JP2021001784A - Airtightness inspection method - Google Patents

Airtightness inspection method Download PDF

Info

Publication number
JP2021001784A
JP2021001784A JP2019115061A JP2019115061A JP2021001784A JP 2021001784 A JP2021001784 A JP 2021001784A JP 2019115061 A JP2019115061 A JP 2019115061A JP 2019115061 A JP2019115061 A JP 2019115061A JP 2021001784 A JP2021001784 A JP 2021001784A
Authority
JP
Japan
Prior art keywords
set pressure
container
airtightness
detected
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019115061A
Other languages
Japanese (ja)
Other versions
JP7317588B2 (en
Inventor
清水 昭宏
Akihiro Shimizu
昭宏 清水
直樹 小芦
Naoki Koashi
直樹 小芦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyooki Kogyo Co Ltd
Original Assignee
Toyooki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyooki Kogyo Co Ltd filed Critical Toyooki Kogyo Co Ltd
Priority to JP2019115061A priority Critical patent/JP7317588B2/en
Publication of JP2021001784A publication Critical patent/JP2021001784A/en
Application granted granted Critical
Publication of JP7317588B2 publication Critical patent/JP7317588B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide an airtightness inspection method enabling airtightness to be inspected with a high degree of accuracy using an inexpensive airtightness inspection device employing a general-purpose sensor.SOLUTION: An airtightness inspection method comprises: a first step T1 of depressurizing the inside of a container to a first set pressure A1 of vacuum; a second step T2 of depressurizing the inside of the container set to the first set pressure A1, to a second set value A2 whose degree of vacuum is higher than that of the first set pressure A1; a third step T3 of retaining the degree of vacuum of the inside of the container set to the second set pressure A2, to the second set pressure A2 for a fixed period; a fourth step T4 of increasing the degree of vacuum of the inside of the container retained to the second set pressure A2, to the first set pressure A1 again; and a fifth step T5 of depressurizing the inside of the container set to the first set pressure A1, to the second set pressure A2 again. An inspection object leaked out from inspection objects in the second step T2 is detected and defined as a reference value S1, and an inspection object leaked out from the inspection objects in the fifth step T5 is detected and defined as a detection value S2. The detection value S2 is compared with the reference value S1 to determine the airtightness of the inspection object.SELECTED DRAWING: Figure 2

Description

本発明は、密封構造の容器内に収容した検査対象物の気密性を検査する機密性検査方法に関する。 The present invention relates to a confidentiality inspection method for inspecting the airtightness of an inspection object housed in a container having a sealed structure.

この種の気密性検査方法は、検査対象物を密封構造の容器としての真空チャンバに収容し、真空チャンバと真空ポンプとの間を検査排気配管で接続し、検査排気配管に気体状の検出対象物を検出するセンサを配設している。そして、真空ポンプを作動して真空チャンバ内の気体を排気し、この気体に含まれている検出対象物の濃度をセンサで検知し、検査対象物の気密性に問題があるか否かを判定している。 In this type of airtightness inspection method, the inspection object is housed in a vacuum chamber as a container having a sealed structure, the vacuum chamber and the vacuum pump are connected by an inspection exhaust pipe, and a gaseous detection target is connected to the inspection exhaust pipe. A sensor for detecting an object is arranged. Then, the vacuum pump is operated to exhaust the gas in the vacuum chamber, the concentration of the detection object contained in this gas is detected by the sensor, and it is determined whether or not there is a problem in the airtightness of the inspection object. doing.

