JP2021001795A - Current detector and current detection method - Google Patents

Current detector and current detection method Download PDF

Info

Publication number
JP2021001795A
JP2021001795A JP2019115314A JP2019115314A JP2021001795A JP 2021001795 A JP2021001795 A JP 2021001795A JP 2019115314 A JP2019115314 A JP 2019115314A JP 2019115314 A JP2019115314 A JP 2019115314A JP 2021001795 A JP2021001795 A JP 2021001795A
Authority
JP
Japan
Prior art keywords
current
voltage
value
amplifier circuit
output voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019115314A
Other languages
Japanese (ja)
Other versions
JP7304748B2 (en
Inventor
淳一 呉地
Junichi Kurechi
淳一 呉地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2019115314A priority Critical patent/JP7304748B2/en
Publication of JP2021001795A publication Critical patent/JP2021001795A/en
Application granted granted Critical
Publication of JP7304748B2 publication Critical patent/JP7304748B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a technique for allowing current detection in a relatively wide range while improving detection accuracy of weak current.SOLUTION: A current detector comprises: a shunt resistor element 18 connected to a path of current flowing through an electrical load; a first amplifier circuit 11 amplifying voltage at both ends of the shunt resistor element; a second amplifier circuit 21 amplifying an output voltage of the first amplifier circuit; and a control section 10 acquiring by calculation a first current value indicative of amplitude of the current on the basis of the output voltage of the first amplifier circuit, and acquiring by calculation a second current value indicative of amplitude of the current on the basis of the output voltage of the second amplifier circuit. The control section selects the first current value as detection result of the current in a first range where the current is relatively large, and selects the second current value as detection result of the current in a second range where the current is relatively small.SELECTED DRAWING: Figure 1

Description

本発明は、電流を検出する技術に関する。 The present invention relates to a technique for detecting an electric current.

例えばLEDなどの発光素子をPWM(Pulse Width Modulation)制御により点灯させてその際に流れる電流を検出する場合には、シャント抵抗素子を用いて当該電流を電圧に変換して増幅し、さらにこの電圧を平滑回路によって平滑にしたうえでアナログデジタル変換器に取り込み、その値から電流(平均電流)の値に変換していた。このようにパルス状電圧を平滑化してアナログデジタル変換器に取り込む技術は、例えば特開2000−155063号公報(特許文献1)の図13などに記載されている。 For example, when a light emitting element such as an LED is turned on by PWM (Pulse Width Modulation) control and the current flowing at that time is detected, the current is converted into a voltage and amplified by using a shunt resistance element, and this voltage is further increased. Was smoothed by a smoothing circuit, then taken into an analog-digital converter, and the value was converted into a current (average current) value. The technique of smoothing the pulsed voltage and incorporating it into the analog-to-digital converter is described in, for example, FIG. 13 of JP-A-2000-155063 (Patent Document 1).

ところで、上記の方法で電流を検出する場合、その値が0に近い微小になると、増幅回路などの回路素子の特性バラツキによる誤差の影響が相対的に大きくなり、電流の検出精度が低下する。例えば、検出対象となる電流の最大値を1Aとし、検出時の誤差が±10mAである場合を考える。この場合の検出時の誤差率は、電流の最大値に対して±1%に相当する。これに対して、検出対象の電流が100mAである場合を考えると、誤差が±10mAであるので誤差率は10%となる。このように、検出時に一定の誤差が存在する場合には、検出対象の電流が小さくなるほど相対的に誤差の影響が大きくなり、検出精度が低下する。また、同じ誤差を前提として、検出対象の電流が5mAである場合を考えると、仮に−10mAの誤差が生じるとすると電流の検出値は−5mAになってしまう。ただし、通常はアナログデジタル変換器が0V以下の電圧に対応しないため、検出値としては0Aとなる。このように誤差が影響するため、微弱電流の高精度な検出は非常に困難となる。 By the way, when the current is detected by the above method, if the value becomes as small as 0, the influence of the error due to the variation in the characteristics of the circuit element such as the amplifier circuit becomes relatively large, and the current detection accuracy decreases. For example, consider a case where the maximum value of the current to be detected is 1 A and the error at the time of detection is ± 10 mA. The error rate at the time of detection in this case corresponds to ± 1% with respect to the maximum value of the current. On the other hand, considering the case where the current to be detected is 100 mA, the error rate is 10% because the error is ± 10 mA. As described above, when a certain error exists at the time of detection, the smaller the current to be detected, the larger the influence of the error, and the lower the detection accuracy. Further, assuming the same error and considering the case where the current to be detected is 5 mA, if an error of −10 mA occurs, the detected value of the current will be −5 mA. However, since the analog-to-digital converter does not usually correspond to a voltage of 0 V or less, the detected value is 0 A. Since the error affects in this way, it is very difficult to detect a weak current with high accuracy.

特開2000−155063号公報Japanese Unexamined Patent Publication No. 2000-155063

本発明に係る具体的態様は、比較的広い範囲で電流検出が可能であって微弱電流の検出精度も向上させることが可能な技術を提供することを目的の1つとする。 One of the specific aspects of the present invention is to provide a technique capable of detecting a current in a relatively wide range and improving the detection accuracy of a weak current.

