内に収容する収容ステップと、前記プランジャを前進させることにより前記シリンダ内に収容された前記処理対象流体を前記超高圧湿式微粒子化部の前記ノズルから超高圧で噴出させ前記処理対象流体に含まれる粒子を微粒子化する微粒子化ステップと、前記微粒子化ステップで微粒子化された微粒子を含む前記処理対象流体を前記処理対象流体収容容器内に回収する回収ステップと、前記収容ステップ、前記微粒子化ステップ、前記回収ステップからなる循環処理を少なくとも一回実行する循環ステップと、を具備することを特徴とする。 The invention according to claim 6 is a processing target fluid storage container for accommodating a treatment target fluid in which particles are turbid, and an ultra-high pressure wet micronization unit for ejecting the treatment target fluid from one or two nozzles at an ultra high pressure. A method for controlling a high-pressure wet micronization apparatus having a cylinder provided with a plunger that slides on an inner peripheral wall and a check valve provided between the fluid storage container to be processed and the cylinder. The accommodating step of accommodating the fluid to be processed in the fluid accommodating container to be processed into the cylinder via the check valve by retracting the fluid, and the accommodating step of accommodating the fluid to be processed into the cylinder by advancing the plunger. A step of atomizing the fluid to be treated by ejecting the fluid to be treated from the nozzle of the ultra-high pressure wet micronization unit at an ultrahigh pressure to atomize the particles contained in the fluid to be processed, and a step of atomizing the fine particles contained in the fine particle step. It is characterized by including a recovery step of recovering the fluid to be treated in the fluid storage container to be treated, and a circulation step of executing a circulation process including the storage step, the micronization step, and the recovery step at least once. And.

請求項7に記載の発明は、請求項6に記載の発明において、前記循環処理の終了後若しくは前記循環処理の間に、前記処理対象流体収容容器に併設された併設容器を前記処理対象流体収容容器の配設位置に移動させ、前記循環処理により処理された処理対象流体の一部をサンプリングするサンプリングステップ、を更に具備することを特徴とする。 The invention according to claim 7 is the invention according to claim 6, wherein the annex container attached to the processing target fluid accommodating container is accommodated in the processing target fluid accommodating container after the completion of the circulation treatment or during the circulation treatment. It is further provided with a sampling step of moving to the arrangement position of the container and sampling a part of the fluid to be processed processed by the circulation processing.

請求項8に記載の発明は、請求項6又は7に記載の発明において、前記処理対象流体収容容器の底部に設けられた超音波発振装置により、前記処理対象流体の前記循環処理に先立って前記処理対象流体に含まれる粒子の超音波分散処理を実行する超音波分散ステップ、を更に具備することを特徴とする。 The invention according to claim 8 is the invention according to claim 6 or 7, wherein the ultrasonic oscillating device provided at the bottom of the processing target fluid storage container is used prior to the circulation processing of the processing target fluid. It is characterized by further comprising an ultrasonic dispersion step for executing ultrasonic dispersion processing of particles contained in the fluid to be processed.

請求項9に記載の発明は、請求項7に記載の発明において、前記循環処理に先立って該循環処理に係る前記処理対象流体の循環流路を純水で満たし、前記循環処理に伴って前記純水を前記処理対象流体収容容器の配設位置に移動させた前記併設容器内に回収することを特徴とする。 The invention according to claim 9 is the invention according to claim 7, wherein the circulation flow path of the fluid to be treated according to the circulation treatment is filled with pure water prior to the circulation treatment, and the circulation treatment is accompanied by the circulation treatment. It is characterized in that pure water is collected in the adjacent container which has been moved to the arrangement position of the fluid storage container to be treated.

請求項10に記載の発明は、請求項7に記載の発明において、前記併設容器は、前記処理対象流体収容容器と同一の容量からなり、
前記循環処理が終了する毎に前記併設容器を前記処理対象流体収容容器の配設位置に移動させ、前記微粒子化ステップで微粒子化された微粒子を含む処理終了流体を前記併設容器内に回収する処理終了流体回収ステップ、を具備し、前記処理終了流体回収ステップを前記処理対象流体収容容器が空になり、前記併設容器が満杯になるまで繰り返すことを特徴とする。
The invention according to claim 10 is the invention according to claim 7, wherein the annex container has the same capacity as the fluid storage container to be processed.
Each time the circulation process is completed, the annex container is moved to the arrangement position of the fluid storage container to be processed, and the process-finished fluid containing the fine particles atomized in the atomization step is collected in the annex container. The end fluid recovery step is provided, and the process end fluid recovery step is repeated until the processing target fluid container is emptied and the annex container is full.

請求項11に記載の発明は、粒子が混濁された処理対象流体を1又は2のノズルから超高圧で噴出させることにより前記処理対象流体に含まれる粒子を微粒子化する超高圧湿式微粒子化方法であって、シリンダ内でプランジャを後退させることにより処理対象流体収容容器内に収容された前記処理対象流体を逆止弁を介して前記シリンダ内に収容する第1のステップと、前記シリンダ内で前記プランジャを前進させることにより前記第1のステップで前記シリンダ内に収容された前記処理対象流体を前記超高圧湿式微粒子化部の前記ノズルから超高圧で噴出させ、前記処理対象流体に含まれる粒子を微粒子化する第2のステップと、前記第2のステップで前記処理対象流体に含まれる粒子が微粒子化された前記処理対象流体を前記処理対象流体収容容器内に戻す第3のステップと、を備え、前記第1のステップ、前記第2のステップ、前記第3のステップを含む前記処理対象流体の循環処理を少なくとも一回実行することを特徴とする。 The invention according to claim 11 is an ultra-high pressure wet fine particle forming method for atomizing the particles contained in the processing target fluid by ejecting the processing target fluid in which the particles are turbid from the nozzle 1 or 2 at an ultra high pressure. The first step of accommodating the fluid to be processed in the fluid accommodating container to be processed by retracting the plunger in the cylinder via a check valve and the said in the cylinder. By advancing the plunger, the fluid to be processed contained in the cylinder in the first step is ejected from the nozzle of the ultra-high pressure wet micronization unit at ultra-high pressure, and the particles contained in the fluid to be processed are ejected. A second step of atomizing the fluid, and a third step of returning the fluid to be processed, in which the particles contained in the fluid to be processed in the second step are atomized, into the fluid storage container to be processed are provided. , The first step, the second step, and the circulation processing of the fluid to be processed including the third step are executed at least once.