特許第5942065号公報Japanese Patent No. 5942065

ところが、かかる従来の気密性検査方法では、真空チャンバと真空ポンプとの間を接続する検査排気配管に配設したセンサは、小さいピンホールを検出できる高精度のものである。そして、センサは、ホルダ部の内部に導入された気体を通す供給口をセンサ部のセンサ面に近づけた状態に配置した複雑な構成で高価なものとなり、気密性検査装置が高価になってしまうという問題点があった。 However, in such a conventional airtightness inspection method, the sensor arranged in the inspection / exhaust pipe connecting the vacuum chamber and the vacuum pump is of high accuracy capable of detecting a small pinhole. Then, the sensor has a complicated structure in which the supply port for passing the gas introduced inside the holder portion is arranged close to the sensor surface of the sensor portion, which makes the airtightness inspection device expensive. There was a problem.

本発明の課題は、汎用のセンサを用いた安価な気密性検査装置で、高精度の気密性検査を行い得る気密性検査方法を提供するものである。 An object of the present invention is to provide an airtightness inspection method capable of performing a highly accurate airtightness inspection with an inexpensive airtightness inspection apparatus using a general-purpose sensor.

かかる課題を達成すべく、本発明は次の手段をとった。即ち、
密封構造の容器内に収容した検査対象物から漏出する検出対象物をセンサで検出して検査対象物の気密性を検査する気密性検査方法であって、検査対象物を収容する密封構造の容器内を真空の第1設定圧に減圧する第1工程と、第1設定圧にした容器内を第1設定圧より真空度が高い第2設定圧に減圧する第2工程と、第2設定圧にした容器内の真空度を一定期間第2設定圧に保持する第3工程と、第2設定圧に保持した容器内の真空度を第1設定圧に増圧する第4工程と、第1設定圧にした容器内を再度第2設定圧に減圧する第5工程から成り、第2工程で検査対象物から漏出する検出対象物を検出して基準値とし、第5工程で検査対象物から漏出する検出対象物を検出して検出値とし、基準値と検出値とを比較して検査対象物の気密性を判定することを特徴とする気密性検査方法がそれである。
In order to achieve such a problem, the present invention has taken the following measures. That is,
This is an airtightness inspection method in which a sensor detects an object to be detected leaking from an object to be inspected contained in a container having a sealed structure and inspects the airtightness of the object to be inspected. A first step of reducing the inside to the first set pressure of vacuum, a second step of reducing the inside of the container set to the first set pressure to a second set pressure having a higher degree of vacuum than the first set pressure, and a second set pressure. The third step of holding the vacuum degree in the container at the second set pressure for a certain period of time, the fourth step of increasing the vacuum degree in the container held at the second set pressure to the first set pressure, and the first setting. It consists of a fifth step of reducing the pressure inside the container to the second set pressure again. In the second step, the detection target that leaks from the inspection target is detected and used as the reference value, and in the fifth step, it leaks from the inspection target. It is an airtightness inspection method characterized in that an object to be detected is detected and used as a detected value, and the airtightness of the object to be inspected is determined by comparing the reference value and the detected value.

以上詳述したように、請求項1に記載の発明は、第2工程で検査対象物から漏出する検出対象物を検出して基準値とし、第5工程で検査対象物から漏出する検出対象物を検出して検出値とし、検出値を基準値と比較して検査対象物の気密性を判定する。このため、基準値と検出値とは相互に近似した条件で検出するから、汎用のセンサを用いて安価な気密性検査装置で、高精度の気密性検査を行うことができる。 As described in detail above, in the invention according to claim 1, the detection target object leaking from the inspection target object is detected in the second step and used as a reference value, and the detection target object leaking from the inspection target object in the fifth step is used. Is detected and used as the detected value, and the detected value is compared with the reference value to determine the airtightness of the inspection object. Therefore, since the reference value and the detected value are detected under conditions that are close to each other, it is possible to perform a highly accurate airtightness inspection with an inexpensive airtightness inspection device using a general-purpose sensor.

本発明の一実施形態の機密性検査方法を行う機密性検査装置の気体回路図である。It is a gas circuit diagram of the confidentiality inspection apparatus which performs the confidentiality inspection method of one Embodiment of this invention. 一実施形態の機密性検査方法のフローチャートである。It is a flowchart of the confidentiality inspection method of one Embodiment. 一実施形態を示し、容器内の圧力の推移を示したグラフ図である。It is a graph which shows one Embodiment and showed the transition of the pressure in a container.

