JP2021002963A - 環境発電装置 - Google Patents

環境発電装置 Download PDF

Info

Publication number
JP2021002963A
JP2021002963A JP2019116310A JP2019116310A JP2021002963A JP 2021002963 A JP2021002963 A JP 2021002963A JP 2019116310 A JP2019116310 A JP 2019116310A JP 2019116310 A JP2019116310 A JP 2019116310A JP 2021002963 A JP2021002963 A JP 2021002963A
Authority
JP
Japan
Prior art keywords
voltage
energy
circuit
energy harvesting
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019116310A
Other languages
English (en)
Other versions
JP7083999B2 (ja
Inventor
赳彬 矢嶋
Takeaki Yajima
赳彬 矢嶋
年吉 洋
Hiroshi Toshiyoshi
洋 年吉
浩章 本間
Hiroaki Homma
浩章 本間
幸也 遠山
Yukiya Toyama
幸也 遠山
裕幸 三屋
Hiroyuki Mitsuya
裕幸 三屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Saginomiya Seisakusho Inc
Original Assignee
University of Tokyo NUC
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC, Saginomiya Seisakusho Inc filed Critical University of Tokyo NUC
Priority to JP2019116310A priority Critical patent/JP7083999B2/ja
Priority to EP20833259.3A priority patent/EP3975412B1/en
Priority to CN202080045712.9A priority patent/CN114008909A/zh
Priority to PCT/JP2020/024252 priority patent/WO2020262263A1/ja
Priority to US17/621,398 priority patent/US20220360199A1/en
Publication of JP2021002963A publication Critical patent/JP2021002963A/ja
Application granted granted Critical
Publication of JP7083999B2 publication Critical patent/JP7083999B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • H02M7/2195Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration the switches being synchronously commutated at the same frequency of the AC input voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/002Generators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/561Voltage to current converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/32Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from a charging set comprising a non-electric prime mover rotating at constant speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/06Influence generators
    • H02N1/08Influence generators with conductive charge carrier, i.e. capacitor machines

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Abstract

【課題】環境に存在する微弱エネルギーを高い効率で電気エネルギーに変換する環境発電装置を提供する。【解決手段】環境発電装置は、環境のエネルギーを電気エネルギーに変換するエネルギー変換素子と、エネルギー変換素子と同じ環境に配置される環境センサと、エネルギー変換素子が変換した電力が入力され、電力を外部に出力する電源回路と、を備え、電源回路は、前記環境センサの出力に応じて動作条件を変更する。【選択図】図1

