JP2021002554A - Manufacturing method for printed wiring board - Google Patents

Manufacturing method for printed wiring board Download PDF

Info

Publication number
JP2021002554A
JP2021002554A JP2019114541A JP2019114541A JP2021002554A JP 2021002554 A JP2021002554 A JP 2021002554A JP 2019114541 A JP2019114541 A JP 2019114541A JP 2019114541 A JP2019114541 A JP 2019114541A JP 2021002554 A JP2021002554 A JP 2021002554A
Authority
JP
Japan
Prior art keywords
dry film
hole
via hole
printed wiring
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019114541A
Other languages
Japanese (ja)
Other versions
JP7333210B2 (en
Inventor
加藤 利和
Toshikazu Kato
利和 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon CMK Corp
CMK Corp
Original Assignee
Nippon CMK Corp
CMK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon CMK Corp, CMK Corp filed Critical Nippon CMK Corp
Priority to JP2019114541A priority Critical patent/JP7333210B2/en
Publication of JP2021002554A publication Critical patent/JP2021002554A/en
Application granted granted Critical
Publication of JP7333210B2 publication Critical patent/JP7333210B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

To provide a method for obtaining a printed wiring board, excellent in processing accuracy for via holes.SOLUTION: A method for manufacturing a printed wiring board on which a plurality of piece boards comprising a via hole and a penetration aperture are imposed includes the steps of: laminating a dry film 23 on an insulation board 22 comprising copper layers on both front and back surfaces thereof; performing light exposure/image development to remove dry films at a via hole formation location 24 and a penetration aperture formation location 25; etching and removing a copper layer 21 exposed from a removed portion; forming a non-penetration hole 27 at the via hole formation location from one surface of the insulation board, by laser processing 26; making the non-penetration hole be a through hole by blasting processing to form a via hole and a penetration aperture; after peeling the dry film, performing panel plating on the whole surface; after performing light exposure/image development on the dry film and removing a dry film other than a wiring circuit formation location, performing etching to form a wiring circuit; and peeling the dry film.SELECTED DRAWING: Figure 1

Description

本発明は、小径のビアホールとビアホール以外の貫通開口部とを備えたピース基板が複数面付けされたプリント配線板の製造方法に関する。 The present invention relates to a method for manufacturing a printed wiring board on which a plurality of piece substrates provided with a via hole having a small diameter and a through opening other than the via hole are impositioned.

従来、プリント配線板を製造する際、製造効率の観点から、複数のピース基板をシートに面付けし、さらに、当該シートをワークボードに複数面付けして製造している。開口形状が円形のビアホールと貫通開口部を有するプリント配線板を製造する場合は、当該ビアホール及び貫通開口部をブラスト加工により形成することが知られている(特許文献1)。 Conventionally, when manufacturing a printed wiring board, from the viewpoint of manufacturing efficiency, a plurality of piece substrates are impositioned on a sheet, and further, a plurality of the sheets are impositioned on a work board. When a printed wiring board having a via hole having a circular opening shape and a through opening is manufactured, it is known that the via hole and the through opening are formed by blasting (Patent Document 1).

ブラスト加工の利点としては、ワークボードに配置された複数のピース基板のビアホールと貫通開口部を一括で形成できることである。 The advantage of blasting is that via holes and through openings of a plurality of piece substrates arranged on a work board can be formed at once.

特開2018−125472号公報JP-A-2018-125472

しかし、比較的小型の製品において、貫通穴径が40μm以下のビアホールと貫通開口部とをブラスト加工により形成する場合には、下記に示す問題が発生していた。
すなわち、ワークボードに配置された複数のピース基板に穴あけ加工を行う場合、先ず銅層をウインドエッチングする為の開口部にドライフィルムをラミネートし、次いで当該ドライフィルムを露光・現像した後、開口部分の銅層をエッチングにより除去することで開口部を形成し、当該開口部にブラスト処理によりビアホールの貫通穴と貫通開口部を同時に設ける。ところが、例えば、複数のピース基板が1シートに1万ピース面付けされ、さらに、当該シートが6面付けされたワークボードにおいて穴あけ加工を行うと、6万ピースのピース基板に、穴径が40μm以下のビアホールの貫通穴を6万穴あける必要がある。穴径が40μm以下のビアホールの貫通穴が6万穴もあると、6面付けのシートの中には銅層がエッチングされていない穴が1箇所、2箇所くらい出てしまうことがある。また、銅層がエッチングされて開口部が形成されても、ドライフィルムなどのカスが穴に詰まり貫通しない穴が数穴見受けられることがある。6面のうち全てのビアホールが貫通しているシートは3〜4シート程度であった。
However, in a relatively small product, when a via hole having a through hole diameter of 40 μm or less and a through opening are formed by blasting, the following problems have occurred.
That is, when drilling a plurality of piece substrates arranged on a work board, a dry film is first laminated on an opening for wind etching of a copper layer, and then the dry film is exposed and developed, and then the opening portion is formed. An opening is formed by removing the copper layer of the above by etching, and a through hole and a through opening of a via hole are simultaneously provided in the opening by a blast treatment. However, for example, when a plurality of piece substrates are impositioned on one sheet by 10,000 pieces and further drilling is performed on a work board on which the sheets are impositioned on six surfaces, the hole diameter is 40 μm on the piece substrate of 60,000 pieces. It is necessary to make 60,000 through holes for the following via holes. If there are 60,000 through holes for via holes with a hole diameter of 40 μm or less, one or two holes where the copper layer is not etched may appear in the 6-imposed sheet. Further, even if the copper layer is etched to form an opening, there may be some holes in which debris such as a dry film is clogged in the holes and does not penetrate. Of the six surfaces, the number of sheets through which all the via holes penetrated was about 3 to 4 sheets.