本発明は、粒子が混濁された処理対象流体を1又は2のノズルから超高圧で噴出させることにより前記処理対象流体に含まれる粒子を微粒子化する超高圧湿式微粒子化部を有する超高圧湿式微粒子化装置であって、前記処理対象流体を収容する処理対象流体収容容器と、内周壁を摺動するプランジャを備えたシリンダと、前記処理対象流体収容容器と前記シリンダとの間に設けられた逆止弁と、を備え、前記プランジャを後退させることにより前記処理対象流体収容容器内の前記処理対象流体を前記逆止弁を介して前記シリンダ内に収容し、前記プランジャを前進させることにより前記シリンダ内に収容された前記処理対象流体を前記超高圧湿式微粒子化部の前記ノズルから超高圧で噴出させて前記処理対象流体収容容器に戻す循環処理を少なくとも一回実行するように構成したので、小型化可能であり、かつ処理対象流体に含まれる粒子を高度に微粒子化することができる超高圧湿式微粒子化装置を提供することができるという効果を奏する。 The present invention has an ultra-high pressure wet fine particle having an ultra-high pressure wet fine particle-forming portion for atomizing the particles contained in the fluid to be processed by ejecting the fluid to be processed in which the particles are turbid from one or two nozzles at an ultra-high pressure. An inverted device provided between a processing target fluid storage container for storing the treatment target fluid, a cylinder provided with a plunger sliding on an inner peripheral wall, and the treatment target fluid storage container and the cylinder. A stop valve is provided, and the fluid to be processed in the fluid storage container to be processed is accommodated in the cylinder via the check valve by retracting the plunger, and the cylinder is advanced by advancing the plunger. Since the circulation process of ejecting the fluid to be processed contained therein from the nozzle of the ultra-high pressure wet micronization section at ultra-high pressure and returning it to the fluid storage container to be processed is executed at least once, the size is small. It has an effect that it is possible to provide an ultra-high pressure wet micronization apparatus capable of atomizing particles contained in the fluid to be treated.

図1は、本発明に係る超高圧湿式微粒子化装置の一実施例の正面図である。FIG. 1 is a front view of an embodiment of an ultra-high pressure wet micronization apparatus according to the present invention. 図2は、図1に示した超高圧湿式微粒子化装置の上面図である。FIG. 2 is a top view of the ultra-high pressure wet micronization apparatus shown in FIG. 図3は、図1に示した超高圧湿式微粒子化装置の側面図である。FIG. 3 is a side view of the ultra-high pressure wet micronization apparatus shown in FIG. 図4は、図1に示した超高圧湿式微粒子化装置の要部拡大図である。FIG. 4 is an enlarged view of a main part of the ultra-high pressure wet micronization apparatus shown in FIG. 図5は、本発明に係る超高圧湿式微粒子化装置の動作の一例を説明するフローチャートである。FIG. 5 is a flowchart illustrating an example of the operation of the ultra-high pressure wet micronization apparatus according to the present invention.

以下、本発明の実施例について、願書に添付した図面を参照しながら詳細に説明する。 Hereinafter, examples of the present invention will be described in detail with reference to the drawings attached to the application.

図1は、本発明に係る超高圧湿式微粒子化装置の一実施例の正面図であり、図2は、図1に示した超高圧湿式微粒子化装置の上面図、図3は、図1に示した超高圧湿式微粒子化装置の側面図、図4は、図1に示した超高圧湿式微粒子化装置の要部拡大図である。 FIG. 1 is a front view of an embodiment of the ultra-high pressure wet micronization apparatus according to the present invention, FIG. 2 is a top view of the ultra-high pressure wet micronization apparatus shown in FIG. 1, and FIG. 3 is FIG. A side view of the ultra-high pressure wet micronization apparatus shown, FIG. 4 is an enlarged view of a main part of the ultra-high pressure wet micronization apparatus shown in FIG.

図1乃至図4において、この実施例の超高圧湿式微粒子化装置100は、処理対象流体を1又は複数回循環させることにより、循環路内の超高圧湿式微粒子化部70により超高圧湿式微粒子化処理を繰り返し行う循環処理を実行して、この循環処理により、処理対象流体に含まれる粒子を微粒子化するものである。 In FIGS. 1 to 4, the ultra-high pressure wet micronization apparatus 100 of this embodiment circulates the fluid to be processed one or more times, so that the ultra-high pressure wet micronization unit 70 in the circulation path makes the ultra-high pressure wet fine particles. A circulation treatment in which the treatment is repeated is executed, and the particles contained in the fluid to be treated are made into fine particles by this circulation treatment.

ここで、超高圧湿式微粒子化部70は、図4に示すように2つのノズル71a及び71bを有するノズル板71を有しており、このノズル板71の2つのノズル71a及び71bから処理対象流体を超高圧で噴出させることにより処理対象流体に含まれる粒子を微粒子化する処理を行う。 Here, the ultra-high pressure wet fine particle section 70 has a nozzle plate 71 having two nozzles 71a and 71b as shown in FIG. 4, and the fluid to be processed is processed from the two nozzles 71a and 71b of the nozzle plate 71. Is ejected at an ultra-high pressure to atomize the particles contained in the fluid to be treated.

なお、図4においては、ノズル板71に2つのノズル71a及び71bを設けた超高圧湿式微粒子化部70を示したが、この超高圧湿式微粒子化部70としてはノズル板に1つのノズルを設けた構成のものを用いても同様に構成することができる。 In addition, in FIG. 4, the ultra-high pressure wet micronization section 70 in which two nozzles 71a and 71b are provided on the nozzle plate 71 is shown, but the ultra-high pressure wet micronization section 70 is provided with one nozzle on the nozzle plate. The same configuration can be made by using the same configuration.

