JP2020537152A5 - - Google Patents

Download PDF

Info

Publication number
JP2020537152A5
JP2020537152A5 JP2020521313A JP2020521313A JP2020537152A5 JP 2020537152 A5 JP2020537152 A5 JP 2020537152A5 JP 2020521313 A JP2020521313 A JP 2020521313A JP 2020521313 A JP2020521313 A JP 2020521313A JP 2020537152 A5 JP2020537152 A5 JP 2020537152A5
Authority
JP
Japan
Prior art keywords
measuring device
scale
sensor
magnetic field
local
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020521313A
Other languages
Japanese (ja)
Other versions
JP7311500B2 (en
JP2020537152A (en
Filing date
Publication date
Priority claimed from DE102017123772.0A external-priority patent/DE102017123772B4/en
Application filed filed Critical
Priority claimed from PCT/AT2018/060240 external-priority patent/WO2019071284A1/en
Publication of JP2020537152A publication Critical patent/JP2020537152A/en
Publication of JP2020537152A5 publication Critical patent/JP2020537152A5/ja
Application granted granted Critical
Publication of JP7311500B2 publication Critical patent/JP7311500B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

図4の例によれば、走査ヘッドに配置された評価電子回路4は、一定の振幅の(1MHzから約100MHzの範囲の)高周波キャリア電流を生成するように構成された信号発生器41を有する。(S+、S−、C+、C−と示されている)4つのセンサ素子6のそれぞれは、信号発生器に電気的に接続されているので、キャリア電流iはそれらを通って流れる。ここに示す例では、センサ素子6が直列に接続されているため、同じキャリア電流iがセンサ素子6を流れる。 According to the example of FIG. 4, the evaluation electronic circuit 4 arranged in the scanning head 2 is a signal generator 41 configured to generate a high frequency carrier current (in the range of 1 MHz to about 100 MHz) having a constant amplitude. Have. Since each of the four sensor elements 6 (indicated as S +, S-, C +, C-) is electrically connected to the signal generator, the carrier current i flows through them. In the example shown here, since the sensor elements 6 are connected in series, the same carrier current i flows through the sensor elements 6.

センサユニットに配置されたセンサ素子6(薄片)には、スケール1が発生する磁界(磁束密度B)が侵入する。前述のように、磁場は測定方向(x方向)に沿ったスケールの分割に従って変化し、その結果、センサ素子6の局所的な磁場の強さ/磁束密度は、センサユニットとスケール1の相対位置に依存する。センサユニットに対してスケールが移動すると、それに応じて磁場が移動する。 The magnetic field (magnetic flux density B) generated by the scale 1 penetrates into the sensor element 6 (thin section) arranged in the sensor unit 3. As described above, the magnetic field changes according to the division of the scale along the measurement direction (x direction), and as a result, the local magnetic field strength / magnetic flux density of the sensor element 6 is relative to the sensor unit 3 and the scale 1. It depends on the position. As the scale moves relative to the sensor unit, the magnetic field moves accordingly.

例1:距離又は角度を測定する測定装置であって、
測定方向xに沿って変化するように磁化され、この磁化により対応して変化する磁場Bを引き起こすスケール1と、
前記磁場Bが貫通する少なくとも1つのセンサユニットと、
を有し、前記センサユニット2は、
磁気インピーダンス効果により、磁場Bに依存し、かつ前記測定方向xに沿って変化する局所的な電気的インピーダンスを有する、少なくとも1つの強磁性の薄片6と、
前記薄片6の領域で前記局所的な電気的インピーダンスに依存するセンサ信号(例えば、US+、US−、UC+、UC−)を生成するように構成された少なくとも1つのセンサ素子(例えば、図3、5、6、符号6、7、10参照)と、
を有する。
Example 1: A measuring device that measures a distance or an angle.
Scale 1 which is magnetized so as to change along the measurement direction x and causes a magnetic field B which changes correspondingly by this magnetization.
At least one sensor unit 3 through which the magnetic field B penetrates,
The sensor unit 2 has
Due to the magnetic impedance effect, at least one ferromagnetic flakes 6 that are dependent on the magnetic field B and have a local electrical impedance that changes along the measurement direction x.
At least one sensor element (eg , U S + , U S- , U C + , U C- ) configured to generate a sensor signal (eg, US +, US-, U C +, U C-) that depends on the local electrical impedance in the region of the flakes 6. , Fig. 3, 5, 6, reference numerals 6, 7, 10) and
Have.