また、ブラスト加工時の砥粒は粒径が大きいほど切削力は上がるが、穴径以上の砥粒は使えないため、仮に40μmの穴をあける場合は平均10μm程度の砥粒が使用される。ただ、平均10μmの砥粒には20μmを越えるものも含まれているため砥粒詰まりが発生し、貫通しない穴が見受けられる場合があった。砥粒を更に小さくすると、ビアホール以外の開口部分を貫通させるのに時間が掛かり、ブラストを当てる時間も長くなるため、マスク(ドライフィルム)の耐久性にも問題が発生する可能性があった。 Further, the larger the particle size of the abrasive grains during blasting, the higher the cutting force, but since abrasive grains with a hole diameter larger than that cannot be used, if a hole of 40 μm is to be drilled, an abrasive grain of about 10 μm on average is used. However, since the abrasive grains having an average of 10 μm include those exceeding 20 μm, clogging of the abrasive grains may occur, and holes that do not penetrate may be seen. If the abrasive grains are made smaller, it takes time to penetrate the opening portion other than the via hole, and the time for applying the blast becomes longer, which may cause a problem in the durability of the mask (dry film).

一般的な穴加工法としてはドリル加工や金型加工があるが小径穴に対応できない。また、レーザ加工は、穴内壁ガラス繊維の溶融による穴壁面の凹凸ができるという問題があった。 Common hole drilling methods include drilling and die drilling, but they cannot handle small diameter holes. Further, laser machining has a problem that unevenness of the hole wall surface is formed due to melting of the hole inner wall glass fiber.

本発明は、上記の如き従来の問題と実状に鑑みてなされたものであり、穴径が40μm以下と小径のビアホールの加工精度に優れたプリント配線板を得ることができる方法を提供することを課題としている。 The present invention has been made in view of the above-mentioned conventional problems and actual conditions, and provides a method capable of obtaining a printed wiring board having excellent machining accuracy of a via hole having a hole diameter of 40 μm or less and a small diameter. It is an issue.

本発明者は、上記の課題を解決すべく種々研究を重ねた結果、レーザ加工にてビアホールを形成するための非貫通穴又は貫通穴を形成した後に、ブラスト加工にてビアホールと貫通開口部とを形成すれば、極めて良い結果が得られることを見い出し、本発明を完成するに至った。 As a result of conducting various studies to solve the above problems, the present inventor has formed a non-through hole or a through hole for forming a via hole by laser machining, and then blasted the via hole and the through opening. It was found that extremely good results could be obtained by forming the above, and the present invention was completed.