さて、この実施例の超高圧湿式微粒子化装置100においては、処理対象流体を収容する容器(処理対象流体収容容器)Aと、容器Aに併設され容器Aと同容量の容器(併設容器)Bとを備えている。 By the way, in the ultra-high pressure wet micronization apparatus 100 of this embodiment, a container (treatment target fluid storage container) A for accommodating the treatment target fluid and a container (attached container) B attached to the container A and having the same capacity as the container A. And have.

容器A及び容器Bは、一軸電動アクチュエータ20によりその位置が移動可能に構成されており、容器Aは、この実施例の超高圧湿式微粒子化装置100の上記循環処理に際して処理対象流体が収容されるもので、上記循環処理に際しては、一軸電動アクチュエータ20により循環路の直下位置である循環位置に移動される。また、容器Bは、上記循環路の清掃のための純水の収容及び上記循環処理による超高圧湿式微粒子化処理が完了した処理対象流体を収容するために用いられる。 The positions of the container A and the container B are movable by the uniaxial electric actuator 20, and the container A houses the fluid to be processed during the circulation treatment of the ultra-high pressure wet micronization apparatus 100 of this embodiment. In the above circulation processing, the uniaxial electric actuator 20 moves the uniaxial electric actuator 20 to a circulation position which is a position directly below the circulation path. Further, the container B is used for accommodating pure water for cleaning the circulation path and accommodating the fluid to be processed for which the ultra-high pressure wet micronization treatment by the circulation treatment has been completed.

容器Aの下面には超音波発振装置10が設けられている。この超音波発振装置10は、この実施例の超高圧湿式微粒子化装置100の超高圧湿式微粒子化処理に先立って容器Aに収容された処理対象流体の超音波分散処理を行うものである。 An ultrasonic oscillator 10 is provided on the lower surface of the container A. The ultrasonic oscillator 10 performs ultrasonic dispersion processing of the fluid to be processed contained in the container A prior to the ultrahigh pressure wet micronization treatment of the ultrahigh pressure wet micronization device 100 of this embodiment.

この超音波分散処理は、処理対象流体に含まれる粒子の径を超高圧湿式微粒子化装部70のノズル71a、71bの径より小さくするための処理で、この処理を行わないと、処理対象流体に含まれる粒子が超高圧湿式微粒子化部70のノズル71a、71bを通過せず、最悪の場合は詰まってしまうことがあり、この場合は、超高圧湿式微粒子化部70による超高圧湿式微粒子化処理を有効に行うことができないことになる。 This ultrasonic dispersion treatment is a treatment for making the diameter of the particles contained in the fluid to be treated smaller than the diameters of the nozzles 71a and 71b of the ultra-high pressure wet micronization device 70. If this treatment is not performed, the fluid to be treated will be treated. The contained particles do not pass through the nozzles 71a and 71b of the ultra-high pressure wet fine particle part 70 and may be clogged in the worst case. In this case, the ultra-high pressure wet fine particle processing by the ultra high pressure wet fine particle part 70. Will not be able to be done effectively.

なお、超高圧湿式微粒子化装置100の超高圧湿式微粒子化処理に先立つ処理対象流体の上記超音波分散処理は、上記実施例においては、処理対象流体が容器Aに収容された状態で行うように構成したが、処理対象流体の超音波分散処理は上記超高圧湿式微粒子化装置100の外部で行い、その後、超音波分散処理された処理対象流体を容器Aに収容するように構成してもよい。この場合、上記実施例の超高圧湿式微粒子化装置100から超音波発振装置10を除外することができる。 In the above embodiment, the ultrasonic dispersion treatment of the fluid to be treated prior to the ultrahigh pressure wet micronization treatment of the ultrahigh pressure wet micronization apparatus 100 is performed so that the fluid to be treated is contained in the container A. However, the ultrasonic dispersion treatment of the fluid to be treated may be performed outside the ultrahigh pressure wet fine particle device 100, and then the fluid to be treated which has been ultrasonically dispersed may be accommodated in the container A. .. In this case, the ultrasonic oscillator 10 can be excluded from the ultra-high pressure wet micronization apparatus 100 of the above embodiment.

超高圧湿式微粒子化部70におけるノズル板71の2つのノズル71a、71bからの処理対象流体の超高圧噴出は、シリンダ40内のプランジャ41の往復動により制御される。ここで、プランジャ41は、シリンダ40の内周壁に摺接して往復動し、このシリンダ40内のプランジャ41の往復動は、サーボモータ30により制御される。 The ultra-high pressure ejection of the fluid to be processed from the two nozzles 71a and 71b of the nozzle plate 71 in the ultra-high pressure wet micronization unit 70 is controlled by the reciprocating movement of the plunger 41 in the cylinder 40. Here, the plunger 41 slides in contact with the inner peripheral wall of the cylinder 40 and reciprocates, and the reciprocating movement of the plunger 41 in the cylinder 40 is controlled by the servomotor 30.

すなわち、サーボモータ30の回動軸には第1のプーリ31が接続され、この第1のプーリ31には、ベルトを介して第2のプーリ32が接続され、この第2のプーリ32には内壁に螺子が形成されたナット部33が固定されている。そして、このナット部33の孔にはシリンダ40の内周壁を摺動するプランジャ41に接続された螺子軸42が挿入され、この螺子軸42の螺子は、ナット部33の孔の内壁に形成された螺子に係合する。 That is, a first pulley 31 is connected to the rotation shaft of the servomotor 30, a second pulley 32 is connected to the first pulley 31 via a belt, and the second pulley 32 is connected to the second pulley 32. A nut portion 33 having a screw formed on the inner wall is fixed. A screw shaft 42 connected to a plunger 41 sliding on the inner peripheral wall of the cylinder 40 is inserted into the hole of the nut portion 33, and the screw of the screw shaft 42 is formed on the inner wall of the hole of the nut portion 33. Engage with the screw.