[1]本発明に係る一態様の電流検出装置は、(a)電気的負荷に流れる電流を検出するための装置であって、(b)前記電気的負荷に流れる電流の経路上に接続されたシャント抵抗素子と、(c)前記シャント抵抗素子の両端電圧を増幅する第1増幅回路と、(d)前記第1増幅回路の出力電圧を増幅する第2増幅回路と、(e)前記第1増幅回路の出力電圧に基づいて演算により前記電流の大きさを示す第1電流値を求め、前記第2増幅回路の出力電圧に基づいて演算により前記電流の大きさを示す第2電流値を求める制御部と、を含み、(f)前記制御部は、前記電流が相対的に大きい第1範囲では前記第1電流値を前記電流の検出結果として選択し、前記電流が相対的に小さい第2範囲では前記第2電流値を前記電流の検出結果として選択する、電流検出装置である。
[2]本発明に係る一態様の電流検出方法は、(a)電気的負荷に流れる電流を検出するための方法であって、(b)前記電気的負荷に流れる電流の経路上に接続されたシャント抵抗素子の両端の電圧を増幅する第1ステップと、(c)前記第1ステップで増幅された電圧を更に増幅する第2ステップと、(d)制御部が、前記第1ステップで得られた電圧に基づいて演算により前記電流の大きさを示す第1電流値を求めるとともに前記第2ステップで得られた電圧に基づいて演算により前記電流の大きさを示す第2電流値を求める第3ステップと、(e)前記制御部が、前記電流が相対的に大きい第1範囲では前記第1電流値を前記電流の検出結果として選択し、前記電流が相対的に小さい第2範囲では前記第2電流値を前記電流の検出結果として選択する第4ステップと、を含む、電流検出方法である。
[1] The current detection device of one aspect according to the present invention is (a) a device for detecting a current flowing through an electric load, and (b) is connected on the path of the current flowing through the electric load. The shunt resistance element, (c) a first amplification circuit that amplifies the voltage across the shunt resistance element, (d) a second amplification circuit that amplifies the output voltage of the first amplification circuit, and (e) the first. 1 The first current value indicating the magnitude of the current is obtained by calculation based on the output voltage of the amplification circuit, and the second current value indicating the magnitude of the current is calculated based on the output voltage of the second amplification circuit. The control unit includes a control unit to be obtained, and (f) the control unit selects the first current value as the detection result of the current in the first range in which the current is relatively large, and the current is relatively small. In the two ranges, it is a current detection device that selects the second current value as the detection result of the current.
[2] One aspect of the current detection method according to the present invention is (a) a method for detecting a current flowing through an electric load, and (b) is connected on the path of the current flowing through the electric load. The first step of amplifying the current across the shunt resistance element, (c) the second step of further amplifying the voltage amplified in the first step, and (d) the control unit are obtained in the first step. The first current value indicating the magnitude of the current is obtained by calculation based on the obtained voltage, and the second current value indicating the magnitude of the current is obtained by calculation based on the voltage obtained in the second step. In the three steps, (e) the control unit selects the first current value as the detection result of the current in the first range in which the current is relatively large, and the control unit selects the first current value as the detection result of the current, and in the second range in which the current is relatively small This is a current detection method including a fourth step of selecting a second current value as the current detection result.

なお、本明細書において、ある回路要素と別の回路要素との「接続」とは、これら回路要素同士が直接的に接続する場合のほか、これら回路要素同士の間に他の回路要素等が介在して接続する場合も含まれるものとする。 In the present specification, "connection" between a certain circuit element and another circuit element means not only the case where these circuit elements are directly connected to each other, but also the case where another circuit element or the like is between these circuit elements. The case of intervening connection is also included.

上記構成によれば、比較的広い範囲で電流検出が可能であって微弱電流の検出精度も向上させることが可能となる。 According to the above configuration, the current can be detected in a relatively wide range, and the detection accuracy of the weak current can be improved.

図1は、一実施形態の電流検出装置の構成を示す図である。FIG. 1 is a diagram showing a configuration of a current detection device according to an embodiment. 図2は、発光素子を流れる電流(計測電流)とマイコンへ入力される電圧(検出電圧)との関係を説明するための図である。FIG. 2 is a diagram for explaining the relationship between the current flowing through the light emitting element (measured current) and the voltage input to the microcomputer (detection voltage). 図3(A)、図3(B)は、実際の電流計測時における計測電流と検出電圧の一例を説明するための図である。3 (A) and 3 (B) are diagrams for explaining an example of the measured current and the detected voltage at the time of actual current measurement. 図4は、計測電流の誤差率の一例を示した図である。FIG. 4 is a diagram showing an example of the error rate of the measured current. 図5は、計測電流の補正について説明するための図である。FIG. 5 is a diagram for explaining the correction of the measured current.

図1は、一実施形態の電流検出装置の構成を示す図である。図示の電流検出装置1は、発光素子(LED)2が駆動回路3によってPWM制御されて発光する際に流れる電流を検出するものである。この電流検出装置1は、マイコン10、オペアンプ11、21、抵抗素子12、13、14、15、16、22、23、24、25、26、容量素子17、27、シャント抵抗素子18および3つのレファレンス電源REFを含んで構成されている。なお、図示の例では発光素子2を1つだけ用いているが任意の数の発光素子を直列、並列ないし直並列に接続した構成であってもよい。 FIG. 1 is a diagram showing a configuration of a current detection device according to an embodiment. The illustrated current detection device 1 detects the current that flows when the light emitting element (LED) 2 is PWM-controlled by the drive circuit 3 to emit light. The current detection device 1 includes a microcomputer 10, operational amplifiers 11, 21, resistance elements 12, 13, 14, 15, 16, 22, 23, 24, 25, 26, capacitive elements 17, 27, shunt resistance elements 18, and three. It is configured to include a reference power supply REF. In the illustrated example, only one light emitting element 2 is used, but an arbitrary number of light emitting elements may be connected in series, parallel, or series-parallel.

マイコン(制御部)10は、アナログデジタル変換器(AD1)10aと、アナログデジタル変換器(AD2)10bを備えており、各々、発光素子2と直列接続されたシャント抵抗素子18の両端電圧を増幅して得られる電圧を取り込んでデジタルデータに変換し、その値に基づいてシャント抵抗素子18を流れる電流(すなわち発光素子2を流れる電流)の値を求める。 The microcomputer (control unit) 10 includes an analog-to-digital converter (AD1) 10a and an analog-to-digital converter (AD2) 10b, each of which amplifies the voltage across the shunt resistance element 18 connected in series with the light emitting element 2. The voltage thus obtained is taken in and converted into digital data, and the value of the current flowing through the shunt resistance element 18 (that is, the current flowing through the light emitting element 2) is obtained based on the value.

オペアンプ11は、非反転入力端子(+)が抵抗素子12を介してシャント抵抗素子18の一端(高電位側)に接続され、反転入力端子(−)が抵抗素子13を介してシャント抵抗素子18の他端(低電位側)に接続されており、シャント抵抗素子18の両端電圧を増幅する。 In the operational amplifier 11, the non-inverting input terminal (+) is connected to one end (high potential side) of the shunt resistance element 18 via the resistance element 12, and the inverting input terminal (-) is connected to the shunt resistance element 18 via the resistance element 13. It is connected to the other end (low potential side) of the shunt resistance element 18 and amplifies the voltage across the shunt resistance element 18.

