JP2020525060A - 医療撮像システム、方法およびコンピュータプログラム - Google Patents

医療撮像システム、方法およびコンピュータプログラム Download PDF

Info

Publication number
JP2020525060A
JP2020525060A JP2019562661A JP2019562661A JP2020525060A JP 2020525060 A JP2020525060 A JP 2020525060A JP 2019562661 A JP2019562661 A JP 2019562661A JP 2019562661 A JP2019562661 A JP 2019562661A JP 2020525060 A JP2020525060 A JP 2020525060A
Authority
JP
Japan
Prior art keywords
blood vessel
pulse
tissue
flow
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019562661A
Other languages
English (en)
Inventor
ライト,クリストファー
ローレンソン,マシュー
ウォーカー,ニコラス
明憲 鴨田
明憲 鴨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of JP2020525060A publication Critical patent/JP2020525060A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • A61B1/000094Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope extracting biological structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0048Detecting, measuring or recording by applying mechanical forces or stimuli
    • A61B5/0051Detecting, measuring or recording by applying mechanical forces or stimuli by applying vibrations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0095Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying light and detecting acoustic waves, i.e. photoacoustic measurements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Endoscopes (AREA)

Abstract

血管と相互作用するために組織に表面音響波を印加し、前記表面音響波が前記血管と相互作用するときに前記組織の画像をキャプチャし、前記キャプチャされた画像から前記血管の特性を識別するように構成された回路を含む医療撮像システム。

