JP2021001997A - Laser reflection device - Google Patents

Laser reflection device Download PDF

Info

Publication number
JP2021001997A
JP2021001997A JP2019116214A JP2019116214A JP2021001997A JP 2021001997 A JP2021001997 A JP 2021001997A JP 2019116214 A JP2019116214 A JP 2019116214A JP 2019116214 A JP2019116214 A JP 2019116214A JP 2021001997 A JP2021001997 A JP 2021001997A
Authority
JP
Japan
Prior art keywords
laser
concave mirror
reflection
point
deflection point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019116214A
Other languages
Japanese (ja)
Other versions
JP7176826B2 (en
Inventor
大槻 治明
Haruaki Otsuki
治明 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Via Mechanics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Via Mechanics Ltd filed Critical Via Mechanics Ltd
Priority to JP2019116214A priority Critical patent/JP7176826B2/en
Publication of JP2021001997A publication Critical patent/JP2021001997A/en
Application granted granted Critical
Publication of JP7176826B2 publication Critical patent/JP7176826B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

To provide a laser reflection device for reflecting a laser beam emitted from a laser oscillator that can improve a scanning resolution of the laser beam.SOLUTION: In a laser reflection device 2 that comprises a concave mirror 3 having a reflection surface for reflecting an incident beam B1 from a laser oscillator 1 and an actuator 14 for driving the concave mirror 3 in an orthogonal direction to the incident beam, a reflection beam B2 reflected by the concave mirror 3 while driven by the actuator 14 passes through a common deflection point P, and a distance LA from the deflection point P to the position irradiated with the reflection beam B2 is set to be smaller than a distance L from a reflection point of the incident beam on the concave mirror 3 to the deflection point P.SELECTED DRAWING: Figure 1

Description

本発明は、レーザ発振器から出射されたレーザ光を反射するためのレーザ反射装置に関する。 The present invention relates to a laser reflector for reflecting laser light emitted from a laser oscillator.

従来のレーザ反射装置には、例えば特許文献1の図1に示すように、圧電素子などのアクチュエータにより曲面形状のミラーを直線駆動させ、アクチュエータの直線変位に基づいて反射光の反射角度を制御するものがある。 In the conventional laser reflection device, for example, as shown in FIG. 1 of Patent Document 1, a curved mirror is linearly driven by an actuator such as a piezoelectric element, and the reflection angle of the reflected light is controlled based on the linear displacement of the actuator. There is something.

しかしながら、上記のようなレーザ反射装置を用いた場合、ミラーから反射光の照射位置までの距離が長いほど、アクチュエータの変位量に対する反射光の照射位置における走査距離が大きくなり、照射位置におけるレーザ光の走査分解能が低下する欠点がある。 However, when the above laser reflecting device is used, the longer the distance from the mirror to the reflected light irradiation position, the larger the scanning distance at the reflected light irradiation position with respect to the displacement amount of the actuator, and the laser light at the irradiation position. There is a drawback that the scanning resolution of the laser is lowered.

特表2012-524294号公報Special Table 2012-524294

そこで本発明は、レーザ発振器から出射されたレーザ光を反射するためのレーザ反射装置において、レーザ光の走査分解能を向上させることができるレーザ反射装置を提供することを目的とするものである。 Therefore, an object of the present invention is to provide a laser reflecting device capable of improving the scanning resolution of the laser light in a laser reflecting device for reflecting the laser light emitted from the laser oscillator.

本願において開示される発明のうち、代表的なレーザ反射装置は、レーザ発振器からの入射光を反射させる反射面を有する凹面ミラーと、前記入射光と直交する方向に前記凹面ミラーを駆動するアクチュエータを備えるレーザ反射装置において、前記アクチュエータの駆動に伴い前記凹面ミラーで反射された反射光が共通の偏向点を通過し、前記偏向点から前記反射光が照射される位置までの距離を前記凹面ミラー上の入射光の反射点から前記偏向点までの距離より小さくしたことを特徴とする。 Among the inventions disclosed in the present application, a typical laser reflecting device includes a concave mirror having a reflecting surface for reflecting incident light from a laser oscillator and an actuator for driving the concave mirror in a direction orthogonal to the incident light. In the laser reflecting device provided, the reflected light reflected by the concave mirror with the driving of the actuator passes through a common deflection point, and the distance from the deflection point to the position where the reflected light is irradiated is measured on the concave mirror. It is characterized in that it is smaller than the distance from the reflection point of the incident light to the deflection point.