以下、本発明の一実施形態を図面に基づき説明する。
図1は、機密性検査方法を行う機密性検査装置を示している。
1A、1Bは密封構造の容器で、2個を有し、内部に検査対象物としてのリチウムイオンキャパシタ(図示せず)を収容している。2A、2Bは粗検知に用いる大型の真空ポンプで、2個を有している。真空ポンプ2Aは吸気側を容器1Aと配管3Aにより接続し、容器1Bと配管3Bにより接続している。真空ポンプ2Bは吸気側を容器1Aと配管4Aにより接続し、容器1Bと配管4Bにより接続している。各配管3A、3B、4A、4Bには電磁操作の開閉弁5A、5B、6A、6Bをそれぞれ配設し、各開閉弁5A〜6Bは通電により各配管3A〜4Bを開き、非通電により各配管3A〜4Bを閉じる。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a confidentiality inspection device that performs a confidentiality inspection method.
1A and 1B are containers having a sealed structure, which have two containers and contain a lithium ion capacitor (not shown) as an inspection object inside. 2A and 2B are large vacuum pumps used for coarse detection, and have two. In the vacuum pump 2A, the intake side is connected to the container 1A by a pipe 3A, and the container 1B is connected to the pipe 3B. In the vacuum pump 2B, the intake side is connected to the container 1A by the pipe 4A, and the container 1B is connected to the pipe 4B. Electromagnetically operated on-off valves 5A, 5B, 6A, and 6B are arranged in each of the pipes 3A, 3B, 4A, and 4B, and each of the on-off valves 5A to 6B opens each of the pipes 3A to 4B by energization and is not energized. Close the pipes 3A to 4B.

7は粗検知に用いるセンサで、中継容器8の内部に配置し、気体に含まれている検出対象物としての気化した電解液の濃度を検知する。センサ7の検知精度は、例えば25ppmごとの単位である。センサ7は真空ポンプ2Aの排気側と配管9Aにより接続し、真空ポンプ2Bの排気側と配管9Bによりそれぞれ接続している。10A、10B、10C、10D、10E、10F、10G、10Hは精密検知に用いる小型の真空ポンプで、8個を有している。8個のなかで4個の真空ポンプ10A〜10Dは吸気側を容器1Aと配管11A、11B、11C、11Dにより接続し、残りの4個の真空ポンプ10E〜10Hは吸気側を容器1Bと配管11E、11F、11G、11Hにより接続している。 Reference numeral 7 denotes a sensor used for coarse detection, which is arranged inside the relay container 8 to detect the concentration of the vaporized electrolytic solution as a detection target contained in the gas. The detection accuracy of the sensor 7 is, for example, in units of 25 ppm. The sensor 7 is connected to the exhaust side of the vacuum pump 2A by a pipe 9A, and is connected to the exhaust side of the vacuum pump 2B by a pipe 9B, respectively. The 10A, 10B, 10C, 10D, 10E, 10F, 10G, and 10H are small vacuum pumps used for precision detection, and have eight. Of the eight, four vacuum pumps 10A to 10D connect the intake side to the container 1A by pipes 11A, 11B, 11C, 11D, and the remaining four vacuum pumps 10E to 10H connect the intake side to the container 1B and pipe. It is connected by 11E, 11F, 11G, 11H.