例10:例1乃至例9の何れか1つに記載の測定装置であって、前記スケールは、前記センサ素子に対する前記スケールの位置を一意に定義する絶対コーディングを有する。 Example 10: The measuring device according to any one of Examples 1 to 9, wherein the scale has an absolute coding that uniquely defines the position of the scale with respect to the sensor element 3.

例12:スケール1と前記スケール1から離間したセンサユニットとの間の相対位置を測定する方法であって、
測定方向に沿って変化するように磁化されたスケール1によって、前記測定方向xに沿って変化する磁場Bを生成するステップと、
センサユニットに配置された少なくとも1つの薄片6の局所的で電気的なインピーダンスに影響を与えるステップであって、局所的で電気的な前記インピーダンスは、磁気インピーダンス効果による局所磁場に依存し、したがって、前記センサユニットに対する前記スケール1の位置に依存するステップと、
なくとも1つの薄片6のある領域における局所的で電気的な前記インピーダンスを表す信号をセンサ素子により検出するステップと、
を有する。
Example 12: A method of measuring the relative position between the scale 1 and the sensor unit 3 separated from the scale 1.
A step of generating a magnetic field B that changes along the measurement direction x by a scale 1 that is magnetized so as to change along the measurement direction.
A step that affects the local and electrical impedance of at least one flakes 6 placed on the sensor unit 3, where the local and electrical impedance depends on the local magnetic field due to the magnetic impedance effect and therefore. , A step that depends on the position of the scale 1 with respect to the sensor unit 3.
A step of detecting by a sensor element a signal representing the local and electrical impedance in a region of at least one flakes 6.
Have.

Claims (14)