このオペアンプ11は、非反転入力端子とレファレンス電源REFの間に抵抗素子14が接続されており、非反転入力端子の電位がレファレンス電源REFの電圧(例えば+0.5V)にプルアップされている。オペアンプ11の非反転入力端子がレファレンス電源REFの電圧にプルアップされることで、オペアンプ11の出力電圧が一定電圧分だけプラス側へオフセットされるので、検出誤差による出力電圧のマイナス側への振れ(あるいは極性反転)を防止することができる。なお、抵抗素子14とレファレンス電源REFが「第1プルアップ回路」に対応する。 In this operational amplifier 11, a resistance element 14 is connected between the non-inverting input terminal and the reference power supply REF, and the potential of the non-inverting input terminal is pulled up to the voltage of the reference power supply REF (for example, + 0.5V). Since the non-inverting input terminal of the operational amplifier 11 is pulled up to the voltage of the reference power supply REF, the output voltage of the operational amplifier 11 is offset to the positive side by a certain voltage, so that the output voltage swings to the negative side due to the detection error. (Or polarity reversal) can be prevented. The resistor element 14 and the reference power supply REF correspond to the "first pull-up circuit".

また、オペアンプ11は、出力端子と反転入力端子の間に負帰還のための抵抗素子15が接続されている。これらオペアンプ11、各抵抗素子12〜15により差動増幅回路(第1増幅回路)が構成されている。この差動増幅回路における増幅率は、抵抗素子13の抵抗値をR1、抵抗素子15の抵抗値をR2とすると、R2/R1倍となる。 Further, in the operational amplifier 11, a resistance element 15 for negative feedback is connected between the output terminal and the inverting input terminal. A differential amplifier circuit (first amplifier circuit) is composed of these operational amplifiers 11 and resistance elements 12 to 15. The amplification factor in this differential amplifier circuit is R2 / R1 times when the resistance value of the resistance element 13 is R1 and the resistance value of the resistance element 15 is R2.

オペアンプ11の出力端子からの出力電圧は、この出力端子とマイコン10のアナログデジタル変換器10aの間に接続された抵抗素子16およびこの抵抗素子16の他端(アナログデジタル変換器10a側)と基準電位端子(接地端子)との間に接続された容量素子17からなる平滑回路を介して平滑化され、アナログデジタル変換器10aへ入力される。この場合にマイコン10は、アナログデジタル変換器10aで取り込まれた電圧の値から抵抗素子14によってプルアップされた電圧(レファレンス電源REFの電圧)の分だけ差し引いて(相殺して)、その電圧の値を用いて発光素子2に流れる電流を算出する。 The output voltage from the output terminal of the operational amplifier 11 is based on the resistance element 16 connected between the output terminal and the analog-to-digital converter 10a of the microcomputer 10 and the other end (analog-digital converter 10a side) of the resistance element 16. It is smoothed via a smoothing circuit composed of a capacitance element 17 connected to a potential terminal (ground terminal) and input to the analog-to-digital converter 10a. In this case, the microcomputer 10 subtracts (cancels) the voltage pulled up by the resistor element 14 (voltage of the reference power supply REF) from the value of the voltage taken in by the analog-to-digital converter 10a, and subtracts (cancels) the voltage of the voltage. The value is used to calculate the current flowing through the light emitting element 2.

オペアンプ21は、非反転入力端子(+)が抵抗素子16を介してオペアンプ11の出力端子に接続され、反転入力端子(−)が抵抗素子23を介してレファレンス電源REFに接続されており、非反転入力端子と反転入力端子の間に印加される電圧を増幅する。 In the operational amplifier 21, the non-inverting input terminal (+) is connected to the output terminal of the operational amplifier 11 via the resistance element 16, and the inverting input terminal (-) is connected to the reference power supply REF via the resistance element 23. Amplifies the voltage applied between the inverting input terminal and the inverting input terminal.

このオペアンプ21は、非反転入力端子とレファレンス電源REFの間に抵抗素子24が接続されており、非反転入力端子の電位がレファレンス電源REFの電圧(例えば+0.5V)にプルアップされている。これは上記したオペアンプ11の場合と同様の効果を奏するものである。なお、抵抗素子24とレファレンス電源REFが「第2プルアップ回路」に対応する。 In this operational amplifier 21, a resistance element 24 is connected between the non-inverting input terminal and the reference power supply REF, and the potential of the non-inverting input terminal is pulled up to the voltage of the reference power supply REF (for example, + 0.5V). This has the same effect as that of the operational amplifier 11 described above. The resistance element 24 and the reference power supply REF correspond to the "second pull-up circuit".

また、オペアンプ21は、出力端子と反転入力端子の間に負帰還のための抵抗素子25が接続されている。これらオペアンプ21、各抵抗素子22〜25により差動増幅回路(第2増幅回路)が構成されている。この差動増幅回路における増幅率は、抵抗素子23の抵抗値をr1、抵抗素子25の抵抗値をr2とすると、r2/r1倍となる。 Further, in the operational amplifier 21, a resistance element 25 for negative feedback is connected between the output terminal and the inverting input terminal. A differential amplifier circuit (second amplifier circuit) is composed of these operational amplifiers 21 and resistance elements 22 to 25. The amplification factor in this differential amplifier circuit is r2 / r1 times, where r1 is the resistance value of the resistance element 23 and r2 is the resistance value of the resistance element 25.

また、オペアンプ21は、抵抗素子23を介して反転入力端子の電位がレファレンス電源REFの電圧(例えば+0.5V)にプルアップされている。これにより、オペアンプ11の出力電圧からレファレンス電源REFの電圧によりプルアップされた分をキャンセルすることができる。このキャンセルが行われないとすると、オフセット分の電圧(例えば+0.5V)がオペアンプ21によって増幅されるので、常にオフセット分の電圧をr2/r1倍した電圧がオペアンプ21から出力されてしまい、大抵の場合、マイコン10の入力電圧の許容範囲を超えてしまい、電流の計測値が最大値に振り切れる状態となる。このような不都合を防止するための回路部分となる。なお、抵抗素子23とレファレンス電源REFが「キャンセル回路」に対応する。 Further, in the operational amplifier 21, the potential of the inverting input terminal is pulled up to the voltage of the reference power supply REF (for example, + 0.5V) via the resistance element 23. As a result, the amount pulled up by the voltage of the reference power supply REF from the output voltage of the operational amplifier 11 can be canceled. If this cancellation is not performed, the voltage for the offset (for example, + 0.5V) is amplified by the operational amplifier 21, so that the voltage obtained by multiplying the voltage for the offset by r2 / r1 is always output from the operational amplifier 21, which is usually the case. In the case of, the permissible range of the input voltage of the microcomputer 10 is exceeded, and the measured value of the current is in a state of being overwhelmed to the maximum value. It is a circuit part for preventing such inconvenience. The resistance element 23 and the reference power supply REF correspond to the "cancellation circuit".