Description

本発明は、環境発電装置に関する。
環境に存在する微弱なエネルギーを収穫して電気エネルギーに変換する、いわゆるエナジーハーベスティングを行う環境発電装置として、太陽光発電、熱発電や、MEMS(Microelectromechanical Systems)振動素子である振動発電素子を用いて環境振動から発電を行う手法が知られている。(特許文献1参照)。
特開2018−74817号公報
環境に存在するエネルギーは微弱であるため、環境のエネルギーを低損失で電気エネルギーに変換する振動発電装置が求められている。
本発明の第1の態様による環境発電装置は、環境のエネルギーを電気エネルギーに変換するエネルギー変換素子と、前記エネルギー変換素子と同じ環境に配置される環境センサと、前記エネルギー変換素子が変換した電力が入力され、電力を外部に出力する電源回路と、を備え、前記電源回路は、前記環境センサの出力に応じて動作条件を変更する。
本発明によれば、環境に存在する微弱なエネルギーを高効率で電気エネルギーに変換することができる。
第1実施形態の環境発電装置1の概略構成を示す図。 環境発電装置1が備える振動発電部10の概略を示す図。 第2実施形態の環境発電装置1aの概略構成を示す図。 ダイナミックコンパレータの回路図の一例を示す図。 記憶回路の論理図の一例を示す図。 第3実施形態の環境発電装置1bの概略構成を示す図。 電流電圧変換回路70内の各部の電圧と電流との関係(IV特性)を示す図。
(第1実施形態の環境発電装置)
以下、図1および図2を参照して第1実施形態の環境発電装置1について説明する。
図1は、第1実施形態の環境発電装置1の概略構成を示す図である。環境発電装置1は、環境振動により交流電力を発電する振動発電部10と、発電した交流電力を取り出して外部の機器等に出力する電源回路80とを備える。
電源回路80は、後述する電圧制限回路40と、整流回路50と、電圧変換回路60と、第1コンデンサC1および第2コンデンサC2とを有している。
振動発電部10は、一例としてエレクトレット電極を備える静電容量型の発電素子(エレクトレット形発電素子)であり、図2を参照してその概要を説明する。
振動発電部10は、固定電極である第1電極11と可動電極である第2電極12とを含んでいる。第1電極11と第2電極12とは、環境中のエネルギーを電気エネルギーに変換するエネルギー変換素子の一例である振動発電素子を構成する。本明細書では、第1電極11と第2電極12とを総称して、エネルギー変換素子31とも呼ぶ。
第1電極11は一例として6本の櫛歯部分15を有する櫛歯電極であり、第2電極12は一例として5本の櫛歯部分16を有する櫛歯電極である。ただし、両電極を構成する櫛歯電極の数は、上記の本数に限定されるものではない。
振動発電部10は、さらに第1電極11と第2電極12の対からY方向にずれた位置に、対になって配列される固定電極である第3電極21と可動電極である第4電極22とを有している。第3電極21と第4電極22とは、環境センサの一例である振動発電素子を構成する。本明細書では、第3電極21と第4電極22とを総称して、環境センサ32とも呼ぶ。
第3電極21は一例として2本の櫛歯部分23を有し、第4電極22は一例として1本の櫛歯部分24を有する櫛歯電極である。第3電極21および第4電極22を構成する櫛歯電極の数は上記の本数に限定されるものではないが、上述の第1電極11および第2電極12を構成する櫛歯電極の数よりは少ない本数である。
第1電極11には出力線W1が、第2電極12には出力線W2が、第3電極21には出力線W3が、第4電極22には出力線W4が、それぞれ接続されている。出力線W1〜W4は、例えば金等の電気抵抗が小さく、延性に富む金属等で形成されている。
本明細書は、「接続されている」とは、2つの物体が、直接、または金属等の低抵抗の材質を介して、電気的に導通状態とされていることを言う。
上述の第1から第4の各電極11、12、21、22の櫛歯部分15、16、23、24は、図中のZ方向に所定の厚さを有しており、かつ、それらが噛合する部分において互いに他の電極に対向している。第1から第4の各電極11、12、21、22は、たとえばシリコンを基材としたMEMS構造体として製造することができる。
第1電極11の櫛歯部分15のうち、第2電極12の櫛歯部分16と対向する面の表面の領域17には、公知の帯電処理(例えば、特開2014−049557号公報に記載の帯電処理)を施すことにより、正または負の電荷を有するエレクトレットが形成されている。第3電極21の櫛歯部分23のうち第4電極22の櫛歯部分24と対向する面の表面の領域25にも、同様に正または負の電荷を有するエレクトレットが形成されている。
エレクトレット化により第1電極11の櫛歯部分15および第3電極21の櫛歯部分23が半永久的に帯電する。この結果、エレクトレット化された電極と対向する第2電極12の櫛歯部分16には、エレクトレット化された電極とは逆特性の、すなわち負または正の誘導電荷が誘起される。同様に、エレクトレット化された電極と対向する第4電極22の櫛歯部分24にも、負または正の誘導電荷が誘起される。
第1電極11および第3電極21は絶縁性の支持枠13により一体的かつ固定的に保持されている。
一方、第2電極12および第3電極22は、保持部14(電極保持部14a、連結部14b、固定部14c)により一体的に保持され、支持枠13に対して図中の上下方向(X方向)に振動するように保持されている。保持部14は、第2電極12および第4電極22を保持する電極保持部14aと、支持枠13に固定されている固定部14cと、電極保持部14aと固定部14cをつなぐ、可撓性を有する連結部14bから構成されている。
連結部14bは、図1中のX方向の厚さが薄く、Z方向の厚さが厚い、金属等の可撓性材料からなる薄片である。支持枠13に外部から振動が加わると、図中の電極保持部14aの左右に設けられている2つの連結部14bが撓むことにより、電極保持部14aは支持枠13に対してX方向に振動する。この結果、電極保持部14aに保持された第2電極12は、支持枠13に固定されている第1電極11に対してX方向に振動する構成となっている。同様に、電極保持部14aに保持された第4電極22は、支持枠13に固定されている第3電極21に対してX方向に振動する構成となっている。
振動発電部10がX方向に振動すると、第1電極11と第2電極12とのX方向への相対移動に伴い、第1電極11の櫛歯部分15と第2電極12の櫛歯部分16が対向する面の面積が増減する。その結果、この面積の増減によりエレクトレットによる誘導電荷も変化し、第1電極11と第2電極12との間の電位差が変化して起電力が発生する。これにより、振動発電素子であるエネルギー変換素子31(第1電極11と第2電極12)により、振動エネルギーが電気エネルギーに変換(発電)される。
振動発電部10がX方向に振動すると、環境センサ32である第3電極21と第4電極22も、X方向への相対移動するため、第3電極21と第4電極22との間にも、第1電極11と第2電極12との間に発生する電流と同符号の電流が発生する。
環境センサ32は、上述のエネルギー変換素子31(第1電極11と第2電極12)と同じ環境に配置されているため、環境センサ32は、エネルギー変換素子31が発電する電力の状態を正確に反映した電流、すなわち電気信号を生成し、出力する。
ただし、環境センサ32に含まれる櫛歯部分23、24の数は、エネルギー変換素子31に含まれる櫛歯部分15、16の数よりも少ない。従って、環境センサ32が変換する電力は、エネルギー変換素子31が変換する電力に比べ、概ね櫛歯部分の数の比に応じて小さな電力となる。
以下、図1を参照して説明を続ける。
振動発電部10のうちのエネルギー変換素子31を構成する第1電極11に接続されている出力線W1の他端は、電源回路80に含まれる整流回路50の第1入力部P5に接続されている。一方、第2電極12に接続されている出力線W2の他端は、整流回路50の第2入力部P6に接続されている。