Description

関連出願への相互参照
本出願は、2017年6月29日に提出されたEP17178724.5の利益を主張し、その内容全体は参照により本明細書に組み込まれる。
本開示は、医療撮像システム、方法およびコンピュータプログラムに関する。
本明細書で提供される「背景技術」の説明は、本開示の文脈を一般的に提示することを目的としている。背景技術の節に記載されている限りにおいて、本開示において名を挙げている発明者らの研究、および、出願時に先行技術として適格ではない可能性がある記載の態様は、本開示に対する先行技術として明示的にも黙示的にも認められない。
外科的処置(内視鏡検査および顕微鏡検査を含む処置)中に、数ミリメートルの画像深度において血管系の画像を生成することが必要な場合がある。これは、レーザスペックル技法を使用して実行することができる。
しかしながら、この手法には深度分解能がない。これにより、血管の直径および血管内の流れを推定するときにエラーが発生する可能性がある。
また、繊細な外科的処置中およびその前にレーザスペックルコントラストイメージング(LSCI)も使用されるため、外科的切開など、組織との計画された相互作用の正確度も制限される場合がある。
本開示の目的は、少なくともこれらの問題に対処することである。
本開示の実施形態によれば、血管と相互作用するために組織に表面音響波を印加し、表面音響波が血管と相互作用するときに組織の画像をキャプチャし、キャプチャされた画像から血管の特性を識別するように構成された回路を含む医療撮像システムが提供される。
前述の段落は一般的な紹介として提供されたものであり、添付の特許請求の範囲を限定することを意図するものではない。記載された実施形態は、さらなる利点と共に、添付の図面と併せて以下の詳細な説明を参照することによって最もよく理解されるであろう。
本開示およびその付随する多くの利点のより完全な理解は、添付の図面と併せて考慮したときに、以下の詳細な説明を参照することによって、よりよく理解されるようになるにつれて容易に得られるであろう。
内視鏡手術システムの概略構成の一例を示す図である。 図1に示されるカメラヘッドおよびカメラ制御ユニット(CCU)の機能的構成の一例を示すブロック図である。 本開示の一実施形態を示す図である。 本開示の実施形態による内視鏡ビューを示す図である。 本開示の実施形態による内視鏡ビューを示す図である。 本開示の実施形態による内視鏡ビューを示す図である。 本開示の実施形態による内視鏡ビューを示す図である。 本開示の実施形態による内視鏡ビューを示す図である。 本開示の実施形態によるデータ構造を示す図である。 本開示の実施形態によるルックアップテーブルを示す図である。 本開示の実施形態による内視鏡を示す図である。 本開示の実施形態による血管に対するSAW波の相互作用を示す図である。 本開示の実施形態によるフローチャートである。 本開示の実施形態によるフローチャートである。 本開示の実施形態によるフローチャートである。
ここで図面を参照する。いくつかの図全体を通して同様の参照番号は同一または対応する部分を示す。
1.適用
<<1.適用>>
本開示の一実施形態による技術は、様々な製品に適用することができる。例えば、本開示の一実施形態による技術は、内視鏡手術システムに適用することができる。
図1は、本開示の一実施形態による技術を適用することができる内視鏡手術システム5000の概略構成の一例を示す図である。図1では、外科医(医師)5067が内視鏡手術システム5000を使用して患者5071に対して患者ベッド5069上で手術を行っている状態が示されている。図示のように、内視鏡手術システム5000は、内視鏡5001、他の手術器具5017、その上に内視鏡5001を支持する支持アーム装置5027、および内視鏡手術のための様々な装置が搭載されているカート5037を含む。
内視鏡手術では、開腹術を行うために腹壁を切開する代わりに、トロカール5025a〜5025dと呼ばれる複数の管状開口装置を使用して腹壁を穿刺する。そして、内視鏡5001の鏡筒5003と他の手術器具5017とをトロカール5025a〜5025dを通じて患者5071の体腔内に挿入する。図示の例では、他の手術器具5017として、気腹チューブ5019、エネルギー処置具5021、および鉗子5023が患者5071の体腔に挿入されている。さらに、エネルギー処置具5021は、高周波電流または超音波振動により組織の切開および剥離、血管の封止などを行うための処置具である。しかしながら、図示の手術器具5017はあくまで一例であり、手術器具5017として、例えばピンセットまたは開創器などの内視鏡手術において一般的に用いられている様々な手術器具を用いることができる。
内視鏡5001により撮像された患者5071の体腔内の外科領域の画像が表示装置5041に表示される。外科医5067は、表示装置5041に表示された外科領域の画像をリアルタイムで観察しながら、エネルギー処置具5021または鉗子5023を使用して、例えば患部の切除などの処置を行う。なお、図示していないが、気腹チューブ5019、エネルギー処置具5021、および鉗子5023は、術中、外科医5067、助手などによって支持されている。
(支持アーム装置)
支持アーム装置5027は、ベースユニット5029から延伸するアームユニット5031を含む。図示の例では、アームユニット5031は、関節部5033a、5033b、5033cと、リンク5035aおよび5035bとを含み、アーム制御装置5045の制御下で駆動される。内視鏡5001は、内視鏡5001の位置および態勢が制御されるように、アームユニット5031によって支持される。その結果、内視鏡5001の位置の安定した固定を実施することができる。
(内視鏡)
内視鏡5001は、患者5071の体腔内に挿入される遠位端から所定長さの領域を有する鏡筒5003と、鏡筒5003の近位端に接続されたカメラヘッド5005とを含む。図示の例では、硬性型の鏡筒5003を有する硬性鏡としての内視鏡5001が示されている。しかし、内視鏡5001は他の様態で、軟性型の鏡筒5003を有する軟性鏡として構成されてもよい。
鏡筒5003の遠位端には対物レンズが嵌合する開口がある。内視鏡5001には、光源装置5043で発生した光が、鏡筒5003の内部に延在する導光路によって鏡筒の遠位端に導入され、対物レンズを通して患者5071の体腔内の観察対象に向けて照射されるように、光源装置5043が接続されている。なお、内視鏡5001は、直視鏡であってもよく、または、斜視鏡もしくは側視鏡であってもよい。
カメラヘッド5005の内部には、観察対象からの反射光(観察光)が光学系によって撮像素子上に集光されるように、光学系および撮像素子が設けられている。観察光は、撮像素子によって光電変換されて、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。画像信号は、RAWデータとしてCCU5039に送信される。なお、カメラヘッド5005には、カメラヘッド5005の光学系を適切に駆動して倍率および焦点距離を調整する機能が組み込まれている。
なお、例えば、立体視(3次元(3D)ディスプレイ)との互換性を確立するために、カメラヘッド5005に複数の撮像素子を設けてもよい。この場合、観察光を複数の撮像素子の各々に導くために、鏡筒5003の内部に複数のリレー光学系が設けられる。
(カートに組み込まれている様々な機器)
CCU5039は、中央処理装置(CPU)、グラフィックスプロセッシングユニット(GPU)などを含み、内視鏡5001および表示装置5041の動作を統括的に制御する。特に、CCU5039は、カメラヘッド5005から受信した画像信号に対して、例えば、現像処理(デモザイク処理)のような、その画像信号に基づいて画像を表示するための様々な画像処理を施す。CCU5039は、画像処理が施された画像信号を表示装置5041に供給する。さらに、CCU5039は、カメラヘッド5005に制御信号を送信して、カメラヘッド5005の駆動を制御する。制御信号は、倍率または焦点距離などの撮像条件に関する情報を含むことができる。
表示装置5041は、CCU5039の制御の下、CCU5039により画像処理が施された画像信号に基づく画像を表示する。内視鏡5001が4K(水平画素数3840×垂直画素数2160)、8K(水平画素数7680×垂直画素数4320)などの高解像度の撮像の準備ができている、かつ/または3D表示の準備ができている場合、表示装置5041として、対応する高解像度表示および/または3D表示が可能な表示装置を使用することができる。装置が4Kまたは8Kのような高解像度の撮像の準備ができている場合に、表示装置5041として使用される表示装置が55インチ以下のサイズを有する場合、より没入型の経験を得ることができる。さらに、目的に応じて解像度および/またはサイズが異なる複数の表示装置5041を設けてもよい。
光源装置5043は、例えば発光ダイオード(LED)のような光源を含み、内視鏡5001に外科領域を撮像するための照射光を供給する。
アーム制御装置5045は、例えばCPUのようなプロセッサを含み、支持アーム装置5027のアームユニット5031の駆動を所定の制御方法に従って制御するように、所定のプログラムに従って動作する。
入力装置5047は内視鏡手術システム5000の入力インタフェースである。ユーザは、入力装置5047を通じて内視鏡手術システム5000への様々な種類の情報または指示入力を行うことができる。例えば、ユーザは、入力装置5047を通じて、患者の身体情報、手術の外科的処置に関する情報などのような、手術に関する様々な種類の情報を入力する。さらに、ユーザは、入力装置5047を通じて、例えば、アームユニット5031を駆動する指示、内視鏡5001による撮像条件(照射光の種類、倍率、焦点距離など)を変更する指示、エネルギー処置具5021を駆動する指示などを入力する。
入力装置5047の種類は限定されず、様々な既知の入力装置のいずれでもあってよい。入力装置5047としては、例えばマウス、キーボード、タッチパネル、スイッチ、フットスイッチ5057、および/またはレバーなどを適用することができる。入力装置5047としてタッチパネルを用いる場合は、表示装置5041の表示面に設けてもよい。
他の様態では、入力装置5047は、例えば眼鏡型ウェアラブルデバイスまたはヘッドマウントディスプレイ(HMD)などのユーザに装着される機器であり、上記のデバイスのいずれかによって検出されるユーザのジェスチャまたは視線に応じて様々な入力が行われる。さらに、入力装置5047は、ユーザの動きを検出することができるカメラを含み、カメラによって撮像されるビデオから検出されるユーザのジェスチャまたは視線に応じて様々な入力が行われる。さらに、入力装置5047は、ユーザの音声を収集することができるマイクロフォンを含み、当該マイクロフォンによって収集された音声によって様々な入力が行われる。このように、様々な情報を非接触的に入力することができるように入力装置5047を構成することにより、特に、清潔な領域に属するユーザ(例えば、外科医5067)が、清潔でない領域に属する装置を非接触的に操作することができる。さらに、ユーザが所持している手術器具を手放すことなく装置を操作することができるため、ユーザの利便性が向上する。
処置具制御装置5049は、組織の焼灼または切開、血管の封止などのためにエネルギー処置具5021の駆動を制御する。気腹器5051は、気腹チューブ5019を通して患者5071の体腔内にガスを供給して体腔を膨張させ、内視鏡5001の視野を確保し、外科医のための作業スペースを確保する。レコーダ5053は、手術に関する様々な種類の情報を記録することが可能な装置である。プリンタ5055は、手術に関する様々な種類の情報をテキスト、画像、グラフなど様々な形で印刷することができる装置である。
以下では、特に内視鏡手術システム5000の特徴的な構成についてさらに詳細に説明する。
(支持アーム装置)
支持アーム装置5027は、ベースとしての役割を果たすベースユニット5029と、このベースユニット5029から延伸するアームユニット5031とを含む。図示の例では、アームユニット5031は、複数の関節部5033a、5033bおよび5033cと、関節部5033bによって互いに接続された複数のリンク5035aおよび5035bとを含む。図1では、図解を簡単にするために、アームユニット5031の構成を簡略化して示している。実際には、アームユニット5031が所望の自由度を有するように、関節部5033a〜5033cならびにリンク5035aおよび5035bの形状、数および配置、ならびに関節部5033a〜5033cの回転軸の方向などを適宜設定することができる。例えば、アームユニット5031は好ましくは、6自由度以上の自由度を有するように構成することができる。これにより、アームユニット5031の可動範囲内で内視鏡5001を自由に移動させることができる。これにより、内視鏡5001の鏡筒5003を所望の方向から患者5071の体腔内に挿入することが可能となる。