すなわち、本発明は、ビアホールとビアホール以外の貫通開口部とを備えたピース基板が複数面付けされたプリント配線板の製造方法であって、表裏両面に銅層を備えた絶縁基板にドライフィルムをラミネートする工程と、次いで、前記ドライフィルムを露光・現像し、ビアホール形成箇所及び貫通開口部形成箇所のドライフィルムを除去する工程と、次いで、前記ドライフィルム除去部分から露出した銅層をエッチングにて除去する工程と、次いで、前記絶縁基板の一方の面から、前記ビアホール形成箇所にレーザ加工にて非貫通穴を形成する工程と、次いで、ブラスト加工にて、前記非貫通穴を貫通させてビアホールを形成すると共に貫通開口部を形成する工程と、次いで、前記ドライフィルムを剥離後、全面にパネルめっきを施す工程と、次いで、前記絶縁基板にドライフィルムをラミネートする工程と、次いで、前記ドライフィルムを露光・現像し、配線回路形成箇所以外のドライフィルムを除去後、エッチングにて配線回路を形成する工程と、次いで、ドライフィルムを剥離する工程とを有することを特徴とするプリント配線板の製造方法により上記課題を解決したものである。
また、本発明は、ビアホールとビアホール以外の貫通開口部とを備えたピース基板が複数面付けされたプリント配線板の製造方法であって、表裏両面に銅層を備えた絶縁基板にドライフィルムをラミネートする工程と、次いで、前記ドライフィルムを露光・現像し、ビアホール形成箇所及び貫通開口部形成箇所のドライフィルムを除去する工程と、次いで、当該ドライフィルム除去部分から露出した銅層をエッチングにて除去する工程と、次いで、前記絶縁基板の一方の面から、前記ビアホール形成箇所にレーザ加工にて貫通穴を形成する工程と、次いで、前記貫通穴及び貫通開口部形成箇所にブラスト加工してビアホールを形成すると共に貫通開口部を形成する工程と、次いで、前記ドライフィルムを剥離後、全面にパネルめっきを施す工程と、次いで、前記絶縁基板にドライフィルムをラミネートする工程と、次いで、前記ドライフィルムを露光・現像し、配線回路形成箇所以外のドライフィルムを除去後、エッチングにて配線回路を形成する工程と、次いで、ドライフィルムを剥離する工程とを有することを特徴とするプリント配線板の製造方法により上記課題を解決したものである。
That is, the present invention is a method for manufacturing a printed wiring board on which a plurality of piece substrates having a via hole and a through opening other than the via hole are mounted, and a dry film is applied to an insulating substrate having copper layers on both the front and back surfaces. A step of laminating, then a step of exposing and developing the dry film to remove the dry film at the via hole forming portion and the through opening forming portion, and then etching the copper layer exposed from the dry film removing portion. A step of removing, then a step of forming a non-through hole from one surface of the insulating substrate at the via hole forming portion by laser processing, and then a step of blasting the non-through hole to penetrate the via hole. A step of forming a through opening and then a step of peeling off the dry film and then applying panel plating to the entire surface, then a step of laminating the dry film on the insulating substrate, and then the dry film. Manufacture of a printed wiring board, which comprises a step of forming a wiring circuit by etching after exposing and developing a dry film other than a wiring circuit forming portion, and then a step of peeling off the dry film. The above problem is solved by the method.
Further, the present invention is a method for manufacturing a printed wiring board on which a plurality of piece substrates having via holes and through openings other than via holes are mounted, and a dry film is applied to an insulating substrate having copper layers on both the front and back surfaces. A step of laminating, then a step of exposing and developing the dry film to remove the dry film at the via hole forming portion and the through opening forming portion, and then etching the copper layer exposed from the dry film removing portion. A step of removing the via hole, then a step of forming a through hole in the via hole forming portion by laser processing from one surface of the insulating substrate, and then a via hole by blasting the through hole and the through opening forming portion. A step of forming a through opening and then a step of peeling off the dry film and then applying panel plating to the entire surface, then a step of laminating the dry film on the insulating substrate, and then the dry film. Manufacture of a printed wiring board, which comprises a step of forming a wiring circuit by etching after exposing and developing a dry film other than a wiring circuit forming portion, and then a step of peeling off the dry film. The above problem is solved by the method.

本発明のプリント配線板の製造方法によれば、レーザ加工にてビアホールを形成するための非貫通穴又は貫通穴を形成した後に、ブラスト加工にてビアホールと貫通開口部とを形成するため、穴径が40μm以下と小径のビアホールであっても加工精度を高めることができる。また、レーザ加工の際に非貫通穴又は貫通穴の内壁にガラス繊維の塊部が発生しても前記ブラスト加工にてクリーニングされるので、安定しためっきを形成することが可能となり、貫通めっきスルーホールの接続信頼性を高めることもできる。 According to the method for manufacturing a printed wiring board of the present invention, after forming a non-through hole or a through hole for forming a via hole by laser processing, a hole is formed because the via hole and the through opening are formed by blasting. Machining accuracy can be improved even for via holes with a small diameter of 40 μm or less. Further, even if a lump of glass fiber is generated in a non-through hole or an inner wall of the through hole during laser processing, it is cleaned by the blast processing, so that stable plating can be formed, and through plating through It is also possible to improve the connection reliability of the hall.

本発明の第1の実施形態に係るプリント配線板の製造例を示す概略断面工程図である。It is a schematic cross-sectional process diagram which shows the manufacturing example of the printed wiring board which concerns on 1st Embodiment of this invention. 図1に引き続く、本発明の第1の実施形態に係るプリント配線板の製造例を示す概略断面工程図である。It is a schematic cross-sectional process diagram which shows the manufacturing example of the printed wiring board which concerns on 1st Embodiment of this invention following FIG. 図2に引き続く、本発明の第1の実施形態に係るプリント配線板の製造例を示す概略断面工程図である。Following FIG. 2, it is a schematic cross-sectional process diagram showing a manufacturing example of a printed wiring board according to the first embodiment of the present invention. 本発明の第2の実施形態に係るプリント配線板の製造例を示す概略断面工程図である。It is a schematic cross-sectional process diagram which shows the manufacturing example of the printed wiring board which concerns on 2nd Embodiment of this invention. 本発明で得られたプリント配線板を説明するための概略平面図であり、(a)は、隣接するピース基板が当該ピース基板間を繋ぐ連結部で連結された状態を示したものであり、(b)は、複数のピース基板が面付けされたシート基板を示したものであり、(c)は、当該シート基板が6面付けされたワークボードを示したものである。It is a schematic plan view for demonstrating the printed wiring board obtained in this invention, and (a) shows the state which the adjacent piece board is connected by the connecting part which connects the piece board. (B) shows a sheet substrate on which a plurality of piece substrates are impositioned, and (c) shows a work board on which the sheet substrate is impositioned on six sides.