距離又は角度を測定する測定装置であって、
測定方向(x)に沿って変化するように磁化され、この磁化により対応して変化する磁場(B)を引き起こすスケール(1)と、
変化する前記磁場(B)が前記スケール(1)に対する相対的な位置に応じて前記測定方向(x)に貫通する少なくとも1つの走査ヘッド(2)と、
を有し、前記走査ヘッド(2)は、
磁気インピーダンス効果により、前記磁場(B)に依存し、かつ前記測定方向(x)に沿って変化する局所的で電気的なインピーダンスを有する少なくとも1つの強磁性の薄片(6)と、
前記薄片(6)の局所的で電気的な前記インピーダンスに依存する少なくとも2つの位相シフトされたセンサ信号(U、U)を生成するように構成された少なくとも1つのセンサユニット(3)と、
を有する測定装置
A measuring device that measures distances or angles.
A scale (1) that is magnetized so as to change along the measurement direction (x) and causes a magnetic field (B) that changes correspondingly by this magnetization.
With at least one scanning head (2) through which the changing magnetic field (B) penetrates the measurement direction (x) depending on its position relative to the scale (1).
The scanning head (2) has
Due to the magnetic impedance effect, at least one ferromagnetic flakes (6) that are dependent on the magnetic field (B) and have a local electrical impedance that changes along the measurement direction (x).
At least two phase-shifted sensor signal (U S, U C) for locally dependent on the electrical said impedance of said lamina (6) at least one sensor unit configured to generate a (3) ,
Measuring device with .
請求項1に記載の測定装置であって、
一定の振幅と一定の周波数の交流電流(i)を供給するように構成された信号源であって、前記交流電流(i)が、前記測定方向(x)に沿って離間して配置された少なくとも2つの薄片(6)に供給される信号源をさらに有し、
前記少なくとも2つの薄片(6)は、それ自体が前記センサユニット(3)のセンサ素子として構成されており、
前記走査ヘッド(2)に対する前記スケール(1)の位置に依存して前記測定方向(x)に沿って変化する前記磁場(B)が、前記少なくとも2つの薄片(6)の前記インピーダンスに影響を与え、前記インピーダンスは、測定情報(US+、US−、UC+、UC−)として評価される測定装置
The measuring device according to claim 1.
A signal source configured to supply an alternating current (i) of constant amplitude and frequency, the alternating current (i) being spaced apart along the measurement direction (x). Further having a signal source supplied to at least two flakes (6),
The at least two flakes (6) are themselves configured as sensor elements of the sensor unit (3).
The magnetic field (B), which changes along the measurement direction (x) depending on the position of the scale (1) with respect to the scanning head (2), affects the impedance of the at least two flakes (6). A measuring device that gives and evaluates the impedance as measurement information (US + , US- , UC + , UC- ).
請求項1又は請求項2に記載の測定装置であって、
前記磁場(B)により局所的に変化する、強磁性の前記薄片(6)内の局所的な電流強度が、平面コイル(10)によって検出される測定装置
The measuring device according to claim 1 or 2.
A measuring device in which a planar coil (10) detects a local current intensity in the ferromagnetic flakes (6), which changes locally due to the magnetic field (B).
請求項1に記載の測定装置であって、前記測定装置は、
一定の振幅と一定の周波数の交流電流(i)を供給するように構成された信号源を有し、
前記センサユニット(3)は、前記信号源に接続され、少なくとも1つの平面受信コイル(10)に変圧的に結合された少なくとも1つの送信コイル(11)を有し、
少なくとも1つの前記薄片(6)が鉄心として機能し、前記送信コイル(11)は、前記鉄心の中で、少なくとも1つの前記薄片(6)の局所的な前記インピーダンスに依存する渦電流を誘導する測定装置
The measuring device according to claim 1, wherein the measuring device is
It has a signal source configured to supply alternating current (i) with constant amplitude and constant frequency.
The sensor unit (3) has at least one transmitting coil (11) connected to the signal source and transformedly coupled to at least one planar receiving coil (10).
At least one slice (6) functions as an iron core, and the transmission coil (11) induces an eddy current in the iron core that depends on the local impedance of the at least one slice (6). Measuring device .