各関節部5033a〜5033cにはアクチュエータが設けられており、関節部5033a〜5033cは、それぞれのアクチュエータを駆動することによって所定の回転軸を中心に回転可能であるように構成されている。アクチュエータの駆動は、各関節部5033a〜5033cの回転角度を制御し、それによって、アームユニット5031の駆動を制御するように、アーム制御装置5045によって制御される。その結果、内視鏡5001の位置および態勢の制御を実現することができる。これにより、アーム制御装置5045は、力制御または位置制御などの様々な既知の制御方法によりアームユニット5031の駆動を制御することができる。
例えば、外科医5067が入力装置5047(フットスイッチ5057を含む)を通じて適切に操作入力を行った場合、内視鏡5001の位置および態勢を制御するために、その操作入力に応じてアーム制御装置5045によってアームユニット5031の駆動を適切に制御することができる。以上の制御により、アームユニット5031の遠位端にある内視鏡5001を任意の位置から別の任意の位置に移動させた後、移動後の位置において内視鏡5001を固定支持することができる。なお、アームユニット5031はマスタ−スレーブ方式で動作してもよい。この場合、アームユニット5031は、手術室から遠隔した場所に配置された入力装置5047を通じてユーザにより遠隔操作することができる。
さらに、力制御が適用される場合、アーム制御装置5045は、アームユニット5031がユーザによる外力を受けてその外力に追従して滑らかに動くように、関節部5033a〜5033cのアクチュエータを駆動するためのパワーアシスト制御を行うことができる。これにより、ユーザがアームユニット5031に直接触れて移動させたときに、アームユニット5031を比較的弱い力で移動させることができる。これにより、ユーザが、より単純かつより容易な操作で内視鏡5001をより直感的に動かすことが可能となり、ユーザの利便性を向上させることができる。
ここで、一般に内視鏡手術において、内視鏡5001はスコピストと呼ばれる医師によってサポートされる。対照的に、支持アーム装置5027が使用される場合、手を用いずに内視鏡5001の位置をより確実に固定することができ、そのため、安定して外科領域の画像を取得することができ、円滑に手術を行うことができる。
なお、アーム制御装置5045は必ずしもカート5037上に設けられなくてもよい。さらに、アーム制御装置5045は必ずしも単一の装置でなくてもよい。例えば、複数のアーム制御装置5045が互いに協調してアームユニット5031の駆動制御を行うように、支持アーム装置5027のアームユニット5031の各関節部5033a〜5033cにアーム制御装置5045を設けることができる。
(光源装置)
光源装置5043は、外科領域の撮像時に照射光を内視鏡5001に供給する。光源装置5043は、例えばLEDを含む白色光源、レーザ光源またはそれらの組み合わせを含む。この事例において、白色光源に赤色、緑色、および青色(RGB)のレーザ光源の組み合わせが含まれる場合、各色(各波長)について出力強度および出力タイミングを高い正確度で制御することができるため、撮像画像のホワイトバランスの調整を、光源装置5043によって行うことができる。さらに、この事例において、それぞれのRGBレーザ光源からのレーザ光が観察対象に時分割式に照射され、カメラヘッド5005の撮像素子の駆動が照射タイミングに同期して制御される場合、R、G、およびBの色に個別に対応する画像を時分割式に撮像することができる。上記の方法によれば、たとえ撮像素子にカラーフィルタが設けられない場合であっても、カラー画像を得ることができる。
さらに、光源装置5043の駆動は、出力される光の強度が所定時間毎に変化するように制御することができる。時分割式に画像を取得するために光の強度の変化のタイミングに同期してカメラヘッド5005の撮像素子の駆動を制御し、画像を合成することによって、黒つぶれおよび白とびのない高ダイナミックレンジの画像を作成することができる。
さらに、光源装置5043は、特殊光観察に備えて所定の波長帯域の光を供給するように構成されてもよい。特殊光観察では、例えば、通常観察時の照射光(すなわち白色光)と比較して、より狭い帯域の光を照射するために、生体組織における光の吸収の波長依存性を利用することによって、粘膜表層部の血管などのような所定の組織の高コントラストでの撮像の狭帯域光観察(狭帯域撮像)が実施される。代替的に、特殊光観察において、励起光の照射によって生成される蛍光から画像を取得するための蛍光観察を行ってもよい。蛍光観察において、生体組織に励起光を照射することによって生体組織からの蛍光を観察すること(自己蛍光観察)、または、インドシアニングリーン(ICG)などの試薬を局所的に注入し、生体組織上に試薬の蛍光波長に対応する励起光を照射することによって、蛍光画像を取得することが可能である。光源装置5043は、このような狭帯域光および/または上述したような特殊光観察に適した励起光を供給するように構成することができる。
(カメラヘッドおよびCCU)
内視鏡5001のカメラヘッド5005およびCCU5039の機能を、図2を参照してより詳細に説明する。図2は、図1に示したカメラヘッド5005およびCCU5039の機能構成の一例を示すブロック図である。
図2を参照すると、カメラヘッド5005は、その機能として、レンズユニット5007、撮像ユニット5009、駆動ユニット5011、通信ユニット5013、およびカメラヘッド制御ユニット5015を有する。さらに、CCU5039は、その機能として、通信ユニット5059、画像処理ユニット5061および制御ユニット5063を有する。カメラヘッド5005およびCCU5039は、伝送ケーブル5065によって互いに双方向通信可能に接続されている。
まず、カメラヘッド5005の機能構成について説明する。レンズユニット5007は、カメラヘッド5005と鏡筒5003との接続箇所に設けられた光学系である。鏡筒5003の遠位端から取り込まれた観察光は、カメラヘッド5005に導入されてレンズユニット5007に入射する。レンズユニット5007は、ズームレンズおよびフォーカスレンズを含む複数のレンズの組み合わせを含む。レンズユニット5007は、観察光が撮像ユニット5009の撮像素子の受光面に集光されるように、光学特性が調整されている。さらに、ズームレンズおよびフォーカスレンズは、撮像画像の倍率および焦点を調整するために、それらの光軸上での位置が移動可能であるように構成されている。
撮像ユニット5009は、撮像素子を含み、レンズユニット5007に対して後段に配置されている。レンズユニット5007を通過した観察光は、撮像素子の受光面上に集光し、撮像素子の光電変換により観察像に対応する画像信号が生成される。撮像ユニット5009により生成された画像信号は、通信ユニット5013に供給される。
撮像ユニット5009に含まれる撮像素子としては、例えば、ベイヤ配列を有し、カラーで撮像することが可能な相補型金属酸化膜半導体(CMOS)タイプの画像センサが用いられる。なお、撮像素子として、例えば4K以上の高解像度の画像を撮像することが可能な撮像素子が使用され得る。外科領域の画像が高解像度で得られる場合、外科医5067は、外科領域の状態をより詳細に理解することができ、手術をより円滑に進めることができる。
さらに、撮像ユニット5009が含む撮像素子は、3D表示対応の右眼用および左眼用の画像信号を取得するための一対の撮像素子を有するようなものを含む。3D表示が適用される場合、外科医5067は外科領域内の生体組織の深度をより正確に理解することができる。なお、撮像ユニット5009が多板式のものとして構成される場合、撮像ユニット5009の個々の撮像素子に対応して複数系統のレンズユニット5007が設けられる。
撮像ユニット5009は、必ずしもカメラヘッド5005上に設けられていなくてもよい。例えば、撮像ユニット5009は、鏡筒5003の内部において、対物レンズの直後に設けられていてもよい。
駆動ユニット5011はアクチュエータを含み、カメラヘッド制御ユニット5015の制御下で、レンズユニット5007のズームレンズおよびフォーカスレンズを光軸に沿って所定距離だけ移動させる。これにより、撮像ユニット5009による撮像画像の倍率および焦点を適切に調整することができる。
通信ユニット5013は、CCU5039との間で様々な種類の情報を送受信するための通信装置を含む。通信ユニット5013は、撮像ユニット5009から取得した画像信号をRAWデータとして、伝送ケーブル5065を通じてCCU5039に送信する。これを受けて、外科領域の撮像画像を低レイテンシで表示するためには、画像信号を光通信により送信することが好ましい。これは、術中に外科医5067が撮像された画像から患部の状態を観察しながら手術を行うためであり、より高い安全性および確実性をもって手術を達成するために、外科領域の動画像を可能な限りリアルタイムで表示することが求められる。光通信を適用する場合、通信ユニット5013内に、電気信号を光信号に変換する光電変換モジュールが設けられる。画像信号は、光電変換モジュールにより光信号に変換された後、伝送ケーブル5065を通じてCCU5039に送信される。
さらに、通信ユニット5013は、CCU5039からカメラヘッド5005の駆動を制御するための制御信号を受信する。制御信号は、例えば撮像画像のフレームレートが指定されているという情報、撮像時の露出値が指定されているという情報、および/または撮像画像の倍率および焦点が指定されているという情報のような、撮像条件に関する情報を含む。通信ユニット5013は、受信した制御信号をカメラヘッド制御ユニット5015に供給する。なお、CCU5039からの制御信号も光通信により送信されてもよい。この事例において、通信ユニット5013には光信号を電気信号に変換するための光電変換モジュールが設けられる。制御信号は、光電変換モジュールによって電気信号に変換された後、カメラヘッド制御ユニット5015に供給される。
なお、フレームレート、露出値、倍率または焦点などの撮像条件は、取得した画像信号に基づいて、CCU5039の制御ユニット5063によって自動的に設定される。すなわち、内視鏡5001には、自動露出(AE)機能、オートフォーカス(AF)機能およびオートホワイトバランス(AWB)機能が組み込まれている。
カメラヘッド制御ユニット5015は、通信ユニット5013を通じて受信されるCCU5039からの制御信号に基づいてカメラヘッド5005の駆動を制御する。例えば、カメラヘッド制御ユニット5015は、撮像画像のフレームレートが指定されているという情報および/または撮像時の露出値が指定されているという情報に基づいて、撮像ユニット5009の撮像素子の駆動を制御する。さらに、例えば、カメラヘッド制御ユニット5015は、撮像画像の倍率および焦点が指定されているという情報に基づいて、レンズユニット5007のズームレンズおよびフォーカスレンズを適切に移動させるように駆動ユニット5011を制御する。カメラヘッド制御ユニット5015は、鏡筒5003および/またはカメラヘッド5005を識別するための情報を記憶する機能をさらに備えてもよい。
なお、レンズユニット5007および撮像ユニット5009などの構成要素を、気密性が高く防水性のある封止構造内に配置することによって、カメラヘッド5005にオートクレーブ滅菌処理に対する耐性を持たせることができる。
ここで、CCU5039の機能構成について説明する。通信ユニット5059は、カメラヘッド5005との間で様々な種類の情報を送受信するための通信装置を含む。通信ユニット5059は、カメラヘッド5005から伝送ケーブル5065を通じて送信される画像信号を受信する。これを受けて、画像信号は好ましくは、上述したように光通信により送信することができる。この事例において、通信ユニット5059は、光通信に対応するために、光信号を電気信号に変換する光電変換モジュールを含む。通信ユニット5059は、画像信号を、電気信号に変換した後、画像処理ユニット5061に供給する。
さらに、通信ユニット5059は、カメラヘッド5005の駆動を制御するための制御信号をカメラヘッド5005に送信する。制御信号はまた、光通信によって送信されてもよい。
画像処理ユニット5061は、カメラヘッド5005から送信されたRAWデータの形態の画像信号に対して様々な画像処理を施す。画像処理は、例えば、現像処理、画質改善処理(帯域幅拡大処理、超解像処理、ノイズ低減(NR)処理、および/または、画像安定化処理)、および/または、拡大処理(電子ズーム処理)のような様々な既知の信号処理を含む。さらに、画像処理ユニット5061は、AE、AFおよびAWBを行うために画像信号の検出処理を行う。