オペアンプ21の出力端子からの出力電圧は、この出力端子とマイコン10のアナログデジタル変換器10bの間に接続された抵抗素子26およびこの抵抗素子26の他端(アナログデジタル変換器10b側)と基準電位端子(接地端子)との間に接続された容量素子27からなる平滑回路を介して平滑化され、アナログデジタル変換器10bへ入力される。この場合にマイコン10は、アナログデジタル変換器10bで取り込まれた電圧の値から抵抗素子24によってプルアップされた電圧(レファレンス電源REFの電圧)の分だけ差し引いて(相殺して)、その電圧の値を用いて発光素子2に流れる電流を算出する。 The output voltage from the output terminal of the operational amplifier 21 is based on the resistance element 26 connected between this output terminal and the analog-to-digital converter 10b of the microcomputer 10 and the other end (analog-digital converter 10b side) of the resistance element 26. It is smoothed via a smoothing circuit composed of a capacitance element 27 connected to a potential terminal (ground terminal) and input to the analog-to-digital converter 10b. In this case, the microcomputer 10 subtracts (cancels) the voltage pulled up by the resistor element 24 (voltage of the reference power supply REF) from the value of the voltage taken in by the analog-to-digital converter 10b, and subtracts (cancels) the voltage of the voltage. The value is used to calculate the current flowing through the light emitting element 2.

アナログデジタル変換器10bへ入力される電圧は、オペアンプ11によって増幅した電圧の値とオペアンプ21によって増幅した電圧の値を乗じた値にプルアップされた電圧が重畳された値となるので、シャント抵抗素子18の両端電圧に対する感度がより高いことになる。このため、このアナログデジタル変換器10bへ入力される電圧は、微弱電流に特化して用いることができる。つまり、マイコン10において、相対的に大きい電流の範囲ではアナログデジタル変換器10aへ入力される電圧を用いて電流の値を求め、相対的に小さい電流の範囲ではアナログデジタル変換器10bへ入力される電圧を用いて電流の値を求めるようにすれば、比較的広い範囲で電流検出が可能であり、かつ微弱電流の検出精度も向上させることができる。 The voltage input to the analog-to-digital converter 10b is a value obtained by multiplying the value of the voltage amplified by the operational amplifier 11 by the value of the voltage amplified by the operational amplifier 21 and the value obtained by superimposing the pulled-up voltage. The sensitivity of the element 18 to the voltage across it becomes higher. Therefore, the voltage input to the analog-digital converter 10b can be used specifically for a weak current. That is, in the microcomputer 10, the current value is obtained by using the voltage input to the analog-digital converter 10a in the relatively large current range, and is input to the analog-digital converter 10b in the relatively small current range. If the value of the current is obtained using the voltage, the current can be detected in a relatively wide range, and the detection accuracy of the weak current can be improved.

図2は、発光素子を流れる電流(計測電流)とマイコンへ入力される電圧(検出電圧)との関係を説明するための図である。図2では、横軸を計測電流、縦軸を検出電圧に対応させている。例えば、マイコン10への入力電圧の許容最大値が+5Vであるとする。この場合、レファレンス電源REFの電圧が+0.5であるとすると、これを考慮して最小値を+0.5Vに設定する。すなわち、下限側に+0.5Vの振り切れ防止幅を設ける。また、上限側においても検出誤差を考慮して、例えば+0.5Vの振り切れ防止幅を設ける。これらから、+0.5V〜+4.5Vの範囲、すなわち許容範囲を4.0Vとして設定することで、許容範囲の全体において検出電圧の振り切れを防止することができる。これにより、検出誤差による電圧の振り切れが防止される。 FIG. 2 is a diagram for explaining the relationship between the current flowing through the light emitting element (measured current) and the voltage input to the microcomputer (detection voltage). In FIG. 2, the horizontal axis corresponds to the measured current and the vertical axis corresponds to the detected voltage. For example, assume that the maximum allowable value of the input voltage to the microcomputer 10 is + 5V. In this case, assuming that the voltage of the reference power supply REF is +0.5, the minimum value is set to + 0.5V in consideration of this. That is, a swing-out prevention width of + 0.5 V is provided on the lower limit side. Further, on the upper limit side as well, in consideration of the detection error, for example, a swing prevention width of + 0.5 V is provided. From these, by setting the range of + 0.5V to + 4.5V, that is, the permissible range as 4.0V, it is possible to prevent the detection voltage from swinging over the entire permissible range. This prevents the voltage from swinging out due to a detection error.

図3(A)、図3(B)は、実際の電流計測時における計測電流と検出電圧の一例を説明するための図である。例えば、計測電流の最大値が500mAであるとする。計測電流が500mAである場合、マイコン10は、標準的な感度であるオペアンプ11による差動増幅回路の出力電圧をアナログデジタル変換器10aにて取り込み、これを用いて発光素子2に流れる電流である計測電流の値を求める(図3(A)参照)。なお、このとき高感度であるオペアンプ21による差動増幅回路の出力電圧の値は、マイコン10に取り込まれる際に上限側に振り切れた状態となるためマイコン10はこの出力電圧を使用しない。同様に、例えば計測電流が200mAの場合にもオペアンプ11による差動増幅回路の出力電圧を用いて計測電流の値が求められる(図3(A)参照)。 3 (A) and 3 (B) are diagrams for explaining an example of the measured current and the detected voltage at the time of actual current measurement. For example, assume that the maximum value of the measured current is 500 mA. When the measured current is 500 mA, the microcomputer 10 takes in the output voltage of the differential amplifier circuit by the operational amplifier 11 which is a standard sensitivity by the analog-digital converter 10a, and uses this to flow to the light emitting element 2. Obtain the value of the measured current (see FIG. 3 (A)). At this time, the value of the output voltage of the differential amplifier circuit by the operational amplifier 21, which has high sensitivity, is in a state of swinging to the upper limit side when it is taken into the microcomputer 10, so that the microcomputer 10 does not use this output voltage. Similarly, for example, even when the measured current is 200 mA, the value of the measured current can be obtained using the output voltage of the differential amplifier circuit by the operational amplifier 11 (see FIG. 3A).

他方で、例えば計測電流が50mAである場合、マイコン10は、高感度であるオペアンプ21による差動増幅回路の出力電圧をアナログデジタル変換器10bにて取り込み、これを用いて計測電流の値を求める(図3(B)参照)。 On the other hand, for example, when the measured current is 50 mA, the microcomputer 10 takes in the output voltage of the differential amplifier circuit by the highly sensitive operational amplifier 21 with the analog-digital converter 10b, and obtains the value of the measured current using this. (See FIG. 3 (B)).