請求項1乃至請求項4の何れか一項に記載の測定装置であって、
ここで、センサ信号(U及びU)の各々の生成は、それぞれ、2つの測定情報(US+,US−;UC+,UC−)間の差をとることによって実行され、
前記2つの測定情報(US+,US−;UC+,UC−)は、それぞれ、前記測定方向(x)に沿って間隔を置いてセンサユニット(3)内に配置された、少なくとも1組の個別のセンサ素子(S+,S−;C+,C−)によって生成される測定装置
The measuring device according to any one of claims 1 to 4.
Here, the generation of each of the sensor signals (U S and U C), respectively, the two measurement information (U S +, U S-; U C +, U C-) is performed by taking the difference between,
The two measurement information (US + , US- ; U C + , U C- ) are respectively arranged in the sensor unit (3) at intervals along the measurement direction (x), at least one. A measuring device generated by a set of individual sensor elements (S +, S-; C +, C-).
請求項1乃至請求項5の何れか一項に記載の測定装置であって、
前記スケール(1)は、2倍の周期(2・λ)の規則的な分割を有し、
前記センサユニット(3)は、第1のグループの少なくとも2つのセンサ素子と、第2のグループの少なくとも2つのセンサ素子とを含み、
前記第1のグループの前記センサ素子は、前記周期の半分の奇数倍にほぼ対応する距離((2n+1)・λ/2)だけ互いにずれて配置されており、
前記第2のグループの前記センサ素子は、前記第1のグループの前記センサ素子に対して、前記周期の半分の倍数に前記周期の4分の1を加えた長さに対応する距離(n・λ+λ/4)だけずれて配置されている測定装置
The measuring device according to any one of claims 1 to 5.
The scale (1) has a regular division with a double period (2 · λ).
The sensor unit (3) includes at least two sensor elements in the first group and at least two sensor elements in the second group.
The sensor elements of the first group are arranged so as to be offset from each other by a distance ((2n + 1) · λ / 2) substantially corresponding to an odd multiple of half of the cycle.
The sensor element of the second group is a distance (n.) Corresponding to the length of the sensor element of the first group, which is a multiple of half of the period plus a quarter of the period. A measuring device that is displaced by λ + λ / 4).
請求項1乃至請求項6の何れか一項に記載の測定装置であって、
前記スケール(1)は、互いに隣接して配置された複数の磁気トラックを有する測定装置
The measuring device according to any one of claims 1 to 6.
The scale (1) is a measuring device having a plurality of magnetic tracks arranged adjacent to each other.
請求項1乃至請求項7の何れか一項に記載の測定装置であって、
前記スケールは、前記走査ヘッド(2)に対する前記スケールの位置を一意に定義する絶対コーディングを有する測定装置
The measuring device according to any one of claims 1 to 7.
The scale is a measuring device having an absolute coding that uniquely defines the position of the scale with respect to the scanning head (2).
請求項1乃至請求項8の何れか一項記載の測定装置であって、
前記スケールは円筒形状を有し、前記スケールの分割は角分割である測定装置
The measuring device according to any one of claims 1 to 8.
A measuring device in which the scale has a cylindrical shape and the division of the scale is an angular division.
請求項1乃至請求項8の何れか一項に記載の測定装置であって、
強磁性の前記薄片は、線形、非線形、及び磁気飽和の状態の範囲で機能する測定装置
The measuring device according to any one of claims 1 to 8.
The ferromagnetic flakes are measuring devices that function in the range of linear, non-linear, and magnetically saturated states.
スケール(1)と前記スケール(1)から離間した走査ヘッド(2)との間の相対位置を測定する方法であって、
測定方向に沿って変化するように磁化されたスケール(1)によって、前記測定方向(x)に沿って変化する磁場(B)を生成するステップと、
センサユニット(3)に配置された少なくとも1つの薄片(6)の局所的で電気的なインピーダンスに影響を与えるステップであって、局所的で電気的な前記インピーダンスは、磁気インピーダンス効果による局所的な磁場に依存し、したがって、前記センサユニット()に対する前記スケール(1)の位置に依存し、少なくとも2つの位相シフトされた測定信号が生成されるステップと、
前記少なくとも1つの薄片(6)の、ある領域における局所的で電気的な前記インピーダンスを表す信号をセンサ素子により検出するステップと、
を有する方法
A method of measuring the relative position between the scale (1) and the scanning head (2) separated from the scale (1).