画像処理ユニット5061は、CPUまたはGPUなどのプロセッサを含み、プロセッサが所定のプログラムに従って動作するとき、上述した画像処理および検出処理を行うことができる。なお、画像処理ユニット5061が複数のGPUを含む場合、画像処理ユニット5061は、複数のGPUによって画像処理が並行して行われるように、画像信号に関する情報を適切に分割する。
制御ユニット5063は、内視鏡5001による外科領域の撮像および撮像画像の表示に関する様々な種類の制御を行う。例えば、制御ユニット5063は、カメラヘッド5005の駆動を制御するための制御信号を生成する。これを受けて、ユーザにより撮像条件が入力される場合、制御ユニット5063は、ユーザによる入力に基づいて制御信号を生成する。代替的に、内視鏡5001にAE機能、AF機能およびAWB機能が組み込まれている場合、制御ユニット5063は、画像処理ユニット5061による検出処理の結果に応じて、最適な露出値、焦点距離およびホワイトバランスを適切に算出し、制御信号を生成する。
さらに、制御ユニット5063は、画像処理ユニット5061によって画像処理が施された画像信号に基づいて、外科領域の画像を表示するように、表示装置5041を制御する。これを受けて、制御ユニット5063は、様々な画像認識技術を用いて外科領域画像内の様々な物体を認識する。例えば、制御ユニット5063は、外科領域画像に含まれる物体の縁部の形状、色などを検出することにより、鉗子などの手術器具、特定の生体領域、出血、エネルギー処置具5021を使用した場合のミストなどを認識することができる。制御ユニット5063は、外科領域画像を表示するように表示ユニット5041を制御するとき、その認識の結果を用いて、様々な種類の手術支援情報が、外科領域の画像と重ねて表示されるようにする。手術支援情報が重複して表示されて外科医5067に提示される場合、外科医5067は手術をより安全かつ確実に進めることができる。
カメラヘッド5005とCCU5039とを互いに接続する伝送ケーブル5065は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、または電気通信と光通信の両方に対応した複合ケーブルである。
ここで、図示の例では、伝送ケーブル5065を用いた有線通信により通信を行っているが、カメラヘッド5005とCCU5039との間の通信は他の様態では、無線通信により行われてもよい。カメラヘッド5005とCCU5039との間の通信が無線通信で行われる場合、伝送ケーブル5065を手術室に敷設する必要はない。そのため、手術室における医療従事者の移動が伝送ケーブル5065によって妨げられるというような事態を解消することができる。
以上、本開示の一実施形態による技術を適用することができる内視鏡手術システム5000の一例を説明した。なお、ここで、内視鏡手術システム5000を例に挙げて説明したが、本開示の一実施形態による技術を適用することができるシステムは、かかる例に限定されない。例えば、本開示の一実施形態による技術は、検査用の軟性内視鏡システムまたは顕微鏡手術システムに適用することができる。
本開示の一実施形態による技術は、上述した構成要素のうち、制御ユニット5063に好適に適用することができる。具体的には、本開示の一実施形態による技術は、内視鏡検査および/もしくは顕微鏡検査または任意の種類の医療撮像に関する。本開示の一実施形態による技術を内視鏡検査および/または顕微鏡検査技術および/またはより一般的に医療撮像に適用することにより、血管系の深度をより正確かつ容易に求めることができる。これにより、患者の負傷または死亡の可能性が減り、医療処置(手術など)を実行することができる効率が向上する。
図3を参照すると、本開示の一実施形態が示されている。具体的には、内視鏡ビュー300は、内視鏡5001によってキャプチャされた画像を示す。内視鏡ビュー300内には、血管系305A〜305Eがある。この血管系は、体を巡って液体を搬送する血管の一例である。図3の例では、血管系305A−305Eが体内を通じて血液を搬送する。血管系は通常、様々な深度の組織内にある。したがって、血管系の深度が外科的処置中に正確に決定されない場合、特に侵襲的処置によって血管系が損傷を受ける可能性がある。
当業者が理解するように、血管系305A〜305Eを構成する血管は、様々な長さ、方向、および直径のものである。加えて、血管系305A〜305E内の血管は、組織310内の様々な深度にあり、様々な直径のものである。さらに、内視鏡ビュー300には、ビューの中心310が示されている。これは、内視鏡ビュー300に「+」記号として示されている。ビューの中心310の目的は、血管系305A〜305E内の血管の様々な位置がそこから参照され得る内視鏡ビュー300内の既知の位置になることである。したがって、ビューの中心310は、基準点と考えることができ、内視鏡ビュー300内の他の場所に配置されてもよい。
さらに図3には断面図350が示されている。具体的には、線X−X’に沿った断面350が図3に示されている。
断面図350を参照すると、組織310は、断面図350から分かるように、第1の血管305A、第2の血管305B、および第3の血管305Dを含む。第1の血管305Aの直径は、第2の血管305Bの直径よりも大きい。第3の血管305Dが断面X−X’の長さに沿って延伸するとき、第3の血管305Dの直径を決定できないことは明らかであろう。しかしながら、明らかになるように、第3の血管305Dの位置は、第1の血管305Aおよび第2の血管305Bの位置よりも下方にある。すなわち、第3の血管305Dは、第1の血管305Aおよび第2の血管305Bの両方よりも組織310内のより深くに位置する。これは、第3の血管305Dが第1の血管305Aおよび第2の血管305Bの下に位置することを意味する。この深度は、本開示の実施形態を使用して決定される。
手術中、患者の心臓は拍動する。これによって、内視鏡ビュー300に示される血管系を通して血液パルスが送られる。この出来事を図4Aに示す。
具体的には、図4Aは、図3に示されるような血管系305A〜305Eを含む内視鏡ビュー400を示す。さらに、血液パルス405が内視鏡ビュー400に示されている。血液パルスの進行方向は、図4Aにおいて矢印で示されている。図4Aから分かるように、内視鏡ビュー400でキャプチャされる血液パルス405は、第2の血管305Bを通って移動している。理解されるように、血液パルス405は、患者の心拍後のある期間内に内視鏡ビュー400に到達する。心臓ポンピングと、内視鏡ビュー400に到達する血液パルス405との間のこの遅延は、心電図(ECG)によって測定される患者の心臓の拍動と、血液パルス405の内視鏡ビュー400への到達との間の時間差を測定することによって決定することができる。この時間差情報は、血液パルスが第2の血管305Bにいつ到達するかを決定するのに役立つ。
図4Bを参照すると、本開示の実施形態による内視鏡ビュー400が示されている。図4Bの内視鏡ビュー400では、変更されている血液パルス410が示されている。変更されている血液パルスは、流れ変更パルス415が印加された図4Aの血液パルス405から生じる。本開示の実施形態では、流れ変更パルス415は、第2の血管305B内の光音響力であってもよい。これは、パルスレーザを使用して生成することができる。光音響力を発生させるメカニズムについては、図9を参照して後で説明する。
流れ変更パルス415の目的は、固定力振幅を血流に印加して、血流を変更することである。この例では、流れ変更パルス415は、血流の方向と反対の方向にある。血液パルスに対向することにより、第2の血管305Bを通る血液パルスの動きは減少し、これは、流れが変更される点における血液量の増加に起因して、第2の血管305Bの直径が増加することを意味する。これにより、血管の剛性が高まり、結果、その弾性は周囲の組織の弾性と同様になる。これにより、表面音響波(SAW)を使用した深度分析の信号対ノイズ比、および/またはレーザスペックルイメージングを使用した血管のより正確な深度分解能が向上する。これはそれ自体望ましい効果であるが、このより正確な深度測定により、患者の高血圧の識別などの診断および治療計画適用に重要である、流量および血管サイズのより良好な推定が可能になる。これは、血管の直径を拡大するために、光音響信号(流れ変更パルス415)を印加することにより達成される。この直径の拡大は、周囲の組織に対する血管の剛性も増加させる。したがって、深度感度が改善される。無論、図4Aの血液パルス405が第2の血管305Bを通過する点において深度測定が行われる場合、流れ変更パルス415は必要ない場合があることを当業者は理解するであろう。これについては後で説明する。すなわち、当業者は、血液パルスが血管を通って流れるとき、血管の直径が自然に拡大し、それにより剛性が向上することを理解するであろう。
図4Cを参照すると、図4Bの議論のさらなる実施形態が示されている。このさらなる実施形態では、内視鏡ビュー400は、変更されている血液パルス410に印加されているさらなる流れ変更パルス417を示す。図4Cの例では、さらなる流れ変更パルス417は、パルスの進行方向において、変更されている血液パルス410の背後に印加される。すなわち、変更されている血液パルス410は、流れ変更パルス415とさらなる流れ変更パルス417との間で
実質的に押しつぶされる。流れ変更パルス415およびさらなる流れ変更パルス417の両方は、変更されている血液パルス410に対する対向する両側で反対方向に作用して、図4Bの実施形態よりもさらに、変更されている血液パルスを押しつぶす。変更されている血液パルス410の背後に、かつ、流れ変更パルス415とは反対の方向に加えられるこのさらなる流れ変更パルス417は、血管の剛性コントラストをさらに高める効果を有する。これにより、図4Bの実施形態の信号対雑音比が改善される。
上記では、流れ変更パルス415とは反対の方向へのさらなる流れ変更パルス417の印加について説明したが、本開示はそのように限定されない。このさらなる実施形態では、さらなる流れ変更パルス417は、任意の方向に、さらには流れ変更パルス415と同一または同様の方向に印加されてもよい。特に、血管の片側の剛性コントラストが必要な場合、さらなる流れ変更パルス417を、増強を必要とする側の方向に印加することができる。例えば、図4Cにおいて、変更されている血液パルス410の右側がさらなる増強を必要とする場合、さらなる流れ変更パルス417は、右方向を向く変更されている血液パルス410の左側に位置し得る。付加的または代替的に、変更されている血液パルス410に印加される流れ変更パルスの全体が第2の血管305Bを通じて進行する変更されている血液パルス410を停止するように、さらなる流れ変更パルス417は、流れ変更パルス415に追加されるものであってもよい。これにより、第2の血管305Bの剛性コントラストがさらに強化される。
図4Dを参照すると、流れ変更パルス410および任意選択にさらなる流れ変更パルス417の印加後、表面音響波(SAW)波が変更されている血液パルス410に印加される。SAW波については、「表面音響波(SAW)」という見出しの下で説明する(下記)。前述のように、SAW波の目的は、第2の血管305Bの深度を決定することである。そのため、図4Dは、強化された剛性コントラストを有する変更されている血液パルスに印加されるSAW波を示しているが、本開示はそのように限定されない。実際、SAW波は、血液が流れていない第2の血管305Bと比較して剛性が向上しているものとしての、血液パルス405に印加することができる。すなわち、心拍に続いて血液パルスが第2の血管305Bを通過するとき、第2の血管305Bの直径が拡大して血液が通過できるようになる。これは、流れ変更パルス417を印加することなく、第2の血管305Bの剛性を高める。次いで、SAW波は、血液パルスによって剛性が強化されるときに第2の血管305Bに印加され得る。
SAW伝播の測定は、個別の機械的特性を有する異なる層の深度および弾性を決定するための既知の技法であるため、これについては以下で詳細に説明しない。
図6を参照すると、データ構造600が示されている。本開示の実施形態では、データ構造600は、テーブルまたはデータベースなどの形態であり得る。CCU5039内で使用されるデータ構造600は、記憶媒体(図示せず)内に記憶される。ここで、データ構造600について、図5を参照して説明する。明らかなように、図5の内視鏡ビュー500は、図4A〜図4Dの血管系を含む。血管系の各区画は、データ構造600内で識別される。データ構造600の例では、血管系がセグメント化されている。具体的には、血管系の各セグメントには一意の識別子が与えられる。データ構造600の例では、セグメントには一意の識別子305A〜305Eが与えられている。図では、血管セグメント全体に一意の識別子が与えられていることが示されているが、実際には、各セグメントはさらなるセグメントに分割され得るか、または、一意の識別子が特定の区画の小部分に帰する。これにより、様々なセグメントの分岐が可能になり、特定のセグメントを通過する血液の流量を変化させることができる。そのため、これに関連して、区画の長さ内の特定の点が識別子に関連付けられることが想定される。この特定の点は、区画の長さなどに沿った中間点であってもよい。