振動発電素子であるエネルギー変換素子31は交流の電力を発電するので、この電力を効率良く利用するためには、交流を直流に変換することが望ましい。
整流回路50は、一例としてnMOSFETからなる4個のスイッチング素子M1〜M4を含んでいる。スイッチング素子M1〜M4のうち、符号Sを付した電極はソースを、符号Gを付した電極はゲートを、符号Dを付した電極はドレインを、それぞれ示している。
整流回路50の第1制御入力部Paに正の電圧が入力されると、スイッチング素子M1のゲートGに正の電圧が印加されて第1入力部P5は第1出力部P7と導通し、スイッチング素子M2のゲートGに正の電圧が印加されて第2入力部P6は第2出力部P8と導通する。
一方、第1制御入力部Paに負の電圧が入力されると、スイッチング素子M1のゲートGに負の電圧が印加されて第1入力部P5は第1出力部P7と遮断され、スイッチング素子M2のゲートGに負の電圧が印加されて第2入力部P6は第2出力部P8と遮断される。
整流回路50の第2制御入力部Pbに正の電圧が入力されると、スイッチング素子M3のゲートGに正の電圧が印加されて第1入力部P5は第2出力部P8と導通し、スイッチング素子M4のゲートGに正の電圧が印加されて第2入力部P6は第1出力部P7と導通する。
一方、第2制御入力部Pbに負の電圧が入力されると、スイッチング素子M3のゲートGに負の電圧が印加されて第1入力部P5は第2出力部P8と遮断され、スイッチング素子M4のゲートGに負の電圧が印加されて第1入力部P5は第1出力部P7と遮断される。
従って、第1入力部P5が正電圧で第2入力部P6が負電圧の場合には、第1制御入力部Paに正電圧、第2制御入力部Pbに負電圧を印加することで、第1出力部P7の電圧を第2出力部P8より高くすることができる。一方、第1入力部P5が負電圧で第2入力部P6が正電圧の場合には、第1制御入力部Paに負電圧、第2制御入力部Pbに正電圧を印加することで、同様に第1出力部P7の電圧を第2出力部P8より高くすることができる。すなわち、第1制御入力部Paに負電圧、第2制御入力部Pbに上記の電圧を印加することで、第1出力部P7と第2出力部P8に、整流された電力を出力させることができる。
従来の環境発電装置では、整流回路としては、4つのダイオードにより構成されるブリッジ回路や、整流回路50と同様のMOSFETを用いた同期整流回路が使用されていた。
しかし、ダイオードにより構成された整流回路では、エネルギー変換素子が変換した電力の一部は、ダイオードにより消費されてしまう。
一方、従来のMOSFETを用いた同期整流回路では、MOSFETを同期制御するための制御用の電圧信号を、エネルギー変換素子が発電した交流電力を用いて生成していた。このため、従来においては、エネルギー変換素子が発電した交流電力の一部は、制御用の電圧信号の生成のために消費されていた。
従って、従来の環境発電装置では、振動発電部が収穫した振動エネルギーを、効率良く電気エネルギーに変換して出力することができなかった。
一方、第1実施形態の環境発電装置1に含まれる整流回路50では、エネルギー変換素子31とは別の環境センサ―32が生成および出力し、電圧制限回路40により電圧値が制限された電気信号が、スイッチング素子M1〜M4を制御するための制御信号として使用される。
これにより、第1実施形態の環境発電装置1は、振動発電部10が収穫した振動のエネルギーを、効率良く電気エネルギーに変換することができる。
以下、第1実施形態の環境発電装置1において、環境センサ32および電圧制限回路40が、振動発電部10が収穫した振動のエネルギーの損失を低減しつつ、スイッチング素子M1〜M4への制御信号を生成できる理由を説明する。
振動発電部10のうちの環境センサ32を構成する第3電極21に接続されている出力線W3の他端は、電源回路80に含まれる電圧制限回路40の第1入力部P1に接続されている。そして、電圧制限回路40の第1入力部P1は、整流回路50の第1制御入力部Paと接続されている。
一方、環境センサ32を構成する第4電極22に接続されている出力線W4の他端は、電圧制限回路40の第2入力部P2に接続されている。そして、電圧制限回路40の第2入力部P2は、整流回路50の第2制御入力部Pbと接続されている。
図1に示したとおり、電圧制限回路40は、それぞれMOSFETからなる複数の制御素子T1〜T8により構成されたブリッジ回路を含んでいる。一例として8個の制御素子T1〜T8は、いずれもノーマリーオフ型のnMOSFETであり、符号Sを付した電極がソースを、符号Gを付した電極がゲートを、符号Dを付した電極がドレインを、それぞれ示している。
8個の制御素子T1〜T8が構成するブリッジ回路の中間部P3と中間部P4は短絡され、グランドに接続されている。
第1入力部P1には制御素子T1のソースSおよびゲートGが接続され、制御素子T1のドレインDは制御素子T2のソースSおよびゲートGに接続され、制御素子T2のドレインDは中間部P4に接続されている。
中間部P4には制御素子T6のドレインDも接続され、制御素子T6のソースSおよびゲートGは制御素子T5のドレインDに接続され、制御素子T5のソースSおよびゲートGは第2入力部P2に接続されている。
第1入力部P1には制御素子T3のドレインDも接続され、制御素子T3のソースSおよびゲートGは制御素子T4のドレインDに接続され、制御素子T4のソースSおよびゲートGは中間部P3に接続されている。
中間部P3には制御素子T8のソースSおよびゲートGも接続され、制御素子T8のドレインDは制御素子T7のソースSおよびゲートGに接続され、制御素子T7のドレインDは第2入力部P2に接続されている。
電圧制限回路40の上述の構成により、第1入力部P1に正電圧が入力された場合、制御素子T1および制御素子T2が導通し、第1入力部P1の電圧の上限が、制御素子T1のしきい値電圧と制御素子T2のしきい値電圧の和に制限される。一方、第1入力部P1に負電圧が入力された場合、制御素子T3および制御素子T4が導通し、第1入力部P1の電圧の下限(負の上限)が、制御素子T3のしきい値電圧と制御素子T4のしきい値電圧の和に制限される。
第2入力部P2に正電圧が入力された場合にも、制御素子T5および制御素子T6が導通し、第2入力部P2の電圧の上限が、制御素子T5のしきい値電圧と制御素子T6のしきい値電圧の和に制限される。そして、第2入力部P2に負電圧が入力された場合、制御素子T7および制御素子T8が導通し、第2入力部P2の電圧の下限(負の上限)が、制御素子T7のしきい値電圧と制御素子T8のしきい値電圧の和に制限される。
従って、環境センサ32からの出力の電圧の上限値および下限値は、電圧制限回路40により、制御素子T1〜T8のしきい値電圧で決まる所定の電圧に制限される。そして、環境センサ32からの出力が上記の所定の電圧を超えている場合には、第1入力部P1と第2入力部P2の間は、制御素子T1〜T8のいずれか複数により導通状態となるため、極めて小さな電気抵抗で結ばれる。
この結果、環境センサ32により消費される振動のエネルギーは、エネルギー変換素子31により電気エネルギーに変換される振動のエネルギーに比べて十分に小さくなる。従って、環境センサ32の振動エネルギーが全て消費されても、エネルギー変換素子31の効率には影響しない。
これにより、環境センサ32およびエネルギー変換素子31を含む振動発電部10が収穫した振動のエネルギーは、効率良くC1に充電される。従って、環境に存在する微弱な振動エネルギーを、エネルギー変換素子31により効率良く電気エネルギーに変換することができる。
なお、電圧制限回路40の第1入力部P1と中間部P3または中間部P4、および第2入力部P2と中間部P3または中間部P4の各間に配置される制御素子T1〜T8(MOSFET)の数は、上述の2個限られるわけではない。電圧制限回路40が制限すべき電圧の上限値および下限値の値に応じた、任意の数の制御素子T1〜T8を配置して良い。