以下本発明の実施の形態を図面と共に説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1〜図3を用いて本発明の第1の実施の形態に係るプリント配線板の製造方法について説明する。 A method for manufacturing a printed wiring board according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 3.

先ず、絶縁基材20の両面に銅箔21を備えた銅張絶縁基板22にドライフィルム23をラミネートする(図1(a))。絶縁基材20の板厚は40μm、銅箔の厚みは12μm程度であるが、ハーフエッチング工程により、銅箔12μmから6μm程度に薄箔化することで、後工程での銅箔開口直径40μm以下が形成し易くなり、かつさらに後工程での回路幅10μm程度のファインパターンも形成し易くなる。また、ドライフィルム23の膜厚は、15μmから50μm程度であるが、厚みが厚い方が後工程でブラスト加工のマスクとして兼用する際の耐性は高いが、一方で小径の開口部を形成するのが難しくなる。そのため、ドライフィルム23の膜厚は30μm程度のものが適宜使用される。
また、一般的に千ピースを越える集合基板の場合、かなりの合わせ精度が求められるためデジタル露光機対応のドライフィルムを使用することが望ましい。
First, the dry film 23 is laminated on the copper-clad insulating substrate 22 provided with copper foils 21 on both sides of the insulating base material 20 (FIG. 1 (a)). The thickness of the insulating base material 20 is about 40 μm, and the thickness of the copper foil is about 12 μm. However, by thinning the copper foil from 12 μm to about 6 μm by the half etching process, the copper foil opening diameter of 40 μm or less in the subsequent process. Is easy to form, and it is also easy to form a fine pattern having a circuit width of about 10 μm in a subsequent process. The film thickness of the dry film 23 is about 15 μm to 50 μm, and the thicker the dry film 23, the higher the resistance when it is also used as a mask for blasting in a later process, but on the other hand, a small-diameter opening is formed. Becomes difficult. Therefore, a dry film 23 having a film thickness of about 30 μm is appropriately used.
Further, in the case of a collective substrate having more than 1,000 pieces in general, it is desirable to use a dry film compatible with a digital exposure machine because a considerable alignment accuracy is required.

次いで、当該ドライフィルム23を露光・現像して、ビアホール形成箇所24及び貫通開口部形成箇所25のドライフィルムを除去する(図1(b))。次に、当該ドライフィルム除去部分から露出した銅箔21をエッチングすることにより除去する(図1(c))。 Next, the dry film 23 is exposed and developed to remove the dry film at the via hole forming portion 24 and the through opening forming portion 25 (FIG. 1 (b)). Next, the copper foil 21 exposed from the dry film removing portion is removed by etching (FIG. 1 (c)).

次いで、前記絶縁基板22a(絶縁基材と銅箔を含む)の一方の面から、ドライフィルム23と銅箔21をマスクとして、当該ビアホール形成箇所24にレーザ加工26にて絶縁基材20の途中まで非貫通穴27を形成する(図1(d))。
ここでレーザ加工機は、UVレーザ、エキシマレーザ、炭酸ガスレーザの何れかが好適に使用される。レーザ加工26は、穴径が40μm以下と小径の非貫通穴27を形成する上で非常に有効な加工方法である。また、本工程で、非貫通穴27とすることによって、基板を設置したテーブルにダメージを与えることを避けることができる。
本工程では、当該レーザ加工26時に発生する熱により、非貫通穴27の内壁に露出した絶縁基材20に含まれるガラス繊維が溶融するため、当該ガラス繊維の塊部29が非貫通穴27の内壁に残存する。
Next, from one surface of the insulating substrate 22a (including the insulating substrate and the copper foil), the via hole forming portion 24 is laser-processed in the middle of the insulating substrate 20 using the dry film 23 and the copper foil 21 as masks. The non-through hole 27 is formed up to (FIG. 1 (d)).
Here, any one of a UV laser, an excimer laser, and a carbon dioxide gas laser is preferably used as the laser processing machine. Laser machining 26 is a very effective machining method for forming a non-through hole 27 having a small diameter of 40 μm or less. Further, in this step, by making the non-through hole 27, it is possible to avoid damaging the table on which the substrate is placed.
In this step, the glass fibers contained in the insulating base material 20 exposed on the inner wall of the non-through hole 27 are melted by the heat generated during the laser processing 26, so that the lump portion 29 of the glass fiber is formed in the non-through hole 27. It remains on the inner wall.