なお、本願において開示される発明の代表的な特徴は以上の通りであるが、ここで説明していない特徴については、後述する発明を実施するための形態において説明しており、また特許請求の範囲にも示した通りである。 The typical features of the invention disclosed in the present application are as described above, but the features not described here are described in the form for carrying out the invention described later, and claims for patent. As shown in the range.

本発明によれば、レーザ発振器から出射されたレーザ光を反射するためのレーザ反射装置において、レーザ光の走査分解能を向上させることができる。 According to the present invention, in a laser reflecting device for reflecting a laser beam emitted from a laser oscillator, the scanning resolution of the laser beam can be improved.

本発明の一実施例に係るレーザ反射装置の動作を説明するための図である。It is a figure for demonstrating operation of the laser reflector which concerns on one Example of this invention. 本発明の一実施例に係るレーザ反射装置の構造を説明するための図である。It is a figure for demonstrating the structure of the laser reflector which concerns on one Example of this invention. 本発明の一実施例に係るレーザ反射装置の反射面を説明するための図である。It is a figure for demonstrating the reflection surface of the laser reflector which concerns on one Example of this invention. 本発明の一実施例に係るレーザ反射装置のレーザ光の反射を説明するための図である。It is a figure for demonstrating the reflection of the laser light of the laser reflection apparatus which concerns on one Example of this invention. 本発明の他の実施例に係るレーザ反射装置の動作を説明するための図である。It is a figure for demonstrating operation of the laser reflection apparatus which concerns on another Example of this invention.

以下、図面を参照しながら本発明に係る実施の形態を実施例に沿って説明する。なお、以下の説明において、同等な各部には同一の符号を付して説明を省略する。 Hereinafter, embodiments according to the present invention will be described with reference to the drawings. In the following description, the same reference numerals are given to the equivalent parts, and the description thereof will be omitted.

図1は本発明の一実施例に係るレーザ反射装置の動作を説明するための図である。1はレーザ発振器、2はレーザ反射装置、3はレーザ反射装置に設けられた凹面ミラーである。レーザ発振器1から出射されたレーザ光B1は凹面ミラー3へ入射され、レーザ反射装置2を駆動すると、凹面ミラー3で反射されたレーザ光B2が照射の対象となる基板4上で走査される。なお、レーザ反射装置2で反射されたレーザ光B2は全て偏向点Pを通過する。Lは凹面ミラー3の反射点から偏向点Pまでの距離、LAは偏向点Pから基板4までの距離である。 FIG. 1 is a diagram for explaining the operation of the laser reflecting device according to the embodiment of the present invention. 1 is a laser oscillator, 2 is a laser reflecting device, and 3 is a concave mirror provided in the laser reflecting device. The laser beam B1 emitted from the laser oscillator 1 is incident on the concave mirror 3, and when the laser reflecting device 2 is driven, the laser beam B2 reflected by the concave mirror 3 is scanned on the substrate 4 to be irradiated. All the laser light B2 reflected by the laser reflecting device 2 passes through the deflection point P. L is the distance from the reflection point of the concave mirror 3 to the deflection point P, and LA is the distance from the deflection point P to the substrate 4.

5は基板4を載置するテーブルであり、図においてレーザ反射装置2に対して相対移動できるようになっている。6はレーザ発振器1、レーザ反射装置2、テーブル5の動作を制御するための制御部であり、例えばプログラム制御の処理装置を主体にしたものによって実現される。 Reference numeral 5 denotes a table on which the substrate 4 is placed, which can be moved relative to the laser reflecting device 2 in the figure. Reference numeral 6 denotes a control unit for controlling the operation of the laser oscillator 1, the laser reflection device 2, and the table 5, and is realized by, for example, a device mainly composed of a program control processing device.