データ構造600はまた、各血管セグメントに関連する流れの方向も含む。これは列610に与えられる。
図5から、図5の左上隅に1〜4の番号が付された矢印があることが分かる。これらの矢印は、特定の血管セグメントを通る流れ方向を識別する際にデータ構造600の列610において使用される命名法を示している。命名法を例示するために、内視鏡ビュー500内の各それぞれのセグメントを通る血流は、図では実線の矢印501〜505として与えられる。
図5では、第1の血管305Aを通る血流は垂直方向下向きである。これは、図5の命名法では、血流の方向が3.0であることを意味する。第2の血管305Bを通る血流の方向は、わずかに左向きの角度で上向きである。これは、図5の命名法では、第2の血管305Bを通る血流の方向が4.9であることを意味する。
当業者には明らかなように、列610の残りの流れ方向はこの命名法に従う。
血流の方向および速度を決定するために、識別されている血管内の2点からのレーザスペックル強度の相互相関(「レーザスペックルコントラストイメージング(LSCI)」の見出しを参照)が使用される。これは、ピクセル振幅閾値およびノイズフィルタリングをスペックル画像に適用することによって達成され、その後、ピクセル位置は、キャプチャされている画像内の相対血管寸法および2次元位置を規定するために使用される。これは、当業者には明らかであろう。
図6に戻ると、列615は、関連する血管部分を通る、LSCI技法を使用して決定される血流の速度を格納する。列620は、各血管セグメントの血管径を格納する。血管径は、既知の事前に取得されている画像スケールを使用して決定することができる。流量および血管径は、各血管セグメントの流量を決定するために使用される。具体的には、各血管セグメントの流量は、血管径および流量の関数として計算される。各血管セグメントの流量は、以下の式(1)を使用して血管径および流速の関数として計算される。
Figure 2020525060
ここで、dは血管の直径、vは流速、Qは流量である。
列625には、パルスの時間が格納される。これは、心電図(ECG)によって測定される患者の心拍と、血液パルスが血管を通過する時間との時間差である。血管の直径に変化があるため、血液パルスが識別される。この直径の変化は、一定期間(例えば、10心拍)にわたって観察され、パルス時間の平均時間が格納される。これを使用して、例えば、第1の血管区画305Aを通過する血液パルスは、心拍の241ミリ秒後に測定される。
血管の深度の列630は、本開示の実施形態による方法が実行されるときに埋められる。これについては後で説明する。
加えて、血管の深度の列630が埋められると、血管交差の位置635が埋められる。血管交差の位置を決定するために、血管系内の各血管と互いの血管との交差点が物体認識を使用して導出される。例えば、各血管の経路がトラバースされ、血管が別の血管と交差する場合、交差点の位置が規定される。この位置は、ビューの中心310に対するピクセル座標である。
本開示の実施形態を使用して各血管の深度が決定されると、位置および血管が交差点の上または下を通過するかが埋められる。
最後に、優先度列640が提供される。優先度列は、血管セグメント305A−305Eが血流を変更される順序を提供する。1つの実施形態において、順序は、最小の直径を有する血管の深度が最初に実行され、深度が決定される順序が直径の増分で実行されるように規定されてもよい。これは、図6の実施形態の事例である。この順序選択は、アクティブな流れ変更から最も恩恵を受ける血管(つまり、直径の小さい血管)が最初に実行されるため、有用である。
無論、本開示はこれに限定されず、血管の深度が決定される順序はまた、ある区画から隣接する区画への干渉を防ぐように選択されてもよい。この場合、連続的な流れの変更は、互いから所定の距離よりも遠くに位置する血管に適用されてもよい。最初に最大直径の血管を有する血管に流れ変更を適用するような他の種類の順序付けも想定される。この順序付けは、血流量の多い血管が最初に変更されるべきである場合に適し得る。無論、流量またはさらには流れ方向などの他の要因によって、血管が分析される順序が決定されてもよい。例えば、同一の方向に血流があるすべての血管が最初に分析されてもよい。
図7を参照すると、流れルックアップテーブル700が示されている。流れルックアップテーブル700は、流れ変更の力容量を所与として、最大流れ低減に達するのに必要なタイミングを示す。すなわち、所与の血管標的および流れ変更力のピーク速度低下に達するには、予測可能な時間の長さが必要である。流れ停止力による血管内腔のカバレッジが効率的であると仮定される場合、流れ停止ルックアップテーブル700は、血管流量(流速に血管径を乗算した値)および所与の流れ変更力に対する最大流量低減に達するまでの既知の時間から成る。各最大流量低減が達成される時間は、ルックアップテーブル700に示されている。
図8を参照すると、本開示の実施形態による内視鏡5001が示されている。内視鏡先端は、本開示の実施形態による波生成ユニット800を備える。波生成ユニット800は、固体レーザまたは同等のものであり得るレーザ光源805を備える。例えば、固体レーザは、垂直共振器面発光レーザであってもよく、または、光ファイバ上に設けられるレーザであってもよい。この場合、レーザ光源は内視鏡のヘッド内に配置されるか、または、医療撮像システム内に設けられる分離されたレーザ光源である。このとき、光ファイバはレーザ光を適切な場所に搬送する。レーザ光源805は、制御ユニット563に接続されており、制御ユニット5063により制御される。波生成ユニット800はまた、2軸微小電気機械ミラー(MEMs)ミラーも含む。MEMsミラーの方向も制御ユニット5063によって制御される。レーザ光源805は、レーザを2軸MEMsミラー810上に発射し、レーザ光は、矢印で示される方向に反射される。次いで、レーザ光源805からのレーザ光815は、組織310に付与される。組織にレーザ光のバーストを印加することにより、以下に説明する既知の「光音響技法」を使用して、組織310を通る縦波および横波が提供される。なお、波生成ユニット800は、流れ変更パルスまたはSAW波生成の一方または両方を生成することができる。
無論、図8に関して議論された実施形態は、内視鏡5001内に配置されたレーザ光源805を示しているが、本開示はそのように限定されない。特に、レーザ光源805は、内視鏡のヘッド内に配置されてもよく、光ファイバが、2軸MEMsミラー810にレーザ光を付与してもよい。
図9を参照すると、光音響技法を実行するメカニズムが示されている。第1のビュー900Aでは、血管905Aが示されている。第1の列910A内の血液は、レーザが組織310に付与されるときに最初に生成される波面を有する。第2の列915A内の血液は、血管から離れる方向の第1の列910Aからの波面を打ち消す。すなわち、レーザ光エネルギーは、第1の列910A内の血液から第2の列915A内の血液に渡される。そのため、波面は血管905Aと平行に生成され、血管を横切る。
これは、第2のビュー900Bに示されており、血管905Bは、破壊的干渉915Bによって相殺される、第1の列および第2の列(910Bとして集合的に示される)からの波面を有する。
図10を参照すると、本開示の実施形態を説明するフローチャート1000が示されている。プロセスはステップ1005において始まる。次に、プロセスはステップ1010に進み、流れ変更パルスおよび任意選択的にさらなる流れ変更パルス417が血液パルスに印加される。流れ変更パルス415およびさらなる流れ変更パルス417の印加のタイミングは、列625において規定される。具体的には、ECGが心臓の拍動を検出した後、列625において示される時点において流れ変更パルスが印加される。
変更が適用される順序は、優先度列640に与えられる。図6の特定の例では、最初に区画305Eに血流の変更が適用される。これは、この血管の直径が最も小さいためである。変更の場所は、血流の方向の反対側になる。血液の流れは、図6のテーブルの流れ方向の列610によって与えられる。すなわち、血管305Eが3.8の方向に移動するとき、これは血液の流れと実質的に反対であるため、1.8の方向に血流の変更が適用される。
流れを変更する力および流れ変更が適用される時間は、図7のルックアップテーブルで提供される。具体的には、所与の流量(式1のように血管径および流量の関数として計算される)に対して、適切な流れ停止力が指定された期間にわたって適用される。流れ停止力および流れ停止力を適用する必要がある時間は、実験により事前に決定される。
上記の例では、流れ変更パルス415の印加は、自然パルスと同期して実行される。しかし、本開示はそれに限定されない。上記で説明したように、心臓が拍動しているときにSAWを印加することができるため、流れ変更パルスは任意選択である。任意選択的に、流れ変更ステップ1010にさらなる流れ変更を含めることもできる。これは、現在の区画の外側の領域に供給する上流分岐への流れをカットする。これにより、現在調査中の領域の血圧が上昇する。
流れ変更パルス415および任意選択的にさらなる変更パルス417が被試験血管(この場合、血管305E)に印加された後、組織内の血管の深度がステップ1015において調査される。
これを達成するために、表面音響波が現在の被試験血管部分に適用される。例えば、複数の干渉SAWが、血管縁部から固定の事前定義された距離で生成されて、すべての点においてその軸に垂直に血管を横切る波を生成する。これを図9に図式的に示す。
複数の同一であるが時間的に分離されたSAW波が被試験血管に印加される可能性がある。これは、SAW波の異なる周波数成分の平均位相速度を測定することを可能にする既知の技法である。無論、本開示はそのように限定されず、任意選択的に、軟組織における既知のSAW群速度およびSAW波が印加される位置が与えられると、SAW開始タイミングは、SAWが最大流量変更効果の達成後に血管に到達するように選択される。すなわち、SAW波は、SAW波が被試験血管と相互作用する時間が、流れ変更パルスが流量を最小に減らす時間と一致するように、組織を通じて送信することができる。
さらに、単一のSAW波を被試験血管に印加することができ、被試験血管を通過する際のSAW波の動きを2つ以上の画像においてキャプチャすることができる。この場合、異なる時間にキャプチャされた同一の波の2つの画像間でSAW内の空間周波数分布を比較することにより、波の異なる周波数成分の平均位相速度を決定することができる。被試験血管に交差する際の波の平均位相速度は、血管の結果としてのSAW波形の変化を決定するために、血管の前または後のいずれかの同一の伝播距離での対照測定と比較される。これにより、影響を受けている周波数成分および軟組織内のそれらの既知の波長を使用して血管の深度を決定することが可能である。
画像データ内のSAWを識別するために、ピクセル振幅閾値を画像データに適用し、血管データ内の血管の既知の位置を差し引くことが可能である。任意選択的に、形状/波形認識などの他の分析機能を使用して、SAW検出を改善することができる。
次に、位相速度などのSAW属性が決定される。SAW属性を決定するために、SAW波形は、伝搬方向に垂直な1次元ライン内でSAWを分析することにより測定される。例えば、レーザスペックル画像の場合、その1次元ラインに沿った強度分布が使用される。記録された波形のフーリエ変換を使用して、1次元ラインに沿ったいくつかのウィンドウの波形の周波数構成が識別される。次に、異なる周波数成分の空間分布が決定される。その後、調査されている領域内の測定位置が記録される。これから、平均位相速度が決定され、特定の点における血管の深度が決定される。次いで、図6の列630が、血管区画305Eについてデータ投入される。次いで、血管区画305Eの深度を決定するプロセスは、ステップ1020において終了する。
図11を参照して、流れ変更パルスの印加を説明するフローチャート1010が説明される。プロセスはステップ1105においてステップする。プロセスは、調査される領域を識別するステップ1110に移動する。これは、図4A〜図4Dおよび図5の内視鏡ビューである。ステップ1115において、物体認識を使用して、調査される領域内の血管系が識別される。次いで、プロセスはステップ1120に移動し、血管系が調査されるべき順序が特定される。この情報は優先度列640から取得している。次に、プロセスはステップ1125に進み、流れ停止力、方向、ならびに、流れ変更パルス415および任意選択的にさらなる流れ変更パルス417が印加される期間が決定される。次いで、プロセスはステップ1130に進み、流れ変更パルス415が組織310に印加される。その後、プロセスはステップ1135において終了する。