次いで、ブラスト加工30にて当該非貫通穴27を貫通させてビアホール12を形成すると共に貫通開口部13を形成する(図2(e))。ブラスト加工30を行うと、非貫通穴27の内壁がクリーニングされるので、前工程にて非貫通穴27の内壁に残存したガラス繊維の塊部29が除去される。そのため、後工程で銅めっきを凹凸無く付与することが可能となる。また、ビアホールの接続信頼性が高まる。
当該ブラスト加工30は、前記レーザ加工26を行った面と反対の面、すなわち前記絶縁基板22a(絶縁基材と銅箔を含む)の他方の面から行うことが望ましい。その理由としては、レーザ加工26による非貫通穴27の形成でマスクとして使用しているドライフィルム23に損傷がある場合、マスクとしての機能が低下し、穴径が拡大する恐れがあるのでこれを避けるためである。また、前記絶縁基板22の他方の面からブラスト加工30を行なうことによって、穴の形状がテーパー形状になるのを抑制することもできる。しかし、ドライフィルム23に損傷が無ければ、レーザ加工26を行う面と同じ面からブラスト加工30を施しても構わない。ただしこの場合、穴の形状はレーザ加工26とブラスト加工30を行なった面は、反対面より穴径が大きいテーパー形状となる。
ちなみに、図示しないが、本工程のブラスト加工30にて、ビアホール12及び貫通開口部13と共に、各ピース基板に部品を実装した後の分割作業を容易にするための貫通開口部14を、隣接するピース基板間を繋ぐための連結部11(図5(a)の概略平面図参照)を残して形成する。
Next, the non-through hole 27 is penetrated by the blasting 30 to form the via hole 12 and the through opening 13 (FIG. 2 (e)). When the blasting process 30 is performed, the inner wall of the non-through hole 27 is cleaned, so that the lump portion 29 of the glass fiber remaining on the inner wall of the non-through hole 27 is removed in the previous step. Therefore, it is possible to apply copper plating without unevenness in a subsequent process. In addition, the connection reliability of the via hole is improved.
It is desirable that the blasting 30 is performed from the surface opposite to the surface on which the laser processing 26 is performed, that is, the other surface of the insulating substrate 22a (including the insulating base material and the copper foil). The reason is that if the dry film 23 used as a mask is damaged due to the formation of the non-through hole 27 by the laser processing 26, the function as a mask may deteriorate and the hole diameter may increase. This is to avoid it. Further, by performing the blasting process 30 from the other surface of the insulating substrate 22, it is possible to prevent the hole shape from becoming a tapered shape. However, if the dry film 23 is not damaged, the blasting 30 may be performed from the same surface as the surface on which the laser processing 26 is performed. However, in this case, the shape of the hole is a tapered shape in which the hole diameter is larger than that of the opposite surface on the surface subjected to the laser processing 26 and the blast processing 30.
By the way, although not shown, in the blasting process 30 of this step, the via hole 12 and the through opening 13 are adjacent to the through opening 14 for facilitating the division work after mounting the parts on each piece substrate. It is formed by leaving the connecting portion 11 (see the schematic plan view of FIG. 5A) for connecting the piece substrates.

次いで、ドライフィルム23を剥離後(図2(f))、全面にパネルめっき31(無電解・電解めっき)を施す(図2(g))。次いで、前記絶縁基板22b(絶縁基材と銅箔及びパネルめっきを含む)にドライフィルム23をラミネートし(図3(h))、当該ドライフィルム23を露光・現像して、配線回路形成箇所32以外のドライフィルム23を除去後(図3(i))、当該配線回路形成箇所32以外の銅箔及びめっきをエッチングすることにより配線回路33を形成する(図3(j))。
次いで、ドライフィルム23を剥離して、図3(k)のプリント配線板を得る。
Next, after the dry film 23 is peeled off (FIG. 2 (f)), panel plating 31 (electroless / electrolytic plating) is applied to the entire surface (FIG. 2 (g)). Next, a dry film 23 is laminated on the insulating substrate 22b (including an insulating substrate, copper foil, and panel plating) (FIG. 3 (h)), and the dry film 23 is exposed and developed to form a wiring circuit formation portion 32. After removing the dry film 23 other than the above (FIG. 3 (i)), the wiring circuit 33 is formed by etching the copper foil and the plating other than the wiring circuit forming portion 32 (FIG. 3 (j)).
Next, the dry film 23 is peeled off to obtain the printed wiring board of FIG. 3 (k).

続いて、図4を用いて本発明の第2の実施の形態に係るプリント配線板の製造方法について説明する。
第1の実施の形態に係るプリント配線板の製造方法と異なるところは、図4(l)に示すように、前記絶縁基板22a(絶縁基材と銅箔を含む)の一方の面から、ドライフィルム23と銅箔21をマスクとして、ビアホール形成箇所24にレーザ加工26にて絶縁基材20を貫通する貫通穴28を形成することである。本工程でも、当該レーザ加工26時に発生する熱により、貫通穴28の内壁に露出した絶縁基材20に含まれるガラス繊維が溶融するため、当該ガラス繊維の塊部29が貫通穴28の内壁に残存し、凹凸が形成される。
Subsequently, the method of manufacturing the printed wiring board according to the second embodiment of the present invention will be described with reference to FIG.
The difference from the method for manufacturing the printed wiring board according to the first embodiment is that, as shown in FIG. 4 (l), the insulating substrate 22a (including the insulating base material and the copper foil) is dried from one surface. Using the film 23 and the copper foil 21 as masks, a through hole 28 penetrating the insulating base material 20 is formed at the via hole forming portion 24 by laser processing 26. Also in this step, the glass fibers contained in the insulating base material 20 exposed on the inner wall of the through hole 28 are melted by the heat generated during the laser processing 26, so that the lump portion 29 of the glass fiber is formed on the inner wall of the through hole 28. It remains and unevenness is formed.