したがって、サーボモータ30の回動により、プランジャ41をシリンダ40内で往復動させることができ、ここで、プランジャ41の往復動は、螺子軸42の一端に接続され、ガイド51上を移動するスライダ52の位置から制御される。すなわち、スライダ52が図1に示す第1のフォットセンサ53−1の位置にあるときは、プランジャ41は、シリンダ40の前進端位置にあり、スライダ52が図1に示す第2のフォットセンサ53−2の位置にあるときは、プランジャ41は、シリンダ40の後退端位置にあるので、第1のフォットセンサ53−1の出力及び第2のフォットセンサ53−2の出力に基づきサーボモータ30を回動制御することで、シリンダ40内のプランジャ41を前進端位置と後退端位置との間で往復動制御することができる。 Therefore, the reciprocating movement of the plunger 41 can be reciprocated in the cylinder 40 by the rotation of the servomotor 30, and the reciprocating movement of the plunger 41 is connected to one end of the screw shaft 42 and moves on the guide 51. It is controlled from the position of 52. That is, when the slider 52 is in the position of the first foot sensor 53-1 shown in FIG. 1, the plunger 41 is in the forward end position of the cylinder 40, and the slider 52 is in the position of the second foot sensor 53 shown in FIG. When in the position of -2, since the plunger 41 is in the retracted end position of the cylinder 40, the servomotor 30 is operated based on the output of the first foot sensor 53-1 and the output of the second foot sensor 53-2. By controlling the rotation, the plunger 41 in the cylinder 40 can be reciprocated between the forward end position and the backward end position.

シリンダ40の先端には処理対象流体流入口61、処理対象流体流出口62が設けられている。そして、処理対象流体流入口61は、逆止弁60、管継手63、チューブ64を経由して容器A内に導かれ、処理対象流体流出口62は、超高圧湿式微粒子化部70、管継手65を経由して容器Aに導かれている。 A fluid inlet 61 to be processed and a fluid outlet 62 to be processed are provided at the tip of the cylinder 40. Then, the fluid inlet 61 to be treated is guided into the container A via the check valve 60, the pipe joint 63, and the tube 64, and the fluid outlet 62 to be treated is the ultra-high pressure wet micronization part 70 and the pipe joint. It is guided to the container A via 65.

そして、容器Aが処理対象流体で満たされ、図3に示す位置にあるとき、サーボモータ30の回動により、プランジャ41をシリンダ40内で後退させると、容器A内の処理対象流体は、チューブ64、管継手63、逆止弁60を経由して処理対象流体流入口61からシリンダ40内に導かれ、スライダ52が第2のフォットセンサ53−2の位置に達してプランジャ41をシリンダ40内で前進させると、シリンダ40内の処理対象流体は、処理対象流体流出口62から超高圧湿式微粒子化部70に押し出され、これにより超高圧湿式微粒子化部70のノズル71a、71bから処理対象流体が超高圧で噴出され、これにより処理対象流体に含まれる粒子の微粒子化が行われる。この微粒子化された処理対象流体は、管継手65を経由して容器A内に戻され、上記処理を、1回若しくは複数回行うことで、容器A内の処理対象流体の所望の微粒子化を行うことが可能になる。 Then, when the container A is filled with the fluid to be processed and is in the position shown in FIG. 3, when the plunger 41 is retracted in the cylinder 40 by the rotation of the servomotor 30, the fluid to be processed in the container A becomes a tube. It is guided into the cylinder 40 from the fluid inlet 61 to be processed via the pipe joint 63 and the check valve 60, the slider 52 reaches the position of the second foot sensor 53-2, and the plunger 41 is moved into the cylinder 40. The fluid to be processed in the cylinder 40 is extruded from the fluid outlet 62 to be processed into the ultra-high pressure wet fine particle section 70, whereby the fluid to be processed is pushed out from the nozzles 71a and 71b of the ultra-high pressure wet fine particle section 70. Is ejected at an ultra-high pressure, whereby the particles contained in the fluid to be treated are atomized. The finely divided fluid to be treated is returned to the container A via the pipe joint 65, and the above treatment is performed once or a plurality of times to obtain desired fine particles of the fluid to be treated in the container A. It will be possible to do.

図3に示す圧力センサ80は、シリンダ40内の圧力をモニタするもので、この圧力センサ80により超高圧湿式微粒子化部70に対する供給圧力を知ることができる。なお、この圧力センサ80は、図1及び図2では図示が省略されている。 The pressure sensor 80 shown in FIG. 3 monitors the pressure in the cylinder 40, and the pressure sensor 80 can know the supply pressure to the ultra-high pressure wet micronization unit 70. The pressure sensor 80 is not shown in FIGS. 1 and 2.

なお、上記実施例の超高圧湿式微粒子化装置100においては、上記循環処理の終了後若しくは、上記循環処理の間に、容器Bを用いて上記循環処理をした処理対象流体のサンプリングを行うことができる。このサンプリングは、一軸電動アクチュエータ20により容器Bを容器Aが配置されていた設循環位置に移動させ、管継手65から流出される処理済み処理対象流体を容器B内に導くことにより行われる。 In the ultra-high pressure wet micronization apparatus 100 of the above embodiment, the fluid to be processed that has undergone the circulation treatment can be sampled using the container B after the completion of the circulation treatment or during the circulation treatment. it can. This sampling is performed by moving the container B to the setting circulation position where the container A is arranged by the uniaxial electric actuator 20 and guiding the processed fluid to be processed flowing out from the pipe joint 65 into the container B.

図5は、図1乃至図4に示した本発明に係る超高圧湿式微粒子化装置の動作の一例を説明するフローチャートである。 FIG. 5 is a flowchart illustrating an example of the operation of the ultra-high pressure wet micronization apparatus according to the present invention shown in FIGS. 1 to 4.