図12を参照して、組織内の血管の深度の調査をさらに説明する。このプロセスはステップ1200において始まる。次に、プロセスはステップ1205に進み、使用すべきSAWパターンが決定される。これは、複数の同一であるが時間的に分離されたSAW波であってもよく、または適用されるべき単一のSAW波であってもよい。SAWパターンが決定された後、プロセスはステップ1210に移動し、SAWパターンの印加のタイミングが決定される。これは、SAW群速度および軟組織、ならびに、データ構造700からの時間に関する知識を使用することによって達成される。次に、SAWパターンが組織に印加される。プロセスはステップ1215に進み、SAWが印加された血管系の画像がキャプチャされる。無論、単一のSAW波のみが印加される場合、被試験血管を通過するSAW波を示す2つ以上の画像がキャプチャされる。次いで、プロセスはステップ1220に進み、組織の血管の深度が、波の異なる周波数成分の平均位相速度を使用して決定される。その後、プロセスはステップ1225において終了する。
上記の開示は、流れ変更パルス415、および任意選択的にさらなる流れ変更パルス417の印加に関するが、本開示はそのように限定されない。いくつかの実施形態では、SAW波を使用して血流を変調し、流れ変更パルス415の必要性を排除することができる。これは、血管内の血流に影響を与えるSAWの生成または他の光音響技法によるものであり得る。図8に示すような同一のパルスレーザ装置が、光音響流れ制御とSAW生成の両方に使用される可能性がある。これにより、デバイスの複雑さが軽減される。
血管区画が調査される順序は、優先度列640に体系的に示されているが、本開示はそのように限定されない。代わりに、内視鏡システムの現在のタスクに関連する領域内の血管の特性をより迅速に決定するために、算術的にまたはユーザインタフェースを通じて関心領域を規定することができる。これは、切断部または出血などの関心点を特定することで達成することができ、その関心領域内の血管が、上記のようにセグメント化および分析される。これにより、出血を引き起こす切断部の深度の分析が可能になる。
上記の例では、光音響力が流れ変更パルス415として印加された場合、これは血管深度測定を妨げる望ましくないSAWまたは他のアーティファクトを生成する可能性がある。この場合、流れ変更パルスが印加された被調査領域からの最小距離などの干渉回避手段を実施することができる。さらに、望ましくないアーティファクトとの相互作用を避けるために、SAWをフェーズすることができる。
上記では被調査領域に複数のSAWを適用することについて説明したが、組織が不要なSAW波にさらされるのを避けるために、複数の画像キャプチャイベントを有する単一のSAWを適用することが望ましい場合がある。
本開示の様々な実施形態は、以下の番号が付された節によって定義される。
1.血管と相互作用するために組織に表面音響波を印加し、表面音響波が血管と相互作用するときに組織の画像をキャプチャし、キャプチャされた画像から血管の特性を識別するように構成された回路を含む医療撮像システム。
2.血管が液体パルスによって拡張されたときに、回路が表面音響波を印加するように構成されている、節1に記載の方法。
3.回路が、流れ変更パルスを組織に印加するように構成され、流れ変更パルスが血管の拡張を増加させるように液体パルスを変更するように構成される、節1または2に記載のシステム。
4.回路は、血管内の液体の流れに対向する方向に流れ変更パルスを印加するように構成されている、節3に記載のシステム。
5.回路が、さらなる流れ変更パルスを組織に印加するように構成され、さらなる流れ変更パルスが血管の拡張をさらに増加させるように液体パルスをさらに変更するように構成される、節3に記載のシステム。
6.回路は、一定の期間にわたって流れ変更パルスを印加するように構成されており、上記期間は、血管を通る液体の流れを低減するように選択される、節3に記載のシステム。
7.回路は、血管と相互作用する単一の表面音響波を生成し、表面音響波の複数の画像をキャプチャして、複数のキャプチャされた画像の比較から血管の特性を識別するようにさらに構成されている、節1〜6のいずれか一節に記載のシステム。
8.上記特性が組織内の血管の深度である、節1〜7のいずれか一節に記載のシステム。
9.回路が、表面音響波が印加されるときに、レーザスペックルパターンを組織に印加し、キャプチャされたスペックルパターンから血管の特性を識別するように構成されている、節1〜8のいずれか一節に記載のシステム。
10.回路が内視鏡内に設けられている、節1〜9のいずれか一節に記載のシステム。
11.血管が血管系であり、液体が血液である、節1〜10のいずれか一節に記載のシステム。
12.回路は、表面音響波を組織に印加するように構成された波印加回路と、組織の画像をキャプチャするように構成された撮像回路とを含む、節1〜11のいずれか一節に記載のシステム。
13.血管と相互作用するために組織に表面音響波を印加することと、表面音響波が血管と相互作用するときに組織の画像をキャプチャすることと、キャプチャされた画像から血管の特性を識別することとを含む医療撮像方法。
14.血管が液体パルスによって拡張されたときに、表面音響波を印加することを含む、節13に記載の方法。
15.方法は、流れ変更パルスを組織に印加することを含み、流れ変更パルスが血管の拡張を増加させるように液体パルスを変更するように構成される、節13または14に記載の方法。
16.血管内の液体の流れに対向する方向に流れ変更パルスを印加することを含む、節15に記載の方法。
17.方法は、さらなる流れ変更パルスを組織に印加することを含み、さらなる流れ変更パルスが血管の拡張をさらに増加させるように液体パルスをさらに変更するように構成される、節15に記載の方法。
18.方法は、一定の期間にわたって流れ変更パルスを印加することを含み、上記期間は、血管を通る液体の流れを低減するように選択される、節15に記載の方法。
19.血管と相互作用する単一の表面音響波を生成することと、表面音響波の複数の画像をキャプチャして、複数のキャプチャされた画像の比較から血管の特性を識別することとを含む、節13〜18のいずれか一節に記載の方法。
20.上記特性が組織内の血管の深度である、節13〜19のいずれか一節に記載の方法。
21.表面音響波が印加されるときに、レーザスペックルパターンを組織に印加することと、キャプチャされたスペックルパターンから血管の特性を識別することとを含む、節13〜20のいずれか一節に記載の方法。
22.血管が血管系であり、液体が血液である、節13〜21のいずれか一節に記載の方法。
23.コンピュータにロードされると、節13〜22のいずれか一節に記載の方法を実行するようにコンピュータを構成するコンピュータ可読命令を含むコンピュータプログラム製品。
明らかに、上記の教示に照らして本開示の多数の変更および変形が可能である。したがって、添付の特許請求の範囲内で、本明細書に具体的に記載されているのとは別の方法で本開示を実施することができることを理解されたい。
本開示の実施形態が、少なくとも部分的にソフトウェア制御データ処理装置によって実施されるものとして説明されている限り、光ディスク、磁気ディスク、半導体メモリなどのような、そのようなソフトウェアを担持する非一時的機械可読媒体も、本開示の一実施形態を表すと考えられることが理解されるであろう。
明確にするための上記の説明は、種々の機能ユニット、回路および/またはプロセッサを参照して実施形態を説明したことが理解されるであろう。しかしながら、実施形態から逸脱することなく、複数の異なる機能ユニット、回路および/またはプロセッサ間の機能の任意の適切な分配が使用されてもよいことは明らかであろう。
記載された実施形態は、ハードウェア、ソフトウェア、ファームウェアまたはこれらの任意の組み合わせを含む任意の適切な形態で実施されてもよい。記載された実施形態は、任意選択的に、少なくとも部分的に1つまたは複数のデータプロセッサおよび/またはデジタル信号プロセッサ上で動作するコンピュータソフトウェアとして実装されてもよい。任意の実施形態の要素および構成要素は、任意の適切な方法で物理的、機能的および論理的に実装されてもよい。実際、機能は単一のユニット、複数のユニット、または他の機能ユニットの一部として実施することができる。そのため、開示された実施形態は単一のユニットにおいて実施されてもよく、または、異なるユニット、回路および/もしくはプロセッサ間で物理的および機能的に分散されてもよい。
本開示をいくつかの実施形態に関連して説明してきたが、本明細書に記載の特定の形態に限定されることを意図するものではない。さらに、特徴は特定の実施形態に関連して説明されているように見えるかもしれないが、当業者は、説明された実施形態の様々な特徴が本技法を実施するのに適した任意の方法で組み合わされ得ることを認識するであろう。
表面音響波(SAW)
SAWは、軟組織および空気などの2つの異なる弾性材料間の界面に沿って進行する波である。それらは、多くの分野での用途があり、検知と作動の両方に使用されているが、提案されている発明に特に関連するのは、深度検知および機械的特性調査への適用である。
広帯域SAWの種々の周波数成分は、媒体内の種々の深度(表面から約1波長)において伝播し、材料の剛性に基づいて種々の速度で伝播する。したがって、長波長SAW成分の位相速度(特定の周波数波成分の伝播速度)は主により深い層によって決まり、一方、より短い波長の位相速度は表面層の特性によって決まる。これを使用して、明確な機械的特性を有する材料層の深度および弾性を評価することができる。この技法により、報告されている3.4 mmまでの種々の層の特性評価が可能になる。また、これらの評価システムは、システムで測定することができるSAWの最高周波数成分によって定義される、測定を行うことができる最小深度を有する。
SAWは、流体内に力を生成するため、または、血液などの流体の機械的特性を変更することを可能にするためにも使用することができる。その結果、それらはマイクロ流体作動システムで一般的に採用されている。
SAWは、表面に対する衝撃力を生成することによって生成することできる。これは、表面に接触する圧電トランスデューサ、集束超音波、およびパルスレーザ生成(光音響)技法など、いくつかの可能な手段によって達成することができる。これらの手法のいずれかを使用することによって、様々なパラメータを使用して、調整可能な特性を有するSAWを生成することができる。
光音響技法
光音響技法は、レーザ光の短い高振幅のバーストを使用する。このバーストは標的基質に高度に吸収され、急速な熱膨張を生成する。材料表面上で吸収が発生する場合、この急速な膨張により、標的材料体を通じて通過する縦波および横波、ならびに、表面に沿ってすべての方向に伝播するSAWが生成される。SAWの複数のソースまたは成形された単一のソースを使用して、成形された波面および焦点を生成することができる。高強度が使用される場合にレーザパルスは組織を損傷する可能性があるが(例えば、より長い距離を伝播するSAWを生成する)、これを回避するための十分に特性化されたパラメトリックガイドライン、および、損傷を防ぐことができる新規の技法が存在する。
水などの血漿成分に強く吸収されるレーザを使用することにより、ビーム吸収部位に局所的な強い光音響力が、小血管内の流体および粒子の流れに影響を与え、制御することが示されており、これは、in vivoフローサイトメトリ用途について現在調査されている。
レーザスペックルコントラストイメージング(LSCI)
LSCIは、コヒーレント光が材料内の種々の深度において反射および散乱し、建設的および破壊的な干渉を引き起こすときに、コヒーレント光によって生成される干渉パターンを使用する、安価な全視野撮像技法である。画像内の任意の動きがスペックルパターンを変化させ、さらに微小血管までの血流を撮像するための高感度ツールになる。標的または撮像/レーザソースの動きも、スペックルパターンを変化させる可能性があり、これがノイズの原因になるが、内視鏡などの自由に動くソースを使用しても、これを大幅に補正することができる。
単一のインスタンスにおいて焦点フィールド全体を撮像することができるため、レーザスキャンまたは高速写真撮影の必要がなくなり、LSCIを非常に低コストの機器で実行することができる。
さらに、血管系の敏感な2Dマップを作成するだけでなく、流れ方向および速度、ならびに、静的および動的な血管径の推定を含む、血流および血管のいくつかの特性を決定することができる。しかしながら、これらの推定およびLSCIの一般的な適用には、深度分解能の不足という欠点がある。
SAWは表面に沿って進行するにつれて、組織の小さな変位(<1μm)を引き起こす。この動きはLSCI技法によって検出することができ、スペックルパターンをさらに分析することを通じて、波の速度、波長および減衰長などの波の特性を測定することができる。