図2(a)および(b)は、図1のレーザ反射装置2の構造を説明するための図であり、(a)は平面図、(b)は側面図である。図1と同じものには同じ番号を付けてあり、実施例を説明するために必要な部分のみを示してある。 2A and 2B are views for explaining the structure of the laser reflecting device 2 of FIG. 1, FIG. 2A is a plan view, and FIG. 2B is a side view. The same items as in FIG. 1 are numbered the same, and only the parts necessary for explaining the embodiment are shown.

3は凹面ミラーで、レーザ発振器1から入射されたレーザ光B1を反射して基板4へレーザ光B2を出射する。凹面ミラー12は、レーザ光B1が凹面ミラー12で反射して偏向する方向にのみ曲率を有している。13は支持部材(A)で、紙面右側に凹面ミラー3が固定され、紙面左側に積層圧電素子などのアクチュエータ14が取付けられている。なお、アクチュエータ14は圧電素子に限定されること無く、ボイスコイル型電磁アクチュエータや超磁歪材料を用いた磁歪アクチュエータなども使用できる。15は支持部材(B)で、紙面右側にアクチュエータ14が取付けられている。16はフレーム17に設けられているガイドで支持部材(A)13および支持部材(B)15が紙面左右方向に摺動自在に取付けられている。ガイド16はすべり案内のような支持部材(A)13および支持部材(B)15が摺動しても摩擦の少ないもので構成されていて、支持部材(A)13および支持部材(B)15の紙面上下方向の変位を拘束し、紙面左右方向の変位をスムーズにする。なお、ガイド16はすべり案内に限定されること無く、転がり案内、静圧流体案内、磁気浮上案内などを用いたものであっても良い。18は板バネで、フレーム17に固定されていて支持部材(A)13を紙面左方向へ押し付けている。19はボルトで、弛み止めのロックナット20が取付けられ、フレーム17に設けられたネジ穴(図示を省略)を介して支持部材(B)15を紙面右方向へ押圧する。したがって、板バネ18とボルト19によってアクチュエータ14に圧縮力を加える構造となっている。なお、アクチュエータ14に圧縮力を加える押圧機構は、板バネとボルトによるものに限定されること無く、永久磁石や電磁石等の吸引・反発力、ガス圧力などを用いたものであっても良い。 Reference numeral 3 denotes a concave mirror, which reflects the laser light B1 incident from the laser oscillator 1 and emits the laser light B2 to the substrate 4. The concave mirror 12 has a curvature only in the direction in which the laser beam B1 is reflected by the concave mirror 12 and deflected. Reference numeral 13 denotes a support member (A), in which a concave mirror 3 is fixed on the right side of the paper surface, and an actuator 14 such as a laminated piezoelectric element is attached on the left side of the paper surface. The actuator 14 is not limited to the piezoelectric element, and a voice coil type electromagnetic actuator, a magnetostrictive actuator using a magnetostrictive material, or the like can also be used. Reference numeral 15 denotes a support member (B), and the actuator 14 is attached to the right side of the paper surface. Reference numeral 16 denotes a guide provided on the frame 17, to which the support member (A) 13 and the support member (B) 15 are slidably attached in the left-right direction of the paper surface. The guide 16 is composed of a support member (A) 13 and a support member (B) 15 such as a sliding guide that have less friction even if the support member (B) 15 slides, and the support member (A) 13 and the support member (B) 15 Constrains the vertical displacement of the paper surface and smoothes the horizontal displacement of the paper surface. The guide 16 is not limited to the sliding guide, and may use a rolling guide, a hydrostatic fluid guide, a magnetic levitation guide, or the like. Reference numeral 18 denotes a leaf spring, which is fixed to the frame 17 and presses the support member (A) 13 to the left on the paper surface. Reference numeral 19 denotes a bolt, to which a lock nut 20 for preventing loosening is attached, and the support member (B) 15 is pressed to the right of the paper surface through a screw hole (not shown) provided in the frame 17. Therefore, the structure is such that a compressive force is applied to the actuator 14 by the leaf spring 18 and the bolt 19. The pressing mechanism for applying the compressive force to the actuator 14 is not limited to that of a leaf spring and a bolt, and may be one that uses an attractive / repulsive force such as a permanent magnet or an electromagnet, a gas pressure, or the like.