A step of generating a magnetic field (B) that changes along the measurement direction (x) by a scale (1) magnetized so as to change along the measurement direction.
A step that affects the local and electrical impedance of at least one piece (6) placed in the sensor unit (3), where the local and electrical impedance is local due to the magnetic impedance effect. A step in which at least two phase-shifted measurement signals are generated, depending on the magnetic field and thus the position of the scale (1) with respect to the sensor unit (3).
A step of detecting a signal representing the local and electrical impedance of the at least one slice (6) in a certain region by a sensor element.
Method to have.
請求項11に記載の方法であって、
前記少なくとも1つの薄片(6)に高周波交流電流を供給するステップであって、前記測定方向(x)に沿った電流分布が前記少なくとも1つの薄片(6)の局所的で電気的な前記インピーダンスに依存しているスッテプと、
前記センサ素子によって検出された信号の評価、特に復調を行うステップと、
をさらに有する方法
The method according to claim 11.
In the step of supplying a high-frequency alternating current to the at least one slice (6), the current distribution along the measurement direction (x) becomes the local and electrical impedance of the at least one slice (6). Dependent steps and
Evaluation of the signal detected by the sensor element, particularly the step of demodulating,
A method of further having.
請求項12に記載の方法であって、
前記信号を前記センサ素子により検知する前記ステップは、
前記少なくとも1つの薄片(6)に局所的な前記インピーダンスに依存する電圧をかけるステップ、又は
前記少なくとも1つの薄片(6)に局所的に流れる交流電流によって引き起こされる磁場の強さを表すセンサ信号を、平面コイル、又は、磁場に感度を有する半導体素子、又は薄膜センサ素子によって検出するステップ、
を有する方法
The method according to claim 12.
The step of detecting the signal by the sensor element is
A sensor signal representing the strength of the magnetic field caused by the step of applying a voltage depending on the impedance locally to the at least one piece (6) or the AC current locally flowing through the at least one piece (6). , A step detected by a planar coil, a semiconductor element sensitive to a magnetic field, or a thin film sensor element,
Method to have.
請求項13に記載の方法であって、
前記少なくとも1つの薄片(6)の局所的で電気的な前記インピーダンスは、少なくとも1つの送信コイル(11)によって誘導される渦電流に影響を与え、
平面受信コイル(10)が、センサ素子として使用され、前記平面受信コイル(10)は、前記送信コイル(11)に変圧的に結合され、強磁性の前記少なくとも1つの薄片(6)は、鉄心として機能する方法
The method according to claim 13.
The local and electrical impedance of the at least one flakes (6) affects the eddy currents induced by at least one transmit coil (11).
A planar receiving coil (10) is used as a sensor element, the planar receiving coil (10) is transformerally coupled to the transmitting coil (11), and the ferromagnetic at least one flakes (6) are iron cores. How to function as.
JP2020521313A 2017-10-12 2018-10-09 Electromagnetic measurement system for measuring distance and angle using magneto-impedance effect Active JP7311500B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102017123772.0A DE102017123772B4 (en) 2017-10-12 2017-10-12 Electromagnetic measuring system for the detection of length and angle based on the magneto-impedance effect
DE102017123772.0 2017-10-12
ATA50783/2018 2018-09-13
ATA50783/2018A AT520709B1 (en) 2017-10-12 2018-09-13 Electromagnetic measuring system for the detection of length and angle based on the magnetoimpedance effect
PCT/AT2018/060240 WO2019071284A1 (en) 2017-10-12 2018-10-09 Electromagnetic measuring system for detecting length and angle on the basis of the magnetoimpedance effect