この実施例の超高圧湿式微粒子化装置100においては、処理対象流体の超高圧湿式微粒子化に先立って循環路の清掃処理を行い、これにより、循環路内を純水で満たす。すなわち、純水を容器Bに収容し、この容器Bを図3で容器Aが配置されていた循環位置に移動させ、チューブ64を容器Bに挿入し、サーボモータ30を駆動させて、シリンダ40内のプランジャ41を往復動させる。ここで、プランジャ41をシリンダ40内で後退させると、容器B内の純水は、チューブ64、管継手63、逆止弁60を経由して処理対象流体流入口61からシリンダ40内に導かれ、プランジャ41を前進させると、シリンダ40内の純水は、処理対象流体流出口62から超高圧湿式微粒子化部70、管継手65を経由して容器B内に戻され、この処理を繰り返すことにより、循環路の清掃処理が行われる。そして、この清掃処理が終了すると循環路内は純水で満たされることになる。 In the ultra-high pressure wet micronization apparatus 100 of this embodiment, the circulation path is cleaned prior to the ultra-high pressure wet micronization of the fluid to be treated, whereby the inside of the circulation path is filled with pure water. That is, pure water is contained in the container B, the container B is moved to the circulation position where the container A is arranged in FIG. 3, the tube 64 is inserted into the container B, and the servomotor 30 is driven to drive the cylinder 40. The plunger 41 inside is reciprocated. Here, when the plunger 41 is retracted in the cylinder 40, the pure water in the container B is guided into the cylinder 40 from the fluid inflow port 61 to be processed via the tube 64, the pipe joint 63, and the check valve 60. When the plunger 41 is advanced, the pure water in the cylinder 40 is returned from the fluid outlet 62 to be processed into the container B via the ultra-high pressure wet fine particle 70 and the pipe joint 65, and this process is repeated. The cleaning process of the circulation path is performed. When this cleaning process is completed, the circulation path is filled with pure water.

この状態で、容器Aに処理対象流体を収容し、空の容器Bを循環位置に移動させる(ステップ501)。 In this state, the fluid to be processed is contained in the container A, and the empty container B is moved to the circulation position (step 501).

次に、チューブ64を容器Aに挿入し、サーボモータ30を駆動して循環処理を実行する(ステップ502)。この循環処理はシリンダ40内のプランジャ41の3から5往復、すなわち3〜5ショット行われ、この処理により循環路の純水は処理対象流体で置き換えられ、循環路は処理対象流体で満たされる。このとき、循環路の純水は空の容器Bに回収される。 Next, the tube 64 is inserted into the container A, and the servomotor 30 is driven to execute the circulation process (step 502). This circulation process is performed from 3 to 5 round trips of the plunger 41 in the cylinder 40, that is, 3 to 5 shots. By this process, the pure water in the circulation path is replaced with the fluid to be treated, and the circulation path is filled with the fluid to be treated. At this time, the pure water in the circulation path is collected in the empty container B.

その後、処理対象流体が収納された容器Aを循環位置に移動させ(ステップ503)、超音波発振装置10を起動し、容器A内の処理対象流体の超音波分散処理を行う(ステップ504)。そして、サーボモータ30を駆動し、循環処理を開始して、処理対象流体の超高圧湿式微粒子化処理が行われる(ステップ505)。 After that, the container A containing the fluid to be processed is moved to the circulation position (step 503), the ultrasonic oscillator 10 is started, and the ultrasonic dispersion processing of the fluid to be processed in the container A is performed (step 504). Then, the servomotor 30 is driven to start the circulation process, and the ultra-high pressure wet micronization process of the fluid to be processed is performed (step 505).

処理対象流体の循環処理による超高圧湿式微粒子化処理は、例えば10パス程度行われる。ここで1パスは、容器A内の処理対象流体の超高圧湿式微粒子化処理が一巡する例えば3〜5ショットに対応する。 The ultra-high pressure wet micronization treatment by the circulation treatment of the fluid to be treated is performed, for example, about 10 passes. Here, one pass corresponds to, for example, 3 to 5 shots in which the ultra-high pressure wet micronization treatment of the fluid to be processed in the container A goes through.

次に、上記循環処理循環処理がサンプル処理に対応して設定された設定パス行われたか、すなわち設定パス経過かが調べられる(ステップ506)。ここで、設定パスが経過してない場合は(ステップ506でNO)、ステップ506に戻り、設定パスが経過するまで循環処理を繰り返すが、設定パスが経過したと判断されると(ステップ506でYES)、空の容器Bを循環位置に移動させ、循環処理による超高圧湿式微粒子化処理された後の処理対象流体を空の容器B内に導き、そのサンプリング処理を行う(ステップ507)。 Next, it is checked whether or not the cyclic processing is performed on the set path set corresponding to the sample process, that is, whether the set path has elapsed (step 506). Here, if the set path has not elapsed (NO in step 506), the process returns to step 506 and the circulation process is repeated until the set path has elapsed, but when it is determined that the set path has passed (in step 506). YES), the empty container B is moved to the circulation position, the fluid to be treated after the ultra-high pressure wet micronization treatment by the circulation treatment is guided into the empty container B, and the sampling process is performed (step 507).

ステップ508では、このサンプリング処理に基づき、処理対象流体の循環処理による超高圧湿式微粒子化処理を終了するか否かの判断を行う。ここで、超高圧湿式微粒子化処理の継続が必要であり、超高圧湿式微粒子化処理が終了していないと判断されると(ステップ508でNO)、ステップ508に戻り処理対象流体の循環処理による超高圧湿式微粒子化処理を続ける。また、ステップ508で、超高圧湿式微粒子化処理を終了すると判断されると(ステップ508でYES)、空の容器Bを循環位置に移動させ、処理終了流体を空の容器B内に回収する処理終了流体回収処理を実行する(ステップ509)。 In step 508, based on this sampling process, it is determined whether or not to end the ultra-high pressure wet micronization process by the circulation process of the fluid to be processed. Here, it is necessary to continue the ultra-high pressure wet micronization treatment, and if it is determined that the ultra-high pressure wet micronization treatment has not been completed (NO in step 508), the process returns to step 508 and the fluid to be treated is circulated. Continue the ultra-high pressure wet micronization process. Further, when it is determined in step 508 that the ultrahigh pressure wet micronization treatment is completed (YES in step 508), the empty container B is moved to the circulation position, and the processing end fluid is collected in the empty container B. The end fluid recovery process is performed (step 509).