整流回路50の整流作用により、整流回路50からは、第1出力部P7の電圧が第2出力部P8に対して正である電力が出力される。整流回路50の第1出力部P7は電圧変換回路60の第1入力部Vin1に接続され、整流回路50の第2出力部P8は電圧変換回路60の第2入力部Vin2に接続される。また、整流回路50の第1出力部P7と第2出力部P8には、第1コンデンサC1の両端がそれぞれ接続される。
電圧変換回路60は、一例としてチョッパ等を使用するDC/DCコンバータであり、第1入力部Vin1と第2入力部Vin2の間に入力される電圧を、所定の電圧に変換して、出力部Voutから出力する。出力部Voutとグランド部GNDには、第2コンデンサC2の両端がそれぞれ接続される。
整流回路50中の各スイッチング素子M1〜M4のゲートGには、整流すべきエネルギー変換素子31からの電力と同一の振動条件で環境センサ32により出力され、エネルギー変換素子31からの電力と同一位相を持つリアルタイム出力が供給されている。
従って、整流回路50を含む電源回路80は、エネルギー変換素子31からの電力を効率良く、外部に出力することができる。
なお、電圧変換回路60は、整流回路50から出力された電力を、外部負荷ROに適した電圧に変換するための回路である。従って、外部負荷ROに適した電圧が整流回路50の出力電圧と一致する場合や、外部負荷RO自体が電圧を変換する機能を有する場合には、電源回路80が電圧変換回路60を備えている必要はない。また、外部負荷ROが第2コンデンサC2に相当するコンデンサを有している場合には、電源回路80が第2コンデンサC2を備えている必要はない。
以上の第1実施形態の環境発電装置1は電圧制限回路40を有するものとしたが、電圧制限回路40を省略しても良い。この場合には、振動発電部10のうちの環境センサ32を構成する第3電極21に接続されている出力線W3の他端を整流回路50の第1制御入力部Paに接続し、第4電極24に接続されている出力線W4の他端を整流回路50の第2制御入力部Pbに接続する。
電圧制限回路40を省略することにより、環境センサ32に接続される回路の抵抗値が増加する。しかし、この場合にも環境センサ32により消費される振動のエネルギーは発電量全体から見れば十分小さいので、有意なエネルギーの損失は生じない。
上述の第1実施形態の環境発電装置1は、環境のエネルギーを電気エネルギーに変換するエネルギー変換素子31と、エネルギー変換素子31と同じ環境に配置される環境センサ32とを備えている。さらに、エネルギー変換素子31が変換した電力が入力され、電力を外部に出力する電源回路80を備え、電源回路80に含まれる整流回路50は、環境センサ32の出力に応じて動作条件の一例としての整流条件を変更する。
(第2実施形態の環境発電装置)
以下、図3から図5を参照して第2実施形態の環境発電装置1aについて説明する。第2実施形態の環境発電装置1aは、その構成の大部分が上述の第1実施形態の環境発電装置1と同様であるので、同一の構成には同一の符号を付して、適宜説明を省略する。
図3は、第2実施形態の環境発電装置1aの概略構成を示す図である。第2実施形態の環境発電装置1aは、電源回路80aを構成する電圧制限回路40aの構成が、上述の第1実施形態の環境発電装置1とは異なっている。
電圧制限回路40aは、供給されるクロック信号CLKに同期して動作するダイナミックコンパレータ41と、ダイナミックコンパレータ41の出力を記憶する記憶回路42とを含む構成となっている。そして、ダイナミックコンパレータ41の入力側に、アノードおよびカソードが相互に逆向きで並列に配置された2つの整流素子Da、Dbを有している。
振動発電部10のうちの環境センサ32を構成する第3電極21に接続されている出力線W3の他端は、電圧制限回路40aの第1入力部P11に接続されている。一方、第4電極22に接続されている出力線W4の他端は、電圧制限回路40aの第2入力部P12に接続されている。
第1入力部P11には、ダイオード等の整流素子Daのカソードおよび整流素子Dbのアノードが接続されている。第2入力部P12には、整流素子Daのアノードおよび整流素子Dbのカソードが接続されている。
第1入力部P11には、さらにダイナミックコンパレータ41の第1入力部Viaが接続され、第2入力部P12には、さらにダイナミックコンパレータ41の第2入力部Vibが接続されている。
ダイナミックコンパレータ41からの2つの出力VmaおよびVmbは、記憶回路42に接続されている。そして、記憶回路42からの2つの出力VoaおよびVobは、それぞれ整流回路50の第1制御入力部Paおよび第2制御入力部Pbに接続されている。
図4は、ダイナミックコンパレータ41の回路図の一例を示す図である。ダイナミックコンパレータ41は、nMOSFETである素子Te、Tf、Tg、Tk、Tlと、pMOSFETである素子Ta、Tb、Tc、Td、Th、Ti、Tjとを含む回路である。外部から電源電圧VSとクロック信号CLKとが供給される。クロック信号CLKは、その一部が、インバータ(NOT)回路Ncを介して、素子Thおよび素子Tkのゲートに入力される。
なお、ダイナミックコンパレータの構成の詳細については、例えば、特開2017−46046号公報等に開示されているので、ここでは詳細な説明は省略する。
ダイナミックコンパレータ41は、外部から供給されるクロック信号CLKが正電圧の時に限り、第1入力部Viaと第2入力部Vibとにそれぞれ入力される信号の電圧の高低を比較し、比較結果を出力Vmaおよび出力Vmbに出力する。なお、出力Vmaおよび出力Vmbの前段には、それぞれインバータ回路Na、Nbが接続されている。
一例として、第1入力部Viaの電圧が第2入力部Vibの電圧よりも正側であれば、出力Vmaには正電圧を出力し、出力Vmbにはグランド電位を出力する。反対に、第1入力部Viaの電圧が第2入力部Vibの電圧よりも負側であれば、出力Vmaにはグランド電位を出力し。出力Vmbには正電圧を出力する。
ダイナミックコンパレータ41の出力Vmaおよび出力Vmbは、クロック信号CLKが正電圧の時にしか出力されない。そこで、この出力を記憶回路42により記憶させる。
図5は、記憶回路42の論理図の一例を示す図である。記憶回路42は、一例として、いわゆるNOR型のフリップフロップ回路であり、入力Vmaと入力Vmbが、正電圧と0電圧であるか、あるいは0電圧と正電圧であるかを記憶し、保持する。
上述のとおり、記憶回路42からの2つの出力VoaおよびVobは、それぞれ整流回路50の第1制御入力部Paおよび第2制御入力部Pbに入力される。
従って、第2実施形態の環境発電装置1aにおいては、整流回路50は、ダイナミックコンパレータ41の出力に基づいて、エネルギー変換素子31が発電した交流電力を整流する。
ダイナミックコンパレータ41の動作に必要な電源電圧VSは、例えば、第2コンデンサC2に充電されている電力の一部から供給することができる。また、クロック信号CLKを発生させるクロック発生回路も、第2コンデンサC2に充電されている電力の一部により駆動することができる。
クロック信号CLKの周期は、一例として、エネルギー変換素子31が発電する交流電力の周波数の、すなわち第2電極12が振動する周波数の、5〜10倍程度以上の周波数である。
ダイナミックコンパレータ41は、外部から供給されるクロック信号CLKが正電圧の場合に限り動作する。従って、デューティ(On/Off比)の小さなクロック信号CLKを用いることで、ダイナミックコンパレータ41の動作に必要な電力を極小化することができる。これにより、環境センサ32およびエネルギー変換素子31を含む振動発電部10が収穫した振動のエネルギーを、効率良くエネルギー変換素子31による発電に使用することができる。
なお、ダイナミックコンパレータ41の入力側に配置している整流素子Da,Dbは、ダイナミックコンパレータ41の第1入力部Viaおよび第2入力部Vibへの入力電圧を制限するためのものであるが、入力電圧の制限が不要であれば省略しても良い。
(第3実施形態の環境発電装置)
以下、図6を参照して第3実施形態の環境発電装置1bについて説明する。第3実施形態の環境発電装置1aは、その構成の大部分が上述の第1実施形態の環境発電装置1または第2実施形態の環境発電装置1aと同様であるので、同一の構成には同一の符号を付して、適宜説明を省略する。