Publications (3)

Publication Number Publication Date
JP2020537152A JP2020537152A (en) 2020-12-17
JP2020537152A5 true JP2020537152A5 (en) 2021-10-21
JP7311500B2 JP7311500B2 (en) 2023-07-19

Family

ID=65909967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020521313A Active JP7311500B2 (en) 2017-10-12 2018-10-09 Electromagnetic measurement system for measuring distance and angle using magneto-impedance effect

Country Status (4)

Country Link
JP (1) JP7311500B2 (en)
CN (1) CN111492206B (en)
AT (1) AT520709B1 (en)
DE (2) DE102017123772B4 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112747664B (en) * 2020-12-30 2022-06-17 苏州博古特智造有限公司 Linear magnetic resistance position sensor

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6323379A (en) * 1986-03-18 1988-01-30 Victor Co Of Japan Ltd Magnetic detection circuit
DE59405481D1 (en) * 1994-04-05 1998-04-23 Heidenhain Gmbh Dr Johannes Magnetic position measuring device
JPH08285509A (en) * 1995-04-19 1996-11-01 Hitachi Metals Ltd Linear type magnetic sensor
EP0743508A2 (en) * 1995-05-16 1996-11-20 Mitutoyo Corporation Induced current position transducer
CH690933A5 (en) * 1996-01-24 2001-02-28 Hans Ulrich Meyer An inductive displacement sensor.
JP3004924B2 (en) * 1996-11-01 2000-01-31 株式会社ミツトヨ Magnetic encoder
AT406715B (en) 1997-09-15 2000-08-25 Newald Herbert Dipl Ing Device for registering the data from a magnetically encoded data carrier, with a sensor
EP0989411A3 (en) 1998-09-25 2004-10-06 Alps Electric Co., Ltd. Magneto-impedance effect element
DE19953190C2 (en) 1999-11-05 2002-11-07 Bosch Gmbh Robert Sensor arrangement for detecting an angle of rotation
EP1164358B1 (en) * 2000-06-16 2005-08-24 AMO Automatisierung Messtechnik Optik GmbH Inductive length measuring system
EP1295081B1 (en) * 2000-06-27 2004-11-03 Tesa Sa Magnetoresistive electrode measuring device
KR20040102113A (en) * 2002-04-18 2004-12-03 콘티넨탈 테베스 아게 운트 코. 오하게 Method and device for the detection of local displacements and rotations
JP4211278B2 (en) 2002-04-25 2009-01-21 神鋼電機株式会社 Encoder
DE10308030B4 (en) * 2003-02-24 2011-02-03 Meas Deutschland Gmbh Magnetoresistive sensor for determining an angle or position
DE102004017191B4 (en) 2004-04-07 2007-07-12 Infineon Technologies Ag Device and method for determining a direction of an object
JP2006086439A (en) * 2004-09-17 2006-03-30 Nidec Sankyo Corp Magnetoresistive element
FR2881823B1 (en) 2005-02-08 2007-03-16 Siemens Vdo Automotive Sas USE OF THE MAGNETO-IMPEDANCE ON A NON-CONTACT POSITION SENSOR AND CORRESPONDING SENSOR
CN100375890C (en) * 2005-09-09 2008-03-19 清华大学 Magnetic displacement sensor containing zero-setting GMR chip
DE102007007764A1 (en) * 2007-02-16 2008-08-21 Dr. Johannes Heidenhain Gmbh Encoder and method for its operation
JP4950713B2 (en) * 2007-03-20 2012-06-13 オークマ株式会社 Absolute encoder
DE102009021444A1 (en) * 2009-05-15 2010-11-25 Tyco Electronics Belgium Ec Bvba Magnetoelectronic angle sensor, in particular reluctance resolver
JP5077717B2 (en) 2010-04-12 2012-11-21 村田機械株式会社 Magnetic pole detection system
JP2012083280A (en) * 2010-10-14 2012-04-26 Minebea Co Ltd Absolute position detector for mobile body
JP2012159495A (en) * 2011-01-10 2012-08-23 Aisan Ind Co Ltd Position sensor
DE102011007756A1 (en) * 2011-04-20 2012-10-25 Dr. Johannes Heidenhain Gmbh Position measuring device and scale and method for producing a scale
JP5904811B2 (en) * 2012-02-08 2016-04-20 愛三工業株式会社 Position sensor
DE102014201975A1 (en) 2013-08-28 2015-03-05 Micro-Epsilon Messtechnik Gmbh & Co. Kg Sensor with a sensor element and method for producing the sensor element
JP6472175B2 (en) * 2014-06-09 2019-02-20 Dmg森精機株式会社 Position detection device
US9562954B2 (en) * 2014-08-06 2017-02-07 Infineon Technologies Ag Maximization of target signal and elimination of backbias component for a differential upright position sensor
CN204203260U (en) * 2014-11-29 2015-03-11 浙江师范大学 A kind of speed probe based on giant magnetoresistance effect

Similar Documents

Publication Publication Date Title
US7631564B1 (en) Direct shaft power measurements for rotating machinery
US6259249B1 (en) Induction-type position measuring apparatus
EP1902287B1 (en) An apparatus for magnetizing a magnetizable element
CN105008851A (en) Position detecting system
CN103140741B (en) For detecting the method and apparatus in magnetic field
JP2016045208A (en) Absolute type position encoder scale having layer in layered structure
JP5156432B2 (en) Eddy current sample measurement method and eddy current sensor
US20110213571A1 (en) Sectional magnetic encoding method and system for measuring rotating shaft parameters
JP2018146314A (en) Magnetic sensor and magnetic sensor device
CN107202966B (en) The measurement method and system of a kind of alternate magnetic flux leakage of transformer winding
CN108351227A (en) Magnetic detection device and moving body detection device
JP2020537152A5 (en)
US20150061650A1 (en) Method and arrangement and sensor for determing the postion of a component
JP2009186433A (en) Eddy-current type sample measuring method, eddy-current sensor and eddy-current type sample measurement system
US11512982B2 (en) Electromagnetic measuring system for detecting length and angle on the basis of the magnetoimpedance effect
JP2013101129A (en) Eddy current sensor and detection object discrimination circuit
JP2008134208A (en) Current sensor
JP7311500B2 (en) Electromagnetic measurement system for measuring distance and angle using magneto-impedance effect
JP2009210399A (en) Eddy current sensor
JP6121657B2 (en) Differential magnetic field applying apparatus and differential magnetic field applying method
JP2016138815A (en) Rotary scale
JP2020085573A (en) Magnetism detector and mobile body detector
CN104280697A (en) Microtechnical component for a magnetic sensor device or a magnetic actuator and production method for the microtechnical component
JP2005030836A (en) Displacement sensor and actuator using the displacement sensor
JP5793682B2 (en) Power measuring device