各配管11A〜11Dには電磁操作の開閉弁12A、12B、12C、12Dをそれぞれ配設し、各開閉弁12A〜12Dは通電により各配管11A〜11Dを開き、非通電により各配管11A〜11Dを閉じる。同様に、各配管11E〜11Hには電磁操作の開閉弁12E、12F、12G、12Hをそれぞれ配設し、各開閉弁12E〜12Hは通電により各配管11E〜11Hを開き、非通電により各配管11E〜11Hを閉じる。 Electromagnetically operated on-off valves 12A, 12B, 12C, and 12D are arranged in the pipes 11A to 11D, and the on-off valves 12A to 12D open the pipes 11A to 11D by energization and the pipes 11A to 11D by non-energization. Close. Similarly, electromagnetically operated on-off valves 12E, 12F, 12G, and 12H are arranged in the pipes 11E to 11H, and the on-off valves 12E to 12H open the pipes 11E to 11H by energization and each pipe by non-energization. Close 11E-11H.

13A、13B、13C、13D、13E、13F、13G、13Hは精密検知に用いるセンサで、検知精度は、例えば1ppmごとの単位で、8個を有している。8個のなかで4個のセンサ13A〜13Dは4個の真空ポンプ10A〜10Dの排気側と配管14A、14B、14C、14Dにより接続し、残りの4個のセンサ13E〜13Hは4個の真空ポンプ10E〜10Hの排気側と配管14E、14F、14G、14Hにより接続し、気体に含まれている気化した電解液の濃度を検知する。 13A, 13B, 13C, 13D, 13E, 13F, 13G, 13H are sensors used for precision detection, and have eight detection accuracy, for example, in units of 1 ppm. Of the eight, four sensors 13A to 13D are connected to the exhaust side of the four vacuum pumps 10A to 10D by pipes 14A, 14B, 14C, 14D, and the remaining four sensors 13E to 13H are four. It is connected to the exhaust side of the vacuum pumps 10E to 10H by pipes 14E, 14F, 14G, 14H, and the concentration of the vaporized electrolytic solution contained in the gas is detected.

15Aは大気を容器1Aに導入する大口径の配管で、容器1Aに接続している。15Bは大気を容器1Aに導入する小口径の配管で、配管15Aより小径で容器1Aに接続している。配管15A、15Bは相互に接続し、ラインフィルタ16Aを介して大気を導入する。配管15A、15Bには電磁操作の開閉弁17A、17Bをそれぞれ配設し、各開閉弁17A、17Bは通電により各配管15A、15Bを開き、非通電により各配管15A、15Bを閉じる。 Reference numeral 15A is a large-diameter pipe that introduces air into the container 1A and is connected to the container 1A. Reference numeral 15B is a small-diameter pipe that introduces air into the container 1A, and is connected to the container 1A with a diameter smaller than that of the pipe 15A. The pipes 15A and 15B are connected to each other and introduce the atmosphere through the line filter 16A. Electromagnetically operated on-off valves 17A and 17B are arranged in the pipes 15A and 15B, respectively, and the on-off valves 17A and 17B open the pipes 15A and 15B by energization and close the pipes 15A and 15B by non-energization.

15Cは大気を容器1Bに導入する大口径の配管で、容器1Bに接続している。15Dは大気を容器1Bに導入する小口径の配管で、配管15Cより小径で容器1Bに接続している。配管15C、15Dは相互に接続し、ラインフィルタ16Bを介して大気を導入する。配管15C、15Dには電磁操作の開閉弁17C、17Dをそれぞれ配設し、各開閉弁17C、17Dは通電により各配管15C、15Dを開き、非通電により各配管15C、15Dを閉じる。18A、18Bは各容器1A、1Bの圧力を検知する圧力センサである。 Reference numeral 15C is a large-diameter pipe for introducing the atmosphere into the container 1B, which is connected to the container 1B. Reference numeral 15D is a small-diameter pipe that introduces the atmosphere into the container 1B, and is connected to the container 1B with a diameter smaller than that of the pipe 15C. The pipes 15C and 15D are connected to each other and introduce the atmosphere through the line filter 16B. Electromagnetically operated on-off valves 17C and 17D are arranged on the pipes 15C and 15D, respectively, and the on-off valves 17C and 17D open the pipes 15C and 15D by energization and close the pipes 15C and 15D by non-energization. 18A and 18B are pressure sensors that detect the pressure of each container 1A and 1B.