図3は、凹面ミラー3の反射面を説明するための図である。図では凹面ミラー3の反射面の断面をx軸およびy軸が交差した直交座標系で示し、Oはx軸とy軸が交差する原点であり、凹面ミラー3の反射面の断面形状が数式1の関数で定義される。 FIG. 3 is a diagram for explaining a reflecting surface of the concave mirror 3. In the figure, the cross section of the reflective surface of the concave mirror 3 is shown in a Cartesian coordinate system in which the x-axis and the y-axis intersect, O is the origin at which the x-axis and the y-axis intersect, and the cross-sectional shape of the reflective surface of the concave mirror 3 is a mathematical formula. It is defined by the function of 1.

このミラーがx方向に−δ変位したとき、断面形状は数式2となる。 When this mirror is displaced by −δ in the x direction, the cross-sectional shape is given by Equation 2.

ここで、y軸に沿って上方から入射するレーザ光B1が、ミラー上の反射点R(r、r)で反射して偏向点P(p,p)に進む場合を考える。この場合反射点Rがy軸上に偏向点Pがx軸上に位置し、数式3の関係が成り立つ。なお、rは反射点Rのx軸方向の座標、rは反射点Rのy軸方向の座標、pは偏向点Pのx軸方向の座標、pは偏向点Pのy軸方向の座標、Lは原点Oから偏向点Pまでの距離である。 Here, the laser beam B1 entering from above along the y-axis, the reflection point R (r x, r y) on the mirror deflection point is reflected by P (p x, p y) Consider the case where the flow proceeds to. In this case, the reflection point R is located on the y-axis and the deflection point P is located on the x-axis, and the relationship of Equation 3 holds. Incidentally, r x is the x-axis direction of the coordinates of the reflection point R, r y is the y-axis direction of the coordinates of the reflection point R, p x is the x-axis direction of the coordinate of the deflection point P, p y y-axis of the deflection point P The coordinate of the direction, L, is the distance from the origin O to the deflection point P.

次に、ΔPQRがRP=RQとなる二等辺三角形になるようにレーザ光B1上すなわちy軸上に点Qを定めると、数式4の関係が成り立つ。qは点Qのx軸方向の座標、qは点Qのy軸方向の座標である。 Next, when the point Q is defined on the laser beam B1, that is, on the y-axis so that ΔPQR becomes an isosceles triangle with RP = RQ, the relationship of Equation 4 holds. q x is the coordinates of the point Q in the x-axis direction, and q y is the coordinates of the point Q in the y-axis direction.

ここで、反射の法則を考慮して、線分PQの中点をMとすると、
∠QRM=∠PRM
となり、すなわち、凹面fは前記二等辺三角形ΔPQRの反射点Rと底辺PQの中点Mとを結ぶ線分RMが反射点Rでの法線Nと重なるような断面形状となり、PQの中点Mの座標は数式5のようになる。なお、mは中点Mのx軸方向の座標、mは中点Mのy軸方向の座標である。
Here, assuming that the midpoint of the line segment PQ is M in consideration of the law of reflection,
∠QRM = ∠PRM
That is, the concave surface f has a cross-sectional shape such that the line segment RM connecting the reflection point R of the isosceles triangle ΔPQR and the midpoint M of the base PQ overlaps the normal N at the reflection point R, and the midpoint of PQ. The coordinates of M are as shown in Equation 5. Incidentally, m x is the x-axis direction of the coordinate of the midpoint M, m y is the y-axis direction of the coordinate of the middle point M.

また、線分RMの傾きsは、数式6となる。 Further, the slope s of the line segment RM is given by Equation 6.

一方、反射点Rにおける凹面fの法線Nの方程式は数式7となる。 On the other hand, the equation of the normal N of the concave surface f at the reflection point R is Equation 7.

線分RMの傾きsが凹面fの法線Nの傾きと等しいとすると、次式が成り立つ。 Assuming that the slope s of the line segment RM is equal to the slope of the normal N of the concave surface f, the following equation holds.