次いで、図4(m)に示すように、前記貫通穴28及び貫通開口部形成箇所25にブラスト加工30をしてビアホール12を形成すると共に貫通開口部13を形成する。ブラスト加工30を行うと、貫通穴28の内壁がクリーニングされるので、前工程にて貫通穴28の内壁に残存したガラス繊維の塊部29が除去される。そのため、後工程で銅めっきを凹凸無く付与することが可能となる。また、ビアホールの接続信頼性が高まる。
本工程においても、ブラスト加工30は、前記レーザ加工26を行った面と反対の面、すなわち前記絶縁基板22の他方の面から行うことが望ましい。その理由としては、前記と同様である。
また、図示しないが、本工程のブラスト加工30においても、ビアホール12及び貫通開口部13と共に、各ピース基板に部品を実装した後の分割作業を容易にするための貫通開口部14を、隣接するピース基板間を繋ぐための連結部11(図5(a)の概略平面図参照)を残して形成する。
Next, as shown in FIG. 4 (m), the through hole 28 and the through opening opening forming portion 25 are blasted 30 to form the via hole 12 and the through opening portion 13. When the blasting process 30 is performed, the inner wall of the through hole 28 is cleaned, so that the lump portion 29 of the glass fiber remaining on the inner wall of the through hole 28 is removed in the previous step. Therefore, it is possible to apply copper plating without unevenness in a subsequent process. In addition, the connection reliability of the via hole is improved.
Also in this step, it is desirable that the blasting process 30 is performed from the surface opposite to the surface on which the laser processing 26 is performed, that is, the other surface of the insulating substrate 22. The reason is the same as described above.
Further, although not shown, in the blasting process 30 of this step, the via hole 12 and the through opening 13 are adjacent to the through opening 14 for facilitating the division work after mounting the parts on each piece substrate. It is formed by leaving the connecting portion 11 (see the schematic plan view of FIG. 5A) for connecting the piece substrates.

次いで、ドライフィルム23を剥離後(図4(n))、全面にパネルめっき31(無電解・電解めっき)を施すが、この後の工程は、前記図2(g)から図3(k)と同じである。 Next, after the dry film 23 is peeled off (FIG. 4 (n)), panel plating 31 (electroless / electrolytic plating) is applied to the entire surface, and the subsequent steps are described in FIGS. 2 (g) to 3 (k). Is the same as.

続いて、図5を用いて本発明の製造方法で得られるプリント配線板100について説明する。
図5は、プリント配線板100を上から見た場合の概略平面図を示したものであり、(a)は、隣接するピース基板10が当該ピース基板間を繋ぐ連結部11で連結された状態を示している。当該ピース基板10には、内壁に銅めっきが施された小径のビアホール12が形成され、当該ビアホール12の他に、貫通開口部13が形成されている。また、当該連結部11同士の間には、各ピース基板10に部品を実装した後の分割作業を容易にするための貫通開口部14形成されている。部品を実装した後に各ピース基板10に分割するには、連結部11を除去することによって容易に各ピース基板10に分割することができる。当該ピース基板10は、図5(b)に示すように、シート基板110に複数面付けされ、また、当該シート基板110は、ワークボード120に6面付けされている。
Subsequently, the printed wiring board 100 obtained by the manufacturing method of the present invention will be described with reference to FIG.
FIG. 5 shows a schematic plan view of the printed wiring board 100 when viewed from above, and FIG. 5A shows a state in which adjacent piece boards 10 are connected by a connecting portion 11 connecting the piece boards. Is shown. A small-diameter via hole 12 having a copper-plated inner wall is formed on the piece substrate 10, and a through opening 13 is formed in addition to the via hole 12. Further, a through opening 14 is formed between the connecting portions 11 to facilitate the division work after mounting the components on the piece substrates 10. In order to divide into each piece substrate 10 after mounting the components, it can be easily divided into each piece substrate 10 by removing the connecting portion 11. As shown in FIG. 5B, a plurality of the piece substrates 10 are impositioned on the sheet substrate 110, and the sheet substrate 110 is impositioned on the work board 120 on a plurality of sides.

10:ピース基板
11:連結部
12:ビアホール
13:貫通開口部
14:各ピース基板への分割作業を容易にするための貫通開口部
20:絶縁基材
21:銅箔
22:銅張絶縁基板
22a:絶縁基板(絶縁基材に銅箔を含む)
22b:絶縁基材(絶縁基材に銅箔とパネルめっきを含む)
23:ドライフィルム
24:ビアホール形成箇所
25:貫通開口部形成箇所
26:レーザ加工
27:非貫通穴
28:貫通穴
29:ガラス繊維の塊部
30:ブラスト加工
31:パネルめっき(無電解・電解めっき)
32:配線回路形成箇所
33:配線回路
34:絶縁基板
100:プリント配線板
110:シート基板
120:シート基板を6面付けしたワークボード
10: Piece substrate 11: Connecting portion 12: Via hole 13: Through opening 14: Through opening 20 for facilitating division work into each piece substrate 20: Insulating base material 21: Copper foil 22: Copper-clad insulating substrate 22a : Insulated substrate (insulating substrate contains copper foil)
22b: Insulating base material (copper foil and panel plating are included in the insulating base material)
23: Dry film 24: Via hole forming part 25: Through opening forming part 26: Laser processing 27: Non-through hole 28: Through hole 29: Glass fiber mass 30: Blast processing 31: Panel plating (electroless / electrolytic plating) )
32: Wiring circuit forming location 33: Wiring circuit 34: Insulated substrate 100: Printed wiring board 110: Sheet substrate 120: Work board with 6 sheet substrates