次に、かかる気密性検査装置を用いた機密性検査方法を説明する。
図2は、機密性検査方法のフローチャートを示し、第1工程T1、第2工程T2、第3工程T3、第4工程T4、第5工程T5等から成っている。図3は、各工程T1〜T5における容器1A、1B内の圧力を示している。
第1工程T1は、リチウムイオンキャパシタを収容する密封構造の容器1A、1B内を大気圧A0から真空の第1設定圧A1に減圧する。第1設定圧A1には、開閉弁5A〜6Bを通電して配管3A〜4Bを開き、大型の真空ポンプ2A、2Bを作動して減圧する。そして、粗検知のセンサ7で真空ポンプ2A、2Bから排気する気体に含まれている気化した電解液の濃度を検知し、検知した濃度の値が第1規定値Y1以内であれば、第2工程T2に進む。また、検知した濃度の値が第1規定値Y1を超えていれば、容器1A、1B内に収容したリチウムイオンキャパシタは不合格となり、検査を終了する。第1規定値Y1は、センサ7の検知精度に対応するものである。
Next, a confidentiality inspection method using such an airtightness inspection device will be described.
FIG. 2 shows a flowchart of a confidentiality inspection method, which is composed of a first step T1, a second step T2, a third step T3, a fourth step T4, a fifth step T5, and the like. FIG. 3 shows the pressure in the containers 1A and 1B in each of the steps T1 to T5.
In the first step T1, the pressure inside the sealed containers 1A and 1B accommodating the lithium ion capacitor is reduced from the atmospheric pressure A0 to the vacuum first set pressure A1. For the first set pressure A1, the on-off valves 5A to 6B are energized to open the pipes 3A to 4B, and the large vacuum pumps 2A and 2B are operated to reduce the pressure. Then, the coarse detection sensor 7 detects the concentration of the vaporized electrolytic solution contained in the gas exhausted from the vacuum pumps 2A and 2B, and if the value of the detected concentration is within the first specified value Y1, the second Proceed to step T2. If the detected concentration value exceeds the first specified value Y1, the lithium ion capacitors housed in the containers 1A and 1B are rejected, and the inspection is completed. The first specified value Y1 corresponds to the detection accuracy of the sensor 7.

第2工程T2は、第1設定圧A1にした容器1A、1B内を、第1設定圧A1より真空度が高い第2設定圧A2に減圧する。第2設定圧A2には、開閉弁12A〜12Hを通電して配管11A〜11Hを開き、真空ポンプ10A〜10Hを作動して減圧する。そして、精密検知のセンサ13A〜13Hで真空ポンプ10A〜10Hから排気する気体に含まれている気化した電解液の濃度を検知し、検知した濃度の値を基準値S1として図示しない制御装置に記憶する。 In the second step T2, the inside of the containers 1A and 1B set to the first set pressure A1 is depressurized to the second set pressure A2 having a higher degree of vacuum than the first set pressure A1. For the second set pressure A2, the on-off valves 12A to 12H are energized to open the pipes 11A to 11H, and the vacuum pumps 10A to 10H are operated to reduce the pressure. Then, the precision detection sensors 13A to 13H detect the concentration of the vaporized electrolytic solution contained in the gas exhausted from the vacuum pumps 10A to 10H, and the value of the detected concentration is stored in a control device (not shown) as a reference value S1. To do.

第3工程T3は、第2設定圧A2にした容器1A、1B内の真空度を一定期間第2設定圧A2に保持する工程で、リチウムイオンキャパシタから電解液が漏出するのを待つものである。一定期間を第2設定圧A2に保持するには、開閉弁5A〜6B、12A〜12Hを非通電にして配管3A〜4B、11A〜11Hを閉じる。 The third step T3 is a step of maintaining the degree of vacuum in the containers 1A and 1B at the second set pressure A2 at the second set pressure A2 for a certain period of time, and waits for the electrolytic solution to leak from the lithium ion capacitor. .. To maintain the second set pressure A2 for a certain period of time, the on-off valves 5A to 6B and 12A to 12H are de-energized and the pipes 3A to 4B and 11A to 11H are closed.