ここで、y=f(δ)とすれば、数式9の微分方程式を得る。 Here, if y = f (δ), the differential equation of Equation 9 is obtained.

そして、fの逆関数をδ=g(y)として上式を積分すれば、数式10のようになる。 Then, if the above equation is integrated with the inverse function of f as δ = g (y), the equation 10 is obtained.

ただしCは積分定数である。y=0でδ=0としてCを定めると数式11となる。 However, C is an integral constant. If C is defined with y = 0 and δ = 0, the equation 11 is obtained.

これを数式10に代入して、数式12となる。 Substituting this into Equation 10 gives Equation 12.

従属変数をxとして、凹面ミラー3の形状が数式13のように定まる。 With the dependent variable as x, the shape of the concave mirror 3 is determined as in Equation 13.

y=f(x)という形式で考えれば、関数fは関数gの逆関数として決定される。曲面ミラーがこの形状を持てば、ミラーをx軸方向に直線変位させることで、y軸の+側から入射するレーザ光を、偏向点Pを維持しながら所望の角度に反射することができる。そして、変位量δと、対応する偏向角αの関係は、次式から求まる。 Considering in the form of y = f (x), the function f is determined as the inverse function of the function g. If the curved mirror has this shape, the laser beam incident from the + side of the y-axis can be reflected at a desired angle while maintaining the deflection point P by linearly displacing the mirror in the x-axis direction. Then, the relationship between the displacement amount δ and the corresponding deflection angle α can be obtained from the following equation.

そして、f(δ)の値を求めるには、数式15を解いてy=f(δ)の値を求める。 Then, in order to obtain the value of f (δ), the value of y = f (δ) is obtained by solving the mathematical formula 15.

図4は、本実施例に係るレーザ反射装置2のレーザ光の反射を説明するための図である。凹面ミラー3の位置をx軸方向に5通りに変位させた場合に反射されるレーザ光B2を示している。図中上方から入射するレーザ光B1は、凹面ミラー3の反射面上の反射点R(r,r)に入射する。凹面ミラー3の横方向の移動量に応じて、反射点Rのy軸方向の位置が変化し、これに伴って凹面ミラー3でレーザ光の反射方向が変化することによって、レーザ光B2の反射角度が変化する。なお、偏向点Pの位置は凹面を定める関数中の定数Lによって定まり、変位量δの影響を受けない。すなわち、凹面ミラー3の変位量あるいは反射光の反射角度によらず、反射光は共通の偏向点Pを通る。
このとき、レーザ光B2の基板4上での走査距離Sは、凹面ミラー3の反射点Rから偏向点Pまでの距離Lと偏向点Pから基板4までの距離LAの比に比例する。したがって、凹面ミラー3の移動量が同じでも、偏向点Pから基板4上にレーザ光B2が照射される位置までの距離LAを凹面ミラー3の反射点Rから偏向点Pまでの距離Lより小さくなる位置(すなわち、LA<Lとなる位置)に偏向点Pの位置を設定することにより、レーザ光B2の基板4上での走査距離Sを小さくできる。そのため、凹面ミラー3の移動量(すなわち、アクチュエータの変位量)に対して走査距離Sを小さくして走査分解能を向上させることができる。
FIG. 4 is a diagram for explaining the reflection of the laser beam of the laser reflecting device 2 according to the present embodiment. The laser beam B2 reflected when the position of the concave mirror 3 is displaced in five ways in the x-axis direction is shown. Laser beam B1 entering from above in the drawing, the reflection point on the reflecting surface of the concave mirror 3 R (r x, r y ) incident on. The position of the reflection point R in the y-axis direction changes according to the amount of lateral movement of the concave mirror 3, and the reflection direction of the laser light changes accordingly in the concave mirror 3, so that the laser light B2 is reflected. The angle changes. The position of the deflection point P is determined by the constant L in the function that determines the concave surface, and is not affected by the displacement amount δ. That is, the reflected light passes through the common deflection point P regardless of the displacement amount of the concave mirror 3 or the reflection angle of the reflected light.
At this time, the scanning distance S of the laser beam B2 on the substrate 4 is proportional to the ratio of the distance L from the reflection point R to the deflection point P of the concave mirror 3 and the distance LA from the deflection point P to the substrate 4. Therefore, even if the amount of movement of the concave mirror 3 is the same, the distance LA from the deflection point P to the position where the laser beam B2 is irradiated on the substrate 4 is smaller than the distance L from the reflection point R of the concave mirror 3 to the deflection point P. By setting the position of the deflection point P at the position (that is, the position where LA <L), the scanning distance S of the laser beam B2 on the substrate 4 can be reduced. Therefore, the scanning distance S can be reduced with respect to the moving amount of the concave mirror 3 (that is, the displacement amount of the actuator) to improve the scanning resolution.