図6は、第3実施形態の環境発電装置1bの概略構成を示す図である。第3実施形態の環境発電装置1bは、電源回路80bが電流電圧変換回路70を有する点が、第1実施形態の環境発電装置1および第2実施形態の環境発電装置1aとは異なっている。
第3実施形態の環境発電装置1bに含まれる整流回路50は、上述の第1実施形態の環境発電装置1および第2実施形態の環境発電装置1aに含まれる整流回路50と同様であるので、図6では詳細な図示を省略している。
また、第3実施形態の環境発電装置1bに含まれる電圧制限回路40は、上述の第1実施形態の環境発電装置1に含まれる電圧制限回路40、または第2実施形態の環境発電装置1aに含まれる電圧制限回路40aと同様であるので、図6では詳細な図示を省略している。
また、振動発電部10aは、振動発電部10の構成に加えて、さらに第2環境センサ33を有する点でも異なっている。振動発電部10aは、図2に示した振動発電部10と類似の構成であるので、詳細な図示は省略する。
振動発電部10aは、図2に示した振動発電部10の環境センサ32(第3電極21および第4電極22)のY方向に隣接して、環境センサ32と同様の第2環境センサ33を有するものである。
第2環境センサ33の構成は、環境センサ32の構成と同様であり、第5電極25は支持枠13により固定され、第6電極26は電極保持部14aにより保持され、第5電極25に対して図2のX方向に可動となっている。第5電極25は支持枠13により第1電極11と一体的に保持され、第6電極26は電極保持部14aにより第2電極12と一体的に保持されている。
第5電極25のうち、第6電極26と対向する面の表面には、正または負の電荷を有するエレクトレットが形成されている。
第2環境センサ33を構成する第5電極25には出力線W5の一端が接続され、第2環境センサ33を構成する第6電極26には出力線W6の一端が接続されている。
出力線W5の他端は、電流電圧変換回路70の第1入力部P13に接続されている。第1入力部P13はグランドにも接続されている。出力線W6の他端は、電流電圧変換回路70の第2入力部P16に接続されている。
電流電圧変換回路70に含まれる電圧検出回路711は、ダイオード等の整流素子Dcおよび整流素子Ddからなる整流素子対(Dc、Dd)と、この整流素子対(Dc、Dd)の第2入力部P16側の電圧を検出する検出回路CP1とを含む。整流素子Dcおよび整流素子Ddは並列に、かつアノードおよびカソードが相互に逆向きに配置されている。
電圧検出回路711と同様の構成の電圧検出回路712および電圧検出回路713が、電圧検出回路711と直列に接続されている。電圧検出回路712は整流素子Deおよび整流素子Dfからなる整流素子対と、この整流素子対(De、Df)の整流素子対(Dc、Dd)側の端部P15の電圧を検出する検出回路CP2とを含む。電圧検出回路713は整流素子Dgおよび整流素子Dhからなる整流素子対と、この整流素子対(Dg、Dh)の整流素子対(De、Df)側の端部P14の電圧を検出する検出回路CP3とを含む。
各検出回路CP1〜CP3には、不図示の基準電圧発生回路から、基準電圧Vrefが供給される。
検出回路CP1〜CP3は、検出した電圧に基づいて、それぞれ検出信号V1〜V3を出力する。
検出回路CP1〜CP3は、例えば、オペアンプを含むコンパレータにより構成する。
電圧検出回路711の整流素子対に含まれる整流素子Dc、Ddと、電圧検出回路712の整流素子対に含まれる整流素子De、Dfと、電圧検出回路713の整流素子対に含まれる整流素子Dg、Dhとは、その順方向電圧が相互に異なっても良いし同じでも良い。
順方向電圧とは、整流素子に順方向の電圧を印加した際に、大電流が流れ始める電圧である。
なお、1つの整流素子対に含まれる整流素子Dcと整流素子Dd、整流素子Deと整流素子Df、および整流素子Dgと整流素子Dhとの順方向電圧は、それぞれ同一でも良く、異なっていても良い。
図7は、電流が、第2入力部P16から第1入力部P13に向かって流れる際の、電流電圧変換回路70内の各部の電圧と電流Iとの関係(IV特性)を示す図である。なお、グラフの縦軸は、電流Iの対数値(log)としている。IV特性IVcは、電流Iに対する第2入力部P16の電圧Vcとの関係を示し、すなわち3つの直列に接続された整流素子Dc、De、DgのIV特性を示している。IV特性IVeは、電流Iに対する端部P15の電圧Veとの関係を示し、すなわち2つの直列に接続された整流素子De、DgのIV特性を、示している。IV特性IVgは、電流Iに対する端部P14の電圧Vgとの関係を示し、すなわち整流素子DgのIV特性を、それぞれ示している。
電流Iが0から次第に増加する際の、3つの電圧Vc、Ve、Vgのそれぞれの増加量が異なる。従って、それぞれは、異なる電流値Iで基準となる基準電圧Vrefと等しくなり、検出回路CP1〜CP3を構成するコンパレータがそれぞれ反転し、検出信号V1〜V3が変化する。
なお、この場合には、電流電圧変換回路70に含まれる整流素子Dd、Df、Dhは、逆バイアスとなり電流を流さない。
図7に示したように、第2入力部P16から第1入力部P13に流れる電流がI1の場合、第2入力部P16には電圧V1cが生じ、端部P15には電圧V1eが生じ、端部P14には電圧V1gが生じる。ただし、電流I1は小さいため、電圧V1eおよび電圧V1gは、0Vとなっている。
第2入力部P16から第1入力部P13に流れる電流がI2の場合、第2入力部P16には電圧V2cが生じ、端部P15には電圧V2eが生じ、端部P14には電圧V2gが生じる。
各電圧Vc、Ve、Vgは、第2入力部P16から第1入力部P13に向かって流れる電流の量に応じて変化する。
従って、検出回路CP1〜CP3により検出された電圧に基づく検出信号V1〜V3を用いて、第2入力部P16から第1入力部P13に向かって流れる電流の量を推定することができる。
検出回路CP1〜CP3からの検出信号V1〜V3は、制御回路72に入力される。制御回路72は、例えば、検出信号V1〜V3をデジタル信号に変換するAD変換回路を有する。制御回路72は、デジタル信号に変換された検出信号V1〜V3に基づいて、第2入力部P16から第1入力部P13に流れる電流の量、すなわち第2環境センサ33から出力される電流の量を推定する。
制御回路72は、推定した電流の量に基づいて、電圧変換回路60に制御信号CSを送り、電圧変換回路60の動作条件を変更する。電圧変換回路60の動作条件とは、例えば、第1入力部Vin1と第2入力部Vin2の間に入力される電圧に対する、出力部Voutに出力する電圧の増幅の条件をいう。
例えば、電圧変換回路60がチョッパを含む回路であれば、チョッパが動作する周期を変更することにより、動作条件を変更することができる。
なお、制御回路72は、上述のように第2環境センサ33からの電流の量を推定することなく、検出信号V1〜V3に基づいて電圧変換回路60の動作条件を変更しても良い。
第2環境センサ33とエネルギー変換素子31とは、相互に機械的に一体化している振動発電素子であるため、第2環境センサ33からの電流の量は、エネルギー変換素子31による発電量に概ね比例する。
従って、第3実施形態の環境発電装置1bにおいては、エネルギー変換素子31の発電量に応じて、電圧変換回路60の動作条件を最適な条件に設定することができ、電圧変換回路60も含めた環境発電装置1bの効率を高めることができる。
上述の第3実施形態の環境発電装置1bは、環境のエネルギーを電気エネルギーに変換するエネルギー変換素子31と、エネルギー変換素子31と同じ環境に配置される第2環境センサ33とを備えている。さらに、エネルギー変換素子31が変換した電力が入力され、電力を外部に出力する電源回路80bを備え、電源回路80bは、第2環境センサ33の出力に応じて動作条件を変更する。