第4工程T4は、第2設定圧A2に保持した容器1A、1B内の真空度を第1設定圧A1に増圧する。第1設定圧A1に増圧するには、開閉弁17B、17Dを通電して小口径の配管15B、15Dを開く。 In the fourth step T4, the degree of vacuum in the containers 1A and 1B held at the second set pressure A2 is increased to the first set pressure A1. To increase the pressure to the first set pressure A1, the on-off valves 17B and 17D are energized to open the small diameter pipes 15B and 15D.

第5工程T5は、第1設定圧A1にした容器1A、1B内を再度第2設定圧A2に減圧する。第2設定圧A2には、第2工程T2と同様に、開閉弁12A〜12Hを通電して配管11A〜11Hを開き、真空ポンプ10A〜10Hを作動して減圧する。そして、精密検知のセンサ13A〜13Hで真空ポンプ10A〜10Hから排気する気体に含まれている気化した電解液の濃度を検知し、検知した濃度の値を検出値S2とする。 In the fifth step T5, the pressure inside the containers 1A and 1B set to the first set pressure A1 is reduced to the second set pressure A2 again. Similar to the second step T2, the on-off valves 12A to 12H are energized to the second set pressure A2 to open the pipes 11A to 11H, and the vacuum pumps 10A to 10H are operated to reduce the pressure. Then, the precision detection sensors 13A to 13H detect the concentration of the vaporized electrolytic solution contained in the gas exhausted from the vacuum pumps 10A to 10H, and the value of the detected concentration is set as the detection value S2.

そして、検出値S2を第2工程T2で制御装置に記憶した基準値S1と比較し、検出値S2から基準値S1を差し引いた判定値S3が第2規定値以Y2内であればリチウムイオンキャパシタは合格となり、判定値S3が第2規定値Y2を超えていればリチウムイオンキャパシタは不合格となる。第2規定値以Y2は、センサ13A〜13Hの検知精度に対応するもので、第1規定値Y1より検知精度が細分されている。検査が完了したら、開閉弁17A、17Cを通電して大口径の配管15A、15Cを開き、容器1A、1B内を大気圧A0に増圧する。 Then, the detected value S2 is compared with the reference value S1 stored in the control device in the second step T2, and if the determination value S3 obtained by subtracting the reference value S1 from the detected value S2 is within Y2 of the second specified value or more, the lithium ion capacitor Is passed, and if the determination value S3 exceeds the second specified value Y2, the lithium ion capacitor is rejected. The second specified value and Y2 correspond to the detection accuracy of the sensors 13A to 13H, and the detection accuracy is subdivided from the first specified value Y1. When the inspection is completed, the on-off valves 17A and 17C are energized to open the large-diameter pipes 15A and 15C, and the pressure inside the containers 1A and 1B is increased to atmospheric pressure A0.

かかる機密性検査方法で、第2工程T2でリチウムイオンキャパシタから漏出する気化した電解液の濃度を検出して基準値S1とし、第5工程T5でリチウムイオンキャパシタから漏出する気化した電解液の濃度を検出して検出値S2とし、検出値S2を基準値S1と比較してリチウムイオンキャパシタの気密性を判定する。このため、基準値S2と検出値S1とは相互に近似した条件で検出するから、精密検知のサンサ13A〜13Hは汎用で安価なものを用いることができ、汎用のセンサ13A〜13Hを用いて安価な気密性検査装置で、高精度の気密性検査を行うことができる。 In this confidentiality inspection method, the concentration of the vaporized electrolytic solution leaking from the lithium ion capacitor in the second step T2 is detected and set as the reference value S1, and the concentration of the vaporized electrolytic solution leaking from the lithium ion capacitor in the fifth step T5. Is detected and used as the detected value S2, and the detected value S2 is compared with the reference value S1 to determine the airtightness of the lithium ion capacitor. Therefore, since the reference value S2 and the detection value S1 are detected under conditions that are close to each other, general-purpose and inexpensive sensors 13A to 13H can be used for precision detection, and general-purpose sensors 13A to 13H are used. Highly accurate airtightness inspection can be performed with an inexpensive airtightness inspection device.