図5は他の実施例に係るレーザ反射装置2の動作を説明するための図である。この実施例においてはレーザ反射装置2の後方に、fθレンズ7を設けてもよい。この場合、fθレンズ7をテレセンレンズとし、凹面ミラー3の偏向点Pがfθレンズ7の前側焦点Fに一致し、かつレーザ光B1と直交する方向に反射されるレーザ光B2がfθレンズの中心軸を通る位置にfθレンズ7を設けると、レーザ光B2をレーザ光B3のような平行光として基板4に入射できる。そのため、基板表面に対する穴角度を常に一定にでき、穴の形状を均一にできる。 FIG. 5 is a diagram for explaining the operation of the laser reflecting device 2 according to another embodiment. In this embodiment, the fθ lens 7 may be provided behind the laser reflecting device 2. In this case, the fθ lens 7 is used as a telecentric lens, the deflection point P of the concave mirror 3 coincides with the front focal point F of the fθ lens 7, and the laser light B2 reflected in the direction orthogonal to the laser light B1 is the center of the fθ lens. When the fθ lens 7 is provided at a position passing through the axis, the laser beam B2 can be incident on the substrate 4 as parallel light such as the laser beam B3. Therefore, the hole angle with respect to the substrate surface can always be constant, and the shape of the hole can be made uniform.

以上、実施例に基づき本発明を説明したが、本発明は当該実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもなく、様々な変形例が含まれる。
Although the present invention has been described above based on the examples, the present invention is not limited to the examples, and it goes without saying that various modifications can be made without departing from the gist thereof. Is included.

1:レーザ発振器
2:レーザ反射装置
3:凹面ミラー
4:基板
5:テーブル
6:制御部
7:fθレンズ
13:支持部材(A)
14:アクチュエータ
15:支持部材(B)
16:ガイド
17:フレーム
18:板バネ
19:ボルト
20:ロックナット
1: Laser oscillator 2: Laser reflector 3: Concave mirror 4: Substrate 5: Table 6: Control unit 7: fθ lens 13: Support member (A)
14: Actuator 15: Support member (B)
16: Guide 17: Frame 18: Leaf spring 19: Bolt 20: Lock nut

Claims (2)

レーザ発振器からの入射光を反射させる反射面を有する凹面ミラーと、前記入射光と直交する方向に前記凹面ミラーを駆動するアクチュエータを備えるレーザ反射装置において、
前記アクチュエータの駆動に伴い前記凹面ミラーで反射された反射光が共通の偏向点を通過し、前記偏向点から前記反射光が照射される位置までの距離を前記凹面ミラー上の入射光の反射点から前記偏向点までの距離より小さくしたことを特徴とするレーザ反射装置。
In a laser reflecting device including a concave mirror having a reflecting surface for reflecting incident light from a laser oscillator and an actuator for driving the concave mirror in a direction orthogonal to the incident light.
The reflected light reflected by the concave mirror with the drive of the actuator passes through a common deflection point, and the distance from the deflection point to the position where the reflected light is irradiated is the reflection point of the incident light on the concave mirror. A laser reflecting device characterized in that it is smaller than the distance from the deflection point to the deflection point.
請求項1に記載のレーザ反射装置において、
前側焦点が前記偏向点と一致し中心軸が前記アクチュエータの駆動方向と平行になるfθレンズが設けられていることを特徴とするレーザ反射装置。
In the laser reflecting device according to claim 1,
A laser reflecting device provided with an fθ lens whose front focal point coincides with the deflection point and whose central axis is parallel to the driving direction of the actuator.
JP2019116214A 2019-06-24 2019-06-24 laser reflector Active JP7176826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019116214A JP7176826B2 (en) 2019-06-24 2019-06-24 laser reflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019116214A JP7176826B2 (en) 2019-06-24 2019-06-24 laser reflector