なお、この場合、オペアンプ11による差動増幅回路の出力電圧もその検出精度がそれほど低下しない範囲であるので、マイコン10は、オペアンプ11による差動増幅回路の出力電圧を用いて計測電流の値を求めることもできる(図3(A)参照)。さらに、マイコン10は、オペアンプ11、21の各々による差動増幅回路の出力から得られた計測電流の値を比較し、所定基準よりも差が大きい場合には、回路のいずれかに故障が生じていると判断してもよい。 In this case, since the output voltage of the differential amplifier circuit by the operational amplifier 11 is also within the range in which the detection accuracy does not decrease so much, the microcomputer 10 uses the output voltage of the differential amplifier circuit by the operational amplifier 11 to determine the value of the measured current. It can also be obtained (see FIG. 3 (A)). Further, the microcomputer 10 compares the values of the measured currents obtained from the outputs of the differential amplifier circuits by the operational amplifiers 11 and 21, and if the difference is larger than the predetermined reference, a failure occurs in any of the circuits. You may judge that it is.

また、例えば計測電流が5mAである場合、マイコン10は、高感度であるオペアンプ21による差動増幅回路の出力電圧をアナログデジタル変換器10bにて取り込み、これを用いて計測電流の値を求める(図3(B)参照)。 Further, for example, when the measured current is 5 mA, the microcomputer 10 takes in the output voltage of the differential amplifier circuit by the high-sensitivity operational amplifier 21 with the analog-digital converter 10b, and obtains the value of the measured current using this. (See FIG. 3B).

このように、マイコン10は、計測電流が相対的に大きい第1範囲(例えば本例では80mA〜500mAの範囲)ではオペアンプ11による差動増幅回路の出力電圧を用いて計測電流を求めてそれを検出結果として採用(選択)し、計測電流が相対的に小さい第2範囲(例えば本例では0〜80mAの範囲)ではオペアンプ21による差動増幅回路の出力電圧を用いて計測電流を求めてそれを検出結果として採用(選択)する。これにより、計測電流の全範囲に対応可能であり、かつ計測電流が微弱な範囲においてもその検出精度を高めることができる。なお、ここでいう「採用(選択)する」とは、例えばマイコン10が外部装置等へ出力する電流の検出結果として用いることであり、あるいはマイコン10が他の制御(例えば、発光素子の輝度制御)において当該電流の検出結果を用いることなどをいう。 As described above, the microcomputer 10 obtains the measured current by using the output voltage of the differential amplifier circuit by the operational amplifier 11 in the first range (for example, the range of 80 mA to 500 mA in this example) in which the measured current is relatively large. In the second range (for example, in the range of 0 to 80 mA in this example) where the measured current is relatively small, it is adopted (selected) as the detection result, and the measured current is obtained using the output voltage of the differential amplifier circuit by the operational amplifier 21. Is adopted (selected) as the detection result. As a result, it is possible to cover the entire range of the measured current, and the detection accuracy can be improved even in the range where the measured current is weak. The term "adopted (selected)" as used herein means, for example, that the microcomputer 10 is used as a detection result of a current output to an external device or the like, or that the microcomputer 10 controls other controls (for example, brightness control of a light emitting element). ) Refers to using the detection result of the current.

図4は、計測電流の誤差率の一例を示した図である。図中の曲線a1、a2に示すように、オペアンプ11による差動増幅回路の出力電圧に基づく計測電流の誤差率は、計測電流の値が小さくなるほど増大し、0に近づくにつれて急激に増大する。これに対して、図中の曲線b1、b2に示すように、オペアンプ21による差動増幅回路の出力電圧に基づく計測電流の誤差率は、計測電流の値が小さくなるほど増大し、0に近づくにつれて急激に増大するという傾向は同じであるが、誤差率の絶対値は小さい。このため、上記のように、計測電流が相対的に大きい第1範囲L1ではオペアンプ11による差動増幅回路の出力電圧を用い、計測電流が相対的に小さい第2範囲L2ではオペアンプ21による差動増幅回路の出力電圧を用いることで、計測電流の全範囲、とくに微弱電流の範囲における検出精度をより高めることができる。例えば図示の例では、計測電流の全範囲においてその検出精度が±8%以内に収められている。 FIG. 4 is a diagram showing an example of the error rate of the measured current. As shown in the curves a1 and a2 in the figure, the error rate of the measured current based on the output voltage of the differential amplifier circuit by the operational amplifier 11 increases as the value of the measured current decreases, and rapidly increases as it approaches 0. On the other hand, as shown by curves b1 and b2 in the figure, the error rate of the measured current based on the output voltage of the differential amplifier circuit by the operational amplifier 21 increases as the value of the measured current decreases, and as it approaches 0, it increases. The tendency to increase rapidly is the same, but the absolute value of the error rate is small. Therefore, as described above, the output voltage of the differential amplifier circuit by the operational amplifier 11 is used in the first range L1 where the measured current is relatively large, and the differential by the operational amplifier 21 is used in the second range L2 where the measured current is relatively small. By using the output voltage of the amplification circuit, the detection accuracy can be further improved in the entire range of the measured current, particularly in the range of the weak current. For example, in the illustrated example, the detection accuracy is within ± 8% in the entire range of the measured current.

図5は、計測電流の補正について説明するための図である。上記した実施形態の電流計測装置を量産製品に適用する場合には、部品のバラツキ等により計測電流の検出精度に個体差が生じ得る。このような個体差を吸収するために、製品の製造時に以下に説明する補正を行うとよい。なお、例として、計測電流の最大値が500mAであるとし、レファレンス電源REFの電圧を+0.5Vであるとする。 FIG. 5 is a diagram for explaining the correction of the measured current. When the current measuring device of the above embodiment is applied to a mass-produced product, individual differences may occur in the detection accuracy of the measured current due to variations in parts and the like. In order to absorb such individual differences, it is advisable to make the corrections described below at the time of manufacturing the product. As an example, it is assumed that the maximum value of the measured current is 500 mA, and the voltage of the reference power supply REF is + 0.5 V.

まず、0点補正を行う。具体的には、発光素子2に電流が流れていない場合、理想的な状態であれば計測電流に基づく電圧の値は+0.5Vとなる。しかし実際にはバラツキの影響により+0.5Vから外れた値となる。0点補正では、実際に電流を流していないときの電圧をマイコン10において計測し、その値を記憶しておく。この値が個体差であるので、実際に電圧を求める際にはこの記憶した値を用いる。 First, 0 point correction is performed. Specifically, when no current is flowing through the light emitting element 2, the value of the voltage based on the measured current is + 0.5V in an ideal state. However, in reality, the value deviates from + 0.5V due to the influence of variation. In the 0-point correction, the voltage when no current is actually flowing is measured by the microcomputer 10 and the value is stored. Since this value is an individual difference, this stored value is used when actually obtaining the voltage.