なお、前述の一実施形態では、真空ポンプ2A、2B、10A〜10D、10E〜10Hの排気側にセンサ7、13A〜13D、13E〜13Hを接続したが、真空ポンプ2A、2B、10A〜10D、10E〜10Hの吸気側にセンサ7、13A〜13D、13E〜13Hを接続してもよい。また、内部に検査対象物を収容する密封構造の容器1A、1Bは2個設けたが、1個であったり、3個以上設けてもよい。 In the above-described embodiment, the sensors 7, 13A to 13D, and 13E to 13H are connected to the exhaust side of the vacuum pumps 2A, 2B, 10A to 10D, 10E to 10H, but the vacuum pumps 2A, 2B, 10A to 10D. Sensors 7, 13A to 13D, and 13E to 13H may be connected to the intake side of 10E to 10H. Further, although two containers 1A and 1B having a sealed structure for accommodating the inspection object are provided inside, one container or three or more containers may be provided.

1A、1B:容器
7、13A、13B、13C、13D、13E、13F、13G、13H:センサ
T1:第1工程
T2:第2工程
T3:第3工程
T4:第4工程
T5:第5工程
S1:基準値
S2:検出値
1A, 1B: Containers 7, 13A, 13B, 13C, 13D, 13E, 13F, 13G, 13H: Sensor T1: First step T2: Second step T3: Third step T4: Fourth step T5: Fifth step S1 : Reference value S2: Detected value

Claims (1)

密封構造の容器内に収容した検査対象物から漏出する検出対象物をセンサで検出して検査対象物の気密性を検査する気密性検査方法であって、検査対象物を収容する密封構造の容器内を真空の第1設定圧に減圧する第1工程と、第1設定圧にした容器内を第1設定圧より真空度が高い第2設定圧に減圧する第2工程と、第2設定圧にした容器内の真空度を一定期間第2設定圧に保持する第3工程と、第2設定圧に保持した容器内の真空度を第1設定圧に増圧する第4工程と、第1設定圧にした容器内を再度第2設定圧に減圧する第5工程から成り、第2工程で検査対象物から漏出する検出対象物を検出して基準値とし、第5工程で検査対象物から漏出する検出対象物を検出して検出値とし、検出値を基準値と比較して検査対象物の気密性を判定することを特徴とする気密性検査方法。 This is an airtightness inspection method in which a sensor detects an object to be detected leaking from an object to be inspected contained in a container having a sealed structure and inspects the airtightness of the object to be inspected. A first step of reducing the inside to the first set pressure of vacuum, a second step of reducing the inside of the container set to the first set pressure to a second set pressure having a higher degree of vacuum than the first set pressure, and a second set pressure. The third step of holding the vacuum degree in the container at the second set pressure for a certain period of time, the fourth step of increasing the vacuum degree in the container held at the second set pressure to the first set pressure, and the first setting. It consists of a fifth step of reducing the pressure inside the container to the second set pressure again. In the second step, the detection target that leaks from the inspection target is detected and used as the reference value, and in the fifth step, it leaks from the inspection target. An airtightness inspection method characterized in that an object to be detected is detected and used as a detected value, and the detected value is compared with a reference value to determine the airtightness of the object to be inspected.
JP2019115061A 2019-06-21 2019-06-21 Airtightness test method Active JP7317588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019115061A JP7317588B2 (en) 2019-06-21 2019-06-21 Airtightness test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019115061A JP7317588B2 (en) 2019-06-21 2019-06-21 Airtightness test method