また、電源回路80bは、第2環境センサ33が出力したリアルタイム出力に応じて動作条件を変更する。この構成により、振動発電部10aが設置された環境の振動が時々刻々と変化する場合であっても、電源回路80bの動作条件を、その状況にリアルタイムに応じた最適な条件で制御することができ、環境発電装置1bの効率をさらに高めることができる。
第3実施形態の環境発電装置1bの電流電圧変換回路70は、アノードおよびカソードが相互に逆向きで、並列に配置された整流素子対(DcとDd、DeとDf、DgとDg)が複数直列に接続された回路に電流を流し、整流素子対の両端に生じる電圧を検出している。この構成においては、従来の抵抗に電流を流して抵抗の両端に生じる電圧を検出主する構成に比べ、大きな電圧を発生することなく、より広範囲の電流変化に対して応答することができる。
回路側で大きな電圧が発生しないということは、すなわち、第2環境センサ33の振動を抑制する作用を、極めて小さく抑えることができる。
なお、第3実施形態の環境発電装置1bにおいては、第2環境センサ33は、必ずしもエネルギー変換素子31と同位相の電流を出力する必要はない。従って振動発電部10において、第2環境センサ33の第5電極25とエネルギー変換素子31の第1電極11、および第2環境センサ33の第6電極26とエネルギー変換素子31の第2電極12とは、それぞれ一体的に保持されていなくても良い。
なお、上述の例では、振動発電部10において、第2環境センサ―33を環境センサ―32とは別に設けたが、第2環境センサ―33を省略し、環境センサ―32を第2環境センサ―33として併用しても良い。
また、第3実施形態の環境発電装置1bにおいては、電圧制限回路40を省略し、整流回路50を、一般的なダイオードを使用する整流回路で構成しても良い。第3実施形態の環境発電装置1bにおいては、エネルギー変換素子31の発電量に応じて電圧変換回路60の動作条件を最適な条件に設定するため、環境エネルギーを効率良く電気エネルギーに変換できる。従って、整流回路50としてダイオードを使用する整流回路を使用しても、従来に比べて効率の良い環境発電装置を実現することができる。
(変形例)
以下、上述の各実施形態の環境発電装置1、1a、1bについての変形例について説明する。
以上の説明では、振動発電部10のエネルギー変換素子31と環境センサ―32と、あるいはさらに第2環境センサ―33とは、いずれも振動発電素子からなるものとした。しかし、環境センサ―32および第2環境センサ―33は、振動発電素子以外の、加速度センサー等の振動を電気信号に変換する素子であっても良い。
また、エネルギー変換素子31も、上述の振動発電素子に限られるものではなく、例えば、環境に存在する光エネルギーを電気エネルギーに変換する太陽電池等の光電変換素子であっても良い。この場合には、環境センサ―32、あるいはさらに第2環境センサ―33についても光電変換素子で形成し、エネルギー変換素子31と同じ環境に配置する。
また、エネルギー変換素子31は、環境に存在する熱エネルギーを電気エネルギーに変換する熱発電素子であっても良い。この場合には、環境センサ―32、あるいはさらに第2環境センサ―33についても、熱発電素子で形成し、エネルギー変換素子31と同じ環境に配置する。
これらの場合においても、環境センサ―32あるいはさらに第2環境センサ―33は、環境のエネルギーの消費量の少ない小出力のセンサーで構成する。そして、エネルギー変換素子31が変換した電力を外部に出力する電源回路80、80a、80bの動作条件を、環境センサ―32あるいは第2環境センサ―33出力に応じて変更する。この構成により、環境のエネルギーを効率良く電気エネルギーに変換して外部に出力する環境発電装置を実現することができる。
(各実施形態および変形例の効果)
(1)上述の各実施形態および変形例の環境発電装置1、1a、1bは、環境のエネルギーを電気エネルギーに変換するエネルギー変換素子31と、エネルギー変換素子31と同じ環境に配置される環境センサ32と、エネルギー変換素子31が変換した電力が入力され、電力を外部に出力する電源回路80、80aと、を備え、電源回路80、80aは、環境センサ32の出力に応じて動作条件を変更する。
この構成により、環境中の微弱なエネルギーを低損失で電気エネルギーに変換することができる。
(2)さらに、電源回路80、80aは、環境センサ32からのリアルタイム出力に応じて動作条件を変更する構成とすることで、環境中の微弱なエネルギーをより低損失で電気エネルギーに変換することができる。
(3)さらに、エネルギー変換素子31は交流電力を発生する素子であり、電源回路80、80aは、エネルギー変換素子31が変換した交流電力を整流する整流回路50を有し、整流回路50は、環境センサ32の出力に応じて整流条件を変更するスイッチング素子M1〜M4を有する構成とすることで、環境中の微弱なエネルギーをさらに低損失で電気エネルギーに変換することができる。
(4)さらに、環境センサ32は、エネルギー変換素子31が変換する交流電力と等しい周波数の交流信号を出力する構成とすることで、整流回路50による整流の効率を高めることができる。
(5)さらに、電源回路80、80aは、環境センサ32が出力する交流信号を所定の範囲の電圧に制限する電圧制限回路40を有する構成とすることで、環境に存在する微弱なエネルギーのうち、環境センサ32により発電された電気エネルギーとして消費されるエネルギーの量を低減することができる。これにより、環境に存在する微弱なエネルギーを低損失でエネルギー変換素子31により電気エネルギーに変換することができる。
(6)さらに、電圧制限回路40は、MOSFETにより構成されたブリッジ回路(T11〜T8)を含む構成とすることで、環境に存在する微弱なエネルギーのうち、環境センサ32により発電され消費されるエネルギーの量をさらに低減することができる。
(7)さらに、電圧制限回路40aは、環境センサ32が出力する交流信号が入力されるダイナミックコンパレータ41と、ダイナミックコンパレータ41の出力を記憶する記憶回路42とを含む、構成とすることで、環境に存在する微弱なエネルギーのうち、環境センサ32により発電され消費されるエネルギーの量を一層低減することができる。
(8)さらに、電源回路80bは、環境センサ32(および第2環境センサ33)が出力する電流の量に応じた電圧信号を出力する電流電圧変換回路70を有し、電源回路80aは電流電圧変換回路70からの出力信号に基づいて動作条件を変更する構成とすることで、環境中の微弱なエネルギーを低損失で電気エネルギーに変換することができる。
(9)さらに、電流電圧変換回路70は、アノードおよびカソードが相互に逆向きで、並列に配置された整流素子対(DcとDd、DeとDf、DgとDg)と、整流素子対の一端に生じる電圧を検出する検出回路CP1〜CP3と、を含む電圧検出回路711〜713が複数直列に接続された回路を含むとともに、電源回路80bは、複数の電圧検出回路711〜713からの検出信号に基づいて、動作条件を変更する構成とすることもできる。この構成により、エネルギー変換素子31により生成される電流の量が変動した場合であっても、生成される電力を電源回路80bにより効率良く外部に出力することができる。
上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。また、各実施形態および変形例は、それぞれ単独で適用しても良いし、組み合わせて用いても良い。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
1,1a,1b…環境発電装置、10,10a…振動発電部、80,80a,80b…電源回路、31…エネルギー変換素子、32…環境センサ、40,40a…電圧制限回路、50…整流回路50…電圧変換回路、70…電流電圧変換回路、M1〜M4…スイッチング素子、T1〜T8…制御素子(MOSFET)、41…ダイナミックコンパレータ、42…記憶回路、Ta〜Tl…MOSFET、CP1〜CP3…電圧検出回路、Da〜Dg…整流素子(ダイオード)、C1…第1コンデンサ、C2…第2コンデンサ、RO…外部負荷