次に、フルスケール補正を行う。具体的には、計測電流が最大値(ここでは500mA)である場合、理想的な状態であれば計測電流に基づく電圧の値は+4.5Vとなる。しかし実際にはバラツキの影響により+4.5Vから外れた値となる。フルスケール補正では、実際に精度の良い500mAの電流を流してそのときの電圧をマイコン10において計測し、その値を記憶しておく。この値が個体差であるので、実際に電圧を求める際にはこの記憶した値を用いる。 Next, full-scale correction is performed. Specifically, when the measured current is the maximum value (500 mA in this case), the value of the voltage based on the measured current is + 4.5 V in an ideal state. However, in reality, the value deviates from + 4.5V due to the influence of variation. In full-scale correction, a current of 500 mA with high accuracy is actually passed, the voltage at that time is measured by the microcomputer 10, and the value is stored. Since this value is an individual difference, this stored value is used when actually calculating the voltage.

図5に示すように、0点補正、フルスケール補正の各々によって求めた計測電流に対する電圧の値(図中、三角で示す)を直線で結ぶ。すると、電流計測の式は一次関数で表現することができる。グラフの計測電流をX軸、検出電圧をY軸とすると、Y=AX+B(A:グラフ傾き、B:0点)と表現できる。次に、これに補正要素を取り入れる。Bは上記した0点補正の結果をそのまま代入可能である。Aについては、Bの値が決まった後に、フルスケール補正時の電流値および検出電圧の結果をこの式に当てはめた方程式から、傾きAの値を算出することができる。これらA、Bを用いて、電流算出式はI=(V−B)/Aと表せる。ここでのVは検出電圧である。これはオームの法則を表現しており、I部分は電流、(V−B)部分は電圧、Aは抵抗に当てはめられる。部品バラツキの影響により、製品各々にこの式の係数(A、B)が異なるので、製品ごとに上記補正を実施し、各々に対してこの式を保持し、実際の電圧算出時に適用する。これにより、個体差を吸収できる。なお、この式は、標準感度、高感度の各々のオペアンプに対応して用意される。 As shown in FIG. 5, the voltage values (indicated by triangles in the figure) with respect to the measured current obtained by each of the 0-point correction and the full-scale correction are connected by a straight line. Then, the current measurement formula can be expressed by a linear function. Assuming that the measured current of the graph is the X-axis and the detected voltage is the Y-axis, it can be expressed as Y = AX + B (A: graph slope, B: 0 point). Next, a correction element is incorporated into this. B can substitute the result of the above-mentioned 0 point correction as it is. For A, after the value of B is determined, the value of the slope A can be calculated from the equation obtained by applying the results of the current value and the detected voltage at the time of full-scale correction to this equation. Using these A and B, the current calculation formula can be expressed as I = (VB) / A. V here is the detection voltage. This expresses Ohm's law, where the I part applies to the current, the (VB) part applies to the voltage, and A applies to the resistor. Since the coefficients (A, B) of this formula are different for each product due to the influence of component variation, the above correction is performed for each product, this formula is retained for each product, and is applied at the time of actual voltage calculation. As a result, individual differences can be absorbed. This formula is prepared for each of the standard sensitivity and high sensitivity operational amplifiers.

以下に、電流計測装置の各回路素子における具体的な数値例を説明する。
シャント抵抗素子18を1.3Ωとして、フルスケール電流値を500mA、レファレンス電源REFの電圧を+0.5Vにとする。抵抗素子12、13をそれぞれ1kΩとし、抵抗素子14、15をそれぞれ6.2kΩとする。これにより、オペアンプ11のゲイン(増幅率)は6.2倍(6.2k/1k)であるので、電流が500mA流れたときの電圧は約4.00V(=1.3Ω×500mA×6.2)となる。0A時のレファレンス電圧が重畳されるので、このときにオペアンプ11の出力電圧は4.5Vとなる。PWM電流の場合、この出力電圧はPWM挙動となり、これを平滑回路で平滑化して直流としてアナログデジタル変換器10aで取り込む。なお、アナログデジタル変換器10aの直前に、ノイズフィルタとしての機能およびアナログデジタル変換器10aの内部容量への電荷移動を抑制する機能を持たせるためのCR回路を更に設けてもよい。
Specific numerical examples of each circuit element of the current measuring device will be described below.
The shunt resistance element 18 is 1.3Ω, the full-scale current value is 500mA, and the voltage of the reference power supply REF is + 0.5V. The resistance elements 12 and 13 are 1 kΩ, respectively, and the resistance elements 14 and 15 are 6.2 kΩ, respectively. As a result, the gain (amplification factor) of the operational amplifier 11 is 6.2 times (6.2 k / 1 k), so that the voltage when a current of 500 mA flows is about 4.00 V (= 1.3 Ω × 500 mA × 6. 2). Since the reference voltage at 0 A is superimposed, the output voltage of the operational amplifier 11 becomes 4.5 V at this time. In the case of PWM current, this output voltage becomes PWM behavior, which is smoothed by a smoothing circuit and taken in as direct current by the analog-to-digital converter 10a. Immediately before the analog-digital converter 10a, a CR circuit may be further provided to have a function as a noise filter and a function of suppressing charge transfer to the internal capacitance of the analog-digital converter 10a.

オペアンプ11による差動増幅回路の出力電圧が平滑回路によって直流に変換され、オペアンプ21に入力される。抵抗素子22、23を10kΩ、抵抗素子24、25を75kΩとすると、オペアンプ21のゲインは7.5倍(75k/10k)となる。反転入力端子においてレファレンス電圧が重畳するので、0.5Vがキャンセルされる。したがって、この0.5Vを差し引いた電圧がオペアンプ21によって7.5倍に増幅されることになる。 The output voltage of the differential amplifier circuit by the operational amplifier 11 is converted into direct current by the smoothing circuit and input to the operational amplifier 21. Assuming that the resistance elements 22 and 23 are 10 kΩ and the resistance elements 24 and 25 are 75 kΩ, the gain of the operational amplifier 21 is 7.5 times (75 k / 10 k). Since the reference voltage is superimposed on the inverting input terminal, 0.5V is canceled. Therefore, the voltage obtained by subtracting this 0.5V is amplified 7.5 times by the operational amplifier 21.