Claims (23)

  1. 血管と相互作用するために組織に表面音響波を印加し、前記表面音響波が前記血管と相互作用するときに前記組織の画像をキャプチャし、前記キャプチャされた画像から前記血管の特性を識別するように構成された回路を含む医療撮像システム。
  2. 前記血管が液体パルスによって拡張されたときに、前記回路が前記表面音響波を印加するように構成されている、請求項1に記載の方法。
  3. 前記回路が、流れ変更パルスを前記組織に印加するように構成され、前記流れ変更パルスが前記血管の前記拡張を増加させるように前記液体パルスを変更するように構成される、請求項1に記載のシステム。
  4. 前記回路は、前記血管内の液体の流れに対向する方向に前記流れ変更パルスを印加するように構成されている、請求項3に記載のシステム。
  5. 前記回路が、さらなる流れ変更パルスを前記組織に印加するように構成され、前記さらなる流れ変更パルスが前記血管の前記拡張をさらに増加させるように前記液体パルスをさらに変更するように構成される、請求項3に記載のシステム。
  6. 前記回路は、一定の期間にわたって前記流れ変更パルスを印加するように構成されており、前記期間は、前記血管を通る液体の流れを低減するように選択される、請求項3に記載のシステム。
  7. 前記回路は、前記血管と相互作用する単一の表面音響波を生成し、前記表面音響波の複数の画像をキャプチャして、前記複数のキャプチャされた画像の比較から前記血管の特性を識別するようにさらに構成されている、請求項1に記載のシステム。
  8. 前記特性が前記組織内の前記血管の深度である、請求項1に記載のシステム。
  9. 前記回路が、前記表面音響波が印加されるときに、レーザスペックルパターンを前記組織に印加し、キャプチャされた前記スペックルパターンから前記血管の前記特性を識別するように構成されている、請求項1に記載のシステム。
  10. 前記回路が内視鏡内に設けられている、請求項1に記載のシステム。
  11. 前記血管が血管系であり、前記液体が血液である、請求項1に記載のシステム。
  12. 前記回路は、前記表面音響波を前記組織に印加するように構成された波印加回路と、前記組織の画像をキャプチャするように構成された撮像回路とを備える、請求項1に記載のシステム。
  13. 血管と相互作用するために前記組織に表面音響波を印加することと、前記表面音響波が前記血管と相互作用するときに前記組織の画像をキャプチャすることと、前記キャプチャされた画像から前記血管の特性を識別することとを含む医療撮像方法。
  14. 前記血管が液体パルスによって拡張されたときに、前記表面音響波を印加することを含む、請求項13に記載の方法。
  15. 流れ変更パルスを前記組織に印加することを含み、前記流れ変更パルスが前記血管の前記拡張を増加させるように前記液体パルスを変更するように構成される、請求項13に記載の方法。
  16. 前記血管内の液体の流れに対向する方向に前記流れ変更パルスを印加することを含む、請求項15に記載の方法。
  17. さらなる流れ変更パルスを前記組織に印加することを含み、前記さらなる流れ変更パルスが前記血管の前記拡張をさらに増加させるように前記液体パルスをさらに変更するように構成される、請求項15に記載の方法。
  18. 一定の期間にわたって前記流れ変更パルスを印加することを含み、前記期間は、前記血管を通る液体の流れを低減するように選択される、請求項15に記載の方法。
  19. 前記血管と相互作用する単一の表面音響波を生成することと、前記表面音響波の複数の画像をキャプチャして、前記複数のキャプチャされた画像の比較から前記血管の特性を識別することとを含む、請求項13に記載の方法。
  20. 前記特性が前記組織内の前記血管の深度である、請求項13に記載の方法。
  21. 前記表面音響波が印加されるときに、レーザスペックルパターンを前記組織に印加することと、キャプチャされた前記スペックルパターンから前記血管の前記特性を識別することとを含む、請求項13に記載の方法。
  22. 前記血管が血管系であり、前記液体が血液である、請求項13に記載の方法。
  23. コンピュータにロードされると、請求項13に記載の方法を実行するように前記コンピュータを構成するコンピュータ可読命令を含むコンピュータプログラム製品。
JP2019562661A 2017-06-29 2018-05-28 医療撮像システム、方法およびコンピュータプログラム Pending JP2020525060A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP17178724.5 2017-06-29
EP17178724 2017-06-29
PCT/JP2018/020317 WO2019003750A1 (en) 2017-06-29 2018-05-28 MEDICAL IMAGING SYSTEM, METHOD, AND COMPUTER PROGRAM PRODUCT