Publications (2)

Publication Number Publication Date
JP2021001784A true JP2021001784A (en) 2021-01-07
JP7317588B2 JP7317588B2 (en) 2023-07-31

Family

ID=73993983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019115061A Active JP7317588B2 (en) 2019-06-21 2019-06-21 Airtightness test method

Country Status (1)

Country Link
JP (1) JP7317588B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004184207A (en) * 2002-12-03 2004-07-02 Toyota Motor Corp Leak gas measuring instrument and leak gas measuring method
JP2005283349A (en) * 2004-03-30 2005-10-13 Cornes Dodwell Ltd Leakage inspection method for content-filled container and its device
JP2010256018A (en) * 2009-04-21 2010-11-11 Nissan Motor Co Ltd Device and method of airtightness test
JP2015133180A (en) * 2014-01-09 2015-07-23 株式会社豊田自動織機 Method of manufacturing sealed power storage device and welding state inspection apparatus of case of sealed power storage device
JP5942065B1 (en) * 2015-08-03 2016-06-29 株式会社ジェイ・イー・ティ Sensor unit and airtightness inspection device
JP2017072491A (en) * 2015-10-08 2017-04-13 Vista株式会社 Leakage inspection device and leakage inspection method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004184207A (en) * 2002-12-03 2004-07-02 Toyota Motor Corp Leak gas measuring instrument and leak gas measuring method
JP2005283349A (en) * 2004-03-30 2005-10-13 Cornes Dodwell Ltd Leakage inspection method for content-filled container and its device
JP2010256018A (en) * 2009-04-21 2010-11-11 Nissan Motor Co Ltd Device and method of airtightness test
JP2015133180A (en) * 2014-01-09 2015-07-23 株式会社豊田自動織機 Method of manufacturing sealed power storage device and welding state inspection apparatus of case of sealed power storage device
JP5942065B1 (en) * 2015-08-03 2016-06-29 株式会社ジェイ・イー・ティ Sensor unit and airtightness inspection device
JP2017072491A (en) * 2015-10-08 2017-04-13 Vista株式会社 Leakage inspection device and leakage inspection method

Also Published As

Publication number Publication date
JP7317588B2 (en) 2023-07-31

Similar Documents

Publication Publication Date Title
JP2011179975A (en) Device and method for inspecting leakage
CN202903434U (en) A detecting device
KR101577329B1 (en) Leak test method and leak test apparatus
JP2011107034A (en) Leak detector
CN104296943A (en) Vacuum type helium detecting equipment and method thereof
CN103154690B (en) Leak inspection device and leak inspection method
JP5806462B2 (en) Leak inspection apparatus and method
JP2014134513A (en) Leak test method and device
CN204964151U (en) Quick leak detection system of automobile parts ordinary pressure
CN112504567A (en) Method for detecting leakage of lithium battery
JP7317588B2 (en) Airtightness test method
CN109186883B (en) Air tightness detection system and method for square lithium ion battery
KR920016830A (en) Gas leak inspection device and method
JP2015534088A (en) Leak detector
JPWO2017037842A1 (en) Helium leak detector
JP2018004429A (en) Leakage inspection device and leakage inspection method
JP2021110594A (en) Inspection method for gas leakage detector, gas leakage inspection method, and gas leakage detector
JP6695153B2 (en) Leak inspection device and method
JP4091367B2 (en) Leak inspection method
JP2015040836A (en) Hydrogen leak test method and device
TWI701428B (en) Leak detection apparatus and leak detection method
JP2009198322A (en) Method, apparatus and system for seal inspection
JP2007132875A (en) Air leak inspection device
JP3790533B2 (en) Multipath workpiece leak inspection system
JP2005274291A (en) Leakage inspection system of multi-channel work

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230719

R150 Certificate of patent or registration of utility model

Ref document number: 7317588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150