この処理終了流体回収処理は、容器Aが空になり、容器Bが満タンになるまで続けられ、容器Aが空になり、容器Bが満タンになると処理終了流体回収処理と判断され(ステップ501でYES)。この超高圧湿式微粒子化装置100の処理を終了する。 This processing end fluid recovery process is continued until the container A is empty and the container B is full, and when the container A is empty and the container B is full, it is determined to be the process end fluid recovery process (step). YES at 501). The process of the ultra-high pressure wet micronization apparatus 100 is completed.

以上が本発明の一実施例の説明であるが、本発明は上記実施形態に限定されるものではなく、本発明の技術的思想の範囲内であれば、当業者の通常の創作能力によって多くの変形が可能である。 The above is a description of one embodiment of the present invention, but the present invention is not limited to the above-described embodiment, and within the scope of the technical idea of the present invention, many of them are due to ordinary creative ability of those skilled in the art. Can be transformed.

10…超音波発振装置
20…一軸電動アクチュエータ
30…サーボモータ
31…第1のプーリ
32…第2のプーリ
33…ナット部
40…シリンダ
41…プランジャ
42…螺子軸
51…ガイド
52…スライダ
53−1…第1のフォットセンサ
53−2…第2のフォットセンサ
60…逆止弁
61…処理対象流体流入口
62…処理対象流体流出口
63…管継手
64…チューブ
65…管継手
70…超高圧湿式微粒子化部
71…ノズル板
71a…ノズル
71b…ノズル
80…圧力センサ
10 ... Ultrasonic oscillator 20 ... Uniaxial electric actuator 30 ... Servo motor 31 ... First pulley 32 ... Second pulley 33 ... Nut part 40 ... Cylinder 41 ... Plunger 42 ... Screw shaft 51 ... Guide 52 ... Slider 53-1 … First Fott sensor 53-2… Second Fott sensor 60… Check valve 61… Processing target fluid inlet 62… Processing target fluid outlet 63… Pipe fitting 64… Tube 65… Pipe joint 70… Ultra-high pressure wet Fine particle 71 ... Nozzle plate 71a ... Nozzle 71b ... Nozzle 80 ... Pressure sensor

Claims (11)