1.3Ωのシャント抵抗素子18に流れた電流はオペアンプ11、21を経由して、各々のゲインを乗じた電圧がオペアンプ21による差動増幅回路の出力電圧となる。このときのフルスケール電流はフルスケール電圧を4.0Vとして、4.00V/(1.3×(6.2×7.5))≒66.17mAとなる。つまり、オペアンプ21のフルスケールレンジを66.17mAと設定すると、4.0Vのレンジを最大限使用可能となる。ここでも同様に0.5Vのレファレンス電圧が重畳されるので、66.17mAが流れたときにオペアンプ21の出力電圧は4.5Vとなる。この電圧をアナログデジタル変換器10bで取り込む。なお、アナログデジタル変換器10bの直前に、ノイズフィルタとしての機能およびアナログデジタル変換器10bの内部容量への電荷移動を抑制する機能を持たせるためのCR回路を更に設けてもよい。 The current flowing through the 1.3Ω shunt resistance element 18 passes through the operational amplifiers 11 and 21, and the voltage obtained by multiplying the respective gains becomes the output voltage of the differential amplifier circuit by the operational amplifier 21. The full-scale current at this time is 4.00 V / (1.3 × (6.2 × 7.5)) ≈66.17 mA, where the full-scale voltage is 4.0 V. That is, if the full scale range of the operational amplifier 21 is set to 66.17 mA, the 4.0 V range can be used to the maximum. Since the reference voltage of 0.5 V is similarly superimposed here as well, the output voltage of the operational amplifier 21 becomes 4.5 V when 66.17 mA flows. This voltage is taken in by the analog-digital converter 10b. Immediately before the analog-digital converter 10b, a CR circuit may be further provided to have a function as a noise filter and a function of suppressing charge transfer to the internal capacitance of the analog-digital converter 10b.

上記の数値例による電流検出装置では、マイコン10は、66.17mA未満の範囲の電流に対しては高感度のオペアンプ21による差動増幅回路の出力電圧に基づいて電流を求めてこれを検出結果として採用し、66.17mA以上の範囲の電流に対しては標準感度のオペアンプ11による差動増幅回路の出力電圧に基づいて電流を求めてこれを検出結果として採用することで、検出精度を高めることができる。 In the current detection device according to the above numerical example, the microcomputer 10 obtains the current based on the output voltage of the differential amplifier circuit by the highly sensitive operational amplifier 21 for the current in the range of less than 66.17 mA, and detects the current. For currents in the range of 66.17 mA or more, the current is obtained based on the output voltage of the differential amplifier circuit by the operational amplifier 11 with standard sensitivity, and this is used as the detection result to improve the detection accuracy. be able to.

以上のような実施形態によれば、比較的広い範囲で電流検出が可能であって微弱電流の検出精度も向上させることが可能となる。 According to the above-described embodiment, the current can be detected in a relatively wide range, and the detection accuracy of the weak current can be improved.

なお、本発明は上記した実施形態の内容に限定されるものではなく、本発明の要旨の範囲内において種々に変形して実施をすることが可能である。例えば、上記した実施形態においてシャント抵抗素子は発光素子と直列に接続されていたが、発光素子に流れる電流の経路を分岐させたうちの1つの経路上にシャント抵抗素子を接続してもよい。また、上記した実施形態では電気的負荷の一例として発光素子を例示していたが、他の電気的負荷であってもよい。また、発光素子の駆動方法はPWM制御に限定されない。 The present invention is not limited to the contents of the above-described embodiment, and can be variously modified and implemented within the scope of the gist of the present invention. For example, in the above-described embodiment, the shunt resistance element is connected in series with the light emitting element, but the shunt resistance element may be connected on one of the branched paths of the current flowing through the light emitting element. Further, in the above-described embodiment, the light emitting element has been illustrated as an example of the electric load, but other electric loads may be used. Further, the driving method of the light emitting element is not limited to PWM control.

1:電流検出装置、10:マイコン10、10a、10b:アナログデジタル変換器、11、21:オペアンプ、11、12、13、14、15、16、21、22、23、24、25、26:抵抗素子、17、27:容量素子、18:シャント抵抗素子、REF:レファレンス電源 1: Current detector, 10: Microcomputer 10, 10a, 10b: Analog-to-digital converter, 11, 21: Operational amplifier, 11, 12, 13, 14, 15, 16, 21, 22, 23, 24, 25, 26: Resistance element, 17, 27: Capacitive element, 18: Shunt resistance element, REF: Reference power supply

Claims (7)