Claims (11)

  1. 環境のエネルギーを電気エネルギーに変換するエネルギー変換素子と、
    前記エネルギー変換素子と同じ環境に配置される環境センサと、
    前記エネルギー変換素子が変換した電力が入力され、電力を外部に出力する電源回路と、
    を備え、
    前記電源回路は、前記環境センサの出力に応じて動作条件を変更する、
    環境発電装置。
  2. 請求項1に記載の環境発電装置において、
    前記電源回路は、前記環境センサからのリアルタイム出力に応じて前記動作条件を変更する、環境発電装置。
  3. 請求項1または請求項2に記載の環境発電装置において、
    前記エネルギー変換素子は、交流電力を発生する素子であり、
    前記電源回路は、前記エネルギー変換素子が変換した交流電力を整流する整流回路を有し、
    前記整流回路は、前記環境センサの出力に応じて回路の接続条件を変更するスイッチング素子を有する、
    環境発電装置。
  4. 請求項3に記載の環境発電装置において、
    前記環境センサは、前記エネルギー変換素子が変換する前記交流電力と等しい周波数の交流信号を出力する、環境発電装置。
  5. 請求項4に記載の環境発電装置において、
    前記電源回路は、前記環境センサが出力する前記交流信号を所定の範囲の電圧に制限する電圧制限回路を有する、
    環境発電装置。
  6. 請求項5に記載の環境発電装置において、
    前記電圧制限回路は、MOSFETにより構成されたダイオードブリッジ回路を含む、
    環境発電装置。
  7. 請求項5に記載の環境発電装置において、
    前記電圧制限回路は、
    前記環境センサが出力する前記交流信号が入力されるダイナミックコンパレータと、
    前記ダイナミックコンパレータの出力を記憶する記憶回路と、を含む、
    環境発電装置。
  8. 請求項7に記載の環境発電装置において、
    前記電圧制限回路は、前記ダイナミックコンパレータの入力側に、アノードおよびカソードが相互に逆向きで、並列に配置された2つの整流素子を備える、
    環境発電装置。
  9. 請求項1または請求項2に記載の環境発電装置において、
    前記電源回路は、前記環境センサが出力する電流の量に応じた電圧信号を出力する電流電圧変換回路を有し、
    前記電源回路は、前記電流電圧変換回路からの出力電圧に基づいて動作条件を変更する、
    環境発電装置。
  10. 請求項9に記載の環境発電装置において、
    前記電流電圧変換回路は、
    アノードおよびカソードが相互に逆向きで、並列に配置された整流素子対と、前記整流素子対の一端の電圧を検出する検出回路と、を含む電圧検出回路が複数直列に接続された回路を含むとともに、
    前記電源回路は、前記複数の電圧検出回路からの検出信号に基づいて、動作条件を変更する、
    環境発電装置。
  11. 請求項1または請求項10までのいずれか一項に記載の環境発電装置において、
    前記エネルギー変換素子および前記環境センサが振動発電素子である、
    環境発電装置。
JP2019116310A 2019-06-24 2019-06-24 環境発電装置 Active JP7083999B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019116310A JP7083999B2 (ja) 2019-06-24 2019-06-24 環境発電装置
EP20833259.3A EP3975412B1 (en) 2019-06-24 2020-06-19 Environmental energy harvesting device
CN202080045712.9A CN114008909A (zh) 2019-06-24 2020-06-19 环境发电装置
PCT/JP2020/024252 WO2020262263A1 (ja) 2019-06-24 2020-06-19 環境発電装置
US17/621,398 US20220360199A1 (en) 2019-06-24 2020-06-19 Environmental Energy Harvesting Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019116310A JP7083999B2 (ja) 2019-06-24 2019-06-24 環境発電装置