粒子が混濁された処理対象流体を1又は2のノズルから超高圧で噴出させることにより前記処理対象流体に含まれる粒子を微粒子化する超高圧湿式微粒子化部を有する超高圧湿式微粒子化装置であって、
前記処理対象流体を収容する処理対象流体収容容器と、
内周壁を摺動するプランジャを備えたシリンダと、
前記処理対象流体収容容器と前記シリンダとの間に設けられた逆止弁と、
を備え、
前記プランジャを後退させることにより前記処理対象流体収容容器内の前記処理対象流体を前記逆止弁を介して前記シリンダ内に収容し、前記プランジャを前進させることにより前記シリンダ内に収容された前記処理対象流体を前記超高圧湿式微粒子化部の前記ノズルから超高圧で噴出させて前記処理対象流体収容容器内に戻す循環処理を少なくとも一回実行する
ことを特徴とする超高圧湿式微粒子化装置。
It is an ultra-high pressure wet micronization device having an ultra-high pressure wet micronization unit that atomizes the particles contained in the treatment target fluid by ejecting the fluid to be processed with turbid particles from one or two nozzles at ultrahigh pressure. hand,
A fluid storage container to be treated and a fluid storage container to be treated
A cylinder with a plunger that slides on the inner wall,
A check valve provided between the fluid storage container to be processed and the cylinder,
With
By retracting the plunger, the fluid to be processed in the fluid storage container to be processed is accommodated in the cylinder via the check valve, and by advancing the plunger, the processing accommodated in the cylinder is performed. An ultra-high pressure wet micronization apparatus characterized in that a circulation process of ejecting a target fluid from the nozzle of the ultrahigh pressure wet micronization section at an ultrahigh pressure and returning the target fluid to the inside of the processing target fluid container is executed at least once.
前記プランジャの後退及び前進は該プランジャに接続された螺子軸に係合するナット部をサーボモータにより回動することにより制御されることを特徴とする請求項1に記載の超高圧湿式微粒子化装置。 The ultra-high pressure wet micronization apparatus according to claim 1, wherein the retracting and advancing of the plunger is controlled by rotating a nut portion engaged with a screw shaft connected to the plunger by a servomotor. .. 前記処理対象流体収容容器に併設された併設容器と、
前記併設容器を前記循環処理流路内にある前記処理対象流体収容容器と置換するように前記併設容器の配設位置を移動制御する移動制御手段と、
を更に具備し、
前記循環処理の終了後若しくは前記循環処理の間に前記移動制御手段により前記併設容器を前記処理対象流体収容容器の配設位置に移動させ、前記循環処理により処理された処理対象流体の一部をサンプリングする
ことを特徴とする請求項1に記載の超高圧湿式微粒子化装置。
Annexed container attached to the fluid storage container to be treated and
A movement control means for moving and controlling the arrangement position of the side container so as to replace the side container with the treatment target fluid storage container in the circulation processing flow path.
Further equipped,
After the completion of the circulation treatment or during the circulation treatment, the adjoining container is moved to the arrangement position of the fluid storage container to be processed by the movement control means, and a part of the treatment target fluid processed by the circulation treatment is removed. The ultra-high pressure wet micronization apparatus according to claim 1, wherein sampling is performed.
前記移動制御手段は、一軸電動アクチュエータから構成される
ことを特徴とする請求項3に記載の超高圧湿式微粒子化装置。
The ultra-high pressure wet micronization apparatus according to claim 3, wherein the movement control means is composed of a uniaxial electric actuator.
前記処理対象流体収容容器の底部に設けられ、前記処理対象流体の前記循環処理に先立って前記処理対象流体に含まれる粒子の超音波分散処理を実行する超音波発振装置、
を更に具備することを特徴とする請求項1又は3に記載の超高圧湿式微粒子化装置。
An ultrasonic oscillator provided at the bottom of the fluid storage container to be processed, which executes ultrasonic dispersion processing of particles contained in the fluid to be processed prior to the circulation processing of the fluid to be processed.
The ultra-high pressure wet micronization apparatus according to claim 1 or 3, further comprising.
粒子が混濁された処理対象流体を収容する処理対象流体収容容器と、前記処理対象流体を1又は2のノズルから超高圧で噴出させる超高圧湿式微粒子化部と、内周壁を摺動するプランジャを備えたシリンダと、前記処理対象流体収容容器と前記シリンダとの間に設けられた逆止弁とを有する高圧湿式微粒子化装置の制御方法であって、
前記プランジャを後退させることにより前記処理対象流体収容容器内の前記処理対象流体を前記逆止弁を介して前記シリンダ内に収容する収容ステップと、
前記プランジャを前進させることにより前記シリンダ内に収容された前記処理対象流体を前記超高圧湿式微粒子化部の前記ノズルから超高圧で噴出させ前記処理対象流体に含まれる粒子を微粒子化する微粒子化ステップと、
前記微粒子化ステップで微粒子化された微粒子を含む前記処理対象流体を前記処理対象流体収容容器内に回収する回収ステップと、
前記収容ステップ、前記微粒子化ステップ、前記回収ステップからなる循環処理を少なくとも一回実行する循環ステップと、
を具備することを特徴とする高圧湿式微粒子化装置の制御方法。
A processing target fluid storage container for accommodating a processing target fluid in which particles are turbid, an ultra-high pressure wet fine particle part for ejecting the processing target fluid from one or two nozzles at an ultra high pressure, and a plunger sliding on an inner peripheral wall. It is a control method of a high-pressure wet microparticulation apparatus having a provided cylinder and a check valve provided between the fluid storage container to be processed and the cylinder.
A storage step in which the fluid to be processed in the fluid storage container to be processed is stored in the cylinder via the check valve by retracting the plunger.
By advancing the plunger, the fluid to be processed contained in the cylinder is ejected from the nozzle of the ultra-high pressure wet micronization unit at ultra-high pressure, and the particles contained in the fluid to be processed are atomized. When,
A recovery step in which the fluid to be treated containing the fine particles finely divided in the fine particle step is collected in the fluid storage container to be treated, and a recovery step.
A circulation step of executing the circulation process including the accommodation step, the micronization step, and the recovery step at least once,
A method for controlling a high-pressure wet micronization apparatus, which comprises the above.
前記循環処理の終了後若しくは前記循環処理の間に、前記処理対象流体収容容器に併設された併設容器を前記処理対象流体収容容器の配設位置に移動させ、前記循環処理により処理された処理対象流体の一部をサンプリングするサンプリングステップ、
を更に具備することを特徴とする請求項6に記載の超高圧湿式微粒子化装置の制御方法。
After the completion of the circulation treatment or during the circulation treatment, the side-by-side container attached to the treatment target fluid storage container is moved to the arrangement position of the treatment target fluid storage container, and the treatment target processed by the circulation treatment is performed. Sampling step, which samples part of the fluid,
The control method of the ultra-high pressure wet micronization apparatus according to claim 6, further comprising.
前記処理対象流体収容容器の底部に設けられた超音波発振装置により、前記処理対象流体の前記循環処理に先立って前記処理対象流体に含まれる粒子の超音波分散処理を実行する超音波分散ステップ、
を更に具備することを特徴とする請求項6又は7に記載の超高圧湿式微粒子化装置の制御方法。
An ultrasonic dispersion step of executing an ultrasonic dispersion treatment of particles contained in the treatment target fluid prior to the circulation treatment of the treatment target fluid by an ultrasonic oscillator provided at the bottom of the treatment target fluid storage container.
The control method of the ultra-high pressure wet micronization apparatus according to claim 6 or 7, further comprising.
前記循環処理に先立って該循環処理に係る前記処理対象流体の循環流路を純水で満たし、前記循環処理に伴って前記純水を前記処理対象流体収容容器の配設位置に移動させた前記併設容器内に回収する
ことを特徴とする請求項7に記載の超高圧湿式微粒子化装置の制御方法。
Prior to the circulation treatment, the circulation flow path of the fluid to be treated according to the circulation treatment was filled with pure water, and the pure water was moved to the arrangement position of the fluid storage container to be treated in accordance with the circulation treatment. The control method for an ultra-high pressure wet micronization apparatus according to claim 7, wherein the fluid is collected in an annex container.
前記併設容器は、前記処理対象流体収容容器と同一の容量からなり、
前記循環処理が終了する毎に前記併設容器を前記処理対象流体収容容器の配設位置に移動させ、前記微粒子化ステップで微粒子化された微粒子を含む処理終了流体を前記併設容器内に回収する処理終了流体回収ステップ、
を具備し、前記処理終了流体回収ステップを前記処理対象流体収容容器が空になり、前記併設容器が満杯になるまで繰り返すことを特徴とする請求項7に記載の超高圧湿式微粒子化装置の制御方法。
The side-by-side container has the same capacity as the fluid storage container to be processed.
A process of moving the annex container to the arrangement position of the fluid storage container to be processed each time the circulation process is completed, and collecting the process-finished fluid containing the fine particles atomized in the atomization step in the annex container. Finished fluid recovery step,
The control of the ultra-high pressure wet micronization apparatus according to claim 7, wherein the processing end fluid recovery step is repeated until the processing target fluid storage container is emptied and the adjacent container is full. Method.
粒子が混濁された処理対象流体を1又は2のノズルから超高圧で噴出させることにより前記処理対象流体に含まれる粒子を微粒子化する超高圧湿式微粒子化方法であって、
シリンダ内でプランジャを後退させることにより処理対象流体収容容器内に収容された前記処理対象流体を逆止弁を介して前記シリンダ内に収容する第1のステップと、
前記シリンダ内で前記プランジャを前進させることにより前記第1のステップで前記シリンダ内に収容された前記処理対象流体を前記超高圧湿式微粒子化部の前記ノズルから超高圧で噴出させ、前記処理対象流体に含まれる粒子を微粒子化する第2のステップと、
前記第2のステップで前記処理対象流体に含まれる粒子が微粒子化された前記処理対象流体を前記処理対象流体収容容器内に戻す第3のステップと、
を備え、
前記第1のステップ、前記第2のステップ、前記第3のステップを含む前記処理対象流体の循環処理を少なくとも一回実行する
ことを特徴とする超高圧湿式微粒子化方法。
An ultra-high pressure wet micronization method for atomizing particles contained in the fluid to be treated by ejecting the fluid to be treated in which particles are turbid from nozzles 1 or 2 at ultrahigh pressure.
The first step of accommodating the fluid to be processed in the fluid accommodating container to be processed by retracting the plunger in the cylinder through the check valve, and the first step.
By advancing the plunger in the cylinder, the fluid to be processed contained in the cylinder in the first step is ejected from the nozzle of the ultra-high pressure wet micronization unit at ultra-high pressure, and the fluid to be processed is ejected at ultra-high pressure. The second step of atomizing the particles contained in
The third step of returning the treatment target fluid in which the particles contained in the treatment target fluid are atomized in the second step to the inside of the treatment target fluid storage container, and the third step.
With
An ultra-high pressure wet micronization method comprising performing a circulation treatment of the fluid to be treated including the first step, the second step, and the third step at least once.
JP2019119935A 2019-06-27 2019-06-27 Ultrahigh-pressure wet microparticulation apparatus, its control method, and ultrahigh-pressure wet microparticulation method Active JP7307904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019119935A JP7307904B2 (en) 2019-06-27 2019-06-27 Ultrahigh-pressure wet microparticulation apparatus, its control method, and ultrahigh-pressure wet microparticulation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019119935A JP7307904B2 (en) 2019-06-27 2019-06-27 Ultrahigh-pressure wet microparticulation apparatus, its control method, and ultrahigh-pressure wet microparticulation method