Claims (4)

ビアホールとビアホール以外の貫通開口部とを備えたピース基板が複数面付けされたプリント配線板の製造方法であって、表裏両面に銅層を備えた絶縁基板にドライフィルムをラミネートする工程と、次いで、前記ドライフィルムを露光・現像し、ビアホール形成箇所及び貫通開口部形成箇所のドライフィルムを除去する工程と、次いで、前記ドライフィルム除去部分から露出した銅層をエッチングにて除去する工程と、次いで、前記絶縁基板の一方の面から、前記ビアホール形成箇所にレーザ加工にて非貫通穴を形成する工程と、次いで、ブラスト加工にて、前記非貫通穴を貫通させてビアホールを形成すると共に貫通開口部を形成する工程と、次いで、前記ドライフィルムを剥離後、全面にパネルめっきを施す工程と、次いで、前記絶縁基板にドライフィルムをラミネートする工程と、次いで、前記ドライフィルムを露光・現像し、配線回路形成箇所以外のドライフィルムを除去後、エッチングにて配線回路を形成する工程と、次いで、ドライフィルムを剥離する工程とを有することを特徴とするプリント配線板の製造方法。 A method for manufacturing a printed wiring board in which a plurality of piece substrates having via holes and through openings other than via holes are mounted, a step of laminating a dry film on an insulating substrate having copper layers on both front and back surfaces, and then. , The step of exposing and developing the dry film to remove the dry film at the via hole forming portion and the through opening forming portion, and then removing the copper layer exposed from the dry film removing portion by etching, and then , From one surface of the insulating substrate, a step of forming a non-through hole at the via hole forming portion by laser processing, and then a blasting process to penetrate the non-through hole to form a via hole and a through opening. A step of forming a portion, then a step of peeling the dry film and then applying panel plating to the entire surface, then a step of laminating the dry film on the insulating substrate, and then exposing and developing the dry film. A method for manufacturing a printed wiring board, which comprises a step of forming a wiring circuit by etching after removing a dry film other than a wiring circuit forming portion, and then a step of peeling the dry film. ビアホールとビアホール以外の貫通開口部とを備えたピース基板が複数面付けされたプリント配線板の製造方法であって、表裏両面に銅層を備えた絶縁基板にドライフィルムをラミネートする工程と、次いで、前記ドライフィルムを露光・現像し、ビアホール形成箇所及び貫通開口部形成箇所のドライフィルムを除去する工程と、次いで、当該ドライフィルム除去部分から露出した銅層をエッチングにて除去する工程と、次いで、前記絶縁基板の一方の面から、前記ビアホール形成箇所にレーザ加工にて貫通穴を形成する工程と、次いで、前記貫通穴及び貫通開口部形成箇所にブラスト加工してビアホールを形成すると共に貫通開口部を形成する工程と、次いで、前記ドライフィルムを剥離後、全面にパネルめっきを施す工程と、次いで、前記絶縁基板にドライフィルムをラミネートする工程と、次いで、前記ドライフィルムを露光・現像し、配線回路形成箇所以外のドライフィルムを除去後、エッチングにて配線回路を形成する工程と、次いで、ドライフィルムを剥離する工程とを有することを特徴とするプリント配線板の製造方法。 A method for manufacturing a printed wiring board in which a plurality of piece substrates having via holes and through openings other than via holes are mounted, a step of laminating a dry film on an insulating substrate having copper layers on both front and back surfaces, and then. , A step of exposing and developing the dry film to remove the dry film at the via hole forming portion and the through opening forming portion, and then removing the copper layer exposed from the dry film removing portion by etching, and then A step of forming a through hole in the via hole forming portion by laser processing from one surface of the insulating substrate, and then blasting the through hole and the through opening forming portion to form a via hole and a through opening. A step of forming a portion, then a step of peeling the dry film and then applying panel plating to the entire surface, then a step of laminating the dry film on the insulating substrate, and then exposing and developing the dry film. A method for manufacturing a printed wiring board, which comprises a step of forming a wiring circuit by etching after removing a dry film other than a wiring circuit forming portion, and then a step of peeling the dry film. 前記ブラスト加工を前記絶縁基板の他方の面から行う、請求項1又は2に記載のプリント配線板の製造方法。 The method for manufacturing a printed wiring board according to claim 1 or 2, wherein the blasting process is performed from the other surface of the insulating substrate. 前記ピース基板間を繋ぐ連結部を、前記ブラスト加工にてビアホール及び貫通開口部と共に形成することを特徴とする請求項1〜3のいずれか1項に記載のプリント配線板の製造方法。 The method for manufacturing a printed wiring board according to any one of claims 1 to 3, wherein a connecting portion connecting the piece substrates is formed together with a via hole and a through opening by the blasting process.
JP2019114541A 2019-06-20 2019-06-20 Method for manufacturing printed wiring board Active JP7333210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019114541A JP7333210B2 (en) 2019-06-20 2019-06-20 Method for manufacturing printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019114541A JP7333210B2 (en) 2019-06-20 2019-06-20 Method for manufacturing printed wiring board