Publications (2)

Publication Number Publication Date
JP2021002963A true JP2021002963A (ja) 2021-01-07
JP7083999B2 JP7083999B2 (ja) 2022-06-14

Family

ID=73994111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019116310A Active JP7083999B2 (ja) 2019-06-24 2019-06-24 環境発電装置

Country Status (5)

Country Link
US (1) US20220360199A1 (ja)
EP (1) EP3975412B1 (ja)
JP (1) JP7083999B2 (ja)
CN (1) CN114008909A (ja)
WO (1) WO2020262263A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011160612A (ja) * 2010-02-03 2011-08-18 Nippon Telegr & Teleph Corp <Ntt> 発電センサ素子およびセンサノード
JP2014075950A (ja) * 2012-10-05 2014-04-24 Fujitsu Semiconductor Ltd ブリッジ整流回路
WO2017191436A1 (en) * 2016-05-04 2017-11-09 Arm Ltd An energy harvester

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080203823A1 (en) * 2005-04-27 2008-08-28 Koninklijke Philips Electronics N. V. Arrangement for Converting Mechanical Energy Into Electrical Energy
CN101981456B (zh) * 2008-03-31 2013-11-06 旭硝子株式会社 加速度传感器装置及传感器网络系统
WO2011079879A1 (en) * 2009-12-30 2011-07-07 Stmicroelectronics S.R.L. Low voltage isolation switch, in particular for a transmission channel for ultrasound applications
JP5763023B2 (ja) 2012-08-30 2015-08-12 アオイ電子株式会社 立体型櫛歯エレクトレット電極の製造方法
JP2017046046A (ja) 2015-08-24 2017-03-02 富士通株式会社 コンパレータ、電子回路、及びコンパレータの制御方法
JP2018074817A (ja) 2016-10-31 2018-05-10 旭化成エレクトロニクス株式会社 整流方法及び整流装置
JP7113615B2 (ja) 2017-12-27 2022-08-05 朋和産業株式会社 包装袋、包装袋の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011160612A (ja) * 2010-02-03 2011-08-18 Nippon Telegr & Teleph Corp <Ntt> 発電センサ素子およびセンサノード
JP2014075950A (ja) * 2012-10-05 2014-04-24 Fujitsu Semiconductor Ltd ブリッジ整流回路
WO2017191436A1 (en) * 2016-05-04 2017-11-09 Arm Ltd An energy harvester

Also Published As

Publication number Publication date
WO2020262263A1 (ja) 2020-12-30
EP3975412A4 (en) 2023-06-07
JP7083999B2 (ja) 2022-06-14
US20220360199A1 (en) 2022-11-10
EP3975412B1 (en) 2024-05-01
CN114008909A (zh) 2022-02-01
EP3975412A1 (en) 2022-03-30

Similar Documents

Publication Publication Date Title
KR102527046B1 (ko) 고전압 용량성 액추에이터용 드라이버
US9112374B2 (en) Converter and method for extracting maximum power from piezo vibration harvester
CN101401288B (zh) 一种电力转换器
US20140016381A1 (en) Current detecting circuit, controlling circuit and power conversion circuit
US11664749B2 (en) Power supply circuit and vibration-driven energy harvester
US11848614B2 (en) Power supply circuit and vibration-driven energy harvester
Leicht et al. 20.6 Electromagnetic vibration energy harvester interface IC with conduction-angle-controlled maximum-power-point tracking and harvesting efficiencies of up to 90%
WO2020262263A1 (ja) 環境発電装置
Marinkovic et al. A new rectifier and trigger circuit for a piezoelectric microgenerator
WO2019216237A1 (ja) 振動発電装置
Raisigel et al. Autonomous, low voltage, high efficiency, CMOS rectifier for three-phase micro generators
KR20170135042A (ko) 진동과 열 에너지를 이용한 자동 스위칭 에너지 하베스팅 회로
KR101784486B1 (ko) 정류 회로 및 이를 포함하는 압전 에너지 하베스터
Smadi et al. An algorithm to extract the maximum power from the PV-based generation systems under nonuniform weather
Jung et al. Time slot optimization algorithm for multisource energy harvesting systems
Madhuri et al. Low Voltage Energy Harvesting by an Efficient AC-DC Step-Up Converter
JP5980009B2 (ja) スイッチング電源装置
JP2018074823A (ja) 電源回路
KR102467527B1 (ko) 에너지 하베스터를 위한 정류 장치
JP2015173534A (ja) エネルギー変換装置
Dallago et al. Comparison of two autonomous AC-DC converters for piezoelectric energy scavenging systems
JP2019205329A (ja) 電力変換回路及び電源装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210315

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220524

R150 Certificate of patent or registration of utility model

Ref document number: 7083999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150