Publications (1)

Publication Number Publication Date
JP2020525060A true JP2020525060A (ja) 2020-08-27

Family

ID=59298217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019562661A Pending JP2020525060A (ja) 2017-06-29 2018-05-28 医療撮像システム、方法およびコンピュータプログラム

Country Status (5)

Country Link
US (1) US20200143534A1 (ja)
JP (1) JP2020525060A (ja)
CN (1) CN110785115A (ja)
DE (1) DE112018003367T5 (ja)
WO (1) WO2019003750A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230087295A1 (en) * 2021-09-10 2023-03-23 Rockley Photonics Limited Optical speckle receiver

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009521973A (ja) * 2006-01-03 2009-06-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 血管の位置を特定するための方法及びシステム
JP2012213609A (ja) * 2011-03-29 2012-11-08 Fujifilm Corp 光音響画像化方法および装置
US20150011895A1 (en) * 2012-03-28 2015-01-08 University Of Washington Through Its Center For Commercialization Methods and Systems for Determining Mechanical Properties of a Tissue

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7088455B1 (en) * 2002-04-08 2006-08-08 Providence Health Systems —Oregon Methods and apparatus for material evaluation using laser speckle
WO2008048350A2 (en) * 2006-02-24 2008-04-24 Nanovibronix Inc. System and method for surface acoustic wave treatment of skin
WO2013134782A1 (en) * 2012-03-09 2013-09-12 The Johns Hopkins University Photoacoustic tracking and registration in interventional ultrasound
US20140187904A1 (en) * 2012-12-28 2014-07-03 Marjan RAZANI Method and system for determining whether arterial tissue comprises atherosclerotic plaque
US20140275942A1 (en) * 2013-03-15 2014-09-18 Boise Statement University Imaging Device for Biomedical Use
US10485429B2 (en) * 2015-07-01 2019-11-26 Everist Genomics, Inc. System and method of assessing endothelial function

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009521973A (ja) * 2006-01-03 2009-06-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 血管の位置を特定するための方法及びシステム
JP2012213609A (ja) * 2011-03-29 2012-11-08 Fujifilm Corp 光音響画像化方法および装置
US20150011895A1 (en) * 2012-03-28 2015-01-08 University Of Washington Through Its Center For Commercialization Methods and Systems for Determining Mechanical Properties of a Tissue

Also Published As

Publication number Publication date
WO2019003750A1 (en) 2019-01-03
CN110785115A (zh) 2020-02-11
US20200143534A1 (en) 2020-05-07
DE112018003367T5 (de) 2020-03-12

Similar Documents

Publication Publication Date Title
JP7276150B2 (ja) 医用イメージングシステム、方法およびコンピュータプログラム製品
EP3359012B1 (en) A laparoscopic tool system for minimally invasive surgery
WO2019116592A1 (ja) 内視鏡の表示画像の調整装置及び手術システム
US10904437B2 (en) Control apparatus and control method
WO2020045015A1 (ja) 医療システム、情報処理装置及び情報処理方法
JPWO2013011733A1 (ja) 内視鏡誘導システム及び内視鏡誘導方法
JP2023164610A (ja) 画像処理装置、画像処理方法および画像処理システム
JP2009061014A (ja) 硬さ測定装置、硬さ測定方法、および内視鏡システム
JP5635281B2 (ja) 超音波照射装置
JP2010131053A (ja) 超音波画像診断システムおよび超音波画像診断システムを動作させるプログラム
JP6243441B2 (ja) 静止全体ビューを持つマイクロマニピュレータ制御ローカルビュー
JP2021040987A (ja) 医療用支持アーム、及び医療用システム
WO2020262262A1 (ja) 医療用観察システム、制御装置及び制御方法
JP2020525060A (ja) 医療撮像システム、方法およびコンピュータプログラム
EP2954846B1 (en) Swipe to see through ultrasound imaging for intraoperative applications
JP2014204904A (ja) 医用ガイドシステム
WO2018180068A1 (en) Medical imaging device and endoscope
WO2020203164A1 (ja) 医療システム、情報処理装置及び情報処理方法
KR101418405B1 (ko) 고배율 표면 이미지에 광음향 단층 이미지를 포함하는 증강 현실 이미지를 중첩시켜 출력하는 수술용 현미경 시스템 및 그를 위한 증강 현실 이미지 제공 장치
US11576555B2 (en) Medical imaging system, method, and computer program
CN109893257B (zh) 具有彩色多普勒超声功能的一体化外视镜腹腔镜系统
WO2022201933A1 (ja) 生体内観察システム、観察システム、生体内観察方法及び生体内観察装置
WO2020009127A1 (ja) 医療用観察システム、医療用観察装置、及び医療用観察装置の駆動方法
JPWO2020045014A1 (ja) 医療システム、情報処理装置及び情報処理方法
Alles et al. Real-time and freehand multimodal imaging: Combining white light endoscopy with all-optical ultrasound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221206