Publications (2)

Publication Number Publication Date
JP2021001997A true JP2021001997A (en) 2021-01-07
JP7176826B2 JP7176826B2 (en) 2022-11-22

Family

ID=73994148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019116214A Active JP7176826B2 (en) 2019-06-24 2019-06-24 laser reflector

Country Status (1)

Country Link
JP (1) JP7176826B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11237333A (en) * 1997-12-16 1999-08-31 Seitai Hikarijoho Kenkyusho:Kk Light image measuring device
JP2005262357A (en) * 2004-03-17 2005-09-29 Anritsu Corp Parallel displacement device and optical device using the same
DE202005009374U1 (en) * 2005-06-14 2005-10-13 Everspring Industry Co., Ltd., Gueishan Reflection mirror e.g. for intruder detector, has elliptically curved surface and first and second foci
JP2012524294A (en) * 2009-04-17 2012-10-11 シーウェア システムズ Super wide angle MEMS scanner
US20160144580A1 (en) * 2013-07-08 2016-05-26 Universisty of Rochester High numerical aperture optomechanical scanner for layered gradient index microlenses, methods, and applications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11237333A (en) * 1997-12-16 1999-08-31 Seitai Hikarijoho Kenkyusho:Kk Light image measuring device
JP2005262357A (en) * 2004-03-17 2005-09-29 Anritsu Corp Parallel displacement device and optical device using the same
DE202005009374U1 (en) * 2005-06-14 2005-10-13 Everspring Industry Co., Ltd., Gueishan Reflection mirror e.g. for intruder detector, has elliptically curved surface and first and second foci
JP2012524294A (en) * 2009-04-17 2012-10-11 シーウェア システムズ Super wide angle MEMS scanner
US20160144580A1 (en) * 2013-07-08 2016-05-26 Universisty of Rochester High numerical aperture optomechanical scanner for layered gradient index microlenses, methods, and applications

Also Published As

Publication number Publication date
JP7176826B2 (en) 2022-11-22

Similar Documents

Publication Publication Date Title
KR101050177B1 (en) Processing device, processing method and manufacturing method of leaf spring
US9389073B2 (en) Rotation laser having lens which is deformable in a targeted manner by actuators
US11209635B2 (en) Magnification compensation and/or beam steering in optical systems
JP6018592B2 (en) Mirror curvature adjusting device and mirror adjusting system provided with the same
JP2008527430A (en) Light homogenizer
US20040150802A1 (en) Lithograph apparatus comprising a mobile lens for producing digital holograms
CN207255471U (en) Laser scriber
JP2021001997A (en) Laser reflection device
JP2008055436A (en) Laser beam irradiation device
CN113165110A (en) Laser processing machine with swinging scanner
JP5265695B2 (en) Equipment for processing workpieces using parallel laser light
JP4476080B2 (en) Variable focus optical device
KR102527512B1 (en) Optical component
CN210937655U (en) Adjusting device for light path/light deflection
JP2019500648A (en) Optical device for lithographic apparatus and lithographic apparatus
CN105892044A (en) Method and system for forming laser dot matrix
WO2020254542A1 (en) Field facet system, optical arrangement and lithography apparatus
EP0976002A1 (en) Laser beam moving system, e.g. laser marking system
JP6131121B2 (en) Laser processing equipment
JP2004138748A5 (en)
JP2019095662A (en) Attachment structure of optical device and exposure device
WO2020129245A1 (en) Scanning probe microscope
EP2769801A1 (en) Processing machine
JP4290974B2 (en) Scanner device
TW200415793A (en) Method and apparatus for exposing or forming pattern on thin substrate or the like

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221109

R150 Certificate of patent or registration of utility model

Ref document number: 7176826

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150