電気的負荷に流れる電流を検出するための装置であって、
前記電気的負荷に流れる電流の経路上に接続されたシャント抵抗素子と、
前記シャント抵抗素子の両端電圧を増幅する第1増幅回路と、
前記第1増幅回路の出力電圧を増幅する第2増幅回路と、
前記第1増幅回路の出力電圧に基づいて演算により前記電流の大きさを示す第1電流値を求め、前記第2増幅回路の出力電圧に基づいて演算により前記電流の大きさを示す第2電流値を求める制御部と、
を含み、
前記制御部は、前記電流が相対的に大きい第1範囲では前記第1電流値を前記電流の検出結果として選択し、前記電流が相対的に小さい第2範囲では前記第2電流値を前記電流の検出結果として選択する、
電流検出装置。
A device for detecting the current flowing through an electrical load.
A shunt resistor element connected on the path of the current flowing through the electrical load,
A first amplifier circuit that amplifies the voltage across the shunt resistor element and
The second amplifier circuit that amplifies the output voltage of the first amplifier circuit and
The first current value indicating the magnitude of the current is obtained by calculation based on the output voltage of the first amplifier circuit, and the second current indicating the magnitude of the current is calculated based on the output voltage of the second amplifier circuit. The control unit that calculates the value and
Including
The control unit selects the first current value as the detection result of the current in the first range where the current is relatively large, and selects the second current value as the current in the second range where the current is relatively small. Select as the detection result of
Current detector.
前記第1増幅回路の出力電圧を第1所定値だけ上昇させる第1プルアップ回路、
を更に含み、
前記制御部は、前記演算の際に前記第1所定値を相殺して前記第1電流値を求める、
電流検出装置。
A first pull-up circuit that raises the output voltage of the first amplifier circuit by a first predetermined value,
Including
The control unit cancels the first predetermined value at the time of the calculation to obtain the first current value.
Current detector.
前記第2増幅回路への入力電圧から前記第1所定値に相当する電圧を減じるキャンセル回路、
を更に含む、
請求項2に記載の電流検出装置。
A cancel circuit that subtracts the voltage corresponding to the first predetermined value from the input voltage to the second amplifier circuit.
Including,
The current detection device according to claim 2.
前記第2増幅回路の出力電圧を第2所定値だけ上昇させる第2プルアップ回路、
を更に含み、
前記制御部は、前記演算の際に前記第2所定値を相殺して前記第2電流値を求める、
請求項1〜3の何れか1項に記載の電流検出装置。
A second pull-up circuit that raises the output voltage of the second amplifier circuit by a second predetermined value.
Including
The control unit cancels the second predetermined value at the time of the calculation to obtain the second current value.
The current detection device according to any one of claims 1 to 3.
前記第1増幅回路と前記制御部の間に接続された平滑回路、
を更に含む、請求項1〜4の何れか1項に記載の電流検出装置。
A smoothing circuit connected between the first amplifier circuit and the control unit,
The current detection device according to any one of claims 1 to 4, further comprising.
前記電気的負荷が少なくとも1つの発光素子である、
請求項1〜5の何れか1項に記載の電流検出装置。
The electrical load is at least one light emitting element.
The current detection device according to any one of claims 1 to 5.
電気的負荷に流れる電流を検出するための方法であって、
前記電気的負荷に流れる電流の経路上に接続されたシャント抵抗素子の両端の電圧を増幅する第1ステップと、
前記第1ステップで増幅された電圧を更に増幅する第2ステップと、
制御部が、前記第1ステップで得られた電圧に基づいて演算により前記電流の大きさを示す第1電流値を求めるとともに前記第2ステップで得られた電圧に基づいて演算により前記電流の大きさを示す第2電流値を求める第3ステップと、
前記制御部が、前記電流が相対的に大きい第1範囲では前記第1電流値を前記電流の検出結果として選択し、前記電流が相対的に小さい第2範囲では前記第2電流値を前記電流の検出結果として選択する第4ステップと、
を含む、電流検出方法。
A method for detecting the current flowing through an electrical load.
The first step of amplifying the voltage across the shunt resistor element connected on the path of the current flowing through the electrical load, and
In the second step of further amplifying the voltage amplified in the first step,
The control unit obtains a first current value indicating the magnitude of the current by calculation based on the voltage obtained in the first step, and calculates the magnitude of the current based on the voltage obtained in the second step. The third step of obtaining the second current value indicating the value, and
The control unit selects the first current value as the detection result of the current in the first range where the current is relatively large, and selects the second current value as the current in the second range where the current is relatively small. The fourth step to select as the detection result of
Current detection methods, including.
JP2019115314A 2019-06-21 2019-06-21 Current detection device, current detection method Active JP7304748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019115314A JP7304748B2 (en) 2019-06-21 2019-06-21 Current detection device, current detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019115314A JP7304748B2 (en) 2019-06-21 2019-06-21 Current detection device, current detection method

Publications (2)

Publication Number Publication Date
JP2021001795A true JP2021001795A (en) 2021-01-07
JP7304748B2 JP7304748B2 (en) 2023-07-07

Family

ID=73995044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019115314A Active JP7304748B2 (en) 2019-06-21 2019-06-21 Current detection device, current detection method

Country Status (1)

Country Link
JP (1) JP7304748B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0875800A (en) * 1994-08-31 1996-03-22 Sankyo Seiki Mfg Co Ltd Current detector and load driving unit using it
JP2006266738A (en) * 2005-03-22 2006-10-05 Denso Corp Sensitivity switching type sensor circuit and electronic circuit using the sensitivity switching type sensor circuit
JP2011164008A (en) * 2010-02-12 2011-08-25 Denso Corp Current detector
JP2017138212A (en) * 2016-02-04 2017-08-10 アルプス電気株式会社 Self-power-fed current sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9658274B2 (en) 2011-07-05 2017-05-23 Nec Lighting Ltd. Light-emitting element failure detector and method for detecting light-emitting element failure
US20150061522A1 (en) 2013-08-27 2015-03-05 Texas Instruments Incorporated Method and apparatus for calculating an average value of an inaccessible current from an acessible current

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0875800A (en) * 1994-08-31 1996-03-22 Sankyo Seiki Mfg Co Ltd Current detector and load driving unit using it
JP2006266738A (en) * 2005-03-22 2006-10-05 Denso Corp Sensitivity switching type sensor circuit and electronic circuit using the sensitivity switching type sensor circuit
JP2011164008A (en) * 2010-02-12 2011-08-25 Denso Corp Current detector
JP2017138212A (en) * 2016-02-04 2017-08-10 アルプス電気株式会社 Self-power-fed current sensor

Also Published As

Publication number Publication date
JP7304748B2 (en) 2023-07-07

Similar Documents

Publication Publication Date Title
KR101919256B1 (en) Calibration of current sensors by means of a reference current during the current measurement
CN108872347B (en) Impedance characteristic circuit of electrochemical sensor
KR101114317B1 (en) Insulation resistance measurement circuit under no influence of battery voltage
US10156589B2 (en) Sensor module that switches plural sensors capable of measuring different ranges to extend dynamic range
US7761013B2 (en) Optical receiver having bias circuit for avalanche photodiode with wide dynamic range
US8508217B2 (en) Output circuit of charge mode sensor
JP2000136966A (en) Temperature measuring circuit using thermopile sensor
US8525529B2 (en) Impedance detection circuit and adjustment method of impedance detection circuit
JP2019509491A (en) Crosstalk calibration for multi-channel systems
CN110114638B (en) Analog input unit and reference voltage stabilizing circuit
JP2021001795A (en) Current detector and current detection method
JP4756614B2 (en) Signal detection device
CN105455809B (en) Semiconductor device and AC resistance measurement system including the same
JP5022377B2 (en) Measurement circuit and test equipment
JP2017041842A (en) Current detection circuit
JP2016038219A (en) Current sensor
JP5608328B2 (en) Constant current circuit and test device
US9285809B2 (en) Current source with active common mode rejection
JP3236297B2 (en) Measurement method and measurement circuit for particle current
JP5686641B2 (en) Gas alarm
KR20200143343A (en) Method and apparatus for correcting measurement error in battery management system
JP4001685B2 (en) Load disconnection detector
KR101138692B1 (en) Circuit for detecting a load current
JP2012049955A (en) Current/voltage conversion circuit and current detector
JP2009300293A (en) Logarithmic conversion circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230627

R150 Certificate of patent or registration of utility model

Ref document number: 7304748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150