Publications (2)

Publication Number Publication Date
JP2021002554A true JP2021002554A (en) 2021-01-07
JP7333210B2 JP7333210B2 (en) 2023-08-24

Family

ID=73995109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019114541A Active JP7333210B2 (en) 2019-06-20 2019-06-20 Method for manufacturing printed wiring board

Country Status (1)

Country Link
JP (1) JP7333210B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113891568A (en) * 2021-10-27 2022-01-04 高德(江苏)电子科技有限公司 Processing technology for improving hole breakage of printed circuit board reverse etching dry film
WO2023022415A1 (en) * 2021-08-17 2023-02-23 삼성전자 주식회사 Interposer and electronic device comprising same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09321432A (en) * 1996-05-28 1997-12-12 Matsushita Electric Works Ltd Manufacture of multilayer printed wiring board
JP2003318519A (en) * 2002-04-24 2003-11-07 Ube Ind Ltd Both-sided flexible board and pretreatment method for via plating
JP2007173276A (en) * 2005-12-19 2007-07-05 Tdk Corp Method of manufacturing ic built-in substrate
JP2013214681A (en) * 2012-04-04 2013-10-17 Cmk Corp Printed wiring board
JP2018125472A (en) * 2017-02-02 2018-08-09 株式会社伸光製作所 Multi-row type printed circuit board and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09321432A (en) * 1996-05-28 1997-12-12 Matsushita Electric Works Ltd Manufacture of multilayer printed wiring board
JP2003318519A (en) * 2002-04-24 2003-11-07 Ube Ind Ltd Both-sided flexible board and pretreatment method for via plating
JP2007173276A (en) * 2005-12-19 2007-07-05 Tdk Corp Method of manufacturing ic built-in substrate
JP2013214681A (en) * 2012-04-04 2013-10-17 Cmk Corp Printed wiring board
JP2018125472A (en) * 2017-02-02 2018-08-09 株式会社伸光製作所 Multi-row type printed circuit board and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023022415A1 (en) * 2021-08-17 2023-02-23 삼성전자 주식회사 Interposer and electronic device comprising same
CN113891568A (en) * 2021-10-27 2022-01-04 高德(江苏)电子科技有限公司 Processing technology for improving hole breakage of printed circuit board reverse etching dry film
CN113891568B (en) * 2021-10-27 2024-05-17 高德(江苏)电子科技股份有限公司 Processing technology for improving hole breaking of printed circuit board etching-back dry film

Also Published As

Publication number Publication date
JP7333210B2 (en) 2023-08-24

Similar Documents

Publication Publication Date Title
TWI529023B (en) A laser processing method, and a manufacturing method of a multilayer flexible printed wiring board using the laser processing method
TWI383715B (en) High density package substrate and method for fabricating the same
US20070070613A1 (en) Method of manufacturing high density printed circuit boad
JP2006229115A (en) Metal component used in manufacturing wiring substrate and method for manufacturing wiring substrate using it
JPH0590756A (en) Production of rigid/flexible board
JP2021002554A (en) Manufacturing method for printed wiring board
JP4760506B2 (en) Manufacturing method of double-sided wiring board
JP2008277738A (en) Heat-dissipating printed board, and method of manufacturing the same
JP2013168691A (en) Printed circuit board and method for filling via hole thereof
KR101373330B1 (en) Manufacturing method for flexible printed circuits board using roll to roll exposure method and through slitting
CN108124386A (en) Wiring board and its production method, graph transfer method
KR20040085374A (en) Method for making through-hole of multi-layer flexible printed circuit board
US10820423B2 (en) Fabrication method of circuit board
CN114980549A (en) Windowing method of rigid-flex circuit board
JP5317491B2 (en) Method for manufacturing printed wiring board
JP2001189559A (en) Method of manufacturing built-up printed wiring board
JP2004200260A (en) Method for manufacturing flexible rigid build-up multilayer wiring board
KR20000058317A (en) Multi layer PCB and making method the same
JPH05267853A (en) Manufacture of multilayer printed circuit board
KR20030037738A (en) Method for creating blind via holes in printed circuit board
JP4633457B2 (en) Manufacturing method of rigid flexible printed wiring board
JP5235107B2 (en) Printed wiring board and manufacturing method thereof
JPH06244529A (en) Manufacture of printed-wiring board
JP2737548B2 (en) Manufacturing method of multilayer printed wiring board
JP2021163893A (en) Circuit wiring board and wiring pattern formation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230814

R150 Certificate of patent or registration of utility model

Ref document number: 7333210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150