Publications (2)

Publication Number Publication Date
JP2021003688A true JP2021003688A (en) 2021-01-14
JP7307904B2 JP7307904B2 (en) 2023-07-13

Family

ID=74097948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019119935A Active JP7307904B2 (en) 2019-06-27 2019-06-27 Ultrahigh-pressure wet microparticulation apparatus, its control method, and ultrahigh-pressure wet microparticulation method

Country Status (1)

Country Link
JP (1) JP7307904B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200527A1 (en) * 2020-04-02 2021-10-07 吉田工業株式会社 Wet atomization apparatus and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618400U (en) * 1979-07-18 1981-02-18
JP2005120150A (en) * 2003-10-14 2005-05-12 Sekisui Chem Co Ltd Disintegration method for agglomerate
JP2005270891A (en) * 2004-03-26 2005-10-06 Tetsuo Kondo Wet crushing method of polysaccharide
EP1618959A1 (en) * 2004-07-23 2006-01-25 STM di Marcon Francesco & C. S.a.s. Pressurized air counter-jet micronizing mill
JP2015142900A (en) * 2013-12-25 2015-08-06 中越パルプ工業株式会社 Apparatus and method for producing nano-fine article
WO2017199876A1 (en) * 2016-05-16 2017-11-23 中越パルプ工業株式会社 Counter collision processing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618400U (en) * 1979-07-18 1981-02-18
JP2005120150A (en) * 2003-10-14 2005-05-12 Sekisui Chem Co Ltd Disintegration method for agglomerate
JP2005270891A (en) * 2004-03-26 2005-10-06 Tetsuo Kondo Wet crushing method of polysaccharide
EP1618959A1 (en) * 2004-07-23 2006-01-25 STM di Marcon Francesco & C. S.a.s. Pressurized air counter-jet micronizing mill
JP2015142900A (en) * 2013-12-25 2015-08-06 中越パルプ工業株式会社 Apparatus and method for producing nano-fine article
WO2017199876A1 (en) * 2016-05-16 2017-11-23 中越パルプ工業株式会社 Counter collision processing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200527A1 (en) * 2020-04-02 2021-10-07 吉田工業株式会社 Wet atomization apparatus and method
JPWO2021200527A1 (en) * 2020-04-02 2021-10-07
JP7301293B2 (en) 2020-04-02 2023-07-03 吉田工業株式会社 Wet atomization device and method

Also Published As

Publication number Publication date
JP7307904B2 (en) 2023-07-13

Similar Documents

Publication Publication Date Title
JP6062052B2 (en) Cleaning device
CA3010954C (en) Method and apparatus for fluid cavitation abrasive surface finishing
JP2021003688A (en) Ultrahigh-pressure wet type atomizer, control method thereof, and ultrahigh-pressure wet type atomization method
JP7094133B2 (en) Water-soluble coolant recirculation device for grinding machines
KR102509747B1 (en) Substrate cleaning method and apparatus using high-temperature chemicals and ultrasonic devices
JP6687342B2 (en) Atomization device and atomization method
WO1996041688A1 (en) Method and apparatus for washing the inside of container
CN213700509U (en) Accurate five metals work piece spraying drying device
CN1571703A (en) Liquid material delivering method and device therefor
JP7301293B2 (en) Wet atomization device and method
JP2007144250A (en) Pulverization apparatus
CN113365782A (en) Slurry supply device, wet blasting device, and slurry supply method
JP2011072903A5 (en)
KR101503405B1 (en) Spray apparatus of liquid substance
EP0764511B1 (en) Device for removing a reactive resin mixture
CN209986234U (en) Laser powder process equipment with improve metal powder sphericity function
JP5881097B2 (en) Slurry injection device used for subject evaluation
JP2018000245A (en) Washing equipment
CN106985077B (en) A kind of surface-strengthening equipment and method based on jet stream
JP7035307B2 (en) Cleaning equipment
WO2006095424A1 (en) Pump unit, syringe unit, particle feeding method, and cell feeding method
CN117206279A (en) Sesame grinding equipment cleaning mechanism for sesame powder processing
JP2023060733A (en) Pulverization device
JP6705925B2 (en) Wet processing device using a syringe
JPH0259268A (en) Abrasive jet method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190702

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230620

R150 Certificate of patent or registration of utility model

Ref document number: 7307904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150